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Abstract:

Groundwater management involves conflicting objectives as maximization of discharge contradicts the criteria of minimum
pumping cost and minimum piping cost. In addition, available data contains uncertainties such as market fluctuations, variations
in water levels of wells and variations of ground water policies. A fuzzy model is to be evolved to tackle the uncertainties, and a
multiobjective optimization is to be conducted to simultaneously satisfy the contradicting objectives. Towards this end, a
multiobjective fuzzy optimization model is evolved. To get at the upper and lower bounds of the individual objectives, particle
Swarm optimization (PSO) is adopted. The analytic element method (AEM) is employed to obtain the operating potentio metric
head. In this study, a multiobjective fuzzy optimization model considering three conflicting objectives is developed using PSO
and AEM methods for obtaining a sustainable groundwater management policy. The developed model is applied to a case study,
and it is demonstrated that the compromise solution satisfies all the objectives with adequate levels of satisfaction. Sensitivity
analysis is carried out by varying the parameters, and it is shown that the effect of any such variation is quite significant.
Copyright © 2015 John Wiley & Sons, Ltd.
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INTRODUCTION

Fresh surface water resources are depleted day by day
because of various competitive demands such as
agricultural, municipal and industrial. This necessitated
augmentation by use of groundwater or resulting to
groundwater alone in some situations. Indiscriminate and
sometimes unlimited pumping is deteriorating groundwa-
ter quality. The problem becomes more complex because
of the multiobjective nature of the groundwater manage-
ment. For example, maximum discharge objective to the
region that facilitates maximum pumping may not satisfy
the minimum pumping cost or piping cost criteria. For
sustainable groundwater management in either develop-
ing or developed countries, these three objectives are
required to be simultaneously satisfied (may not be
equally) rather than mere maximization or minimization
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of any one of them (Duckstein et al., 1994). This requires
evolving compromise solutions in a multiobjective envi-
ronment, which provide realistic and acceptable strategy to a
policy maker for possible implementation (Loucks et al.,
1981; Deb, 2001; Raju and Nagesh Kumar, 2014).
In addition, the inherent uncertainty and imprecision in

the available data such as uncertainty in cost of pumping
due to increase/decrease in water level, variation in piping
cost due to market fluctuations and change in groundwa-
ter policy from time to time makes groundwater
management problems more complex, especially in the
face of unexpected and sustained extremes such as
droughts where groundwater pumping has to augment
the meagre rainfall. In such a situation, fuzzy approach
can be applied to handle the vagueness in objectives in
real world situation (Chang et al., 1997).
Most of the groundwater management problems were

solved using the simulation-optimization approach. In
this, numerical models are used to simulate the ground-
water flow, and its output is used by optimization model
for getting various parameters such as groundwater head
and cost that can be used as the basis for effective
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decision making required for formulating a fuzzy model
(Gaur et al., 2013). Brief but relevant literature review is
presented in the succeeding text:
Bogardi et al. (1991) analysed groundwater manage-

ment problems using interactive multiobjective decision-
making method. The objectives of the study were
maximization of total yield, minimization of maximum
compression at the selected wells and minimization of
total pumping cost. A finite-difference method-based flow
model was used to generate the response matrix.
Cieniawski et al. (1995) used genetic algorithms to solve
multiobjective groundwater management problem for
selecting a system for monitoring wells. McPhee and
Yeh (2004) carried out a study of multiobjective
optimization and demonstrated the use of groundwater
simulation and optimization for solving the groundwater
management problem.
Numerous authors employed multiobjective fuzzy

optimization (MOFO) for various studies because of its
(a) limited sensitivity analysis requirement and (b) less
computational burden as compared with other
multiobjective optimization techniques such as constraint
method (Deb, 2001). In addition, ability to relate
transitions as soft boundaries rather than hard boundaries
makes the fuzzy approach more promising. Yang and Yu
(2006) considered fuzzy multiobjective problem compris-
ing three objectives, namely, reducing saltwater demand,
reducing freshwater demand and increasing the total
fisheries gross profit. The model was coupled with a
global optimization algorithm to find suitable aquaculture
scenarios for Tachen Village, Changhua County, Taiwan.
It was concluded that analytical results can be used for
revising the aquaculture structure. Kentel and Aral (2007)
used fuzzy logic based multiobjective decision making
approach for groundwater management. Conventional
simulation-optimization model was used to optimize
additional groundwater withdrawal at multiple demand
locations in a coastal aquifer. The methodology was
applied to a hypothetical case consisting of six ground-
water demand locations in Savannah. Ordered weighted
averaging operator was used to calculate overall perfor-
mance based on the model outcome. Deep et al. (2009)
developed fuzzy interactive method for efficient manage-
ment of multipurpose multireservoir problems and
applied to a case study. Two objectives, namely,
irrigation and hydropower generation, were considered
in fuzzy environment. These objectives were combined
into a single objective using the product operator and
genetic algorithms. It was concluded that the interactive
approach was found to be satisfactory. Choudhari and Raj
(2009) applied fuzzy linear programming (with linear
membership function) to a case study of four reservoir
system, Maharashtra, India. It was concluded that the
reservoir operation policies evolved could tackle the
Copyright © 2015 John Wiley & Sons, Ltd.
complexities associated with the problem. Raju and
Nagesh (2014) explored fuzzy multiobjective program-
ming to a case study of Sri Ram Sagar Project with three
objectives, net benefits, agricultural production and
labour employment. Linear membership functions based
on linear programming were considered for the three
objective functions. The observation was the decrease of
net benefits, agricultural production and labour employ-
ment by 2.38%, 10.26% and 7.22% as compared with
ideal values. Mirajkar and Patel (2013) applied MOFP
(with linear membership function) approach to a case
study of Ukai irrigation project Gujarat, India. The model
was solved for four situations of 90%, 85%, and 75% and
60% exceedance probability. It was concluded that the
inflow corresponding to 75% exceedance probability was
marginally sufficient to meet the requirements of the
study area.
However, no study considered simultaneously

nonlinear/linear fuzzy membership functions in the
coupled analytic element method (AEM) and particle
swarm optimization (PSO) in ground water planning
environment. Keeping this aspect, MOFO methodology is
explored in the present study to address groundwater
management problem for a case study in France. Coupled
simulation-optimization modelling involving AEM and
PSO are employed to obtain the required inputs.
To the authors’ knowledge, the present study is the first

of its kind where MOFO is developed for a groundwater
management problem in combination with PSO and AEM.
METHODOLOGY AND MATHEMATICAL
MODELLING

Multiobjective fuzzy optimization model is employed in
the present analysis. The three objectives considered are
maximum discharge, minimum pumping cost and mini-
mum piping cost. Initially, the three objectives were solved
individually by taking only one of the objectives at a time.
Using the results from individual objectives, the corre-
sponding values of the two remaining objectives for each
solution were derived. Following the process, a best and a
worst value (maximum and minimum value) for each
objective was calculated and correspondingly fuzzy
membership functions were formulated. Further, the
MOFOmodel was formulated, and finally, the compromise
solution along with degree of satisfaction was determined.
Mathematically, a typical groundwater management

problem can be defined using three main components,
namely decision variables, objective function and con-
straints (Ahlfeld and Mulligan, 2000). The description of
the three objectives functions, namely maximum dis-
charge, minimum pumping cost and minimum piping cost
with constraints, are as follows:
Hydrol. Process. 29, 4175–4187 (2015)
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Maximization of discharge

Determination of maximum amount of water that can
be withdrawn from the aquifer through given number of
wells is

f ¼ Max ∑
Nw

i¼1
Qi� a1P hð Þ � a2P Qð Þ

� �
(1)

where Q is discharge (m3/s), h is head (m), P(Q) and P(h)
are penalty terms, α1 and α2 are weighting factors and Nw

is total number of wells.

Minimization of pumping cost

The total cost of new system of pumping wells consists
of the cost of well installation and cost of pumping. The
major factors that influence the pumping cost depend on
the volume of water to be pumped, density of the water,
hydraulic head, efficiency of the pump and energy cost
(Moradi et al., 2003; Sharma and Swamee, 2006). The
total cost of pumping consists of the cost of pump units
and the capitalized electricity cost (pumping cost)
including the annual repair and maintenance cost and
can be expressed (Swamee and Sharma, 1990; Swamee,
1996) for a single well as

Cpum ¼ Min

(
∑
Nw

i¼1
kP

γQiHi

n
þ 8:76REγQiHirT

n

� �

þa1P hð Þ þ a2P Qð Þ
) (2)

where γ=density of the fluid (N/m3); H=pumping head
(m), which is equal to the head from water table in aquifer
to the height of storage tank including head losses in
pipes; η=combined efficiency of the pump and the prime
mover; RE= the cost of the electricity per kilowatt hour
(€/kwh); r= the rate of interest expressed as Euros per
Euros per year (€/€/year); T= life of project (year); and
kP=cost of a pump per unit kilowatt hour (€), which can
be obtained by interpolating values from a curve between
cost and pump capacity. For long life of project (T→∞)
Equation (2) gives rT= 1/r. The pump parameters have
been ascertained from market surveys.

Minimization of piping cost

Total cost of new pipe system consists of the cost of
piping network to carry the water from pumping wells to
storage tank. The piping cost depends on the location of
new wells, the cost of the earthwork, the cost of pipes,
jointing separate pipe sections by welding, applying an
outer insulation, lowering the pipeline into a trench and
filling. In this study, the piping length was considered
from the wells to a reference location only, and all the
Copyright © 2015 John Wiley & Sons, Ltd.
pipes were considered as of the same diameter and
material. The reference location consists of a water
storage tank where water from all the wells will be stored
and subsequently transported for water supply.

Cpip ¼ Min ∑
Nw

i¼1
A2Lið Þ þ a1P hð Þ þ a2P Qð Þ

� �
(3)

A2=cost of piping (€/m), L= total length of pipes.
The constraints incorporated into the model are as

follows

Qi;min < Qi < Qi;max (3a)

∑
Nw

i¼1
Qi > Qtotal (3b)

hi > hi;min (3c)

xi; yi
� �

≠Ai (3d)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj
� �2 þ yi � yj

� �2q
≥ Sw;min (3e)

P hð Þ ¼ hi;min � hi if hi < hi;min

0 if hi ≥ hi;min

�
(3f)

P Qð Þ ¼ Qtot �∑Qi if ∑Qi < Qtot

0 if ∑Qi ≥ Qtot

�
(3g)

where Qi,min and Qi,max are the minimum and maximum
discharge limits for ith well; hi,min=minimum allowable
head of groundwater at ith well; Sw,min=minimum
distance between any pair of wells; and xj and yj are
coordinates of remaining well, that is, i≠ j.
DESCRIPTION OF AEM-PSO MODEL

Groundwater management problems are solved using the
simulation-optimization approach. In this approach, the
coupling of a groundwater flowmodel with an optimization
model is used to find out the best management practices to
address the groundwater management problems. The
groundwater flow model is used to simulate the flow and
to check the constraints of the problem that are based on
state variable, namely groundwater head. The objective
function is evaluated using an optimizationmodel, which, in
turn, utilizes the flow model to satisfy the constraints.
Thus, the coupled simulation-optimization modelling is

an iterative process involving considerable computing.
Therefore, selecting the appropriate and efficient compu-
tational flow model is the key factor. In this study, an
AEM for groundwater flow was adopted (Gaur et al.,
2011a, b). Majumder and Eldho (2013) mentioned the
advantages of AEM over grid methods. They mentioned
Hydrol. Process. 29, 4175–4187 (2015)
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that the computational effort in AEM depends on the
number of features and their discretization level but not
on the spatial extent of the domain, thus making it
possible to model the main features of large geographic
areas at high resolution without excessive computation
time. Olsthoorn (1999) performed comparative analysis
of AEM and finite difference method (FDM) based
models and concluded that the AEM model was more
efficient than the FDM based model. Similar views are
expressed by Strack (2003); Matott et al. (2006); Bandilla
et al. (2007). In this study, the PSO was used as the
optimization model, which was coupled with the AEM
for getting at the head. Brief descriptions of AEM and
PSO are given in the succeeding text.

Analytic element method

The AEM uses superposition of analytic solutions to
basic flow features called ‘analytic elements.’ (Strack,
1989; Haitjema, 1995). AEM is based on potential theory
where the discharge potential of a given aquifer is
determined by superimposing the contribution from
individual analytic elements that correspond to particular
hydraulic feature (e.g. wells, rivers and lakes). The analytic
elements are line sinks and point sinks. Surface waters are
often represented by strings of line sinks and wells are
represented by point sinks. Each type of geohydrological
feature can be simulated by corresponding analytic
element, for example, extraction wells by point sinks,
rivers by line sinks element, infiltration areas by strings of
line sinks, inhomogeneity by line-doublet and recharge by
area-sink. The (potentiometric) head and groundwater flow
in the aquifer is then obtained by adding the contributions
of all these analytic elements.
In the AEM, groundwater flow is often expressed in

terms of a complex potential Ω (m3/s) as

Ω ¼ Φ þ iψ (4)

where discharge potential Ф (m3/s) and the stream
function Ψ (m3/s) fulfil the Cauchy–Riemann condition,
and therefore, Ф and Ψ may be represented as the real and
the imaginary parts of an analytic function Ω=Ω (z) of
the complex variable z= x+ iy, defined in the flow
domain. Finally, the potential is converted into head.
Themathematical details of the AEM are found in Strack

(1989) and Haitjema (1995). The MATLAB (MathWorks
Inc. 2001) platform was used to implement the AEM.

Particle swarm optimization

The PSO is an efficient method for solving large
nonlinear, complex global optimization problems and, in
some cases, performs more efficiently compared with
other evolutionary computation techniques (Kennedy
et al., 2001). Analogously, it can be compared with birds
Copyright © 2015 John Wiley & Sons, Ltd.
searching for food, which consider two factors to achieve
their goal: their own previous best experience (i.e. pbest) and
the best experience amongst all other members (gbest). This
is also similar to human behaviour in decision making when
people consider their own best past experience and the best
experience of other people around them. The working steps
of the PSO method for the solution of any optimization
problem are as follows:

1. Initialize a population (array) of particles with random
positions and velocities for the dimensions in the
problem space. Let Xi(t) denote the position of particle
i in an n-dimensional vector, where n is the number of
optimization variables (dimension of search space) and
t denotes the time step (generation). A particle can be
described as Xi(t) = (xi1, xi2,…,xin). Each particle has an
n-dimensional vector for velocity, and can be described
as Vi(t) = (vi1,vi2,…,vin), where i=1, 2, …, K and K is
the size of the swarm. Decision variables in PSO are
accounted by the dimension of each particle, whereas
the velocity and the position of the particle is
calculated by Equations (5) and (6), respectively

vtij ¼ χ ωvt�1
ij þ c1r1 Pt�1

ij � xt�1
ij

	 

þ c2r2 Gt�1

j � xt�1
ij

	 
h i
(5)

xtij ¼ xt�1
ij þ vtij (6)

where c1 and c2 are acceleration constants, and r1 and
r2 are random real numbers between 0 to 1. P and Gt

denotes the pbest and gbest values of particles. Thus,
the particle flies through potential solutions towards P
and Gt in a navigated way whilst still exploring new
areas by the stochastic mechanism to escape from local
optima. ω is called inertia weight, which is used to
control the impact of the previous history of velocities
on the current one. χ is the constriction coefficient,
which is used to restrain velocity.

2. Determine the fitness value of each particle by a fitness
function.

3. Compare each particle’s fitness evaluation with the
particle’s pbest. If the current value is better than pbest,
then set the pbest value as equal to the current value
and the pbest location equal to the current location in
d-dimensional space.

4. Compare the fitness evaluation with the population’s
overall previous best. If the current value is better than
gbest, then reset gbest to the current particle’s array
index and value.

5. Change the velocity and position of the particle that
depends on total number of swarms, acceleration
constants, constriction coefficient and random numbers
Hydrol. Process. 29, 4175–4187 (2015)
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(between 0 to 1).
6. Repeat the process until a sufficiently good fitness or

maximum number of iterations (generations) are reached.

Because there is no actual mechanism for controlling
the velocity of a particle, it is necessary to control the
maximum travel distance in each iteration to avoid the
particle flying past good solutions. Also, after updating
the positions, it must be checked that no particle violates
the boundaries of the search space. If a particle has
violated the boundaries, it will be set at the boundary of
the search space. The PSO model was developed on the
MATLAB platform (MathWorks Inc. 2001).
Figure 1. (a) Nonlinear/linear membership function for discharge
(maximization). (b) Nonlinear/linear membership function for pumping
cost (minimization). (c) Nonlinear/linear membership function for piping

cost (minimization)
MULTIOBJECTIVE FUZZY OPTIMIZATION
APPROACH

In the present study it is assumed that objectives are
imprecise and uncertain, and so can be represented by fuzzy
sets in the form of membership functions (Raju and Nagesh
Kumar, 2014). Numerous membership functions are
available such as nonlinear/linear, hyperbolic, exponential,
trapezoidal, triangular, spike, gaussian, cosine, sigmoid and
increasing concave (Shinghal, 2013). All these member-
ship functions handle the impreciseness in objectives or
constraints or both effectively as the case may be. These
membership functions are based on the lower and upper
bounds of each objective function and parameters relevant
to each of them. In the present study, nonlinear/linear
membership function is employed to explore their
applicability for the present planning problem (Morankar
et al., 2013) and shown in Figure 1(a to c) (Ross, 1995;
Raju and Nagesh Kumar, 2014). Decision space in fuzzy
environment is based on objectives and constraints (Raju
and Nagesh, 2014). By introducing degree of membership,

μD ¼ μG ∩ μCð Þ (7)

where μD,μG,μC represent degree of membership func-
tions for decision space, objective function and constraints.
With more number of fuzzy objective function(s) and
constraint(s), the equation can be expanded to

μD Xð Þ ¼ ½μG1 Xð Þ∩μG2 Xð Þ∩ :::::::∩μGn Xð Þ∩μc1 Xð Þ∩μc2

Xð Þ∩ ::::∩μcm Xð Þ� or

μD Xð Þ ¼ Min½μG1 Xð Þ;μG2 Xð Þ; :::::::;μGn Xð Þ; μc1 Xð Þ;μc2

Xð Þ; ::::;μcm Xð Þ� (8)

Optimum solution μ�
D Xð Þ ¼ Max μD Xð Þð �½ or

μ�
D Xð Þ ¼ Max½MinðμG1 Xð Þ; μG2 Xð Þ; :::::::; μGn Xð Þ;

μc1 Xð Þ;μc2 Xð Þ; ::::;μcm Xð ÞÞ�
(9)
Copyright © 2015 John Wiley & Sons, Ltd.
Nonlinear/linear membership functions μZ (X) for any
objective Z/constraint (either maximization or minimiza-
tion) can be expressed as
Hydrol. Process. 29, 4175–4187 (2015)



For maximization such as benefitsð Þ For minimization such as costsð Þ
μZ Xð Þ ¼ 0 for Z ≤ ZL μZ Xð Þ ¼ 1 for Z ≤ ZL

μZ Xð Þ ¼ Z � ZL

ZU � ZL

 �β
for ZL ≤ Z ≤ ZU μZ Xð Þ ¼ ZU � Z

ZU � ZL

 �β
for ZL ≤ Z ≤ ZU

μZ Xð Þ ¼ 1 for Z ≥ ZU μz Xð Þ ¼ 0 for Z ≥ ZU

(10)
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μZ(X) reflects the degree of achievement for the objective/
constraint. Highest and lowest acceptable levels of the
objective, obtained with individual optimization, are
denoted by ZU, ZL with β representing the shape of the
desired membership function. Assigning value of 1 to β
leads to linear membership function whereas any other value
leads to nonlinear membership function (Sasikumar and
Mujumdar, 1998; Raju and Nagesh Kumar, 2014). Intro-
ducing a new variable, λ, the problem can be expressed as

f xð Þ ¼ Max λð Þ (11)

subject to

μGJ
Xð Þ� �β ≥ λ for each fuzzy objective

function j ¼ 1; 2;… ::; n
(11a)

μCi
Xð Þ� �β≥ λ for each fuzzy constraint i

¼ 1; 2;…;m
(11b)

0 ≤ λ ≤ 1 (11c)

and all other existing constraints (Equation (3a) to (3g)) and
bounds.
STUDY AREA

The present study is carried out for the town of Thiers,
which is one of the major towns in the Loire region,
France. The study area lies between 45°540 N to 46°N
latitude and 3°250E to 3°2901000E longitude. The Dore
river catchment, which is situated in the eastern part of the
Massif-Central in France (Figure 2), was considered to
establish the new pumping wells to fulfil the water
demand of Thiers. The study area consists of two rivers,
that is, Allier and Dore, where the Dore River is an
important tributary of the Allier river. The low-flow
period in the river occurs in summer, that is, June–August
but can extend up to November. The major part of the
area is covered by fluvial quaternary sediments underlain
by marl and clay. The quaternary alluvium is composed
of gravel, sand and pebbles with silt. The impervious
substratum is composed of clay and sand (oligocene
period). The hydraulic conductivity in the domain varies
from 1×10�3 to 3× 10�3m/s, whereas the thickness of
the aquifer varies from 12 to 15m (Bertin et al., 2009).
Copyright © 2015 John Wiley & Sons, Ltd.
The elevation of the bottom impervious layer of aquifer
varies from 254 to 258m from mean sea level. The
location of different hydrological features and other
required data were extracted from the geological maps
provided by the Bureau de Recherché Géologiques et
Minières (Bertin et al., 2009). A total of 12 piezometric
measurements, which are shown in Figure 2, were
considered to calibrate the groundwater flow model.
Results of single-objective optimization and MOFO
perspective are discussed in detail in the next section.
RESULTS AND DISCUSSION

Single-objective optimization

Initially, the developed model was applied one at a time
on three objectives related to maximum discharge,
minimum pumping cost and minimum piping cost, which
are denoted as QMAX, PUMMIN and PIPMIN, respec-
tively. Three objective functions are optimized individu-
ally as single-objective optimization problems (subject to
constraints 3a to 3g) to determine the maximum and
minimum values that can be possible for each objective.
In the cost function, A2=140 €/m was obtained from

experienced field experts. The values of other parameters
were selected as RE=0.08€/kwh, γ=9810N/m3, η=80%,
r=6% €/€/year and T=25years. The location of storage
tank was fixed after consulting the local authority having
coordinates X=687000 and Y=218000 for computing
the pipe length. The problem constraints were finalized
with the help of water authority officials and stakeholders.
Constraint 3a prescribes the maximum and minimum
discharge limit of a single well. On the basis of aquifer
properties and availability of pumps, the discharge limits
were selected at 100m3/h<Qi<270m3/h. Constraint 3b
defines the minimum water discharge from all wells,
which is taken as Qtot>820m3/h as per the water demand
of the city. Constraint 3c was to limit the drawdown of
groundwater within permissible limit defined by stake-
holders, thus hi>262m. Constraint 3d was incorporated
by creating buffer zones of 145m around the river, and
then the penalty was incorporated if the coordinates of the
wells came within the buffer zones. Constraint 3e
accounts for the minimum distance of the wells from
the river to ensure the minimum retention time for the
Hydrol. Process. 29, 4175–4187 (2015)



Figure 2. Map of study area
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groundwater in the aquifer and to avoid the influence of
pumping on the water level in the river.
The AEM model was developed with given line sinks

and wells with constant hydraulic conductivity in the
whole domain. The rivers considered in the study area
were represented by strings of head-specified line sinks
(39 in total). The water level in the river is monitored at
11 different locations (Figure 2) and was used to specify
the heads at the centres of the line sinks that represent the
river. The discharge wells were represented by well
elements (i.e. point-sinks). In the model, a constant
Copyright © 2015 John Wiley & Sons, Ltd.
elevation for the bottom layer was taken as 257m. The
model was run in the steady state condition for the low-
flow period, that is, June 2007. This period was found to
be suitable for the steady state model run as the river
condition was found to be almost stable along with a
static groundwater head. The computed heads were
compared with observed heads at 12 different locations
in the domain to calibrate the model with real field
conditions (Gaur et al., 2011a, b, 2013). Figure 3 shows
the graph of computed (AEM model) and observed values
of groundwater head. The model was found to be well
Hydrol. Process. 29, 4175–4187 (2015)
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calibrated, as calculated heads and observed heads were
analyzed with a 95% confidence level. In the calibration
process, a hydraulic conductivity value was adjusted
systematically, and the model output was compared with
observed values. The results of the model showed that
changing the hydraulic conductivity values up to 25% did
not affect the groundwater head more than 1m. In
addition, in the calibration process, part of the river
outside the area of interest was included, and its effect on
groundwater head was examined. This process helps to
establish the effect of far field features on the area of
interest. The model was not found to be very sensitive for
the far features as the area of interest is located between
the two neighbouring rivers.
The PSO model was run for sets of 2, 3, 4, 5 and 6

wells, and the overall system cost (pumping and piping
cost) for the given set of wells was computed. The model
was run for different sets of PSO particles, and 25
particles were found as being efficient for the solution.
The PSO model was considered converged when the
value of the objective function did not change for 50
iterations. PSO parameters, that is, inertia weight, was
taken as 0.8 to 0.4 and two acceleration constants were
taken as 2. Ten runs were performed for each set of wells.
A minimum value out of 10 runs was considered as an
optimal solution. Set of 2 and 3 wells was not found
feasible to satisfy the water demand of the city, that is,
820m3/h because of the dependence of high pumping
rates of an individual well. Decision variables for the set
of 4, 5 and 6 wells were taken at 12, 15 and 18,
respectively, which consist of the discharge and X and Y
coordinates of the wells. The results from different sets of
Copyright © 2015 John Wiley & Sons, Ltd.
wells were compared, and the set of 5 wells was identified
as an optimal number of wells. Further, the single-
objective optimization and MOFO were carried out for
the set of 5 wells.
Salient results including discharge, pumping cost and

piping cost are presented in Table I. The notations ‘*’ and
‘**’ represent the upper and lower bounds (maximum and
minimum values) for each objective. Summarized points
as observed from Table I are the following:

1. In QMAX case, discharge for wells 1 to 5 is 270m3/h
(totaling to 1350m3/h), which is the maximum
discharge limit for each well; in the case of PUMMIN,
these are 120.1, 144.1, 176.3, 176.4, 203.1m3/h
(totaling to 820m3/h); and 120.0, 155.5, 171.8,
172.3, 200.4, respectively for the case of PIPMIN
(totaling to 820m3/h).

2. In QMAX case, head values (respectively for well 1 to
well 5) are 270.1, 270.0, 269.2, 268.7, 267.6m; In the
case of PUMMIN, these are 270.8, 270.7, 269.5, 270.2,
270.9, respectively, for wells 1 to 5. These are 262.0,
262.7, 262.5, 262.6 and 262.8, respectively, for the
case of PIPMIN.

3. It is observed that head values in QMAX case is close
to PUMMIN as in both cases the wells are located in
southern part of the aquifer, which has higher water
head in comparison with other parts of the aquifer.

4. Piping length in QMAX case is 10514m followed by
10828m in the case of PUMMIN and 681m in the case
of PIPMIN. Piping cost per metre length is adopted as
same for all three cases, that is, €140.

5. It is observed from Table I that discharges in QMAX
case is 1.64 times more than in PUMMIN and PIPMIN
cases. Pumping cost in PUMMIN case is 0.34 times of
QMAX case and 0.169 times of PIPMIN case. Piping
cost in QMAX case is 0.698 and 11.1 times of
PUMMIN and PIPMIN cases, respectively.

6. It is noticed that all three individual objectives have
satisfied the minimum requirements (3a to 3g) such as
discharge, drawdown limit and other related values
whilst optimizing (maximizing or minimizing) the
individual objectives.

7. It is observed from Table I that the three groundwater
management objectives are conflicting in all aspects as
evident from different discharges, heads, pumping and
piping cost values obtained for each objective.

Conflicting nature of objectives necessitate developing
tradeoff relationships for selecting a compromise ground-
water management plan, which is expected to provide
realistic and acceptable strategy that can be implemented
by a policy maker with much ease. MOFO is found to be
suitable to analyze the conflicting situation because of its
ability to (1) incorporate any number of objectives with
Hydrol. Process. 29, 4175–4187 (2015)



Table I. Salient results of the ground water management with various optimization models

Salient features

Single-objective optimization Multiobjective fuzzy optimization

Maximum
discharge

Minimum
pumping cost

Minimum
piping cost

β1 = 1.0 β1 = 0.5 β1 = 2
β2 = 1.0 β2 = 0.5 β2 = 2

QMAX PUMMIN PIPMIN β3 = 1.0 β3 = 0.5 β3 = 2

Well 1: discharge (m3/h) 270.0 120.1 120.0 170.2 196.9 150.0
Well 2: discharge (m3/h) 270.0 144.1 155.5 207.8 265.8 189.6
Well 3: discharge (m3/h) 270.0 176.3 171.8 232.1 230.5 255.4
Well 4: discharge (m3/h) 270.0 176.4 172.3 254.2 177.2 266.4
Well 5: discharge (m3/h) 270.0 203.1 200.4 268.8 262.2 268.1
Well 1: head (m) 270.1 270.8 262.0 266.3 265.2 268.7
Well 2: head (m) 270.0 270.7 262.7 266.9 270.3 266.3
Well 3: head (m) 269.2 269.5 262.5 267.3 268.2 267.8
Well 4: head (m) 268.7 270.2 262.6 270.3 266.3 269.9
Well 5: head (m) 267.6 270.9 262.8 270.4 270.8 269.2
Well 1: pumping cost (€) 40 777 11 455 95 386 76 980 105 647 39 585
Well 2: pumping cost (€) 42 924 14 890 114 952 84 075 34 650 86 357
Well 3: pumping cost (€) 60 093 35 034 129 733 85 974 68 708 85 875
Well 4: pumping cost (€) 70 824 25 239 128 741 32 935 80 146 45 528
Well 5: pumping cost (€) 94 432 17 758 146 552 33 759 25 010 59 458
Piping length (m) 10 514 10 828 681 4832 4840 4900
Total discharge (m3/h) 1350** 820* 820* 1133.1 1132.6 1129.5
Total pumping Cost (€) 309 054 104 378* 615 368** 313 724 314 161 316 804
Total piping cost (€) 1 058 689 1 515 914** 95 335* 676 487 677 544 686 000
Total piping cost /m (€) 140.00 140.00 140.00 140.00 140.00 140.00
λ 0.59 0.76 0.34

**Maximum/
*Minimum
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ease and without much computational burden (as each
additional objective will be transformed into additional
constraint) and (2) conversion of multiobjective problem
as single objective with much ease (Raju and Nagesh
Kumar, 2014). Details of MOFO model formulation and
corresponding results are presented in the next section.

Multiobjective optimization

A MOFO model is applied to the present case study of
Dore river catchment, France and formulation of MOFO
model for the management problem with three objectives
is

f x ¼ Max λg � a1P ZQð Þ � a2P Zpummin

� �� a3P Zpipmin

� ���
(12)

where P(ZQ), P(Zpummin), P(Zpipmin) are penalty terms,
which vary linearly with the magnitude of constraint
violation and α1, α2, α3 are weighting factors, which can
be selected according to the problem. Model is subjected
to the following constraints, namely,
Constraint related to discharge (transformed objective

function 1)

μz1 Xð Þ� �β1 ≥ λ or
ZQ � 820
1350� 820

 �β1
(13)
Copyright © 2015 John Wiley & Sons, Ltd.
P ZQð Þ ¼ μz1 Xð Þ� �β1 � λ if μz1 Xð Þ� �β1 < λ

0 if μz1 Xð Þ� �β1 ≥ λ

(
(14)

ZQ=Objective function equation related to discharge
(shape of membership function is presented in Figure 1(a))
Constraint related to pumping cost (transformed

objective function 2)

μz2 Xð Þ� �β2 ≥ λ or
615368� ZPumpingcost

615368� 104378

 �β2
≥ λ (15)

P Zpummin
� � ¼ μz1 Xð Þ� �β1 � λ if μz2 Xð Þ� �β2 < λ

0 if μz2 Xð Þ� �β2 ≥ λ

(

(16)

Zpummin = Objective function equation related to
pumping cost (shape of membership function is presented
in Figure 1(b))
Constraint related to piping cost (transformed objective

function 3)

μz3 Xð Þ� �β3 ≥ λ or
1515914� Zpipingcost

1515914� 95335

 �β3
(17)
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Figure 4. (a) Values of discharge for QMAX, PUMMIN, PIPMIN, and
multiobjective fuzzy optimization (MOFO) cases. (b) Values of head for
QMAX, PUMMIN, PIPMIN, and MOFO cases. (c). Values of pumping

cost for QMAX, PUMMIN, PIPMIN, and MOFO Cases

4184 S. GAUR ET AL.
P Zpipmin
� � ¼ μz1 Xð Þ� �β1 � λ if μz3 Xð Þ� �β3 < λ

0 if μz3 Xð Þ� �β3 ≥ λ

(
(18)

Zpipmin =Objective function equation related to piping
cost (shape of membership function is presented in
Figure 1(c))

0 ≤ λ ≤ 1 (19)

and existing constraint set and bounds (Equations (3a)
to (3g)) in the management model. μz1,μz2,μz3 are
membership functions for maximum discharge, minimum
pumping cost and minimum piping cost, respectively.
Results of MOFO with β1 =β2 = β3 = 1.0 are presented

in Table I and Figure 4 (a to c). Summarized points as
observed from Table I with reference to MOFO
(β1 =β2 =β3 = 1.0) are

1. It is observed from MOFO that solution gives
discharges for wells 1 to 5 as 170.2, 207.8, 232.1,
254.2, 268.8 (totalling to 1133.1m3/h). These values
are less than for QMAX and more than PIPMIN and
PUMMIN cases.

2. Head values (respectively for well 1 to well 5) are
266.3, 266.9, 267.3, 270.3 and 270.4m. Values
obtained from MOFO solution are more than PIPMIN
and less than QMAX and PUMMIN.

3. Pumping cost in MOFO solution (€313724) is more
than QMAX (€309054) and PUMMIN (€104378) and
less than PIPMIN (€615368).

4. Piping cost in MOFO solution (€676487) is less than
QMAX (€1058689) and PUMMIN (€1515914) and
more than PIPMIN (€95 335).

5. Piping cost per metre length is same as single-objective
case, that is, €140.

6. It is observed that discharge has decreased by
216.9m3/h, pumping cost increased by €209346, and
piping cost increased by €581152 as compared with
the ideal values obtained with single objective analysis
with degree of satisfaction λ value of 0.59.

Sensitivity analysis

Two scenarios are investigated as part of sensitivity
analysis: effect of exponents β1 =β2 = β3 = 0.5 (termed as
first scenario) and β1 =β2 =β3 = 2.0 (termed as second
scenario). It is observed from Table I that with reference
to scenario 2, discharge, pumping cost and piping cost are
1129.5m3/h, €316804, €686000, respectively, with λ
value of 0.34, whereas for scenario, 1 these are
1132.6m3/h, €314161, €677544 with λ value of 0.76.
Results shows that total discharge has decreased by 220.5
and 217.4 m3/h as compared to QMAX and pumping cost
increased by €212426 and €209783 as compared to
Copyright © 2015 John Wiley & Sons, Ltd.
PUMMIN in scenarios 2 and 1, respectively. Results
show that effects of exponents are having significant
impact on the outcome.
Effort was made to see the effect of fixing degree of

satisfaction of 0.5 on the discharge, pumping and piping
cost for scenarios β1 = β2 =β3 = 0.5, β1 =β2 =β3 = 2.0 and
β1 =β2 =β3 = 1.0. It is observed that for β1 = β2 =β3 = 1.0
scenario, discharge, piping and pumping costs are
1085m3/h, €805624.5, €359873, respectively. These
Hydrol. Process. 29, 4175–4187 (2015)



Table II. Salient results of the ground water management with sensitivity analysis

Salient features

Multiobjective fuzzy optimization

Case 1 Case 2 Case 3 Case 4 Case 5

Well 1: discharge (m3/h) 267.5 170.2 238.1 243.4 223
Well 2: discharge (m3/h) 191.9 207.8 229.5 171.6 216.2
Well 3: discharge (m3/h) 161.2 232.1 268.1 264.6 268
Well 4: discharge (m3/h) 249.3 254.2 207.4 235 234.2
Well 5: discharge (m3/h) 232.2 268.8 207.1 241.3 220
Well 1: head (m) 270.9 271.9 266.3 267.6 267.2
Well 2: head (m) 266.7 267.8 266.9 268 266.5
Well 3: head (m) 266.2 268.5 267.3 270.5 267.2
Well 4: head (m) 271.8 265.9 270.3 265.3 266.3
Well 5: head (m) 267.2 267.0 270.4 266.6 270
Well 1: pumping cost (€) 24 028 76 980 74 948 85 129 85 085
Well 2: pumping cost (€) 80 693 84 075 112 010 54 561 94 520
Well 3: pumping cost (€) 74 703 85 974 5967 31 549 102 255
Well 4: pumping cost (€) 4161 32 935 60 668 125 155 106 113
Well 5: pumping cost (€) 88 226 33 759 107 827 103 576 34 975
Minimum pumping cost 104 379 104 379 114 816.9 163 111 220 371
Maximum pumping cost 461 525.25 615 367 769 209 810 910 810 910
Total discharge (m3/h) 1102.1 1133.1 1150.2 1155 1161
Total pumping cost (€) 271 812 313 724 361 421 399 971 422 948
Piping length (m) 5427 4832 4502 4390 4214
Total piping cost (€) 759 714 676 487 630 315 614 635 590 030
λ 0.53 0.59 0.62 0.63 0.65
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values are changed by �48.1m3/h, €129137.5, €46 149
as compared with β1 = β2 = β3 = 1.0 with degree of
satisfaction value of 0.59. In case of β1 =β2 =β3 = 0.5,
discharge, piping and pumping costs are 952.5m3/h,
€1160769, €487620.5 and changed by �180.1m3/h,
€483225, €173459.5 as compared with β1 =β2 =β3 = 0.5
with degree of satisfaction value of 0.76. In case of
β1 =β2 = β3 = 2.0, discharge, piping and pumping costs are
1194.76m3/h, €511413, €254043.5 and changed by
65.26m3/h, €�174587, €62760.5 as compared with
β1 =β2 = β3 = 2.0 with degree of satisfaction value of 0.34.
Sensitivity analysis is also performed by varying the

minimum and maximum limits of pumping cost/piping
cost. It is observed from Table II that by increasing lower
limit or upper limit of pumping cost, MOFO solution
increases the pumping cost. It shows that increased pumping
cost limit pushes wells towards storage location where more
drawdown in aquifer occurred, which helps to reduce piping
cost as well. At the same time, increased limit in pumping
cost also helps to extract more water from aquifer.
Sensitivity analysis is also performed by varying the

upper limit of piping cost, and it is observed that (1)
reduced piping cost limit increases the value of optimized
pumping cost with reduced total discharge limit; and (2)
decreased piping cost limit pushes the wells near storage
tank where pumping cost increases because of more
drawdown in aquifer. Because of this reason, total
discharge also gets reduced.
Copyright © 2015 John Wiley & Sons, Ltd.
It is observed from sensitivity analysis that variations of
exponents, upper and lower limits of pumping and piping
cost have significant impact on the MOFO solution and
degree of satisfaction, which clearly indicates that careful
selection of exponents and other parameters are very much
essential to make study more meaningful and practical.
SUMMARY AND CONCLUSIONS

The present paper discussed the application of MOFO in
groundwater management context for the chosen case
study with three conflicting objectives along with relevant
sensitivity analysis. To the authors’ knowledge, present
study is the first of its kind where MOFO is applied to
groundwater management problem in conjunction with
coupled AEM and PSO. MOFO methodology is found to
be advantageous as compared with single-objective
management problems, as it can incorporate any number
of objectives simultaneously with ease and without much
computational burden. The additional and potential
advantage is its ability to consider the uncertainty aspects
that are very common in the groundwater planning in the
form of nonlinear/linear membership functions. The
following conclusions may be drawn from the study:

1. Analyses of the results indicate that for β1=β2=β3=1.0,
that discharge has decreased by 216.9m3/h, pumping cost
Hydrol. Process. 29, 4175–4187 (2015)
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increased by €209346, and piping cost increased by
€581152 as compared with the ideal values obtained with
single-objective analysis with degree of satisfaction
λ=0.59. It is observed that for β1=β2=β3=2.0, discharge,
pumping cost and piping cost are 1129.5m3/h, €316804
and €686000, respectively, with λ=0.34, whereas for
β1=β2=β3=0.5, these are 1132.6m3/h, €314161 and
€677544 with λ=0.76. It can be inferred that as β values
are increasing, λ values are decreasing significantly.

2. Analysis of results indicates that all the results obtained
through MOFO are compromising solutions for the
three conflicting objectives and the solution of MOFO
always lies within the values obtained by QMAX,
PUMMIN and PIPMIN.

3. Sensitivity analysis shows that variations in minimum,
maximum limits of pumping cost influence the MOFO
solution significantly. It shows that MOFO solution tries
to accommodate the varying limits of pumping or piping
cost by changing the optimal values of total discharge,
pumping and piping. Sensitivity analysis shows that the
developedmodel can be used by decisionmakers as they
can understand the effect of different financial limits of
project in pumping and piping cost.

4. It is observed from sensitivity analysis that effects of
exponents, upper and lower limits of pumping and
piping cost have significant impact on the MOFO
solution and degree of satisfaction, which clearly
indicates that careful selection of exponents and other
parameters are very much essential to make study more
meaningful and practical.

The present study in single and multiobjective
environment provided a complete perspective on piping,
pumping, discharge and impact of constraints on them.
This will help the water resources planners and managers
to understand the quantity of water that can be pumped
from wells to augment the surface water resources as part
of conjunctive use policy. In addition, farmers or other
stakeholders will also be in a position to know the
quantity of water they may receive for the respective
purposes such as drinking/irrigation. This may lead to
sustainable, scientific and replicable planning, which
further enhances the efficiency of the outcome. This is
mainly because of the employability and potentiality of
mathematical models such as AEM, PSO and
multiobjective perspective in fuzzy environment. . Further
studies can be explored with various other type
membership functions such as exponential and hyperbolic
membership functions (Morankar et al., 2013).
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