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Rainfall screening methodology using TRMM data over a river basin
J. Indua† and D. Nagesh Kumar a,b

aDepartment of Civil Engineering, Indian Institute of Science, Bangalore, Karnataka, India; bCentre for Earth Sciences, Indian Institute of Science,
Bangalore, Karnataka, India

ABSTRACT
A regionalized rain/no-rain classification (RNC) based on scattering index methodology is developed for
detecting rainfall signatures over the land regions of the Mahanadi basin (India), using data products
from the passive and active sensors onboard the Tropical Rainfall Measuring Mission (TRMM), namely
the TRMM Microwave Imager (TMI) and Precipitation Radar (PR). The proposed model, developed using
data for two years from the orbital database, was validated using PR and in-situ data for selected case
study events in 2011 and 2012. Performance evaluation of the model is discussed using 10 metrics
derived from the contingency table. Overall, the results show superior performance, with an average
probability of detection of 0.83, bias of 1.10 and odds ratio skill score greater than 0.93. Accurate rainfall
detection is obtained for 95% of case study events. The relative performance of the proposed model is
dependent on rainfall type, but it should be useful in rainfall retrieval algorithms for current missions
such as the Global Precipitation Measurement Mission.
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1 Introduction

For more than two decades, microwave radiometers have
been used to produce unprecedented satellite images of
Earth’s weather and proved to be a valuable resource for
quantitative estimation of precipitation from space.
Significant contributions have been extended by the micro-
wave instruments onboard the Tropical Rainfall Measuring
Mission (TRMM) satellite, namely the TRMM Microwave
Imager (TMI) and the Precipitation Radar (PR) (Petty and
Krajewski 1996, Kummerow et al. 1998, Anita et al. 2008,
Montero-Martinez et al. 2012, Sun et al. 2012, Tarnavsky
et al. 2012, Saber et al. 2014, Moazami et al. 2015). With
the widespread acceptance of microwave-based precipitation
products, it has also been recognized that they include large
uncertainties (Kummerow et al. 1998, 2005, Coppens et al.
2000). Studies that quantified the global uncertainty offered
by microwave rainfall algorithms showed climatologically dis-
tinct space/time domains contributing approximately 25%
uncertainty to their rainfall products which goes undetected
by a microwave radiometer (Kummerow et al. 2005). Nearly
20% of this can be attributed to changes in cloud morphology
and 5% to the rain/no-rain thresholds.

To date, most instantaneous passive microwave rain retrie-
val algorithms make use of a database constructed using a
cloud model simulation that associates calculated microwave
brightness temperatures to physically plausible sample rain
events. Delineation of rainfall signatures from microwave
footprints, also known as rain/no-rain classification (RNC)
is an essential pre-processing step which assists in the

succeeding rainfall retrieval technique (using the database).
Physically based over-land rainfall retrieval algorithms using
microwave data incorporate rainfall screening as an integral
part before applying the succeeding over-land rain retrieval
techniques. According to Grody (1991), “the physics of rain
detection and screening are every bit as important as those of
conversion”. The emissivity characteristics of background sur-
faces (land/ocean) play a crucial role in the proper under-
standing of the fundamentals of RNC classification. The
existing RNC algorithms to detect rainfall signatures follow
different principles depending on whether the underlying
surface is land or ocean. This is because the ocean surface
appears “cold” to a radiometer operating in the microwave
region, thereby offering good contrast for detecting rain
drops, which appear radiometrically warm. As this phenom-
enon utilizes the strong physical relationship between low-
frequency (6–37 GHz) microwave brightness temperature
(Tb) and liquid rainfall, over-ocean RNC techniques are
essentially emission based. However, as land appears as a
radiometrically “warm” background, the warm emission
from raindrops becomes cluttered by emission from the
highly varying land surface background. Hence, unlike the
oceans, land surfaces present difficulty in modelling the RNC
algorithms due to the spatio-temporal variations of emissivity
with varying surface conditions (Prigent et al. 1998, Weng
et al. 2001, Pellarin et al. 2003).

Over-land RNC algorithms rely solely on the ice scattering
phenomenon in the high-frequency (85 GHz) microwave
channel (Wilheit 1986, Spencer et al. 1989, Grody 1991,
Adler et al. 1993, Ferraro and Marks 1995, Lin and Hou
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2008, Wang et al. 2009, Gopalan et al. 2010). Over-land RNC
algorithms are considered ambiguous in nature due to several
factors, such as saturation of the 85GHz Tb during heavy
rainfall events, depression of the 85GHz Tb in the presence
of desert/snow cover, and a change in emissivity due to sur-
face wetness during rainfall, which cause difficulty in using
radiative transfer models. These uncertainties need to be
tackled to avoid erroneous estimations of rainfall (Wilheit
1986, Ferraro et al. 1998, Kummerow 2001).

As experience with SI-based RNC studies grew, it became
increasingly important to develop algorithms to suit the
highly varying emissivity from the background land surface.
Results of the ensuing development of RNC algorithms over
the land regions are summarized in Table 1. To date, various
approaches exist to accurately detect areas where rain is fall-
ing within a radiometer footprint (or pixel). One of the first
rainfall screening studies was conducted by Ferraro et al.
(1986). They proposed the use of multiple microwave fre-
quency channels from the Scanning Multichannel Microwave
Radiometer (SMMR) to identify rainfall signatures.
Pioneering work by Grody (1991) initiated the use of RNC
algorithms to pre-process rainfall retrieval algorithms such as
the Goddard scattering algorithm (GSCAT) (Adler et al. 1994,
Ferraro et al. 1994, Kummerow and Giglio 1994, Kummerow
et al. 1996, Ferraro 1997, Seto et al. 2005).

The screening methodology has evolved continuously and
is known as the Grody-Ferraro screening methodology; it is
currently built into the operational satellite precipitation algo-
rithm known as the Goddard profiling algorithm (GPROF)
(Kummerow 2001). RNC algorithms based on scattering
index (SI) by Grody (1991) relied largely on low-frequency
microwave channels, especially 19 and 22 GHz in vertical
polarization. Adler et al. (1993) devised a global empirical
relation for the Special Sensor Microwave Imager (SSM/I) to
calculate the estimated value of Tb at 85 GHz (V) under clear-
sky/non-rainy conditions (Tb,est) using a fixed value of 243 K.
Later, Ferraro et al. (1994) and Ferraro and Marks (1995)
suggested the concept of using low-frequency channel com-
binations (10–37 GHz) to represent Tb,est. Since the introduc-
tion of the Grody-Ferraro screening methodology (Ferraro
et al. 1986, Grody 1991, 1998), it has been the technique
most applied for use in microwave land precipitation algo-
rithms. Various versions of this technique (based on SI) have
been applied in SSM/I, TMI and Advanced Microwave
Scanning Radiometer-EOS (AMSR-E) missions (McCollum
and Ferraro 2003). The GPROF employs an RNC discrimina-
tion algorithm prior to rainfall retrieval using a probabilistic
Bayesian approach (Kummerow et al. 2011). Nevertheless,
RNC discrimination over land regions is still seen as a chal-
lenging task (Grecu and Anagnostou 2001, Seto et al. 2005,

Biscaro and Morales 2008, Kida et al. 2009). An authoritative
description of RNC using passive radiometers can be found in
Indu and Kumar (2014).

RNC algorithms developed globally might not perform
well for regional catchments of small areal extent. This can
be attributed to the spatio-temporal variations of land surface
emissivity values. Hence, global RNC methods cannot be
efficiently applied for rainfall pre-processing and weather-
related studies over such areas. Keeping this in mind, the
present study proposes a regionalized RNC algorithm over
the land regions of the Mahanadi basin in India. The Tb,est

value is modelled using a combination of microwave low-
frequency channels that are least sensitive to scattering and
better represent the emissivity variations of the study region.
With the launch of successor missions to study precipitation
measurement on a global scale, several microwave sensors
have recently been or will soon be launched into orbit
(Tapiador et al. 2012, Tanvir et al. 2014). At this stage, the
present study uses orbital data products from the TRMM
satellite, namely 1B11, 2A12, 2A21, 2A25 and 2A23.
However, future extensions of this study are aimed at assist-
ing RNC discrimination using the more recently launched
Global Precipitation Measurement (GPM) mission, which
carries a dual-frequency precipitation radar (DPR) accompa-
nied by the Global Microwave Imager (GMI) (Islam et al.
2012, Hou et al. 2013). Details of the study region and data
used are presented in Sections 2 and 3, respectively. The SI
methodology implemented for RNC and metrics used for
performance evaluation are explained in Section 4. Section 5
discusses the results of dichotomous classification, and key
conclusions are summarized in Section 6.

2 Study region

The study region selected for this work is the basin of the River
Mahanadi, India, covering an area of approximately
141 589 km2 with an average elevation of 426 m. Situated
between latitudes 19°N and 24°N and longitudes 80°E and
87°E, the basin extends across four states, namely Madhya
Pradesh, Orissa, Bihar and Maharashtra, flanked by the central
Indian hills to the north, the Eastern Ghats on the south and
east, and the Maikala range to the west. Physiographic classi-
fication of the basin shows the hilly regions of the northern
plateau and Eastern Ghats, the delta of the coastal plains, and
the central interior region traversed by the River Mahanadi and
its tributaries. From Figure 1 it can be seen that the basin has
mainly vegetative land cover, comprising forest, cropland,
grassland, etc. Figure 2 shows the topography of the study
region.

Table 1. Global rain/no-rain classification algorithms based on scattering index, SI.

Proposer Observed Tb Tb,est Threshold of SI

Grody (1991) 85 V 450:2� 0:506Tb;19V � 1:874Tb;22V þ 0:00637½Tb;22V�2 SI > 10
Adler et al. (1994) 85 H 251 SI > 4
Kummerow and Giglio (1994) 85 H min[Tb,37H, 265] SI > 0
Ferraro (1997) 85 V 451:9� 0:44Tb ;19V � 1:775Tb;22V þ 0:00575½Tb;22V�2 SI > 10
Kummerow (2001) (GPROF) 85 V Tb,22V SI > 8
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The basin experiences four seasons: cold weather, hot
weather with frequent thunderstorms, southwest monsoon
and post monsoon. The average highest and lowest relative
humidities in the basin are 82% and 31.6%, respectively. The
basin, which has a typical tropical monsoon climate, receives
heavy to very heavy rainfall during the Indian summer mon-
soonal months of June to September (when monsoon depres-
sions from the Bay of Bengal move northwestward). The
rainfall of the Mahanadi basin compared with the average
rainfall for India as a whole differs by 250 mm in monsoon
months (with Mahanadi receiving 1200 mm and India receiv-
ing 945 mm). Even a small variation in this seasonal rainfall
can have an adverse impact on the economy. In the past, the
basin has been repeatedly subjected to adverse hydro-meteor-
ological conditions such as floods, droughts and cyclones.
Therefore, rainfall retrieval algorithms generated for the
study region using passive microwave data require an efficient
RNC algorithm that can effectively detect the rainfall

signature irrespective of emissivity variations offered by the
vegetated land surface background.

3 Data used

TRMM was a joint mission between the National Aeronautics
and Space Administration (NASA) and the Japan Aerospace
Exploration Agency (JAXA) to monitor and study tropical rain-
fall. Launched in 1997 into a near circular orbit, it had two
instruments operating in the microwave spectrum, namely the
TRMM Microwave Imager (TMI) and the Precipitation Radar
(PR). A detailed description of the TRMM sensor package is
available in Kummerow et al. (1998). The current study utilizes
the latest version (version 7) of data from the TRMM Science
Data and Information System (TSDIS) for a 4-year data period
from 2009 to 2012. The data products are briefly summarized
below.

3.1 Precipitation radar (PR) data

The TRMM PR was the first rain radar in space to have the
capacity to provide three-dimensional rainfall structure.
Operating at 13.8 GHz, this 128-element active phased array
system provided a vertical resolution of 250 m at nadir
(Kummerow et al. 1998). The sensitivity of the PR was
0.5 mm/h (Kawanishi et al. 2000). The vertical and horizontal
resolutions of PR data were 250 m and 5 km (i.e. ~0.04°),
respectively. As the geometrical configurations of TMI and
PR are different, the same region was sampled with an
approximate time shift of 1 min between the two instruments
(Viltard et al. 2000, Montero-Martinez et al. 2012). The data
used for the present study include surface-type flags from the
standard product 2A21 (Meneghini et al. 2000), rainflags
(rain certain/rain possible/no rain), rainfall type (convective/
stratiform) from the standard product 2A23 (Awaka et al.

Figure 1. Land use/land cover in the Mahanadi basin (2010).

Figure 2. Topography of the Mahanadi basin from the GTOPO digital elevation
model.▴, locations of the automatic weather stations within the basin.
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1998), and the near-surface rain rate from the 2A25 product
(Iguchi et al. 2000).

3.2 TRMM microwave imager (TMI) data

The TRMM passive instrument measured Tb at five frequen-
cies (10.65, 19.35, 21.3, 37.0 and 85.5 GHz) using both hor-
izontal (H) and vertical (V) polarizations, except for the 21.3
GHz channel which was measured in vertical polarization
only. Hereafter, these channels will be referred to as 10 V,
10 H, 19 V, 19 H, 22 V, 37 V, 37 H, 85 V and 85 H,
respectively. The 1B11 data product has horizontal resolution
varying with frequency (5 km × 7 km for 85 GHz to 10 km ×
63 km for 10 GHz). For the present study, data for TMI
brightness temperatures from the standard product 1B11
and surface flags from the standard product 2A12
(Kummerow 2001, Gopalan et al. 2010) were used.

3.3 The 3B42 data

The TRMM Multi-satellite Precipitation Analysis (TMPA)
level-3 data product, also known as 3B42, combines precipi-
tation estimates from various satellite systems (passive micro-
wave data and geostationary infrared data) as well as land
surface precipitation gauge analysis, to produce high-quality
precipitation estimates. The TMPA data are computed at a
spatial resolution of 0.25° × 0.25° with a 3-hourly temporal
resolution over the tropical region (Huffman et al. 2007,
Huffman 2010, Huffman and Bolvin 2013). The TRMM
3B42 product provides a good qualitative check for rainfall
patterns and has been widely used for many research applica-
tions (Bitew et al. 2012, Gianotti et al. 2012, Wu et al. 2012,
Liu 2015). For the present study, gridded rainfall data from
3B42 were used to select 15 typical dates having high rainfall
values over the study region during the monsoon months of
2011 and 2012. These were examined using the TRMM
Online Visualization and Analysis System (TOVAS). More
details about TOVAS can be obtained at http://disc2.nascom.
nasa.gov/Giovanni/tovas/.

3.4 Automatic weather station (AWS) raingauge data

The automatic weather station (AWS) designed by the Indian
Space Research Organization (ISRO) is a very compact, low-
cost system housed within a portable self-contained package.
Among many other sensors, it has a tipping-bucket raingauge
with accuracy better than 1 mm. Presently, more than 300
(rapidly increasing with time) AWS are deployed over specific
regions of India. These data are available through the website
www.mosdac.gov.in. For the validation of the proposed algo-
rithm, AWS raingauge data for all 34 stations (Table 2) in the
study region for the Indian summer monsoonal months of
2011 and 2012 were used.

4 Methodology

The methodology for developing the regional SI-based rain-
fall screening technique using passive sensor footprints is
summarized in Figure 3.

4.1 Data collocation

As the spatial resolutions of TMI channels vary with respect
to one another as well as with respect to PR data, collocation
was performed as the initial step. Several studies have
approached collocation by spatial resolution enhancement
(Rapp et al. 2009). In the present study, the resolution of
low-frequency channels (10 V, 10 H, 19 V, 19 H, 21 V, 37 V
and 37 H) was increased by a linear interpolation technique
to match the resolution of the 85 V channel. Collocation was
performed by using geolocation information from the TRMM
PR and TMI dataset (Gopalan et al. 2010). As a result, a TMI
pixel can be assigned at the 85 V resolution as the “nearest
neighbour” for every PR pixel in an orbit, using:

Di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LatPR � LatTMI;i
� �2 þ LonPR � LonTMI;i

� �2q
(1)

where Di refers to the distance between each of the ith TMI
pixels from a given PR pixel. This process makes available
three to four PR pixels as the nearest neighbours for every
TMI pixel within a PR swath. As a result, for every high-
resolution TMI 85 V pixel, corresponding PR pixels, near-
surface rain rate and rain type were estimated. The surface
type information from the PR 2A12 data product was used to
extract/filter all the footprints (or pixels) lying over the land
region of the Mahanadi basin. In this process, the pixels
tagged as “coast” are excluded from the analysis. The rainfall
type (convective and stratiform) represented by each of these
collocated over-land pixels was estimated using storm type
information present in the TRMM 2A23 data product. This

Table 2. Automatic weather stations (AWS) located within the Mahanadi basin.

AWS Latitude Longitude

Raighar 19.88 82.07
Chilka Khurda 19.67 85.18
Bolagarh 20.16 85.27
Gop 19.97 86.01
Pipli 20.10 85.98
Ersama 20.20 86.40
Garadapur 20.38 86.37
Kendrapara 20.42 86.57
Kendrapara 20.49 86.43
Chowdar 20.56 85.99
Badachana 20.67 86.11
Bari 20.67 86.35
Sinapali 20.43 82.63
Komna 20.50 82.67
Patnagarh 20.71 83.12
Rengali 21.64 84.03
Bamara 22.05 84.28
Golamunda 20.05 82.78
Khariar 20.30 82.75
Sinapali 20.43 82.63
Tureikela 20.50 82.80
Khaprakhol 20.80 82.86
Gudvela 20.41 83.56
Agalpur 20.97 83.49
Boudh 20.84 84.28
Redhakhol 21.07 84.33
Somenahalli 21.36 83.74
Ambabhona 21.58 83.74
Sambalpur 21.41 84.03
Junagarh 19.86 82.94
Bhawanipatna 19.91 83.16
M. Rampur 20.19 83.51
Nuagaon 20.13 84.01
Raikia 20.05 84.23
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initial data processing procedure, comprising data collocation
and extraction of over-land footprints, was adopted for all the
orbits passing over the study region during the 4-year period
2009 to 2012.

4.2 Rain/no-rain classification based on scattering index

The present study used collocated data over the land regions
of the study area to develop a region specific SI, using the
synergy of low-frequency TMI channels. The key idea in this
technique is that Tb for the 85 V channel is affected by frozen
ice particles and raindrops in the atmosphere. As over-land
rainfall retrieval from passive sensors relies on ice scattering
in the 85 V channel, the basis for developing SI involves
modelling the 85 V Tb during clear-sky days (Tb,est). The
value of Tb,est represents the 85 V Tb value when there is no
scattering in the atmosphere. This study used quasi-simulta-
neous observations at low-frequency TMI channels (least
affected by scattering due to ice clouds aloft) to model the
non-scattering 85 V Tb. To examine the scattering effects of
various TMI channels, collocated TMI Tb (for the 2-year
period 2009 and 2010) for all the TMI channels was plotted
against near surface rain rate from the active sensor (PR),
after binning the rain rate. The results, as seen in Figure 4,
show that the 85 (V & H) and 37 (V & H) channels are most
sensitive to over-land rainfall as compared to all the other
TMI channels (10 V, 10 H, 19 V, 19 H, 22 V). Development
of Tb,est should include combinations of those channels that
are least affected by ice scattering in the atmosphere and that
have increased sensitivity to land surface emissivity. Different
land surfaces contribute varying amounts of emission to a
microwave radiometer footprint (Ferraro et al. 1998).
Demonstrating the behaviour of microwave land surface
emissivity over varying land surface conditions has been

attempted on a global scale by Prigent et al. (1998), Weng
et al. (2001) and Pellarin et al. (2003). A predominantly
vegetative land surface background, such as that observed in
the study region, would contribute volume scattering, as the
microwave radiation can arise from below and within the
canopy.

The present study used Tb from the 19 V and 22 V
channels during clear-sky conditions for simulation, as these
channels are known to remain least affected by scattering due
to the presence of ice clouds (Ferraro et al. 1998). These
channels are also known to better represent Tb,est values due
to their increased sensitivity to land surface emissivity (Adler
et al. 1994, Kummerow and Giglio 1994, Indu and Kumar
2014). The difference between Tb,est and the observed 85 V Tb

Model comparison with 
existing GPROF rainfall 
screening method

TMI Data  Product
[Analysis]

PR  Data Product
[Validation]

1B11
[19V, 22V, 85V]

Collocation

2A12
[Surface Flag] 2A21

[Rain Flag]

2A25
[Near Surface 

Rain Rate]

2A23
[Storm Type]

Scattering index based model for rainfall screening 
over Mahanadi basin

Performance evaluation of 
model using categorical 
statistics

Performance evaluation of 
model on Rain types 
[convective & stratiform]

Comparison of model with 
global methods

Figure 3. Flowchart summarizing the methodology adopted.

Figure 4. Relationship of near surface rain rate (NSR) with collocated over-land
Tb (from TMI) for the Mahanadi basin.
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(Tb,obs) gives a measure quantifying the degree of scattering
by ice particles and raindrops in which rain rate is propor-
tional to the amount of scattering. Once Tb,est has been
developed, the SI is obtained using:

SI ¼Tb;est�Tb;obs (2)

Defining a suitable threshold to detect raining clouds to suit
every climatic regime is nearly impossible due to the lack of
corresponding validation data. The usual procedure for
selecting a threshold is either to detect even the lightest rain
at the cost of misclassifying non-raining clouds or to detect
rain only above a certain threshold at the expense of elim-
inating light rain pixels. The choice of either a liberal or a
conservative threshold will affect the accuracy of the RNC
and this area needs to be researched further. Several authors
have come up with different threshold values for detecting
rainfall signatures using SI models. The threshold is either set
to zero or estimated to be equivalent to kσ, where k is a
constant varying with area and climatic conditions and σ
depicts standard deviation of the residuals between estimated
and observed 85 V for the non-rainy period selected for
analysis (Seto et al. 2005). The present study uses an ideal
value of zero as the suitable threshold for scattering.
Throughout this study, the above explanation means that
any value of SI even slightly greater than zero is attributed
to the presence of atmospheric ice and hence is indicative of
rainfall signature.

4.3 Categorical statistics

This study analysed the performance of the proposed RNC
method using a total of 10 performance statistics. RNC is a
typical example of dichotomous classification having just two
possibilities, either zero or unity. Hence, the result of the
categorical estimate can be expressed in the form of a 2 × 2
contingency matrix, as shown in Table 3 (Tartaglione 2010),
wherein the elements of the table denote the number of
positive estimates (hits, element a), the number of events
with a negative estimate (misses, element b), the number of
positive estimates that were not accompanied by an event
(false alarms, element c), and the number of negative esti-
mates that did not have any associated events (element d)
(Schaefer 1990). The 10 performance statistics used in the
present study are given in Table 4.

The most popular measures to assess RNC are probability of
detection (POD) and false alarm ratio (FAR). POD, or prefigur-
ance (Panofsky and Brier 1965), is the likelihood that an event
would be estimated given that it occurred. The false alarm ratio
(FAR) is an element of the conditional distribution of events
given the estimate. Due to the negative orientation of FAR,
smaller values indicate better estimates (Wilks 1995). Another
measure used to compare the average estimate with the average

observations is the bias. The bias (B) signifies the ratio of the
number of “yes” estimates to the number of “yes” observations.
This measure when less than one indicates underestimation and
when greater than one indicates overestimation. The threat
score (TS), or critical success index (CSI), indicates the number
of correct “yes” estimates divided by the total number of occa-
sions on which the event was estimated or observed (Wilks
1995). CSI has been widely used as a performance measure for
rare events as it does not use the content of null events, unlike
POD and FAR (Montero-Martinez et al. 2012).

This study used various skill scores or relative accuracy
measures derived from contingency tables. A skill score is the
ratio of differences of scalar representations of the classification
performance (Stanski et al. 1989, Wilks 1995). Different skill
scores perform differently. Some of the skill scores used in the
present study are the Heidke skill score (HSS), the Kuiper skill
score (KSS), the Gilbert skill score (GSS) and the odds ratio
skill score (ORSS). The ideal classification yields a HSS value of
1, which implies that the performance of the classification is
100%, whereas inferior classification can even take negative
values. The GSS, also known as the equitable threat score,
was proposed by Gilbert (1884). A perfect estimate of the
GSS is a value of 1, whereas a worst estimate is a value of 0.
The “odds” or “risk” of an event happening, denoted by the
ORSS, is the ratio of the probability that the event will happen
to the probability of it not happening. The ORSS varies
between +1 and –1, where a score of 1 indicates perfect skill
and a score of 0 represents no skill. Negative values imply that
the estimate was opposite to what was originally observed.
Stephenson (2000) stated that associated variables giving odds
ratios larger than unity can be tested for significance by con-
sidering the natural logarithm of the odds ratio referred to as
“log odds”. The present study evaluated the performance of the
proposed RNC algorithm on selected dates using these 10
performance measures and the case study results are presented
in Section 5.

5 Results and discussion

5.1 Proposed model

As global scattering indices are highly variable for different
regions and seasons, a regional scattering index would better
explain the background emissivity variations (Mishra et al.

Table 3. Contingency matrix.

Rain judged by PR No rain judged by PR

Rain judged by TMI a b
No rain judged by TMI c d

Table 4. Performance statistics used in the study.

Performance measure Formula Range

Probability of detection (POD) a
aþc [0, 1]

Threat score (TS) or critical success
index (CSI)

a
aþbþc [0, 1]

False alarm ratio (FAR) b
aþb

[0, 1]
Heidke skill score (HSS) 2ðad�bcÞ

ðaþcÞðcþdÞþðaþbÞðbþdÞ [−∞, 1]

Kuiper skill score (KSS) ad�bc
ðaþcÞðbþdÞ [−1, 1]

Percentage correct (PC) or hit rate
(H)

aþd
n

[0, 1]

Bias (B) aþb
aþc

[0, ∞]
Gilbert skill score (GSS) a�ar

ðaþbþc�arÞ , ar ¼
ðaþbÞðaþcÞ

n
[0, 1]

Odds ratio skill score (ORSS) ad�bc
adþbc

[−1, 1]
Log odds ratio lnðaÞ þ lnðdÞ � lnðbÞ � lnðcÞ [−∞, ∞]
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2011). The present study was conducted over the Mahanadi
basin, India, and the performance of the algorithm was vali-
dated using PR rainflag data for a total of 15 dates during the
monsoon seasons of 2011 and 2012. The PR 2A25 product
rainflag provides “rain” and “no rain” definitions for each
pixel. Rain/no-rain (RNC) algorithms of TMI are usually
evaluated by assuming the RNC given by the PR to be
“true” or near perfect. This assumption is acceptable in eval-
uating RNC by TMI over land, because the PR detects pre-
cipitation independently of land surface type with a very high
accuracy (Seto et al. 2005, Tanvir et al. 2014 among others).
Studies by Seto et al. (2008) summarized several PR-depen-
dent RNC algorithms that employed PR rainflags for
validation.

This study used a total of 1 623 070 collocated over-land
TMI datasets under clear-sky conditions from all orbits pas-
sing over the Mahanadi basin during the years 2009–2012. As
explained in Section 4.2 and from Figure 3, channels 19 V
and 22 V were used to model high-resolution 85 V Tb under
clear-sky conditions as they are least affected by scattering
(Ferraro et al. 1998). The 19 V and 22 V channels are a good
choice also because of their sensitivity to topography and land
surface emissivity. Varying topography tends to modify the
viewing angle locally with respect to the horizontal and ver-
tical polarizations. The differing slopes in the topography (as
observed for the study region) tend to mix the vertical and
horizontal polarizations as defined relative to the mean flat
surface. Vegetative growth usually changes with topography,
and the 19 GHz channel is known to be more sensitive to
topography (Prigent et al. 1998). The present study utilizes
the vertical polarization as it is known to be less affected by
aliasing with changes in land use/land cover. Also, with
increasing biomass density, the vertical polarization is
known to increase compared to the horizontal polarization.

From the analysis conducted with various linear polyno-
mial models, the polynomial regression model shown by
Equation (3) was chosen to depict Tb,est for the Mahanadi
basin using a 2-year orbital database.

Tb;est ¼ aþ bxþ cyþ dx2 þ exyþ fy2 (3)

The values of the model coefficients in Equation (3) at the
95% confidence level are: a = 215.4, b = −14.91, c = 14.73,
d = 0.0298, e = −0.0082 and f = −0.0202.

In Equation (3), x denotes 19 V and y represents 22 V Tb.
The observed fit has a correlation coefficient of 0.9080 and R2

is 0.81. That is, the model is able to explain 81% of the
variation in 85 V Tb due to the low-frequency predictor
variables of 19 V and 22 V. Though various thresholds of SI
have been adopted by different authors, the present study
used a threshold of 0, which means that any value of SI
greater than 0 is considered as containing a rainfall signature.

5.2 Results of dichotomous classification

Evaluation of the proposed RNC algorithm is presented in a
performance diagram. This diagram, popularly used for
weather-related studies, shows the geometric relationship
between the main quality measures (namely POD, FAR, B

and CSI) obtained for the 15 case studies (Roebber 2009). In
Figure 5, the dashed lines represent bias scores, with labels on
the outward extensions of the lines. The crosshairs denote the
confidence intervals achieved using 1000 bootstrapped sam-
ples from the contingency table. The labelled solid contours
show critical success indices (CSI) (Roebber 2009).

From Figure 5, it can be observed that performance statis-
tics for all the 15 case study dates lie in the upper right of the
diagram, which indicates near perfect estimation. The average
POD for all the events is 0.8326, giving confidence that the
proposed classification method performs well in estimating
individual precipitation events for the study area. In the case
of FAR, the results indicate that, overall, the number of times
that precipitation events were falsely detected is very low. The
average bias value (1.10) indicates a very slight tendency of
the classification to overestimate. A major limitation of the
representation using a performance diagram is that it neglects
knowledge of the number of times a null event was estimated
(element d of the contingency table) (Stephenson 2000).
However, when the event of interest is less rare, as in our
case, it becomes important to account for the non-events in
the analysis. To overcome this limitation, various skill scores
were assessed for the case studies.

Table 5 lists the results of dichotomous classification using
the proposed model for the 15 selected case study dates. The
values of HSS and KSS for all the dates lie between 0.57 and
0.85. From the discussions in Section 4.3, this indicates that
the proposed method exhibits a fairly good level of skill. The
HSS and KSS values are fairly similar for all the days, even
though the latter uses unbiased random estimates as reference
whereas the former uses biased ones. The value of the GSS
observed is greater than 0.43 for all the days. Of all the
performance measures, it shows relatively poor performance
for the proposed classification method. The low value may be
because it penalizes both misses and false alarms in the same

Figure 5. Performance diagram showing categorical statistics for the 15 days.
The triangles represent each of the 15 case study dates. Their locations on the
performance diagram give the values of performance statistics (POD, B, FAR,
CSI), with cross hairs representing the confidence interval obtained using 1000
bootstrapped samples from the contingency table. Success ratio = 1 − FAR.
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way without distinguishing their sources. The ORSS values
for all the days are higher than 0.93, which is a good indica-
tion of the performance of the proposed RNC method.
Though the use of skill scores enables quantification of non-
events in the verification process, they lack the ability to face
statistical comparison/testing. To overcome this limitation,
the log odds ratio was calculated for each of the days. The
log odds ratios for all the days indicate that for the individual
rain events the measure is significant at 95% confidence level.
This implies that there is a less than 5% chance of the skill
being due to pure chance. Overall comparison shows that the
results of the proposed method are in good agreement with
the validation data for the study region. Performance evalua-
tion of the proposed model during different rain regimes is
discussed in the next section.

5.3 Analysis based on rain type

Tropical precipitation can be broadly classified into convec-
tive rainfall of high rain rate (>5 mm/h) having a small,
intense, horizontally inhomogeneous radar echo and strati-
form precipitation of low rain rate (<5 mm/h) with a wide-
spread, horizontally homogeneous radar echo (Schumacher
and Houze 2003). To assess the sensitivity of the proposed

model to rain types, the storm type information embedded in
the 2A23 PR data product was used to classify each day’s
footprints (or pixels) into convective and stratiform rainfall
types. After classification, this study analysed the perfor-
mance of the proposed RNC algorithm using POD and FAR
measures. Table 6 lists the results of dichotomous classifica-
tion based on rainfall type. The average rain rate, number of
footprints, POD and FAR estimated for both the rain types
from Table 6 show that, for each selected day during the
monsoonal period, the majority of the footprints represent
stratiform signatures. For the convective rain type, a FAR of
zero for all the days implies that the model has successfully
identified all the rainfall signatures. The highest POD, of
100%, was observed for 21 June 2012 and lowest POD, of
74%, was observed for 2 July 2011. Analysis of stratiform rain
type shows that, overall, the performance of the proposed
model is directly proportional to the efficiency with which it
is able to demarcate raining and non-raining pixels of strati-
form rain type. The performance diagram for stratiform rain-
fall for all the days is shown in Figure 6. This also supports
the fact that the success of the proposed model is dependent
on its capability of RNC of stratiform rainfall. The lowest
value of POD (0.57) was obtained for 2 July 2011. From
Table 5, it can be observed that, even though overall the

Table 5. Results of dichotomous classification using proposed model for the 15 days.

Date No. of orbits POD FAR TS GSS B ORSS KSS HSS PC Log theta

13 June 2011 2 0.88 0.24 0.68 0.66 1.17 0.99 0.85 0.79 0.96 5.74
17 June 2011 3 0.83 0.18 0.70 0.60 1.01 0.96 0.75 0.75 0.90 4.16
25 June 2011 4 0.78 0.22 0.63 0.55 1.01 0.96 0.72 0.71 0.90 3.99
2 July 2011 2 0.60 0.30 0.48 0.43 0.86 0.95 0.57 0.60 0.92 3.83
7 July 2011 4 0.89 0.12 0.78 0.70 1.02 0.98 0.83 0.82 0.92 4.90
12 July 2011 2 0.70 0.31 0.53 0.47 1.02 0.95 0.64 0.64 0.90 3.68
8 August 2011 3 0.86 0.36 0.58 0.48 1.35 0.95 0.73 0.65 0.87 3.77
17 August 2011 4 0.85 0.35 0.58 0.52 1.32 0.97 0.77 0.68 0.90 4.21
25 August 2011 4 0.91 0.21 0.73 0.58 1.16 0.96 0.76 0.73 0.87 4.05
1 September 2011 4 0.84 0.34 0.58 0.43 1.27 0.91 0.65 0.60 0.82 3.14
18 September 2011 2 0.85 0.25 0.66 0.57 1.14 0.96 0.77 0.73 0.90 4.15
23 September 2011 4 0.80 0.41 0.51 0.49 1.38 0.98 0.78 0.66 0.96 4.98
21 June 2012 3 0.90 0.32 0.63 0.44 1.34 0.93 0.66 0.62 0.81 3.42
30 July 2012 3 0.84 0.17 0.72 0.59 1.02 0.96 0.75 0.74 0.88 3.97
24 August 2012 1 0.89 0.09 0.81 0.71 0.98 0.98 0.82 0.83 0.91 4.81

Table 6. Results of dichotomous classification based on rainfall type for the 15 days.

Date Convective Stratiform

No. of
footprints

Average rain rate
(mm/h)

Percentage
convective POD FAR

No. of
footprints

Average rain rate
(mm/h)

Percentage
stratiform POD FAR

13 June 2011 242 14.60 27.40% 0.97 0 641 1.63 72.59% 0.85 0.29
17 June 2011 488 10.88 21.09% 0.92 0 1825 1.91 78.90% 0.81 0.22
25 June 2011 200 13.67 14.62% 0.88 0 1162 1.51 85.31% 0.77 0.25
2 July 2011 182 10.53 22.47% 0.74 0 628 1.67 77.53% 0.57 0.35
7 July 2011 157 9.67 15.24% 0.90 0 873 1.82 84.75% 0.89 0.14
12 July 2011 294 14.16 27.73% 0.80 0 766 1.56 72.26% 0.67 0.38
8 August 2011 224 13.23 14.24% 0.87 0 1348 1.31 85.75% 0.86 0.39
17 August 2011 28 12.21 5.45% 0.89 0 485 1.02 94.54% 0.85 0.36
25 August 2011 439 11.41 17.45% 0.96 0 2076 1.71 82.54% 0.90 0.24
1 September
2011

128 12.20 12.61% 0.95 0 887 1.57 87.38% 0.82 0.37

18 September
2011

457 13.48 19.94% 0.91 0 1834 1.68 80.05% 0.84 0.29

23 September
2011

49 10.1821 18.49% 0.9183 0 192 1.8704 81.50% 0.784 0.47

21 June 2012 197 10.8596 7.87% 1 0 2306 1.3464 92.12% 0.8991 0.34
30 July 2012 739 10.8988 23.72% 0.9539 0 2376 2.0332 76.27% 0.8163 0.21
24 August 2012 118 9.53 17.48% 0.96 0 557 1.90 82.51% 0.87 0.11
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proposed model performs efficiently, for 2 July 2011 the
comparative performance is worst, with 60% POD, bias
value of 0.86 and FAR of 30%, indicating underestimation.

Figure 7(a) and (b) shows the spatial distribution of accu-
mulated rainfall occurring over the study region during the
months June–July–August–September (JJAS) of 2011, which
was estimated from the PR 2A25 data product. To analyse the
performance of the proposed model on this date, 3B42 data
showing accumulated rainfall for the date were overlain on
the Mahanadi basin, as shown in Figure 8(a). The corre-
sponding orbital pass is also shown. It can be observed that
the orbital pass considered for 2 July 2011 passed over the
region with very little rainfall, most of which was stratiform
in nature owing to the comparatively low detection rate.
Figure 8(b) shows the 3B42 data and orbital pass over the
basin for 21 June 2012. It can be observed that on 21 June
2012 the average rainfall received was between 0 and 80 mm
and the orbital passes for this day overlapped with regions of
high rainfall (nearly 60 mm). Hence, it can be concluded that
the proposed method performs well during convective rain-
fall, but some anomaly is observed during stratiform rainfall.

5.4 Analysis using AWS raingauge data

Performance evaluation of the RNC algorithm is usually
conducted on the assumption that RNC by the PR is always
perfect. For the present study, the proposed RNC algorithm
has also been validated using AWS raingauge data. For each
of the case study dates, the geographical locations of all the
TMI data points within each orbital pass were compared with
the locations of all the 34 AWS. The TMI data points that
were closest to the AWS stations (based on the nearest dis-
tance method) were employed for the present study. Table 7
summarizes the comparison of results obtained using AWS
and the PR rainflags as reference for the performance mea-
sures of POD, FAR, TS and B. Based on data availability, the
results of four case study dates are presented. From Table 7, it

can be observed that the proposed RNC algorithm performs
well when compared with the AWS raingauge data, with high
values of POD and low values of FAR for the case study dates
except for 23 September 2011. Upon further examination it
can be observed that very few TMI data points exist close to
the AWS stations for 23 September 2011, of which most
belong to the stratiform rainfall type. The results confirmed
that model performance is affected when encountering low-
intensity rainfall belonging to the stratiform regime.

6 Conclusions

This study proposed a SI-based RNC algorithm to detect the
presence of rainfall over land regions of the hydrologically
variant basin of Mahanadi, India, using TRMM orbital data
from passive and active sensors. The low-frequency channels
19 V and 22 V were used to estimate the non-scattering
portion of 85 V Tb (Tb,est). The detection threshold for scat-
tering (due to ice clouds) was considered to have an ideal
value of zero. The performance of the proposed model was
analysed for 15 individual precipitation events for 2011 and
2012 using 10 performance metrics derived from the contin-
gency table. Visualization of multiple performance measures
(POD, FAR, B and CSI), along with their corresponding
confidence intervals using the performance diagram, indi-
cated that the proposed method gives near perfect accuracy,
with accurate rainfall detection for more than 95% of the case

Figure 6. Performance diagram showing categorical statistics for stratiform
rainfall (as explained for Figure 5).

Figure 7. Accumulated rainfall over the Mahanadi basin during JJAS 2011
showing (a) convective rainfall and (b) stratiform rainfall.
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studies. Furthermore, statistical significance testing of the
performance measures conducted using log odds ratios indi-
cated that the results obtained are statistically significant and
hence highly reliable.

Performance evaluation of the proposed model during
convective and stratiform rainfall events indicated that
model performance was affected when the rain type was
stratiform with a rain rate of <1.7 mm/h. This was also
observed during model validation using tipping-bucket rain-
gauge data from the AWS located within the study region.
Based on these results it can be inferred that the proposed
RNC algorithm can be effectively used for rainfall preproces-
sing, or as a quality check for the Mahanadi basin. This would
reduce the computational burden for succeeding rainfall
retrieval algorithms applied over the study region. With the
TRMM satellite having reached the end of its mission

Figure 8. TRMM 3B42 product showing accumulated rainfall (mm) for the Mahanadi basin on (a) 2 July 2011 and (b) 21 July 2011.

Table 7. Results of proposed RNC algorithm validated with AWS raingauges and
PR rainflags.

Date POD FAR TS B

PR AWS PR AWS PR AWS PR AWS

7 July 2011 0.89 0.75 0.12 0.33 0.78 0.54 1.02 1.12
30 July 2012 0.84 0.75 0.17 0.39 0.72 0.49 1.06 1.25
17 June 2011 0.83 0.55 0.18 0.37 0.60 0.41 1.01 0.88
23 September 2011 0.80 0.12 0.41 0 0.51 0.12 1.38 0.125
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lifetime, it is expected that the proposed method will assist in
the development of rainfall retrieval algorithms for the suc-
cessor Global Precipitation Measurement (GPM) mission.
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