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Evaluation of Precipitation Retrievals From
Orbital Data Products of TRMM Over

a Subtropical Basin in India
J. Indu and D. Nagesh Kumar

Abstract—The spatial error structure of daily precipitation
derived from the latest version 7 (v7) tropical rainfall measur-
ing mission (TRMM) level 2 data products are studied through
comparison with the Asian precipitation highly resolved observa-
tional data integration toward evaluation of the water resources
(APHRODITE) data over a subtropical region of the Indian
subcontinent for the seasonal rainfall over 6 years from June
2002 to September 2007. The data products examined include v7
data from the TRMM radiometer Microwave Imager (TMI) and
radar precipitation radar (PR), namely, 2A12, 2A25, and 2B31
(combined data from PR and TMI). The spatial distribution of
uncertainty from these data products were quantified based on
performance metrics derived from the contingency table. For the
seasonal daily precipitation over a subtropical basin in India,
the data product of 2A12 showed greater skill in detecting and
quantifying the volume of rainfall when compared with the 2A25
and 2B31 data products. Error characterization using various
error models revealed that random errors from multiplicative
error models were homoscedastic and that they better represented
rainfall estimates from 2A12 algorithm. Error decomposition tech-
niques performed to disentangle systematic and random errors
verify that the multiplicative error model representing rainfall
from 2A12 algorithm successfully estimated a greater percentage
of systematic error than 2A25 or 2B31 algorithms. Results verify
that although the radiometer derived 2A12 rainfall data is known
to suffer from many sources of uncertainties, spatial analysis over
the case study region of India testifies that the 2A12 rainfall esti-
mates are in a very good agreement with the reference estimates
for the data period considered.

Index Terms—Asian Precipitation Highly Resolved Observa-
tional Data Integration Toward Evaluation of the Water Resources
(APHRODITE), basin, orbital, precipitation, Tropical Rainfall
Measuring Mission (TRMM), uncertainty.

I. INTRODUCTION

OVER the past two and half decades, satellite-based pre-
cipitation estimates from Microwave Remote Sensing

(MRS) have exhibited tremendous progress proving to be
a reliable source for quantitative estimation of precipitation
from space [1]–[8]. However, along with the widespread ac-
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ceptance of these products, it has also been recognized that
they contain large uncertainties. Uncertainty evaluation studies
focus on either the accuracy of rainfall accumulated over time
(e.g., season/year) or the evaluation of rainfall intensities from
microwave-based satellite orbital data products (hereinafter
used synonymously with orbital products). Fewer studies have
been directed toward the objective of evaluating the rainfall
from the orbital data products. The error components of orbital
data products interact nonlinearly with hydrologic modeling
uncertainty [9], [10]. These products are known to potentially
cause large uncertainties during real time flood forecasting
studies at the watershed scale because the highly varying land
surface emissivity offers a myriad of complications hindering
accurate rainfall estimation over land regions. The dependence
of land surface emissivity on physical temperature, vegetation,
soil moisture, etc., and its spatio-temporal variability makes
it necessary to rely on microwave high-frequency channels,
which are less sensitive to cloud water than the low-frequency
channels.

Knowledge regarding the uncertainty contribution from or-
bital data products enables the data developers to improve
the performance of their algorithms and data users to assess
model simulation outputs that result in more reliable prediction.
Despite the efforts in developing finer scale products from
MRS, obtaining precipitation at the required accuracy for basin
scale hydrology still remains a challenge [11], [12]. In order to
broaden the application of orbital products at relevant spatio-
temporal scales, a thorough investigation regarding the nature
and magnitude of errors is essential.

There are many data products publicly made available from
MRS [1], [6], [13] at a global scale, which are potentially
helpful for many scientific investigations and applications [12],
[14]–[19]. Among these, data from the microwave sensors
onboard the low earth orbiting satellite of the Tropical Rainfall
Measuring Mission (TRMM), launched in 1997, have revo-
lutionized the global view of precipitation. TRMM studies
rainfall variability in the tropics using a collocated suite of
instruments, namely, the passive TRMM Microwave Imager
(TMI) and the active precipitation radar (PR). During its mis-
sion lifetime, rainfall retrieval algorithms based on TMI and
PR have provided an enormous volume of tropical rainfall
data [20]–[23]. The standard level 2 data products of TRMM
made available by the NASA Goddard Space Flight Center
(GSFC), support rainfall rates estimated either using TMI (the
2A12 product) or PR (the 2A25 product) or a combination
of both (the 2B31 product). Prior to the launch of TRMM,
Wilheit [24] proposed an error model ascertaining that the total
error in climatological precipitation is mainly due to sampling
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errors, random instrument errors and correlated algorithmic
errors. Their study also emphasized that although sampling and
retrieval errors occur independently, these get entangled during
statistical integration of monthly/seasonal rainfall produced
from TRMM orbital data. Some of the prominent studies related
to uncertainty assessment of TRMM orbital data products are
discussed here.

Most of the studies on TRMM level 2 data products have
used the previous versions, namely, version 5 (v5) and ver-
sion 6 (v6) data for comparison. Some of the prominent
studies comparing both rainfall products are summarized in
the following. Kummerow et al. [25] using v5 data have
reported a difference between TMI and PR rainfall inten-
sities, which amounted to 20% over land and ∼23% over
oceans. Masunaga et al. [26] investigated the regional trends
in hydrometeor profiles derived from TMI 2A12 (hereinafter
referred to as 2A12) and PR 2A25 (hereinafter referred to
as 2A25) algorithms and concluded that 2A25 underestimates
the precipitation water profiles in the tropics. Furthermore,
they also stated that a disagreement between both rainfall
products results due to different physical principles underlying
both TMI and PR measurements coupled with algorithmic
bias, which occurs during conversion of precipitation water to
rainfall rate.

Nesbitt et al. [27] evaluated rainfall estimates from v5 2A25
and 2A12 products over the tropics. Their study revealed that
accounting the regime-dependent biases lead to reduction in
systematic bias within a microwave-based precipitation algo-
rithm. Sanderson et al. [28] evaluated the effect of spatial
and temporally dependent algorithm biases on diurnal rainfall
cycle using v5 rainfall from 2A12, 2A25, and 2B31. Wolff and
Fisher [29] evaluated v6 2A25 and 2A12 products for the land,
ocean and coastline over the TRMM Ground Validation sites
and reported the underestimation by 2A25 v6 over land regions
particularly when rain rates were greater than 10–20 mm/hr.
Studies by Amitai et al. [30] have made a similar conclu-
sion after comparing 2A25 v6 algorithm to National Oceanic
and Atmospheric Administration Next-Generation Quantitative
Precipitation Estimate product.

Some studies have generated high-resolution climatologies
for use in rainfall-land-surface interactions based on 2A25 and
2B31 data products [31]–[35]. This includes the TRMM 3G68
data product, which consist of rainfall retrievals averaged in
space over 0.5◦ × 0.5◦ grid boxes. The 3G68 product con-
tains the 2A12, 2A25, and 2B31 rainfall rates averaged over
space but not in time. Bowmann et al. [34] have used the
TRMM 3G68 data product with in situ measurements using
rain gauges on the NOAA TAO/TRITON buoy array in the
tropical Pacific. Their study revealed that the TMI derived
rainfall have near zero bias with respect to the buoy rain gauges
in comparison with the PR-derived rainfall, which exhibited
about 30% low bias relative to the gauge measurements. Studies
by Kikuchi and Wang [36] have examined the diurnal variations
of global tropical precipitation using the TRMM 3B42 and
3G68 data.

The inconsistencies of 2A12 (v6) land rainfall estimation
were summarized by Wang et al. [37]. Their study has envi-
sioned improvements for v7 2A12 algorithm, which forms the
basis for the Global Precipitation Measurement (GPM) Global

Microwave Imager algorithm. Studies by Gopalan et al. [38]
highlighted improvements in the v7 2A12 algorithm by proving
that addition of a more comprehensive set of TMI-PR collo-
cations improved the 2A12 rain rates on a global scale but
regional biases still remain owing to warm rainfall, lack of
appropriate surface screening, etc. Recent studies by Zagrodnik
and Jiang [39] have compared v6 and v7 rainfall estimates from
the 2A25 and 2A12 products with respect to the Next Gen-
eration Weather Radar (NEXRAD) Multisensor Precipitation
Estimate stage-IV hourly rainfall product. Their studies, based
on detailed statistical analysis conducted for 1/7◦ × 1/7◦ grids
over the U.S., examined the influence of v7 TRMM rainfall al-
gorithms on rainfall retrievals relative to ground reference data.
All these studies indicate that although substantial improve-
ments have been achieved in estimation of rainfall estimates
using PR and TMI, significant biases still exist. The biases
exhibited by TRMM orbital products can contribute to a still
higher level of uncertainty when analyzed over smaller space-
time scales.

Keeping these in mind, the present work investigates the
performance of TRMM level 2 data products over the Indian
subcontinent after gridding them to a space scale of 1◦ × 1◦

and time scale of 1 day. The Indian summer monsoonal rain-
fall spanning over June, July, August, and September (JJAS)
months forms an integral part of the South Asian monsoon,
which plays a major role in global water cycle. Most parts
of India receive a significant portion of total annual rainfall
during the JJAS months. Hence, this paper utilizes a 6-year
data period (from June 2002 to September 2007) of TRMM
seasonal rainfall from the v7 orbital data products of 2A12,
2A25 and 2B31 over India. Only post 2001 data products are
considered for analysis owing to the TRMM orbital boost from
350 to 402.5 km in August 2001, which altered the data quality
significantly.

This work is driven by the need to understand the uncertainty
of TRMM rainfall over regional scales in order to make the
study directly relevant to data product developers engaged in
improving their algorithms for follow-up missions such as
Global Precipitation Mission (GPM) [40]. Section II summa-
rizes various data products employed in the present study.
The relative merits of radar and radiometer derived rainfall
estimates are briefly discussed in Section III. The methodology
employed for this paper is described briefly in Section IV.
Section V presents the results of preliminary analysis conducted
to finalize the case study region in India. Performance evalua-
tion of the three level 2 data products over the case study region
are discussed using metrics derived from the contingency table.
This section also discusses results of error characterization
employed using various error models, followed by error de-
composition technique to disentangle the total bias into their
systematic and random components. Section VI summarizes the
major conclusions of this paper followed by the final remarks.

II. DATA

The TRMM data systems were designed to develop rainfall
products, error budgets, 3-D vertical precipitation structure,
latent heat profiles, etc. (to name a few), with an aim to mini-
mize the set of products that satisfied the mission requirements.
These data products are made available in levels 1, 2, and 3
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as per the standard NASA nomenclature. A comprehensive
discussion of all the TRMM rainfall products is well beyond
the scope of this paper. An overview of the level 2 algorithms
that were deemed to play an instrumental role to the TRMM
mission’s success is presented in this paper. As the intent of this
paper is to evaluate the performance of precipitation estimates
from TRMM data products obtained using TMI and PR, the
present study uses level 2 data products namely, the PR-derived
2A25 [41]–[44], TMI derived 2A12 [4], [37], [43] and the com-
bined PR-TMI based 2B31data [45]–[50]. A brief description
regarding the data products employed for the present study is
summarized here.

A. TMI 2A12 Data

The TMI 2A12 product developed using the Goddard profil-
ing algorithm (GPROF) [25], estimates hydrometeor (precipita-
tion sized particles) profiles by matching the observed passive
microwave brightness temperatures (Tb) with those from a pre
existing database of simulated hydrometeor profiles using the
Bayesian inversion scheme [4], [5]. This database computed
using cloud-resolving models such as Goddard Cumulus En-
semble Model are tested well for tropical convective systems
[4]. Over land, the 2A12 algorithm mainly relies on ice scatter-
ing frequencies (such as 85 GHz) for rainfall estimation, which
incorporates uncertainty because of the empirical relationship
used to relate ice-scattering optical depth aloft and the rain rate
underlying the atmospheric ice layer [51]–[53].

B. PR 2A25 Data

The observations from PR enable a comparatively more
direct measurement of rainfall rate than TMI. Rainfall estimates
from 2A25 are calculated by the Hitschfeld–Bordan method
[42] and the surface reference technique [48]. The 2A25 “PR
Profile” produces the vertical rainfall rate profile for each radar
beam at each resolution cell of the PR radar along with the at-
tenuation corrected radar reflectivity (Z) profile. This data prod-
uct contains the derived rainfall and reflectivity information
as calculated by the PR rainfall processing algorithm. For this
paper, the PR-derived near-surface rainfall (NSR) is used. This
represents the rainfall rate near the surface within a range of 0 to
3000 mm/hr. As radar echoes from near the surface will usually
be contaminated by the main lobe clutter, NSR represents the
lowest point in the clutter free region for each angle bin.

C. Combined PR-TMI 2B31 Data

The guiding principle in the design of the 2B31 combined
algorithm has always been to merge the information from both
TMI and PR sensors into a single retrieval, which embodies the
strengths of each sensor [53]. The 2B31 combined algorithm
is entirely based upon a Bayesian retrieval technique, which
matches observed radiances to a highly likely radar-rain profile
and drop size distribution (DSD) [46]. The 2B31 algorithm
utilizes radar reflectivity to estimate rain profile, constraining
the estimation to be consistent with the total attenuation from
TMI 10.65-GHz channel. To account for this constraint, the
problem is expressed in terms of DSD. The expected value
of Tb is generated using the resulting rainfall estimates. This
value of Tb is compared with the measurements from passive

microwave measurements to arrive at the most probable value
for the DSD shape parameter [54].

D. TMPA

The TRMM Multisatellite Precipitation Analysis (TMPA)
also known as TRMM 3B42 is a merged data product
extensively used by scientists and researchers for various
hydrometeorological and climatological applications and for
studies related to uncertainty analysis over land and oceans.
A number of attempts have been made in the last few years
to validate this precipitation product at regional scales over
land [55]–[69]. These studies provide information that a major
hindrance in the usefulness of TRMM products is inefficient
characterization of their inherent error structure. For the present
study, the 3B42 data product is utilized for preliminary investi-
gation to select the case study region within India.

E. APHRODITE Data

This is a high-resolution daily rainfall data set developed
for the Asian region as part of the Asian Precipitation Highly
Resolved Observational Data Integration Towards Evaluation
of the Water Resources (APHRODITE) project. Details regard-
ing the underlying algorithm and the data set are discussed in
Xie et al. [69] and Yatagai et al. [70]. APHRODITE rainfall
products are extensively being used for validating high-
resolution climate model simulations [70] as well as for statisti-
cal downscaling of climate simulation outputs [71]. Studies by
Yatagai et al. [72] have relied on APHRODITE rainfall data
products for adjusting the TRMM-derived 3B43 rainfall data
product, which is a 0.25◦ monthly precipitation product that
merges the daily 3B42 precipitation data with the rain gauge
information from the Global Precipitation Climatology Centre
(GPCC) based on the technique by Huffman et al. [73], [74].
Use of a substantial rain gauge data and interpolation technique
capable of including orographic effects makes these data
products reliable. Previous studies comparing daily rainfall
estimates from APHRODITE with those from the Indian
Meteorological Department’s rain gauges have indicated a very
high correlation. Furthermore, a quantitative analysis of this
product over India yielded a difference of less than 3 mm/day
[75]. This makes it a reliable product to use for validation of
satellite-derived precipitation estimates. Hence, for the present
study, the APHRODITE monsoon Asia (MA) data product,
which has a temporal resolution of 1 day and spatial resolution
of 0.25◦ × 0.25◦, is utilized as reference rainfall for evaluating
the performance of TRMM rainfall estimates from 2A12,
2A25, and 2B31.

III. RELATIVE MERITS OF TRMM PRODUCTS

The standard TRMM data products provided by NASA
GSFC include rainfall estimates derived either from TMI or PR
or from their combined use. One of the major problems that
need to be resolved to achieve the scientific goals of TRMM
is to reduce the discrepancies among these rainfall products.
The reasons for disagreement among these rainfall products can
be attributed to a number of possible causes, some of which
are briefly discussed in the following. As the 2A12 product
(from radiometer TMI) and 2A25 (from radar PR) are based on
different sensors, some of the plausible reasons for uncertainty
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in rainfall detection would depend on the properties of these
sensors along with the properties of seasonal rainfall occurring
over the basin. For example, the 2A25 algorithm is known
to suffer from low sensitivity toward weak rain and drizzle,
which commonly occur due to shallow cumulus and stratiform
clouds. This is owing to the wavelength and effective signal-to-
noise ratio of PR [76]. The frequency of occurrence of isolated
rainfall systems exhibits significant regional variability and the
2A12 algorithm is known to be weak in detecting such systems.

Another major factor contributing to TRMM rainfall uncer-
tainty is the time-space sampling error. The TMI data swath
of 878 km enables a better overview of the synoptic rainfall
events than the PR (data swath of only 247 km). The wider TMI
swath enables greater number of observations to be available
for each spatial domain (grid box). This implies that since
TRMM takes around 46 days to revisit an area approximately
at the same local time, the resulting bias in average daily
rainfall will be less in the 2A12 algorithm due to availability
of greater number of observations during different times of the
day. The TRMM radiometer has a sampling frequency of 1
every 15 h as compared with that of TRMM radar providing 1
sample every 50 h (depending upon the latitude of the sample).
As a consequence, the PR-derived 2A25 algorithm will suffer
from a comparatively greater sampling uncertainty than 2A12
algorithm thereby resulting in a greater bias in the 2A25 esti-
mated rainfall [42], [77]. This implies that the sampling errors
contributed by these data products are significant enough to
make the apparent errors in the orbital rain rates significantly
different from what they should be.

On the other hand, rainfall retrievals from the 2A25 algo-
rithm rely on a direct measurement of reflectivity, which gives
the 3-D structure of precipitation. In comparison, the 2A12 al-
gorithm depends on radiometric measurements, which are more
complicated and less direct since the Tb can be cluttered by
surface emission depending on microwave frequency channel
used and the fact that they represent cloud water and cloud
ice rather than the hydrometeors near ground level. The 2A12
algorithm database computed from cloud-resolving models is
known to be well tested for tropical convective systems. The
process of deep convection usually results in lifting of water
vapor to higher levels of atmosphere which condense into liquid
water and freeze. The presence of atmospheric ice/solid pre-
cipitation above freezing level causes scattering of microwave
radiation at higher frequency, thereby causing a decrease in
the observed Tb. The radiometer (TMI) and radar (PR) have
different sensitivities to atmospheric ice particles. The greater
dielectric property of liquid water (four times) when compared
with ice in the Rayleigh backscattering cross section accounts
for the insensitivity of PR to small ice particles (unless these are
large enough to be detected by 2.2 cm wavelength microwaves)
in comparison with TMI, which is sensitive to even smaller
ice hydrometeors owing to its high-frequency channels. Hence,
PR tends to underestimate higher intensity rainfall over land
owing to attenuation errors [26], [42]. This contributes a large
discrepancy in the estimated amount of atmospheric ice.

Uncertainties are also being contributed by the underlying
model assumptions used to estimate rainfall from both these
algorithms (for example, treatment of DSD associated with
individual retrieval algorithms). While the 2A25 algorithm
assumes a gamma distribution for the DSD model to arrive at

TABLE I
LAYOUT OF CONTINGENCY TABLE

the reflectivity–rainrate (Z–R) relations, the 2A12 algorithms
relies on a Marshall–Palmer DSD [42]. The uncertainties in the
DSD assumptions are not critical for TMI measurements as Tb
of low-frequency channels are relatively insensitive to DSD.
In contrast to this, DSD assumptions more strongly affect the
2A25 algorithm as the radar reflectivity factor (Z) is the sixth
moment of the DSD [26], [42].

One of the major challenges in hydrological applications is to
characterize the error inherent in rainfall estimates from TRMM
orbital data on a daily time scale for the JJAS months. Adequate
consideration should be given to the uncertainties in these data
sets prior to utilizing them in hydrologic and climatic studies.

IV. METHODOLOGY

The purpose of this paper is to evaluate the uncertainty
in daily gridded rainfall estimates from TRMM orbital data
during the JJAS months over regions of the Indian subconti-
nent subjected to poor detection of higher quantiles of rainfall
by TMPA. A comparative evaluation of TMPA precipitation
products is conducted with respect to APHRODITE data (as
reference) for the overall monsoonal rainfall and their higher
quantiles occurring over India during the 6-year monsoonal
period (from June 2002 to September 2007). Performance
evaluation was conducted based on metrics derived from the
contingency table. Details regarding the performance metrics
and error characterization are explained in the following.

A. Performance Metrics

The categorical indices from the contingency table (Table I)
are extensively used in evaluation studies to validate the
relationship between two categorical variables. While the
contingency table metrics provide information regarding hits,
misses, or false alarms, they do not shed any light on
the biases and errors in the magnitude of the variable ob-
served (which, in this case, is rainfall in mm/day). Recently,
AghaKouchak and Mehran [78] have extended the commonly
used categorical metrics to their volumetric equivalents which
decompose the total error/bias in terms of their respective
volumetric error components. If ORB and APHRO represent
the daily rainfall in mm/day from orbital data products and
the reference APHRODITE data, respectively, t stands for the
threshold (which for example can be rainfall quantile), some
of the metrics used for the present study are summarized in
Table II. In order to aid in the application of satellite rainfall
data, it is essential to understand the error characteristics which
are analyzed using various error models and error decomposi-
tion techniques, which are briefly explained next.

B. Modeling Errors Using Additive and
Multiplicative Models

An error model mathematically defines the deviation of a
derived value from the ground truth. Once the parameters of
an error model are known, they can be used to further predict
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TABLE II
LIST OF PERFORMANCE MEASURES USED FROM CONTINGENCY TABLE

the parameters and their associated uncertainties when just
ground reference data are made available. The availability of
different error models often tends to raise confusion among
end users regarding their suitability. Some studies considered
multiplicative error models [77]–[80], whereas some others
depended on additive error models [55], [78]. Motivated by
this diversity, this paper discusses both types of error models.
The additive error model defines error to be the arithmetical
difference between the derived value and ground truth

Y = A+BX + ε (1)

where A and B denote the systematic error which is determin-
istic in nature, ε represents the random component of error,
which is assumed to have zero mean and a constant variance
of σ2, Y stands for derived value (TRMM level 2 data in
our case) and X represents reference data (APHRODITE data
in the present study). The parameters of the additive model
can be estimated using ordinary least squares (OLS) approach
assuming the random errors (or white noise) to be normally
distributed and uncorrelated with a constant variance of σ2. The
multiplicative model is defined as

Y = AXBeε. (2)

Here, systematic error (i.e., A,B) is assumed to be nonlinearly
related to the reference data and random component of error
(denote by eε) which is a multiplicative factor. It is to be noted
that the value of A, B and σ will be different for the additive
and multiplicative models [81]. The multiplicative error model
can be solved using the OLS approach after performing natural
logarithmic transformation of the variables.

C. Error Decomposition Into Systematic and
Random Components

Previous studies had reported uncertainty of data products
by focusing on investigation, quantification and propagation of

uncertainty in hydrological model simulation. One of the very
first studies in this regard was carried out by Huffman et al. [82]
who formulated an expression for estimating the root mean
square random error in area-time averaged precipitation esti-
mates using the average precipitation rate and the probability
distribution parameters of precipitation estimates. The results
on uncertainty analysis reported a dominant contribution of
algorithmic error over the sampling error. A comprehensive
study on algorithmic uncertainty was conducted by Tian and
Peters-Lidard [83] who developed a global map of satellite
rainfall uncertainty depicting both systematic and random error
components. Results revealed relatively smaller uncertainty
over oceans, compared with land mass. The systematic and
random error components of precipitation retrieval algorithms
are known to interact nonlinearly with the uncertainty of hy-
drologic models thereby further contributing to the uncertainty
in the simulation of runoff at the watershed scale or in the
resulting flood forecasts [84]–[87]. These studies have not
addressed the time-dependent biases that exist within TRMM
orbital data products, which may cause significant errors when
used for climate related studies. The error in numerical weather
prediction models can be segregated into their corresponding
systematic and random error components using the Willmott
Decomposition technique [88]. For the present study, the total
mean squared error (MSE) will be decomposed into its two
components: systematic error [MSESY S , first term in (3)], to
which a linear function can be fitted [86] and random error
[MSERAN , second term in (3)]
(∑n

i=1(RORB−RAPHRO)
2
)

n
=

(∑n
i=1(R

∗
ORB−RAPHRO)

2
)

n

+

(∑n
i=1 (RORB −R∗

ORB)
2
)

n
(3)

where RORB denotes rainfall estimates from TRMM level 2
data products; RAPHRO denotes rainfall from the reference
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Fig. 1. Spatial distribution of performance metrics over India showing POD, VHI, FAR, and VFAR for a daily time scale, for rainfall estimates > 75th quantile
and > 95th quantile.

APHRODITE data product; and R∗
ORB denotes A+

B∗RAPHRO (where A,B denote the intercept and slope,
respectively).

V. RESULTS AND DISCUSSION

A. Graphical Analysis of Seasonal Precipitation Over India

Prakash et al. [90] have analyzed four independently de-
veloped multisatellite high-resolution precipitation products,
namely, Climate Prediction Center Morphing (CMORPH),
Naval Research Laboratory (NRL) blended Precipitation Es-
timation from Remotely Sensed Information using Artificial
Neural Networks (PERSIANN) and TMPA with respect to rain
gauge data over India for a 6-year period from 2004 to 2009
at daily scale for the summer monsoon season of June to
September. Their study indicated rainfall estimates from TMPA
product to be best with a low rate of underestimation and a
higher correlation. For the present study, performance of daily
precipitation from TMPA is evaluated over the Indian subconti-
nent with respect to the APHRODITE rainfall (as reference)
over a spatial scale of 0.25◦ × 0.25◦. The period of study
considered is the JJAS months of 2002–2007.

Results of comparative evaluation using the contingency
table metrics are presented in Figs. 1 and 2 for daily and higher
quantiles of rainfall. It should be noted that the results are being
presented for rainfall exceeding 75th and 95th quantiles, which
corresponds to 5.5 and 24 mm/day for India. Pertaining to the
present study, Probability of Detection (POD) represents the
ratio of number of correct identifications of TMPA to the total
number of reference (APHRODITE) precipitation occurrences
and the volume of hit index (VHI) represents the volume
of TMPA precipitation that gets correctly detected. For the

seasonal rainfall from Fig. 1(a), one can observe that, POD
values lie between 0.3–0.5, whereas VHI values range from
0.7 to 0.9 implying that TMPA detects more than 75% of
the volume of observed precipitation (the regions of Jammu
Kashmir and northern Rajasthan are significant exceptions).
Jiangnan et al. [91] has stated that the proportion of stratiform
precipitation of the Indian monsoon season attains a maximum
value during summer. This implies that for the seasonal rainfall
over India, most of the missed events in TMPA are light rainfall
events/stratiform rainfall. However, for higher rainfall quantiles
(i.e., Q75 and Q95), POD and VHI from Fig. 1 (e), (f), (i), and
(j) indicate that as the threshold for heavy rain rate increases,
both POD and VHI tends to decrease. Similarly, a comparison
between Fig. 1(c) and (d) shows that the false alarm ratio (FAR)
values are relatively larger than volumetric FAR (VFAR) values
particularly around the north westerns parts of India. Both FAR
and VFAR were found to increase at higher thresholds of Q75
and Q95 [see Fig. 1(g)–(l)]. It should be noted that the values
of POD, VHI, FAR, and VFAR are near zero at the higher
quantiles across much of India because in these regions rain
rates corresponding to these quantile values do not occur. From
Fig. 1(i) and (j), it can be observed that region of eastern India
(location of Mahanadi basin) and south western coastline are
subjected to higher volume of rainfall during the Indian summer
monsoonal season. Fig. 1(k) and (l) indicates that these regions
possess a higher FAR and VFAR values implying poor detec-
tion of higher rainfall quantiles by TMPA. The MISS index and
volumetric miss index (VMI) from Fig. 2(k) and (l) also suggest
that the performance of TMPA is affected over eastern India.
The critical success index (CSI) values [see Fig. 2(a)] over
majority of Indian regions show that the overall performance
score of TMPA over India is between 0.3 and 0.6, whereas the
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Fig. 2. Spatial distribution of performance metrics over India showing CSI, VCSI, MISS, VMI for a daily time scale, for rainfall estimates > 75th quantile
and > 95th quantile.

overall measure of volumetric performance given by volumetric
critical success index (VCSI) [see Fig. 2(b)] indicates a higher
performance score (between 0.6 and 0.8). From the MISS index
[see Fig. 2(c)] one can conclude that TMPA fails to detect a
large fraction of precipitation. However, VMI [see Fig. 2(d)]
suggests that the volume of precipitation that TMPA does not
detect is relatively small.

To summarize, graphical evaluation of TMPA for Q75 and
Q95 [see Fig. 2(e)–(l)] shows that as the threshold of detection
is increased, the indices of CSI, VCSI, MISS, and VMI lose
their skill over India particularly over parts of southwestern
coastline and over Mahanadi basin indicating that TMPA data
product fails to detect rainfall extremes (above Q75 and Q95).
To support the choice of the study region, the results presented
over India for overall rainfall, rainfall > 75th and > 95th quan-
tiles indicate that, in particular, the Eastern part of India is
subjected to poor detection of higher quantiles of rainfall.

Among these regions, the basin of Mahanadi (see Fig. 3),
situated between latitudes 19◦ N to 24◦ N and longitudes 80◦ E
to 87◦ E, is relevant from a hydrologic perspective owing to the
fact that it receives heavy to very heavy rainfall during Indian
Summer Monsoonal Season (when monsoon depressions from
the Bay of Bengal move north-westward slightly south of their
normal track). The basin has been repetitively facing adverse
hydrometeorological conditions such as floods, droughts, and
cyclones in recent times. The orography of the Eastern Ghats
also influences the rainfall pattern over the basin to a great
extent.

One of the major applications of TRMM rainfall retrieval
products is to assist in real time flood forecasting and rainfall–
runoff studies. Although there are several sources of uncertainty

Fig. 3. Geographical location of Mahanadi basin, India.

that complicate our understanding of flood prediction accuracy,
the principal source of uncertainty is, undoubtedly, rainfall
[91], [92]. When remotely sensed data products are used as
an input to the hydrological models, the error characteristics of
these rainfall products propagate in the resulting prediction of
hydrologic parameters. Meaningful applications of microwave
rainfall estimates often require a proper understanding of the
underlying errors contributed by these products. Keeping this
in mind, for the present study, the performance of TRMM
products are investigated over the basin of Mahanadi, India.
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Fig. 4. Box plots showing POD, VHI, FAR, VFAR, CSI, VCSI, MISS, and
VMI for daily rainfall estimates over Mahanadi basin obtained using 2A25,
2B31, and 2A12 data.

B. Seasonal Precipitation Over Mahanadi Basin

This section investigates the uncertainty contributed by three
of the TRMM level 2 data products over Mahanadi basin. If
an event that any portion of the TRMM orbital swath covers
within the 1◦ spatial grid box is termed as a visit, then, the
TRMM orbital data provides the number of pixels N and the
mean rainfall rate R (mm/hr) over the grid box at each visit. If
n is the number of times during which TMI/PR observes rainfall
in a spatial scale/grid box for any time period, then the average
rainfall amount within any space time domain can be estimated
using the relation

RS =

n∑
i=1

N(i)∗R(i)

n∑
i=1

N(i)
. (4)

For the present study, rainfall estimates (in mm/hr) from mul-
tiple TRMM overpasses of a single day are averaged giving
equal weight to all the values to create the daily rainfall values
over each space scale (grid boxes) over Mahanadi basin for
the JJAS months from 2002–2007. The total number of orbital
data points during the 6-year period that were considered for
the creation of daily gridded rainfall estimates are 2548 for
2A25 data, 3535 for 2B31 data, and 3552 for 2A12 data set,
respectively, which corresponds to 3.48 scenes per day 2A25,
4.83 for 2B31, and 4.85 for 2A12. It is to be noted that selection
of an appropriate grid size for the orbital products warrants a
compromise between two major competing factors. First, the
grid size chosen should be as large as possible, which enables
one to treat rainfall averages over each grid box as statistically
independent thereby allowing the use of statistical measures for
further analysis. Second, a realistic representation of local rain-
fall rate with minimum error requires the grid size chosen to be
as small as possible, which allows rainfall rates within each grid
to be approximately homogeneous. A previous sampling error
related study over the basin using PR 2A25 data product yielded
1◦ × 1◦ as a suitable space scale for analysis owing to compara-
tively lower relative sampling errors [93]. Keeping these factors
in mind, a grid size of 1◦ × 1◦ was chosen for the present study.

Fig. 5. Pdf showing seasonal rainfall in mm/hr from APHRODITE, 2A12,
and 2A25 for 1◦ × 1◦ grid boxes over Mahanadi basin from June 2002 to
September 2007.

The various performance measures for daily rainfall esti-
mates using 2A25, 2A12, and 2B31 data over the case study
region of the Mahanadi basin are shown in Fig. 4. It can be
observed that the value of POD is highest for 2A12 (value
between 0.4–0.6), whereas POD values for 2B31 (value < 0.3)
and for 2A25 (value < 0.3) are comparatively lower. This has
interesting implications in the volumetric context as pointed
out in [78]. The volume of precipitation obtained by VHI for
all three products for daily seasonal rainfall show that a high
VHI does not necessarily lead to a high POD when a small
percentage of detected occurrences constitute a large volume of
the total rainfall, as is evident for 2B31 and 2A25. However,
the FAR and VFAR values are similar to each other for all
three data products. The observed values for CSI for daily pre-
cipitation are found to be relatively higher for 2A12 (0.4–0.6)
than those observed for 2A25 and 2B3 (< 0.4). Comparisons
of missed precipitation and VMI show that rainfalls from
2A12 data product are in better agreement with the reference
estimates, as compared with 2A25 and 2B31 data products.

Fig. 4 shows that the 2A25 and 2B31 data products tend
to behave in a more or less similar manner. For rainfall
estimations over land, the 2B31 data product uses the ice
scattering signal at relatively high frequencies [90], [93], [94]
and relies entirely on the radar inversion technique to estimate
rainfall [47]. The 2B31 data product works as a combined
radar-radiometer product only over the oceans and serves as
mostly a radar only product over the land [46]. This is be-
cause for rainfall retrievals over the land regions, the active
radar is more accurate than the passive radiometer. Hence,
the active radar is heavily relied upon for retrievals over
land, thereby making 2B31 very similar to 2A25 over the
land regions. Hence, further discussions are limited to com-
parative evaluation between the 2A12 and 2A25 data products.

Results indicate that for the seasonal daily precipitation over
1◦ × 1◦ grids, 2A12 showed greater skill in detecting and
quantifying the volume of rainfall when compared with the
2A25 data products. Studies by Indu and Kumar [97] have
showed that over the basin, vertical distribution of hydromete-
ors will be dominated by bottom heavy liquid water indicating
stratiform rainfall type. The PR detects rainfall at a threshold
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Fig. 6. Distribution of model coefficients of the additive and multiplicative error models estimated for each quantile class of rainfall for 2A25, 2A12, and 2B31
rainfall estimates.

of ∼18 bBZ, which makes it very difficult to detect rainfall
below 0.4 mm/hr. Although the TMI derived 2A12 is capable of
detecting precipitation of 0.1 mm/hr, it is unable to detect warm
rainfall over land [39]. Both these products are susceptible to
poor detection at the lightest rain rates. Furthermore, studies by
Kirstetter et al. [98] have addressed the case of PR detecting no
rainfall during rainfall conditions thereby highlighting the poor
detection by PR toward light rain rates [95]. This can also be
observed from Fig. 5, which shows the pdf of seasonal rainfall
from APHRODITE, 2A12, and 2A25 over Mahanadi basin. The
pdf indicates that, in spite of the difficulty in detecting light
rainfall, over the basin, rain rates > 1 mm/hr are successfully
detected by TMI thereby demonstrating superior performance
by 2A12 algorithm.

Despite the tendency of the radiometer retrieved 2A12 land
rainfall algorithm to overestimate rainfall during deep convec-
tive processes, their land rainfall is found to be in remarkable
agreement with the reference observations for the data period
considered. The better performance of 2A12 land rainfall algo-
rithm in comparison with 2A25 algorithm over the basin can
be attributed to its database consisting of preexisting rainfall
profiles carefully selected so that the resulting rainfall retrieved
by scattering scheme is consistent with ground-radar measure-
ments. This is because the 2A12 algorithm based on cloud-
resolving models that focus mainly on the tropical precipitation
thereby explaining its better performance over the study region.

However, there exist time-dependent regional biases, which
exist between TRMM orbital data products that impact the
appropriateness of the data for regional climate studies or
investigation of climate variability. This is because satellite
rainfall retrieval algorithms depend on a number of parameter
assumptions, which are not directly measured by the satellite.
Owing to the variations in the value of these parameters across
various meteorological regimes, regional/temporal biases occur

in the resulting rainfall estimates. Biases shown by algorithms
of 2A12 and 2A25 vary with changes in cloud microphysics
during precipitating system life cycles [22]. When the rainfall
estimates are averaged over large space and time scales, usually
the random errors diminish leaving the systematic errors, which
can significantly affect climate applications.

One of the major challenges in hydrological applications is
to characterize this systematic error on a daily time scale for
the JJAS months. Adequate considerations should be given to
the uncertainties in these data sets prior to utilizing them in
hydrologic and climatic studies. If it is assumed that the ref-
erence data (APHRODITE) represents the most probable value
of true rainfall occurring over a spatial domain (of 1◦ × 1◦ grid
size) over Mahanadi basin, the residuals between the estimated
rainfall (from 2A12, 2A25, and 2B31) and reference values can
be used to build error models for characterizing the uncertainty.

C. Error Model Analysis

The present study classified daily rainfall intensities falling
in each spatial domain (1◦ × 1◦ grid box) over Mahanadi
basin into 5 different quantile classes: i) < 25th ; ii) 25th–50th;
(iii) 50th–75th; (iv) 75th–95th; and (v) > 95th. Based on these
5 different classes, for each spatial grid over Mahanadi basin,
the coefficients of additive and multiplicative error models
were estimated independently. The analysis was performed
independently for the 2A12, 2A25, and 2B31 data products.
Fig. 6 shows the distribution of model coefficients obtained over
Mahanadi basin. The plot shows the distribution of coefficients
A and B for both additive and multiplicative error models,
which define the deterministic error component. For additive er-
ror model, there is large variation in the coefficient A for 2A12
particularly for low intensity rainfall. Visual examination shows
a near Gaussian pattern of coefficients B for both additive and
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Fig. 7. Standardized residual plots and quantile–quantile plots of 2A25, 2A12 and 2B31 for (a) additive error model and (b) multiplicative error model.
The dotted line in the plot joins the first and third quartiles of each distribution and is extrapolated to the ends to help evaluate the linearity of the data.

multiplicative error models. The distribution of model coeffi-
cients is useful when each of these models is utilized to model
the large dynamical range of precipitation data. This will be
taken up as part of a future study pertaining to Mahanadi basin.

Using the model coefficients for each quantile class of
rainfall, both models were fitted for the Mahanadi basin
and their respective standardized residual plots were obtained
(i.e., residuals of each model normalized by their respective
standard deviation as shown in Fig. 7). Fig. 7 shows that the two
error models behave quite differently. The standardized residual
plots for the additive model exhibit a systematic increase in
scattering with higher rain rates, whereas the residuals for the
multiplicative model show a fairly constant range of variation.
This implies that random errors produced by additive model are
not homoscedastic (having a constant variance). These findings
reveal the violation of constant variance assumption made
in the estimation of model parameters using OLS regression
approach. Furthermore, they also imply that the additive model
fails to remove some systematic errors, which get leaked into
the random errors thereby inflating the uncertainty. Studies by
Tian et al. [81] have stated that such a leak occurs due to the
linearity assumption between systematic errors and reference
data. However, studies by Gebremichael et al. [10] have also in-
dicated otherwise. The quantile–quantile plots for standardized
residuals show that fitting using additive error model results
in standardized residuals that violate the assumption of being
normally distributed for all three data products.

However, the multiplicative error model was found to fit the
whole range of the data in a much better manner. Compared
with the additive model for 2A25 and 2A12 algorithm, the
multiplicative model for 2A12 data showed a better fit. A
similar conclusion can be made regarding the normal quantile

plot of standardized residuals (see Fig. 7). For the additive
model, Fig. 7 shows a reasonably linear pattern in the center of
the data for both 2A25 and 2A12. However, a large departure
can be observed along the tails at each end of the distribution for
both these data products. This implies that the additive model
failed in analyzing higher and lower estimates of rainfall. On
the contrary, for the multiplicative error model, Fig. 7 shows
that results obtained from 2A12 algorithm depict a much better
agreement along the line, as compared with 2A25 algorithm.

It is worthwhile to note that log transformation within a mul-
tiplicative error model places variable values into a geometric
domain wherein proportional deviations get represented inde-
pendently of the scale/units of measurement. Results indicate
that for the rainfall from TRMM level 2 data products, as the
underlying phenomena are fundamentally multiplicative, their
rainfall estimates are more likely to conform to a multiplicative
error model [100], [101]. It can be concluded that, assuming
additive variation of errors as the default standard for TRMM
level 2 rainfall estimates, can prove erroneous particularly when
examining patterns across many orders of magnitude, because
the same relative deviation will be a much smaller absolute
(arithmetic) deviation for small observations than for large
observations. In order to examine the relative suitability of the
two models, the total error needs to be decomposed into its
systematic and random parts.

D. Systematic and Random Error

For the present study, an error decomposition technique
based on the Willmott Decomposition technique was used
to arrive at the systematic and random error components as



INDU AND NAGESH KUMAR: EVALUATION OF PRECIPITATION RETRIEVALS FROM DATA PRODUCTS OF TRMM 6439

Fig. 8. Spatial distribution of systematic and random error (in %) of 2A25,
2A12, and 2B31 for the additive and multiplicative error models.

explained in Section IV-C. Ideally, the systematic error is the
component which is to be minimized or is to be removed. With
several sources of errors in the grid averaging, it is important to
quantify how much of the deviation between TRMM level 2
products and the reference data can be attributed to random
versus systematic causes.

The error decomposition method is applied individually
using additive and multiplicative error models for each of
the three TRMM algorithms and the results are displayed in
Fig. 8. If MSETOT represents the total mean squared error and
MSESY S and MSERAN depict the systematic and random
components of mean squared error, the systematic error is
represented as MSESY S/MSETOT × 100 and random error
is estimated as MSERAN/MSETOT × 100, which are the
components of the total MSE (in %) for daily precipitation data
for the monsoonal season over the case study region. A better
error model should ideally capture more signal from the noise.
In other words, as systematic error refers to the part, which can
be deterministically described, majority of the total deviation
within an error model needs to be attributed to the deterministic
component of uncertainty (systematic error) thereby leaving a
minimum amount of unexplainable deviation to be explained by
random error. A comparative evaluation of the systematic and
random errors explained by the additive error model reveals that
both 2A25 and 2A12 data products exhibited systematic errors
up to 75% (for 2A25) and 60% (for 2A12). Comparatively, the
systematic errors explained by the multiplicative error model
ranged up to nearly 100% for both 2A25 and 2A12 data
products. The systematic errors of multiplicative error model
was found to be nearly normal for 2A25 (with median of box
plot at nearly 60%) and skewed for 2A12 (with median toward
upper quantile at nearly 75%). Overall, a greater percentage
of systematic errors were explained by the multiplicative error
model for 2A12 than 2A25 data. The multiplicative error model
depicted a more compact range of random errors for 2A12 data
(ranging from 25–75%) when compared with a wider ranger
for 2A25 data (range between 10–75%). The multiplicative
error model is a better choice for explaining the inconsistencies
in the wide range of precipitation variability offered by 2A12
data product. Hence, this model can be used for uncertainty
quantification of daily precipitation estimates from TRMM
orbital data products.

VI. CONCLUSION

The TRMM products development team provides various
precipitation products either based on radar (PR) or radiometer
(TMI) or a combination of both (PR-TMI). This study analyzed
the spatial error characteristics of daily rainfall from the latest
v7 precipitation estimates of TMI and PR products namely the
2A12, 2A25, and 2B31 data. Results are presented over the
basin of Mahanadi using six years of monsoon data period from
June 2002 to September 2007. The total numbers of orbital data
points from the 6-year period considered for the creation of
gridded data set are 2548 for 2A25 data, 3535 for 2B31 data
and 3552 for 2A12 data set. A space scale of 1◦ × 1◦ was
deemed suitable for gridding the rainfall estimates from each
individual snapshot of orbital data. The findings of this study
are summarized as follows:

1) Spatial variation of various performance measures were
analyzed for the 2A25, 2A12, and 2B31 data products using
indices derived from the contingency table. Higher values for
POD were obtained for 2A12 (value between 0.4–0.6) com-
pared with the POD values for 2B31 (value < 0.3) and for 2A25
(value < 0.3). The volumetric indices from the contingency
table [75] were utilized to decompose the total volumetric error
into volumetric hit index, VFAR, VMI, and volumetric critical
success index. Despite the limitations in the 2A12 land rainfall
algorithm, their daily rainfall estimates over the Mahanadi
basin for the JJAS summer monsoonal months showed a better
agreement with the APHRODITE reference data than the 2A25
rainfall.

2) As the 2A12 product (from radiometer TMI) and 2A25
(from radar PR) were generated based on different sensors, the
plausible reasons for the uncertainty in rainfall detection was
attributed to the properties of these sensors along with the prop-
erties of seasonal rainfall occurring over the basin. Uncertainty
of PR 2A25 algorithm was attributed to the low sampling by
PR as compared with TMI, which implies comparatively lower
number of observations during different times of the day for
PR over Mahanadi basin. The underestimation by the PR 2A25
algorithm was explained to be due to the strong attenuation
of radar reflectivity by atmospheric ice and its poor sensitivity
toward stratiform rainfall. Although the TMI 2A12 algorithm
has limited ability to detect warm rainfall over land, their daily
rainfall estimates were found to agree well with the reference
rainfall.

3) The residual errors between rainfall estimates of gridded
orbital data products and reference rainfall estimates were
utilized to create additive and multiplicative error models. The
parameters of these models were estimated for each 1◦ ×
1◦ grid box over the basin by dividing rainfall intensi-
ties into 5 different quantile classes, namely: i) < 25th;
ii) 25th–50th; iii) 50th–75th; iv) 75th–95th; and v) > 95th.
Results based on standardized residual plot revealed that the
residuals of the multiplicative error model were homoscedastic
compared with the additive error model. The multiplicative
error model was found to better depict rainfall estimates based
on the 2A12 data product. This questions the assumption of
additive variation of errors as the default standard in analyzing
rainfall estimates.

4) The total MSE was decomposed into its systematic
and random error components using Willmott decomposition
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technique. Results show that for the multiplicative error model,
rainfall estimates from the 2A12 algorithm exhibited larger
systematic errors compared with the 2A25 algorithm. In other
words, for 2A12, the majority of the total deviation was at-
tributed to the deterministic component of uncertainty. The
present study is conducted over a single subtropical basin
over Indian region. This approach can however be potentially
extended to other tropical regions of the world by comparing
with the regional meteorological data products.

To summarize, the uncertainty in rainfall retrieval by PR-
derived rainfall products is dominated mainly due to sampling
issues and partly owing to the PR’s insensitivity to light rainfall
(< 0.7 mm/day), uncertainty related with a priori selection
of DSD, nonuniform beam filling effects, incorrect physical
assumptions of freezing level height, hydrometeor temperature,
etc. [4].

Although rainfall estimates from the PR-based 2A25 algo-
rithm are known to perform well over land, regional biases
influence the performance for daily time scales as is evident
from the present study. Improving the accuracy and error
characterization of TRMM level 2 rainfall estimates is critical
for a number of satellite rainfall products and applications
because the uncertainties tend to propagate to TRMM based
multisatellite rainfall estimates. The current mission of GPM
envisions a constellation of passive microwave sensors that will
provide products with a relatively negligible sampling error at
daily or higher time scales. This study by means of its simplicity
and physical approach is aimed toward future improvements in
uncertainty modeling of precipitation.

ACKNOWLEDGMENT

The authors would like to thank the Goddard Distributed Ac-
tive Archive Center for providing the TRMM science data prod-
ucts. The first author would like to thank Dr. A. AghaKouchak
(University of California, Irvine) and Dr. Y. Tian (NASA God-
dard Space Flight Center) for providing valuable and insightful
suggestions enabling this study to materialize.

REFERENCES

[1] G. W. Petty, “Physical retrievals of over-ocean rain rate from multichan-
nel microwave imaging. Part I: Theoretical characteristics of normalized
polarization and scattering in-dices,” Meteorol. Atmos. Phys., vol. 54,
no. 1–4, pp. 79–99, 1994

[2] G. W. Petty, “Physical retrievals of over-ocean rain rate from multi-
channel microwave imaging. Part II: Algorithm implementation,”
Meteorol. Atmos. Phys., vol. 54, no. 1–4, pp. 101–122, 1994.

[3] T. T. Wilheit and A. Al Khalaf, “A simplified interpretation of the
radiances from the SSM/T-2,” Meteorol. Atmos. Phys., vol. 54, no. 1–4,
pp. 203–212, 1994.

[4] C. Kummerow, W. S. Olson, and L. Giglio, “A simplified scheme for
obtaining precipitation and vertical hydrometeor profiles from passive
microwave sensors,” IEEE Trans. Geosci. Remote Sens., vol. 34, no. 5,
pp. 1213–1232, Sep. 1996.

[5] W. S. Olson, C. D. Kummerow, G. M. Heymsfield, and L. Giglio,
“A method for combined passive-active microwave retrievals of cloud
and precipitation profiles,” J. Appl. Meteorol., vol. 35, no. 10, pp. 1763–
1789, Oct. 1996.

[6] R. R. Ferraro, “Special sensor microwave imager derived global rainfall
estimates for climatological applications,” J. Geophys. Res., vol. 102,
no. D14, pp. 16 715–16 735, Jul. 1997.

[7] R. R. Ferraro et al., “NOAA operational hydrological products de-
rived from the Advanced Microwave Sounding Unit,” IEEE Trans.
Geosci.Remote Sens., vol. 43, no. 5, pp. 1036–1049, May 2005.

[8] E. A. Smith et al., “Results of WetNet PIP-2 project,” J. Atmos. Sci.,
vol. 55, no. 9, pp. 1483–1536, May 1998.

[9] F. Hossain and E. N. Anagnostou, “A two-dimensional satellite rain-
fall error model,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 6,
pp. 1511–1522, Jun. 2006.

[10] M. Gebremichael, G.-Y. Liao, and J. Yan, “Nonparametric error model
for a high resolution satellite rainfall product,” Water Resour. Res.,
vol. 47, no. 7, Jul. 2011, Art. ID. W07504.

[11] F. Hossain and G. Huffman, “Investigating error metrics for satel-
lite rainfall data at hydrologically relevant scales,” J. Hydrometeorol.,
vol. 9, no. 3, pp. 563–575, Jun. 2008.

[12] M. Pan, H. Li, and E. Wood, “Assessing the skill of satellite-based
precipitation estimates in hydrologic application,” Water Resour. Res.,
vol. 46, no. 9, Sep. 2010, Art. ID. W09535.

[13] G. J. Huffman et al., “The TRMM multisatellite precipitation anal-
ysis (TMPA): Quasi-global, multi-year, combined-sensor precipitation
estimates at fine scales,” J. Hydrometeorol., vol. 8, no. 1, pp. 38–55,
Feb. 2007.

[14] Y. Hong, K. L. Hsu, H. Moradkhani, and S. Sorooshian, “Uncertainty
quantification of satellite precipitation estimation and Monte Carlo as-
sessment of the error propagation into hydrologic response,” Water
Resour. Res., vol. 42, no. 8, Aug. 2006, Art. ID. W08421.

[15] G. Artan et al., “Adequacy of satellite derived rainfall data for
streamflow modeling,” Nat. Hazards. vol. 43, no. 2, pp. 167–185,
Nov. 2007.

[16] M. S. Shrestha, G. A. Artan, S. R. Bajracharya, and R. R. Sharma,
“Using satellite-based rainfall estimates for streamflow modeling:
Bagmati Basin,” J. Flood Risk Manag., vol. 1, no. 2, pp. 89–99,
Aug. 2008.

[17] F. Su, Y. Hong, and D. P. Lettenmaier, “Evaluation of TRMM multi-
satellite precipitation analysis (TMPA) and its utility in hydrologic
prediction in the La Plata Basin,” J. Hydrometeorol., vol. 9, no. 4,
pp. 622–640, Aug. 2008.

[18] F. Su, H. Gao, G. J. Huffman, and D. P. Lettenmaier, “Potential
utility of the real-time TMPA-RT precipitation estimates in stream-
flow prediction,” J. Hydrometeorol., vol. 12, no. 3, pp. 444–455,
Jun. 2011.

[19] H. Wu, R. F. Adler, Y. Hong, Y. Tian, and F. Policelli, “Evalua-
tion of global flood detection using satellite-based rainfall and a hy-
drologic model,” J. Hydrometeorol., vol. 13, no. 4, pp. 1268–1284,
Aug. 2012.

[20] R. F. Adler, G. J. Huffman, D. T. Bolvin, S. Curtis, and E. J. Nelkin,
“Tropical rainfall distribution determined using TRMM Combined with
other satellite and rain gauge information,” J. Appl. Meteorol., vol. 39,
no. 12, pp. 2007–2023, Dec. 2000.

[21] T. Inoue and K. Aonashi, “A comparison of cloud and rainfall informa-
tion from instantaneous visible and infrared scanner and precipitation
radar observations over a frontal zone in east Asia during June 1998,”
J. Appl. Meteorol., vol. 39, no. 12, pp. 2292–2301, Dec. 2000.

[22] S. W. Nesbitt, E. J. Zipser, and D. J. Cecil, “A census of precip-
itation features in the tropics using TRMM: Radar, ice scattering,
and lightning observations,” J. Clim., vol. 13, no. 23, pp. 4087–4106,
Dec. 2000.

[23] D. B. Shin and G. R. North, “Errors incurred in sampling a cyclosta-
tionary field,” J. Atmos. Ocean. Technol., vol. 17, no. 5, pp. 656–664,
May 2000.

[24] T. Wilheit, Error Analysis for the Tropical Rainfall Measuring Mis-
sion (TRMM) in Tropical Rainfall Measurements. Hampton, VA, USA:
A. Depak Publishing, 1988, pp. 377–385.

[25] C. Kummerow, W. S. Olson, and L. Giglio, “The evolution of the
Goddard profiling algorithm (GPROF) for rainfall estimation from pas-
sive microwave sensors,” J. Appl. Meteorol., vol. 40, no. 11, pp. 1801–
1820, Nov. 2001.

[26] H. Masunaga, T. Iguchi, R. Oki, and M. Kachi, “Comparison of
rainfall products derived from TRMM microwave imager and pre-
cipitation radar,” J. Appl. Meteorol., vol. 41, no. 8, pp. 849–862,
Aug. 2002.

[27] S. W. Nesbitt, E. J. Zipser, and C. D. Kummerow, “An examination of
version 5 rainfall estimates from the TRMM microwave imager, pre-
cipitation radar, and rain gauges on global, regional and storm scales,”
J. Appl. Meteorol., vol. 43, no. 7, pp. 1016–1036, Jul. 2004.

[28] V. L. Sanderson, C. Kidd, and G. R. McGregor, “A comparison of
TRMM microwave techniques for detecting the diurnal rainfall cycle,”
J. Hydrometeorol., vol. 7, no. 4, pp. 687–704, Aug. 2006.

[29] D. B. Wolff and B. L. Fisher, “Comparisons of instantaneous TRMM
ground validation and satellite rain-rate estimates at different spa-
tial scales,” J. Appl. Meteorol. Clim., vol. 47, no. 8, pp. 2215–2237,
Aug. 2008.

[30] E. Amitai, X. Llort, and T. D. Sempere, “Comparison of TRMM radar
rainfall estimates with NOAA next-generation QPE,” J. Meteorol. Soc.
Jpn., vol. 87A, pp. 109–118, 2009.



INDU AND NAGESH KUMAR: EVALUATION OF PRECIPITATION RETRIEVALS FROM DATA PRODUCTS OF TRMM 6441

[31] A. P. Barros, G. Kim, E. Williams, and W. Nesbitt, “Probing orographic
controls in the Himalayas during the monsoon using satellite imagery,”
Nat. Hazards Earth Syst. Sci., vol. 4, no. 1, pp. 29–51, Mar. 2004.

[32] A. M. Anders et al., “Spatial patterns of precipitation and topography
in the Himalaya,” in Techtonics, Climate and Landscape Evolution,
vol. 398, S. D. Willett, N. Hovius, M. T. Brandon, and D. M. Fisher, Eds.,
Geological Society of America Special Paper. Boulder, CO, USA:
Geological Society of America, 2006, pp. 39–53.

[33] C. Kidd and G. R. McGregor, “Observation and characterization of
rainfall over Hawaii and surrounding region from the Tropical Rainfall
Measuring Mission,” Int. J. Climatol., vol. 27, no. 4, pp. 541–553,
Mar. 2007.

[34] K. P. Bowman, A. B. Phillips, and G. R. North, “Comparison of TRMM
rainfall retrievals with rain gauge data from the TAO/TRITON buoy
array,” Geophys. Res. Lett., vol. 30, no. 14, p. 1757, Jul. 2003.

[35] D. B. Shin, J.-H. Kim, and H.-J. Park, “Agreement between monthly pre-
cipitation estimates from TRMM satellite, NCEP reanalysis, and merged
gauge-satellite analysis,” J. Geophys. Res., vol. 116, no. D16, Aug. 2011,
Art. ID. D16105.

[36] K. Kikuchi and B. Wang, “Diurnal precipitation regimes in the global
tropics,” J. Clim., vol. 21, no. 11, pp. 2680–2696, Jun. 2008.

[37] N. Y. Wang, C. Liu, R. Ferraro, E. Zipser, and C. Kummerow, “TRMM
2A12 land precipitation product status and future plans,” J. Meteorol.
Soc. Jpn., vol. 87A, pp. 237–253, 2009.

[38] K. Gopalan, N.-Y. Wang, R. Ferraro, and C. Liu, “Status of the TRMM
2A12 land precipitation algorithm,” J. Atmos. Ocean. Technol., vol. 27,
no. 8, pp. 1343–1354, Aug. 2010.

[39] J. P. Zagrodnik and H. Jiang, “Investigation of PR and TMI version 6
and version 7 rainfall algorithms in landfalling tropical cyclones relative
to the NEXRAD stage-IV multisensor precipitation estimate dataset,”
J. Appl. Meteorol. Climatol., vol. 52, no. 12, pp. 2809–2827,
Dec. 2013.

[40] A. Y. Hou et al., “The global precipitation measurement mission,” Bull.
Amer. Meteorol. Soc., vol. 95, no. 5, pp. 701–722, May 2014.

[41] T. Iguchi and R. Meneghini, “Intercomparison of single-frequency meth-
ods for retrieving a vertical rain profile from airborne or spaceborne
radar data,” J. Atmos. Ocean. Technol., vol. 11, no. 6, pp. 1507–1511,
Dec. 1994.

[42] T. Iguchi, T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto,
“Rain-profiling algorithm for the TRMM precipitation radar,” J. Appl.
Meteorol., vol. 39, no. 12, pp. 2038–2052, Dec. 2000.

[43] K. Okamoto, R. Meneghini, T. Iguchi, J. Awaka, and S. Shimizu,
“TRMM PR algorithms version 6 status and plans for version 7,” in Proc.
SPIE, Remote Sens. Atmos. Clouds II, 2008, vol. 7152, p. 715208.

[44] T. Iguchi et al., “Uncertainties in the rain profiling algorithm for the
TRMM precipitation radar,” J. Meteorol. Soc. Jpn., vol. 87A, pp. 1–30,
2009.

[45] C. Kummerow, W. Barnes, T. Kozu, J. Shiue, and J. Simpson, “The
tropical rainfall measuring mission (TRMM) sensor package,” J. Atmos.
Ocean. Technol., vol. 15, no. 3, pp. 809–817, Jun. 1998.

[46] Z. S. Haddad et al., “The TRMM ‘day-1’ radar/radiometer combined
rain-profiling algorithm,” J. Meteorol. Soc. Jpn., vol. 75, pp. 799–809,
1997.

[47] E. A. Smith, F. J. Turk, M. R. Farrar, A. Mugnai, and X. Xiang, “Esti-
mating 13.8 GHz path-integrated attenuation from 10.7 GHz brightness
temperatures for TRMM combined PR- TMI precipitation algorithm,”
J. Appl. Meteorol., vol. 36, no. 4, pp. 365–388, Apr. 1997.

[48] R. Meneghini et al., “Use of the surface reference technique for path
attenuation estimates from the TRMM precipitation radar,” J. Appl.
Meteorol., vol. 39, no. 12, pp. 2053–2070, Dec. 2000.

[49] E. N. Anagnostou, “Overview of overland satellite rainfall estimation for
hydro-meteorological applications,” Surveys Geophys., vol. 25, no. 5/6,
pp. 511–537, Nov. 2004.

[50] M. Grecu, W. S. Olson, and E. N. Anagnostou, “Retrieval of precip-
itation profiles from multiresolution, multifrequency active and passive
microwave observations,” J. Appl. Meteorol., vol. 43, no. 4, pp. 562–575,
Apr. 2004.

[51] A. Mugnai, H. J. Cooper, E. A. Smith, and G. J. Tripoli, “Simula-
tion of microwave brightness temperatures of an evolving hail storm at
SSM/I frequencies,” Bull. Amer. Meteorol. Soc., vol. 71, no. 1, pp. 2–13,
Jan. 1990.

[52] J. Vivekanandan, J. Turk, and V. N. Bringi, “Ice water path estima-
tion and characterization using passive microwave radiometry,” J. Appl.
Meteorol., vol. 30, no. 10, pp. 1407–1421, Oct. 1991.

[53] C. Kummerow, W. Olson, and K. Giglio, “The status of the Tropical
Rainfall Measuring Mission (TRMM) after two years in orbit,” J. Appl.
Meteorol., vol. 39, no. 12, pp. 1965–1982, Dec. 2000.

[54] L. Chiu, D.-B. Shin, and J. Kwaitkowski, “Surface rainfall from satellite
algorithms,” in Earth Science Satellite Remote Sensing, vol. I, J. Qu,

W. Gao, M. Kafatos, R. E. Murphy, and V. V. Salomonson, Eds. Berlin,
Germany: Springer-Verlag, 2006, pp. 317–336.

[55] M. S. Narayanan et al., “Validation of TRMM merge daily rainfall with
IMD rain gauge analysis over Indian land mass,” Space Appl. Centre,
Ahmedabad, India, Tech. Rep., 2005.

[56] E. Ebert, J. E. Janowiak, and C. Kidd, “Comparison of near real-time pre-
cipitation estimates from satellite observations and numerical models,”
Bull. Amer. Meteorol. Soc., vol. 88, no. 1, pp. 47–64, Jan. 2007.

[57] H. Rahman and D. Sengupta, “Preliminary comparison of daily rainfall
from satellites and Indian gauge data,” Centre Atmos. Ocean. Sci., Indian
Inst. Sci., Bangalore, India, CAOS Tech. Rep. 2007AS1., 2007.

[58] G. Villarini and W. F. Krajewski, “Evaluation of the research version
TMPA three-hourly 0.250 × 0.250 rainfall estimates over Oklahoma,”
Geophys. Res. Lett., vol. 34, no. 5, Mar. 2007, Art. ID. L05402.

[59] Y. Tian et al., “Component analysis of error in satellite-based precip-
itation estimates,” J. Geophys. Res., vol. 114, no. D24, Dec. 2009,
Art. ID. D24101.

[60] M. R. P. Sapiano and P. A. Arkin, “An intercomparison and valida-
tion of high-resolution satellite precipitation estimates with 3-hourly
gauge data,” J. Hydrometeorol., vol. 10, no. 1, pp. 149–166,
Feb. 2009.

[61] S. H. Rahman, D. Sengupta, and M. Ravichandran, “Variability of In-
dian summer monsoon rainfall in daily data from gauge and satellite,”
J. Geophys Res., vol. 114, no. D17, Sep. 2009, Art. ID. D17113.

[62] S. Nair, G. Srinivasan, and R. Nemani, “Evaluation of multi-satellite
TRMM derived rainfall estimates over a western state of India,”
J. Meteorol. Soc. Jpn., vol. 87, no. 6, pp. 927–939, Dec. 2009.

[63] H. Feidas, “Validation of satellite rainfall products over Greece,” Theor.
Appl. Climatol., vol. 99, no. 1/2, pp. 193–216, Jan. 2010.

[64] B. J. Sohn, H. J. Han,and E. K. Seo, “Validation of satellite-based high-
resolution rainfall products over the Korean Peninsula using data from a
dense rain gauge network,” J. Appl. Meteorol. Climatol., vol. 49, no. 4,
pp. 701–714, Apr. 2010.

[65] Y. Shen, A. Xiong, Y. Wang, and P. Xie, “Performance of high-resolution
satellite precipitation products over China,” J. Geophys. Res., vol. 115,
no. D2, Jan. 2010, Art. ID. D02114.

[66] D. C. Buarque, R. C. D. de Paiva, R. T. Clarke, and C. A. B. Mendes,
“A comparison of Amazon rainfall characteristics derived from TRMM,
CMORPH and the Brazilian national rain gauge network,” J. Geophys.
Res., vol. 116, no. D19, Oct. 2011, Art. ID. D19105.

[67] M. O. Karaseva, S. Prakash, and R. M. Gairola, “Validation of high-
resolution TRMM 3B43 precipitation product using rain gauge mea-
surements over Kyrgyzstan,” Theor. Appl. Climatol., vol. 108, no. 1/2,
pp. 147–157, Apr. 2012.

[68] M. N. Islam and H. Uyeda, “Comparison of TRMM 3B42 products with
surface rainfall over Bangladesh,” in Proc. IEEE IGARSS, Seoul, Korea,
Jul. 25–29, 2005, pp. 4112–4115.

[69] P. Xie et al., “A gauge-based analysis of daily precipitation over East
Asia,” J. Hydrometeorol., vol. 8, no. 3, pp. 607–627, Jun. 2007.

[70] A. Yatagai, P. Xie, and A. Kitoh, “Utilization of a new gauge-based
daily precipitation dataset over monsoon Asia for validation of the
daily precipitation climatology simulated by the MRI/JMA 20-km-mesh
AGCM,” SOLA, vol. 1, pp. 193–196, 2005.

[71] V. Kumar, and T. N. Krishamurti, “Improved seasonal precipitation fore-
casts for the Asian monsoon using 16 atmosphere-ocean coupled models:
Climatology,” J. Clim., vol. 25, no. 1, pp. 39–64, Jan. 2012.

[72] A. Yatagai, T. N. Krishnamurti, V. Kumar, A. K. Mishra, and A. Simon,
“Use of APHRODITE rain gauge-based precipitation and TRMM 3B43
products for improving asian monsoon seasonal precipitation forecasts
by the superensemble method,” J. Clim., vol. 27, no. 3, pp. 1062–1069,
Feb. 2014.

[73] G. J. Huffman, R. F. Adler, B. Rudolf, U. Schneider, and P. R. Keehn,
“Global precipitation estimates based on a technique for combin-
ing satellite-based estimates, rain gauge analysis, and NWP model
precipitation information,” J. Clim., vol. 8, no. 5, pp. 1284–1295,
May 1995.

[74] G. J. Huffman, “Estimates of root-mean-square random error for finite
samples of estimated precipitation,” J. Appl. Meteorol., vol. 36, no. 9,
pp. 1191–1201, Sep. 1997.

[75] M. Rajeevan and J. Bhate, “A high resolution daily gridded rainfall
dataset (1971–2005) for meso-scale meteorological studies,” Curr. Sci.,
vol. 96, no. 4, pp. 558–562, Feb. 2009.

[76] C. Schumacher and R. A. Houze, “Comparison of radar data from
the TRMM satellite and Kwajalein oceanic validation site,” J. Appl.
Meteorol., vol. 39, no. 12, pp. 2151–2164, Dec. 2000.

[77] T. Kozu, T. Kawanishi, K. Oshimura, M. Satake, and H. Kumagai,
“TRMM precipitation radar: Calibration and data collection strategies,”
in Proc. IEEE IGARSS, Surf. Atmos. Remote Sens.—Technol., Data Anal.
Interpretation, 1994, vol. 2214, pp. 2215–2217.



6442 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 12, DECEMBER 2015

[78] A. Aghakouchak and A. Mehran, “Extended contingency table: Per-
formance metrics for satellite observations and climate model sim-
ulations,” Water Resour. Res., vol. 49, no. 10, pp. 7144–7149,
Oct. 2013.

[79] G. J. Ciach, W. F. Krajewski, and G. Villarini, “Product error driven
uncertainty model for probabilistic quantitative precipitation estimation
with NEXRAD data,” J. Hydrometeorol., vol. 8, no. 6, pp. 1325–1347,
Dec. 2007.

[80] G. Villarini, W. F. Krajewski, G. J. Ciach, and D. L. Zimmerman,
“Product—Error—Driven generator of probable rainfall conditioned on
WSR-88D precipitation estimates,” Water Resour. Res., vol. 45, no. 1,
Jan. 2009, Art. ID. W01404.

[81] Y. Tian et al., “Modeling errors in daily precipitation measurements:
Additive or multiplicative?” Geophys. Res. Lett., vol. 40, no. 10,
pp. 2060–2065, May 2013.

[82] G. J. Huffman et al., “The global precipitation climatology project
(GPCP) combined precipitation dataset,” Bull. Amer. Meteorol. Soc.,
vol. 78, no. 1, pp. 5–20, Jan. 1997.

[83] Y. Tian, and C. D. Peters-Lidard, “A global map of uncertainties in
satellite-based precipitation measurements,” Geophys. Res. Lett., vol. 37,
no. 24, Dec. 2010, Art. ID. L24407.

[84] M. Winchell, H. V. Gupta, and S. Sorooshian, “On the simulation of
infiltration-and saturation excess runoff using radar-based rainfall esti-
mates: Effects of algorithm uncertainty and pixel aggregation,” Water
Resour. Res., vol. 34, no. 10, pp. 2655–2670, Oct. 1998.

[85] M. Borga, E. N. Anagnostou, and E. Frank, “On the use of real-time
radar rainfall estimates for flood prediction in mountainous basins,”
J. Geophys. Res., vol. 105, no. D2, pp. 2269–2280, Jan. 2000.

[86] F. Hossain, E. N. Anagnostou, M. Borga, and T. Dinku, “Hydrological
model sensitivity to parameter and radar-rainfall estimation uncertainty,”
Hydrol. Processes., vol. 18, no. 17, pp. 3277–3299, Dec. 2004.

[87] A. K. Guetter, K. P. Georgakakos, and A. A. Tsonis, “Hydrologic
applications of satellite data: 2. Flow simulation and soil water es-
timates,” J. Geophys. Res., vol. 101, no. D21, pp. 26 527–26 538,
Nov. 1996.

[88] J. Willmott, “On the validation of model,” Phys. Geogr., vol. 2, no. 2,
pp. 184–194, Jul. 1981.

[89] A. AghaKouchak, A. Mehran, H. Norouzi, and A. Behrangi, “System-
atic and random error components in satellite precipitation data sets,”
Geophys. Res. Lett., vol. 39, no. 9, May 2012, Art. ID. L09406.

[90] S. Prakash, V. Sathiyamoorthy, C. Mahesh, and R. M. Gairola, “An eval-
uation of high-resolution multisatellite rainfall products over the Indian
monsoon region,” Int. J. Remote Sens., vol. 35, no. 9, pp. 3018–3035,
May 2014.

[91] D. Kavetski, G. Kuczera and S. W. Franks, “Bayesian analysis of input
uncertainty in hydrological modeling: Application,” Water Resour. Res.,
vol. 42, no. 3, Mar. 2006, Art. ID. W03408.

[92] R. Krzyzstofowicz, “The case for probabilistic forecasting in hydrol-
ogy,” J. Hydrol.. vol. 249, no. 1–4, pp. 2–9, Aug. 2001.

[93] L. Jiangnan, Z. Yanping, L. Fangzhou, G. Feiyun, and L. Weibiao,
“The structural characteristics of precipitation in Asian-Pacific’s three
monsoon regions measured by tropical rainfall measurement mission,”
Acta Oceanol. Sin., vol. 33, no. 3, pp. 111–117, Mar. 2014.

[94] J. Indu and D. N. Kumar, “Evaluation of TRMM PR sampling error over
a sub tropical basin using bootstrap technique,” IEEE Trans. Geosci.
Remote Sens., vol. 52, no. 11, pp. 6870–6881, Nov. 2014.

[95] R. Meneghini and D. Atlas, “Simultaneous ocean cross-section and rain-
fall measurements from space a nadir-looking radar,” J. Atmos. Ocean.
Technol., vol. 3, no. 3, pp. 400–413, Sep. 1986.

[96] R. A. Houze, S. Brodzik, C. Schumacher, S. E. Yuter, and C. R. Williams,
“Uncertainties in oceanic radar rain maps at Kwajalein and implications
for satellite validation,” J. Appl. Meteorol., vol. 43, no. 8, pp. 1114–1132,
Aug. 2004.

[97] J. Indu and D. N. Kumar, “Copula based modeling of TRMM TMI
brightness temperature with rainfall type,” IEEE Trans. Geosci. Remote
Sens.. vol. 52, no. 8, pp. 4832–4845, Aug. 2014.

[98] P. E. Kirstetter et al., “Comparison of TRMM 2A25 products ver-
sion 6 and version 7 with NOAA/NSSL ground radar-based Na-
tional Mosaic QPE,” J. Hydrometeorol., vol. 14, no. 2, pp. 661–669,
Apr. 2012.

[99] A. Devasthale, and H. Grassl, “A daytime climatological spatio-temporal
distribution of high opaque ice cloud classes over the Indian summer
monsoon region from 25-year AVHRR data,” Atmos. Chem. Phys.,
vol. 9, no. 12, pp. 4185–4196, Jun. 2009.

[100] F. Galton, “The geometric mean in vital and social statistics,” Proc. R.
Soc. Lond. vol. 29, pp. 365–367, 1879.

[101] P. D. Gingerich, “Arithmetic or geometric normality of biological vari-
ation: An empirical test of theory,” J. Theor. Biol., vol. 204, no. 2,
pp. 201–221, May 2000.

J. Indu received B.Tech degree in civil engineer-
ing from the Mar Athanasius College of Engineer-
ing, Kerala, India in 2004 with university third rank,
M.Tech degree in geoinformatics from Indian Insti-
tute of Technology Kanpur, Kanpur, India, in 2008
and the Ph.D. degree from the Indian Institute of
Science (IISc), Bangalore, India, in 2015.

She worked as a Research Associate with the
Department of Civil Engineering, IISc. She is cur-
rently working as an Assistant Professor, Department
of Civil Engineering, Indian Institute of Technology

Bombay, Mumbai, India. Her research interests include microwave remote
sensing, uncertainty modeling, and nowcasting of precipitation.

D. Nagesh Kumar received the Ph.D. degree from
the Indian Institute of Science (IISc), Bangalore,
India, in 1992.

He was a Boyscast Fellow with the Utah Water
Research Laboratory, Utah State University, Logan,
UT, USA, in 1999. He has been a Professor with
the Department of Civil Engineering, IISc, since
May 2002. He is also the Chairman, Centre for
Earth Sciences, IISc. Earlier, he was with the IIT,
Kharagpur, India, and National Remote Sensing
Centre, Hyderabad, India. His research interests in-

clude climate hydrology, climate change, water resource systems, ANN,
evolutionary algorithms, fuzzy logic, MCDM, and remote sensing and GIS
applications in water resource engineering. He is the coauthor of two
text books entitled Multicriterion Analysis in Engineering and Management
(PHI) and Floods in a Changing Climate: Hydrologic Modeling (Cambridge
University Press). He has published more than 160 papers including 88 in peer
reviewed journals.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


