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Abstract 

This work evaluates the impact of climate change on the water balance of a catchment in 

India. Rainfall and hydro-meteorological variables for current (20C3M scenario, 1981-2000) 

and two future time periods: mid of the 21st century (2046-2065) and end of the century 

(2081-2100) are simulated using Modified Markov Model-Kernel Density Estimation (MMM-

KDE) and k-nearest neighbor downscaling models. Climate projections from an ensemble of 5 

GCMs (MPI-ECHAM5, BCCR-BCM2.0, CSIRO-mk3.5, IPSL-CM4, and MRI-CGCM2) are 

used in this study. Hydrologic simulations for the current as well as future climate scenarios 

are carried out using Soil and Water Assessment Tool (SWAT) integrated with ArcGIS 

(ArcSWAT v.2009). The results show marginal reduction in runoff ratio, annual streamflow 

and groundwater recharge towards the end of the century. Increased temperature and 

evapotranspiration projects an increase in the irrigation demand towards the end of the 

century. Rainfall projections for the future shows marginal increase in the annual average 

rainfall. Short and moderate wet spells are projected to decrease, whereas short and moderate 

dry spells are projected to increase in the future. Projected reduction in streamflow and 

groundwater recharge along with the increase in irrigation demand is likely to aggravate the 

water stress in the region under the future scenario. 
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1. Introduction 

Global climate change and its impact on hydrologic processes have been widely discussed in 

the recent past. With increase in temperature, climate change is accelerating the global 

hydrologic cycle (Huntington, 2006; Oki and Kanae, 2006). Climate change is projected to 

cause changes in precipitation pattern, variation in the frequency and distribution of floods 

and droughts, and increase in evapotranspiration rate over different regions in the world 

(Frederick and Major, 1997; Ficklin et al., 2012). Under the changing climate scenario, 

changes in streamflows have been found to be largely linked with the variations in 

precipitation. However for some locations, especially for moisture limited regions, small 

increase in temperature and the associated increase in evapotranspiration can cause larger 

variations in streamflows (McCabe and Wolock, 2011). In a study by Sankarasubramanian 

and Vogel (2003), storage processes within the catchment have been identified as the major 

factor that defines the non-linearity between the streamflow and precipitation. For moisture 

limited arid regions, actual evapotranspiration is limited due to the limited moisture 

availability. For such regions, any increase in precipitation causes a proportional increase in 

actual evapotranspiration, causing changes in the runoff to be less dramatic. On the other hand 

in humid regions, where moisture availability is not limited, any increase in precipitation may 

not result in proportional increase in evapotranspiration. In other words, changes in 

evapotranspiration rate with respect to changes in rainfall are less prominent. Therefore, any 

changes in rainfall are likely to cause larger changes in streamflow (Sankarasubramanian and 

Vogel, 2003). Basin level hydrologic analyses are therefore essential to assess the sensitivity 

of the basin to climate change scenarios, and to develop appropriate water resources 

management policies and climate change adaptation strategies. 

Global Climate Models (GCMs) are the primary tools that provide future projections of 

climate variables in the changing environment. GCMs are complex mathematical models 

capable of simulating the behavior of the Earth’s atmosphere, ocean and land surface in three 

dimensions (McGuffie and Henderson-Sellers, 1997). However, they remain relatively coarse 

in resolution, and are unable to resolve significant sub-grid scale features often necessary in 

any hydrologic study (Allen and Ingram, 2002; Fowler et al., 2007). Therefore, studies 
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dealing with the climate change impact assessment at catchment scale require downscaling of 

GCM projections to an appropriate scale to represent the catchment heterogeneity (Silberstein 

et al., 2012). Various statistical (Anandhi et al., 2008; Mehrotra and Sharma, 2010) and 

dynamic downscaling methods (Misra et al., 2003; Dominguez et al., 2012) have been 

adopted in the past to downscale large scale atmospheric variables from the GCMs to a 

regional scale or to a finer scale representative of a catchment. 

Downscaled climate simulations are often used as an input to hydrologic models to simulate 

the hydrologic responses and to assess the impact of climate change on water resources 

(Chang and Jung, 2010; Vaze and Teng, 2011; Ruelland et al., 2012). In such studies the 

hydrologic models are first calibrated using historic data, and then run using future scenarios 

to translate the climate change signals into corresponding changes in the hydrologic responses. 

When GCM data are used, large amount of uncertainty is inherent in the analyses.  For 

instance, climate change projections are based on the Green House Gas (GHG) emission 

scenarios under different conditions of economic and technological development, as well as 

the balance between global and local growth. There are many emission scenarios mentioned in 

the Special Report on the Emission Scenario-SRES (IPCC, SRES, 2000). Besides that, there 

are many GCMs available, giving different projections of the climate variables for the same 

future GHG emission scenario. From the previous studies (Wilby and Harris, 2006; Chen et 

al., 2011), choice of a single GCM has been consistently identified as the major contributor to 

the overall uncertainty in such analyses. Uncertainties arising from GHG emission scenario 

and the hydrologic model structure have been identified to be the least significant (Wilby and 

Harris, 2006; Minville et al., 2008; Chen et al., 2011; Woldemeskel et al., 2012). Due to the 

large uncertainty introduced by the GCMs, climate change impacts estimated from the use of a 

single GCM need to be interpreted cautiously. Hence, multi-model ensemble climate 

simulations have been used in many of the recent studies (Tebaldi and Knutti, 2007; Knutti et 

al., 2010; Jung et al., 2012; Zhang and Huang, 2013). Multi-model mean has been found to be 

giving better simulation of the climate variables compared to the individual models (Gleckler 

et al., 2008; Knutti et al., 2010; Zhang and Huang, 2013).  
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In light of these facts, in this study, the hydrologic impact of climate change on Malaprabha 

catchment in India is evaluated using climate projections from an ensemble of 5 GCMs. 

Rainfall and meteorological variables are downscaled from large scale atmospheric variables 

simulated by the GCMs. A conceptual, yet spatially distributed hydrologic model SWAT is 

used to derive the hydrologic simulation using inputs from each GCM. In this study, SWAT 

integrated with ArcGIS graphical user interface (ArcSWAT. V. 2009) is adopted. A weighted 

ensemble average approach is used to estimate the average hydrologic responses of the 

catchment under future scenarios and to evaluate the hydrologic impact of climate change in 

the catchment. 

The World Climate Research Programme’s Coupled Model Intercomparison Project phase 3 

(CMIP3) and CMIP5 datasets each contain output from a large number of GCMs. Both 

datasets use different scenarios describing the amount of greenhouse gas in the atmosphere in 

the future. CMIP3 uses scenarios from the Intergovernmental Panel on Climate Change’s 

(IPCC) Special Report on Emissions Scenarios (SRES) whereas CMIP5 uses Representative 

Concentration Pathways recommended in the IPCC Fifth Assessment Report (IPCC, 2013). In 

this study, GCMs included in the CMIP3 project and IPCC SRES emission scenario are used 

to obtain the climate projection for the 20th century as well as the future scenarios. The IPCC 

notes that, for both large-scale climate patterns and the magnitudes of climate change, there is 

overall consistency between the projections based on CMIP3 and CMIP5 (IPCC 2013). 

Results of a few recent studies show that both CMIP3 and CMIP5 models well simulate the 

large scale atmospheric variables used in this study for the statistical downscaling of rainfall 

(Mueller and Seneviratne, 2014; Woldemeskel et al., 2016). In addition, based on the studies 

conducted using CMIP3 and CMIP5 models, Shashikant et al. (2014) concluded that the 

Indian Summer Monsoon Rainfall simulations from both models do not differ significantly. 

Hence the current study helps to understand the sensitivity of the catchment to the projected 

climate scenarios, even though an additional analysis using CMIP5 models and appropriate 

RCPs would further strengthen the findings of the study. 
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2. Study area and input data 

2.1 Study area 

Malaprabha River originates from the Western Ghats in the Belgaum District in North 

Karnataka, India. The area drained by Malaprabha River and its tributaries up to Malaprabha 

dam is selected as the present study area. The catchment area is 2564 sq.km with elevation 

ranging from 1024 m to 430 m. Location map of the Malaprabha catchment is shown in Fig.1, 

based on the Survey of India maps (http://www.surveyofindia.gov.in/).  

Climatology of the catchment varies from tropical humid in the upper catchment to semi arid 

in the lower catchment. Annual average rainfall in the catchment exhibits large spatial 

variation ranging from 3000 mm in the upper region to less than 500 mm in the lower region. 

Annual average rainfall, averaged over the catchment is 1051 mm, much of which is received 

during the south-west monsoon period from June-September (Anandhi et al., 2008). Mean 

monthly maximum and minimum temperatures in the catchment vary from 25 to 34oC and 17 

to 21oC, respectively (Anandhi et al., 2009). Malaprabha reservoir is the major source of 

irrigation water for the 218191 hectares (Anandhi et al., 2009) of agricultural area in the arid 

regions in north Karnataka, and is also the major source of drinking water for about one 

million people in Hubli and Dharwad cities. Malaprabha catchment is a hydrologically 

sensitive area such that any change in water yield in the catchment is likely to effect vast areas 

that are dependent on the reservoir for irrigation and drinking water. In addition, due to 

extensive groundwater extraction to meet the irrigation demand, groundwater table in a large 

part of the catchment has been drastically depleted (CGWB, 2007; Reshmidevi and Nagesh 

Kumar, 2012).  Scientific studies are therefore essential to analyse the hydrologic responses of 

this water scarce catchment under the projected climate change scenario to facilitate the 

planning of appropriate mitigation measures.  

2.2 Data used  

Digital elevation model (DEM), digital soil map and land use/ land cover (LU/LC) map are 

used to represent the catchment heterogeneity for the hydrologic analysis. DEM of 
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Malaprabha catchment at 30 m spatial resolution is obtained from Advanced Space-borne 

Thermal Emission and Reflection Radiometer (ASTER) Global DEM (GDEM) data set 

released by the Japan’s Ministry of Economy, Trade and Industry (METI) and NASA. Multi 

season Landsat-7 ETM+ imageries are used to extract LU/LC map of the catchment.  In this 

study, a combination of visual and digital image interpretation technique is used to extract the 

LU/LC map from the satellite imagery (Reshmidevi and Nagesh Kumar, 2012). Seven main 

LU/LC classes viz., water, agricultural land, barren/ fallow land, rocky area, forest, urban 

settlement and grass land are extracted in the first step. Appropriate bands that show unique 

band ratio are identified for each land cover class. A combination of visual interpretation and 

unsupervised classification using band ratio (Lillesand et al., 2004) is used to identify the 

seven major land cover classes. The second level classification, i.e., classification of the crop 

types is achieved using multi-temporal satellite images (Dutta et al., 1998) representing 

different cropping seasons. Depending upon the presence or absence of crop in each image, 

different crop types are classified. Field information and the district statistical information 

about the crop production are used to substantiate the classification.   

Soil map of the area is obtained from the National Bureau of Soil Survey and Land Use 

Planning, Nagpur, India. Monthly inflow into the Malaprabha reservoir for the period 1973-

2000 is obtained from the Water Resources Development Organization, Bangalore, India and 

is used as the observed streamflow data to calibrate the hydrologic model. 

Rainfall and meteorological variables viz., maximum and minimum temperatures and relative 

humidity at daily time steps are used for hydrologic simulation. In order to incorporate the 

large spatial heterogeneity, rainfall data from 9 stations are used in this study. Locations of the 

stations for which the downscaled rainfall and meteorological data are available are shown in 

Fig.1. Daily rainfall data at these 9 stations in the catchment are available for the period 1971-

2000, whereas observed meteorological data are available only for a short period 1993-2000.  

Mass curve analysis of the rainfall data was performed, from which the period 1993-2000 was 

found to be insufficient to represent the entire study period 1971-2000. Therefore, rainfall and 

meteorological variables are downscaled from the National Center for Environmental 

Prediction (NCEP) reanalysis data for the period 1971-2000. In addition, for historic and 
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future time periods, rainfall and hydro-meteorological variables are downscaled from multiple 

GCMs. Modified Markov Model-Kernel Density Estimation (MMM-KDE) model (Mehrotra 

and Sharma 2010) is used to downscale rainfall from large scale atmospheric variables to the 

multiple raingauge stations shown in Fig.1. Also, the k-nearest neighbor resampling method is 

used to downscale the meteorological variables to the single location shown in Fig.1. The 

MMM-KDE model and the k-nearest neighbor resampling methods are explained in the next 

section.  

Based on the easy availability of daily data of the atmospheric variables from the World 

Climate Research Programme’s Coupled Model Intercomparison Project phase 3 (CMIP3), 5 

GCMs are considered in this study. These are (i) BCCR-BCM2.0 developed by the Bjerknes 

Centre for Climate Research (BCCR), University of Bergen, Norway, (ii) MRI-CGCM2 

developed by the Meteorological Research Institute (MRI), Japan, (iii) CSIRO-mk3.5 

developed by the Commonwealth Scientific and Industrial Research Organization (CSIRO), 

Australia, (iv) MPI-ECHAM5 developed by the Max Planck Institute for Meteorology (MPI), 

Germany, and (v) IPSL-CM4 developed by the Institute Pierre Simon Laplace (IPSL), France. 

The 20th century climate experiment (20C3M) for the period 1981-2000 is selected to 

represent the historic scenario. Hydrologic impact of climate change is also studied for two 20 

year future time periods: 2046-2065 (referred hereafter as mid of the century) to represent the 

mid 21st century, and 2081-2100 (referred hereafter as end of the century) to represent the end 

of 21st century. For each time period, required atmospheric variables at GCM grid nodes over 

the catchment are extracted from a single continuous (transient) run corresponding to SRES 

A2 emission scenario. The A2 scenario, which is at the higher end of the SRES emission 

scenarios (but not the highest), is selected in this study as it would be more informative from 

impact and adaptation point of view compared to the lower end scenario. Hydrologic model 

SWAT is used to simulate the catchment hydrologic responses for historic and two future time 

periods under the A2 scenario. Please note that during the time of this study, runs from the 

Coupled Model Intercomparison Project phase 5 (CMIP5) were not available. Nevertheless, 

many studies have raised concerns about whether CMIP5 models are capturing the historic 

monsoon trends accurately (Kitoh et al., 2013; Ogata et al., 2014; Sooraj et al., 2014; Saha et 

al., 2014) and whether the monsoon projections are reliable in these models (Sabeerali et al., 
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2014). Recent study by Shashikant et al., (2014) shows that biases in the statistically 

downscaled Indian Summer Monsoon Rainfall (ISMR) data do not differ significantly for 

CMIP3 and CMIP5 data sets. In this study, future estimates of runoff and rainfall are derived 

using smooth varying atmospheric variables which are considered to be equally well estimated 

by majority of GCMs used in both CMIP3 and CMIP5 projects (Mueller and Seneviratne, 

2014; Woldemeskel et al., 2016). Hence the current study is restricted only to the CMIP3 data. 

3. Methodology and model description  

3.1 Statistical downscaling of rainfall and meteorological variables 

The variable convergence score (Johnson and Sharma, 2009) is used to identify the GCM 

atmospheric variables for use in downscaling daily rainfall. These variables include mean sea 

level pressure (MSLP), north-south (N-S) gradient of MSLP, temperature depressions (TD) at 

850 hPa, 700 hPa, 500 hPa, N-S gradient of TD at 850 hPa, U and V components of the wind 

velocities at 850 hPa, Equivalent potential temperature (EPT) at 850 hPa, N-S gradient of the 

geopotential height (GPH) at 700 hPa, specific humidity (SPH) at 500 hPa, N-S gradient of 

SPH at 500 hPa and E-W gradient of SPH at 850 hPa (Mehrotra et al., 2013). The selected 

GCM atmospheric variables for 20C3M (1981-2000) and future time periods (2046-65 and 

2081-2100) are then bias-corrected by adopting a nested bias correction procedure (Johnson 

and Sharma, 2012). The nested bias correction (NBC) method offers an improvement over the 

quantile mapping method by incorporating the persistence of rainfall through lag-1 

autocorrelation. Also, corrections are nested from finer to coarser time scales, by which the 

GCM outputs are corrected for biases in mean, standard deviation and Lag-1 auto-correlation 

at daily, monthly, seasonal and annual time scales simultaneously. Any biases in the GCM 

atmospheric fields are thus removed before their use for downscaling, while the mean shift 

from current to future climate is preserved. Previous studies have demonstrated successful use 

of NBC for bias correction of atmospheric variables in reproducing the observed low 

frequency variability in the rainfall simulations (Johnson and Sharma, 2011; Sharma et al., 

2012, Ojha et al., 2013).  
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Modified Markov Model-Kernel Density Estimation (MMM-KDE) modelling framework 

(Mehrotra and Sharma, 2010) is used to downscale rainfall at multiple sites in the catchment. 

The model operates in two steps: in the first step the Modified Markov Model (MMM) is used 

to identify wet and dry days, and in the second step intensity of rainfall during wet days is 

estimated using the Kernel Density Estimation (KDE) approach. A wet day is defined as a day 

with rainfall greater than or equal to 0.3 mm. 

Markov model is a stochastic model that predicts a state variable at any point of time as a 

function of the variable in the previous time step. In MMM, to include the influence of 

changing climate, the simple Markov model is modified by including atmospheric predictors 

as conditioning variables. Thus in MMM, probability of occurrence of a wet or dry day 

consists of two terms, first term showing the transition probability of rainfall similar to a 

simple Markov model and the second term showing the effect of inclusion of a predictor set 

consisting of the atmospheric variables of interest. The KDE approach simulates the intensity 

of rainfall during each time step (which is identified as a wet day by the MMM) based on the 

rainfall intensity of previous time step and selected atmospheric variables. Conditional 

nonparametric multivariate probability density of rainfall amount Rt for day t for each site may 

be defined as follows (Mehrotra et al., 2013). 

    (1) 

where, λ is the kernel bandwidth and Xt is the vector representing the climate variables 

influencing the rainfall. S’ is the measure of spread of the conditional density, and bi is the 

conditional mean, both expressed in terms of covariance between R and X. wi is the weight 

associated with each kernel. 

Since rainfall at multiple stations are considered in this study, spatial dependence over these 

point locations at each time step is incorporated by using uniform random variates that are 

independent in time, but exhibit a strong dependence across the multiple point locations 

considered. More details on the MMM-KDE model structure are available in Mehrotra and 
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Sharma (2010) and Mehrotra et al. (2013). MMM-KDE model produces multiple realizations 

of the downscaled variables. In this study, 20 such realizations generated for 20C3M and the 

future scenarios are considered and the average hydrologic responses are estimated for each 

scenario. Daily values of maximum and minimum temperature, and relative humidity are 

downscaled from the large scale atmospheric variables using the k-nearest neighbor 

resampling.  

3.2 ArcSWAT  

ArcSWAT is the Soil and Water Assessment Tool (SWAT), with a powerful user interface 

integrated with the ArcGIS platform (Winchell et al., 2007). SWAT is a conceptual model 

capable of simulating the catchment hydrologic processes at a continuous time scale (Arnold 

et al., 1998). Capability of SWAT to simulate basin level hydrologic characteristics for 

varying land use and climate conditions makes it a widely adopted tool for climate change 

studies related to hydrology (Wang et al., 2008; Bae et al., 2011; Ficklin et al., 2012). 

Geographical Information System (GIS) interface of ArcSWAT allows the users to provide 

spatially referenced data. Using the topographical information, ArcSWAT divides the 

catchment into sub-basins. Each sub basin is further divided into homogeneous Hydrological 

Response Units (HRUs) using the spatially distributed soil, land use/ land cover and slope 

information. Each HRU is vertically divided into different control volumes like surface layer, 

root zone, shallow aquifer and deep aquifer.  

Different approaches and approximations are used to partition the precipitation into various 

hydrologic components in these control volumes. A part of the precipitation is available as 

surface runoff and the remaining portion infiltrates into the soil layer. Partitioning of rainfall 

into surface runoff and infiltration is achieved using the Soil Conservation Services Curve 

Number (SCS-CN) method (SCS, 1972) embedded in ArcSWAT. Large number of studies 

conducted over a wide range of catchments have shown that SWAT gives reasonably good 

simulation of the surface runoff processes (Steenhuis et al., 1995; Ponce and Hawkins, 1996; 

Mishra and Singh, 2004; Reshmidevi et al., 2008). Runoff from each HRU is further routed 

through channels to the watershed outlet using the variable storage method (Williams, 1969). 
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A part of infiltrated water leaves the soil layer as lateral flow, which is estimated using a 

kinematic flow equation involving saturated hydraulic conductivity of the soil layer, slope, 

drainable porosity and drainable volume of water present in the layer. Another fraction of 

water that reaches the soil layer percolates further and joins the groundwater storage, which is 

called groundwater recharge. Groundwater recharge is computed as a function of drainable 

volume of water present in the soil layer. This groundwater recharge may be further divided 

into shallow aquifer recharge and deep aquifer recharge (Reshmidevi and Nagesh Kumar, 

2012). Shallow aquifer storage contributes to the groundwater flow and adds to the 

streamflow within the watershed, whereas groundwater flow from the deep aquifer is assumed 

to meet the stream only outside the catchment. 

In this study, Hargreaves method (Hargreaves and Samani, 1985) available in the ArcSWAT 

interface is used for estimating potential evapotranspiration (PET). ArcSWAT provides 

options to define various agricultural operations for each crop at the HRU level. Irrigation 

requirement for the crops is defined according to the plant water stress condition (Reshmidevi 

and Nagesh Kumar, 2012). Digital elevation model of the catchment, spatial variation in soil 

and LU/LC are the primary spatially referenced data used in ArcSWAT. Rainfall and 

meteorological data viz., maximum and minimum temperature, and relative humidity at daily 

time step are also used as input to the model. Details of ArcSWAT components can be found 

in literature (Arnold et al., 1998).  

3.3 ArcSWAT calibration and validation 

ArcSWAT (v.2009) is applied at daily time scale over the study area. The catchment is first 

divided into 12 sub-basins and each sub-basin is further divided into HRUs using the LU/LC, 

soil and slope information. Irrigated areas in the catchment are identified and the irrigation 

application is defined when plant water stress exceeds a threshold of 0.95. Daily values of 

rainfall at 9 stations and hydro-meteorological variables at the single location shown in Fig.1, 

are downscaled from the reanalysis data and are used for model calibration and validation. 

Simulated discharge is compared with the observed monthly streamflow data. The period 

1971-2000 is selected in this study, out of which the first two years are used as the warm-up 
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period for the model and the period 1973-2000 is used for model calibration and validation. 

Multiple realizations of the downscaled rainfall and climate variables produced by MMM-

KDE approach are used in the hydrologic modelling. In order to derive stable values of model 

parameters during calibration, concatenated data set is formed using multiple realizations. 

From the ensemble of 20 realizations first 9 realizations are used for calibration and the 

remaining 11 realizations are used for model validation. Each realization being of 28 years 

(excluding the warm-up period) total length of the calibration run is thus 252 years.  

Model sensitivity analysis is performed using Latin Hypercube (LH) and One-factor-At-a-

Time (OAT) methods included in the ArcSWAT (Van Griensven, 2005) and the sensitive 

parameters are manually calibrated. Capability of the model to accurately produce flow-

duration curve (FDC) for the annual and monsoon (June-September) streamflows is 

considered as the evaluation criteria during calibration. Using monthly streamflow simulations 

from the model, annual and monsoon streamflows are calculated for each realization and the 

average FDCs for the annual and monsoon periods are generated. Deviation of the simulated 

FDC from the observed FDC is measured using mean absolute relative error (MARE) as given 

in Eq.2.  

 






N
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where, N is the number of points considered from the FDC, Qobs and Qsim are the 

corresponding flow values from the observed FDC and the simulated FDC, respectively.  

3.4 Multi-model ensemble projection under the future scenario 

Ensemble of simulations from the hydrologic model, obtained by using rainfall and 

meteorological data from the 5 GCMs is used to evaluate the hydrologic impact of climate 

change in the catchment by comparing hydrologic responses in the future time periods with 

that obtained under 20C3M scenario. When the temporal periods do not overlap, FDCs are 

commonly used for comparing the flow regimes in the hydrologic analyses (Sugawara 1979; 

Yu and Yang, 2000; Westerberg et al., 2011). Since the temporal periods of the 20C3M and 
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the future scenarios do not overlap, FDCs of annual and monsoon flows are used here for the 

comparison. 

A weighted ensemble average approach is used to derive ensemble average streamflow 

simulation from the 5 GCMs. ArcSWAT is run using the downscaled rainfall and 

meteorological data from each GCM, and FDCs for the annual and monsoon flows are 

generated. Simulated FDCs for 20C3M scenario are then compared against FDCs of the 

observed streamflow data for the same period. Deviation of the simulated FDCs from the 

observed FDC, expressed in terms of MARE is used as the evaluation criterion. For each 

hydrologic simulation (using input from different GCMs), MARE of the annual and monsoon 

FDCs are estimated and the mean of these two values is used to derive the weight for each 

simulation using Eq.3.  

   

  (3) 

where, m is the model index. Using this set of weights, weighted FDCs of the annual and 

monsoon flows are generated for the 20C3M scenario and are used as the reference FDCs to 

quantify the future changes in the streamflow.  

GCMs simulating the historic scenario satisfactorily are expected to be capable of simulating 

the future scenarios reasonably well (Reichler and Kim, 2008; Errasti et al., 2010). Therefore, 

the weights derived for the hydrologic simulations under 20C3M scenario are adopted for the 

future time periods as well. Hydrologic responses of the catchment under the future time 

periods (mid of the century and end of the century), are simulated by using the downscaled 

rainfall and meteorological variables from each GCM, and the FDCs of both annual and 

monsoon flows are generated. Further, using the set of weights derived from the 20C3M 

scenario, weighted average FDCs for the future scenarios are generated. Future projections are 

compared with 20C3M simulations to quantify the streamflow variation under future 

scenarios. A flowchart of the methodology is shown in Fig 2. 
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Hydrologic simulations from the 5 GCMs are aggregated to find variations in other water 

budget components viz., potential evapotranspiration (PET), actual evapotranspiration (ET), 

irrigation demand and groundwater recharge in the future time periods.  

3.5 Test for statistical significance 

Statistical significance of projected changes in the mean annual and monsoon streamflows is 

evaluated using non-parametric, rank-based, Mann-Whitney test (Wilcoxon, 1945; Mann and 

Whitney, 1947). Mann-Whitney test is commonly used to identify statistical significance of 

the difference in mean or median of hydrological time series (Lettenmaier, 1976; Xu et al., 

2003; Caloiero et al., 2011). The test is based on the null hypothesis that medians of the two 

series compared are the same, and the alternate hypothesis that they differ significantly from 

one another. When two series of size n1 and n2 are compared, the standardized test statistic is 

represented as follows (Chen et al., 2006).  

 
  121

2/)1(

2121

2111






nnnn
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Zc   (4) 

where, R1 is the rank sum of the values in series-1. The ranks are assigned by combining all 

the values in series 1 and 2, and arranging them in the ascending order. For a large sample size 

the null hypothesis is rejected, in other words a difference between the medians is established, 

at a significance level α when the probability of occurrence of Zc obtained from the 

standardized normal distribution table is greater than or equal to 1-α/2. 

In this study, the weighted average annual and monsoon streamflow series of the future time 

periods are compared against the 20C3M scenario and the test statistic is derived. This test 

statistic is used to find the corresponding α, which indicates the statistical significance of 

difference in the medians of the two streamflow series compared.  
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4. Results and discussion 

4.1 ArcSWAT calibration and validation 

DEM, soil map, and LU/LC map of the Malaprabha catchment are used as spatially referenced 

input to ArcSWAT to simulate the catchment hydrological processes. The model is run at 

daily time scale using downscaled rainfall and hydro-meteorological data from the reanalysis 

data set. Streamflow simulations at daily time scale are aggregated to monthly scale, and are 

compared with the observed data. Table 1 shows the MARE values for annual and monsoon 

flows. MARE is found to be less than 0.1 for both calibration and validation phases.  Further, 

monthly streamflow data series is generated taking average of 20 realizations (used for 

calibration and validation), and the same is compared with the observed monthly streamflow 

data in Fig. 3. Simulated monthly streamflow series matches well with the observed data, 

albeit slight underestimation of the peak flow values. Nash-Sutcliffe Efficiency (NSE) 

coefficient is found to be 0.82, which is considered to be excellent according to the general 

performance rating for monthly streamflow recommended by Moriasi et al. (2007). Since, a 

simple averaged monthly flow is used as the benchmark model in NSE, higher values of NSE 

may be due to the high seasonality of the monthly data. Therefore, as recommended by 

Schaefli and Gupta (2007), an additional index NSEB is also used in this study to evaluate the 

model performance. Long-term average streamflow for each month is used as the benchmark 

model to calculate NSEB. During the calibration period NSEB is obtained as 0.74 for the 

monthly streamflow simulations. Higher values of NSE and NSEB indicate better 

performance of the current hydrologic model compared to the selected benchmark models.  

The calibrated hydrologic model is used to simulate hydrological responses under 20C3M 

scenario. Simulated FDCs of annual and monsoon flows obtained using the downscaled 

rainfall and meteorological data from the 5 GCMs are compared with the FDCs of the 

observed data in Fig.4. Table 2 shows the MARE of the annual and monsoon flows for the 5 

GCMs and the corresponding weights. Using the set of weights, weighted average FDC for 

the 20C3M scenario is derived, which is also plotted in Fig.4. The weighted average annual 

FDC matches well with the observed data with the exception of some underestimation of 
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moderate and low monsoon flows. This may be mainly due to the small differences between 

the observed and the downscaled rainfall data in terms of annual wet days and the amount of 

rainfall per wet day (Mehrotra et al., 2013).  Since bias corrected GCM outputs are used in the 

downscaling, such variations may be due to systemic errors from the downscaling model and 

therefore, may persist for the future scenarios as well. Hence to quantify the future changes in 

the streamflow, hydrologic responses in the future time periods are compared with the 

weighted ensemble average streamflow for the 20C3M scenario.  

4.2 Hydrologic responses in the future 

Fig. 5 presents the weighted ensemble average FDCs of the annual and monsoon flows for the 

20C3M, mid of the century and end of the century scenarios, from which some interesting 

observations can be drawn. Moderate (corresponding to 40-60% exceedance probability) and 

high (corresponding to 10% exceedance probability) streamflows at both annual and monsoon 

timescales show nominal increases for the mid of the century scenario, whereas low flows 

(corresponding to 90% exceedance probability) show some reduction in the future (Figs. 5a 

and 5b). Streamflow projections for the end of the century show an overall reduction in 

monsoon flows as seen from Fig. 5b. This may be attributed to the changes in the rainfall 

pattern projected towards the end of the century and an increase in the evaporation demand.    

Study conducted by Mehrotra et al. (2013) shows a plausible reduction in the number of short 

(2-4 days duration) and moderate (5-7 days duration) wet spells, whereas an increase in the 

rainfall amounts from short, moderate and long (more than 7 days duration) wet spells over 

the study area by the mid of the century. On the other hand, short (2-9 days duration) and 

moderate (10-18 days duration) dry spells are projected to increase under the future scenarios 

(Mehrotra et al., 2013). Projected increase in the dry spells is likely to cause a reduction in the 

annual and monsoon low flows.  

Using the weighted ensemble simulation, mean annual and monsoon flows are calculated for 

mid of the century and end of the century scenarios. In addition, annual and monsoon 

streamflow values corresponding to 10%, 90% and 95% exceedance probability are also 

estimated from the FDCs, which are given in Table 3. Since streamflow values with less than 
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10% exceedance probability indicate peak flows, years corresponding to the peak flows are 

called wet years. On the other hand, 90% and 95% dependable flows indicate lower annual 

flows, and the years in which annual average flow corresponds to 90% or 95% dependable 

flows are considered as the low flow years or dry years. The results show an increase in the 

average annual and monsoon flows in the mid of the century scenario. The study also shows 

an increase in peak flows as indicated by the increase in the annual and monsoon streamflow 

values corresponding to 10% exceedance probability. Accordingly, in the mid of the century 

more number of years are projected to have annual streamflow in excess of the current peak 

flow corresponding to 10% exceedance probability. In other words, more number of wet years 

are projected under the mid of the century scenario. Further, a reduction in the 90% and 95% 

dependable flows indicate an increase in the number of dry years. In other words, frequencies 

of both wet and dry years are projected to increase towards the mid of the century. Some of 

the previous studies analyzing the historic rainfall in the 20th century have also reported an 

increase in the wet and dry years in the changing climate conditions (Changnon, 1987; Sousa 

et al., 2009).  

Streamflow simulations for the end of the century scenario show some reduction in mean 

annual and monsoon flows corresponding to 10% exceedance probability, whereas no 

significant changes in the lower flows (90% and 95% dependability). This implies that 

frequency of wet years is likely to decrease towards the end of the century. These changes, 

however, are insignificant as indicated by the Mann-Whitney test. The test statistics and 

significance levels of the percentage changes in the mean annual and monsoon flows are 

presented in Table 4. 

Although, the projected changes in mean annual and monsoon flows are not significant, the 

intra-annual variation of flows needs to be analysed. Box-whisker plots of the weighted 

ensemble average monthly flows for the 20C3M and the two future scenarios are shown in 

Fig. 6. These plots show some variations in the monthly flows during the monsoon period. 

Median and the 75 percentile flows are projected to increase in June while some reduction is 

noted during July and August under the future scenario. Close to 25% reduction in the 

streamflow is observed in July towards the end of the century. Being the peak sowing period 
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for the Kharif crops in India, any drop in the water availability in July in the future scenario 

may have adverse impact on the agriculture. 

4.3 Climate change impact on water budget components 

Monthly hydrologic simulations of the catchment under the 20C3M and future scenarios are 

used to analyse the changes in other catchment water budget components as well. Variations 

in ET, irrigation demand and groundwater recharge are estimated under the projected climate 

conditions. Fig.7 shows the variations in streamflow and irrigation demand with the changes 

in rainfall and temperature. In general, an increase in rainfall causes an increase in streamflow. 

Rainfall projections from various GCMs vary from -10.9% to 8.4% with respect to the 20C3M 

scenario, whereas the streamflow projections vary from -20.6% to 9.0% towards the end of the 

21st century (Fig. 7a). Likewise, the irrigation demand is projected to increase by 3.2% to 

15.7% across various GCMs by the end of the 21st century (Fig. 7b). From Fig. 7a and 7b it 

can be observed that changes in the streamflow and irrigation demand are largely related to 

the variation in rainfall and the GCM. Nevertheless, small deviations may be observed, which 

may be attributed to the changes in Tmax and Tmin as shown in Fig. 7c to 7f. For example, using 

BCCR-BCM2.0 larger increases in irrigation demand towards the end of the century is 

projected, which may be attributed to the highest increase in Tmax as shown in Fig 7.d. 

Likewise, results from CSIRO-mk3.5 project significant reduction in streamflow and increase 

in irrigation demand, which may be attributed to the combined effect of large increases in Tmax 

and Tmin, and significant reduction in rainfall.  

Fig. 8 shows the catchment water budget components for the 20C3M scenario at the annual 

time scale as well as for the monsoon period. Evapotranspiration is the major abstraction from 

the rainfall amounting close to 70% annually and close to 45% during the monsoon period. 

Irrigation supplements the crop water demand to a large extent. Ground water recharge is the 

amount of water that reaches the shallow aquifer. A part of it appears as groundwater flow and 

contributes to the streamflow at the watershed outlet.  

Percentage changes in the water budget components projected under the future scenario with 

respect to 20C3M scenario at the annual time scale are shown in Fig. 9 a. Weighted ensemble 
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average simulations show marginal increases in annual average rainfall under the future 

scenarios (2.2% towards the mid of the century and 1.6% towards the end of the century). 

Though the changes in the annual average rainfall are nominal, the variations in the rainfall 

pattern in terms of number and durations of wet and dry spells are of major concern. Tmax is 

projected to increase by 0.51 oC and 0.84 oC (1.8% and 2.9%) towards the mid of the century 

and end of the century, respectively. Similarly, Tmin is projected to increase by 0.29 oC and 

0.46 oC (1.5% and 2.4%) towards the mid of the century and end of the century, respectively. 

With changes in temperature and rainfall pattern, evapotranspiration rates are projected to 

increase by 2.3% and 4.1%, respectively for the mid of the century and end of the century 

scenarios. Runoff ratio (ratio of average annual runoff to average annual rainfall) of the 

catchment is found to be 0.4184, 0.4178 and 0.4083 for 20C3M, mid of the century and end of 

the century scenarios, respectively. The 2.5 % reduction in the runoff ratio shows 1.2% 

reduction in the annual average streamflow towards the end of the century. In addition, 

groundwater recharge rates are also projected to decline (by 7.3%) towards the end of the 

century.  

The projected variations in the water budget component may be attributed to the increase in 

the temperature as well as the changes in the rainfall pattern in the catchment under the future 

scenarios. The upper catchment is under tropical humid zone, whereas the lower catchment is 

under semi-arid agro-climatic zone with limited moisture availability. Increase in precipitation 

and temperature therefore results in increase in evapotranspiration from the catchment and 

consequently increase in the irrigation demand. Projected increases in the short and moderate 

rainfall events are likely to cause more infiltration into the soil layer. Thus, a relatively less 

fraction of rainfall would appear as streamflow at watershed outlet. On the other hand, 

projected increases in the short and moderate dry spells results in more soil moisture 

extraction to meet the increased evapotranspiration rates, thereby reducing the groundwater 

recharge.  

Monsoon rainfall being the source of water for the catchment, projected changes in the water 

budget components during the monsoon season is also studied (Fig. 9 b). During the monsoon 

period the rainfall is projected to decline by 1.4 % towards the end of the century. Reduction 
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in the rainfall together with the increase in the temperature is projected to result in 18.5% 

increase in the irrigation demand during the monsoon period. In addition, streamflow is also 

projected to decline under the future scenarios. The analysis shows that percentage changes in 

the water budget components are more during the monsoon period. This may be attributed to 

the changes in the rainfall distribution in the form of reduction in the short and moderate wet 

spells and increase in the dry spells. The projected increase in irrigation demand when 

combined with the likely reduction in the recharge would aggravate the water scarcity 

problems of the area, which is already identified as a groundwater overexploited region.  

5. Summary and conclusions 

This study explores the impacts of climate change on the hydrology and water budget 

components of the Malaprabha catchment for two future periods (mid of the 21st century, 2046 

- 2065, and end of the century, 2081-2100). In order to address the uncertainty issues that arise 

from the use of a single GCM, an ensemble of 5 GCMs (MPI-ECHAM5, BCCR-BCM2.0, 

CSIRO-mk3.5, IPSL-CM4, and MRI-CGCM2) is used in this study. Large scale climate 

variables simulated by the GCMs are first bias corrected using the NBC approach, and are 

used to downscale rainfall and meteorological variables at the catchment level using MMM-

KDE model. Rainfall and meteorological variables downscaled from each of the 5 GCMs are 

used as input to a conceptual hydrological model and the corresponding hydrological 

components for current and future climate scenarios are simulated. Hydrologic simulations 

using inputs from various GCMs are evaluated for their ability to simulate the hydrologic 

responses for the 20C3M scenario, and the weights are assigned accordingly. Weighted 

ensemble average outputs are used to analyze the changes in hydrologic components under the 

future scenarios. Not many studies have attempted similar kind of work for Indian catchments. 

The limited data availability and the large scale heterogeneity in the catchment characteristics 

often hinders such studies. Standing within the constraints of data availability, the study is an 

efforts to analyse the hydrologic sensitivity of the catchment under the projected climate 

change scenarios. This would be a stepping stone to understand the climate change 

vulnerability of the catchment. 
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The results show only marginal changes in annual average rainfall in the catchment under the 

future scenarios. Corresponding changes in the hydrologic components are also found to be 

statistically insignificant both for the annual and monsoon periods. Even though the changes 

in the streamflow and irrigation demand are strongly related to the variation in rainfall, they 

are not directly proportional to each other. Such deviations may be attributed to the GCMs 

used, as well as the changes in rainfall pattern and atmospheric temperature. With 0.84oC and 

0.46oC increases in the daily maximum and minimum temperatures towards the end of the 

century, evapotranspiration rate is projected to increase by 4.1%, irrigation demand is 

projected to increase by 18.5% and groundwater recharge is projected to decline by 7.3%. 

Streamflow projections for the end of the century scenario show nominal reduction in the 

average annual and monsoon flows. Changes in rainfall and temperatures are projected to 

reduce the runoff ratio by 2.5% by the end of the century. Projected increase in the 

evapotranspiration and irrigation demand, associated with the decrease in the groundwater 

recharge and streamflow is an indication of possible aggravation of the water stress in the 

catchment in future.  

Hydrological analyses to investigate the impact of climate change on the catchment water 

balance are affected by the uncertainty in the climate projections, as well as the uncertainty in 

the hydrological model itself. In order to reduce the uncertainty in the climate projection, in 

the present study an ensemble of GCMs included in the CMIP 3 data sets are used to derive 

the climate projections. On the other hand, uncertainty in the hydrological model still persists. 

Even though the streamflow simulations are validated with respect to the observed data, lack 

of sufficient observed data for the catchment restricts the validation of the other water budget 

components. The use of an ensemble of hydrological models may help to address this issue to 

some extent. Nevertheless, as reported in literature (Wolock and McCabe, 1999; Arnell and 

Liv, 2001), the study help to indicate the sensitivity of the hydrologic systems to the climate 

change. Further analysis using CMIP5 models and representative concentration pathways 

might help to further understand the impact of climate change projections over the region. 
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Table 1. Performance evaluation index of ArcSWAT in calibration and validation phases 

 MARE 

Phase Annual  Monsoon  

Calibration  0.094  0.072  

Validation  0.070  0.084  

 

 

 

Table 2. MARE values of the GCMs for the 20C3M scenario and the corresponding weights 

 MRI-

CGCM2 

BCCR-

BCM2.0 

CSIRO-

mk3.5 

IPSL-

CM4 

MPI-

ECHAM5 

Annual MARE  0.039 0.081  0.095  0.063  0.068 

Monsoon MARE  0.066 0.064  0.109  0.132  0.058  

Weight  0.28  0.20  0.14  0.15  0.23  
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Table 3. Annual and monsoon flow statistics simulated using the 5 GCMs for the 20C3M 

scenario and the future time periods for the A2 scenario 

  Flow statistics (M.cu.m) * 

                  Annual                               Monsoon 

GCM Scenario 1 2 3 4 5 6 7 8 

MRI-

CGCM2   

20C3M 1028.5 1427.2 673.1 630.1 796.6 1143.9 480.4 425.8 

Mid of the century 1038.1 1441.8 668.3 605.8 793.1 1156.3 467.0 404.8 

End of the century 1064.3 1459.1 736.7 685.1 768.5 1096.9 494.9 444.6 

BCCR-

BCM2.0  

  

20C3M 1050.9 1492.1 616.3 551.4 825.5 1233.9 446.0 381.2 

Mid of the century 1145.0 1809.5 508.2 432.8 871.4 1434.5 307.9 246.5 

End of the century 1145.5 1560.6 759.3 703.6 924.1 1313.4 574.8 522.6 

CSIRO-

mk3.5  

  

20C3M 1002.2 1490.0 534.7 445.8 786.0 1239.9 379.8 305.9 

Mid of the century 991.1 1449.0 533.7 457.5 791.8 1203.5 383.4 314.6 

End of the century 795.3 1251.7 373.2 332.2 610.8 1031.4 242.3 205.4 

IPSL-

CM4  

  

20C3M 964.0 1363.5 584.2 509.6 744.4 1098.0 412.8 346.6 

Mid of the century 994.5 1438.7 582.2 535.1 777.6 1170.2 388.4 334.4 

End of the century 986.4 1389.2 593.6 537.5 731.7 1097.3 401.0 343.8 

MPI-

ECHAM5  

  

20C3M 1057.3 1517.8 643.8 598.0 838.2 1242.2 461.4 414.3 

Mid of the century 1087.0 1574.9 657.4 553.9 864.3 1292.1 489.3 401.9 

End of the century 987.7 1392.0 587.9 546.7 749.7 1110.8 394.9 350.9 

Weighted 

average 

  

20C3M 1026.3 1460.5 622.1 562.8 802.7 1191.4 444.8 385.4 

Mid of the century 1057.6 1546.6 601.8 527.6 822.7 1252.1 416.7 349.2 

End of the century 1013.0 1424.0 633.9 584.7 767.4 1134.2 437.9 389.6 

* 1)Average annual flow   2) Annual streamflow corresponding to 10% exceedance probability 

3) 90% dependable annual flow 4)95% dependable annual flow  5) Average monsoon flow   

6) Monsoon streamflow corresponding to 10% exceedance probability  7) 90% dependable 

monsoon flow  8)95% dependable monsoon flow 
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Table 4. Mann-Whitney test statistics for the percentage change in the mean annual and 

monsoon flows in the future 

 Mid of the century End of the century 

 Annual flow  Monsoon flow  Annual flow  Monsoon flow  

Test statistic  0.19 0.10 0.10 0.10 

Significance level 

(α)  

0.849 0.92 0.92 0.92 
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Fig. 1. Location map of the Malaprabha catchment 
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Fig.2 Schematic representation of the methodology
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Fig. 3. Comparison of the monthly streamflow hydrograph simulated using the rainfall and 

meteorological variables downscaled from the NCEP reanalysis data with the observed data 

 

 

Fig. 4. Simulated Flow-Duration Curves of the annual and monsoon flows for the 20C3M 

scenario 
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Fig. 5 Weighted ensemble average projections of the annual and monsoon streamflows for the 

20C3M, mid of the century and end of the century scenarios 

Fig. 6 Comparison of the weighted average monthly flows for the 20C3M scenario and the 

future time periods. In the box plot, upper and lower hinges represent the 75 and 25 

percentiles, respectively. The whiskers show the other data points except the outliers. The line 

within the box shows the median 
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Fig. 7 Relationship between the projected changes in streamflow and irrigation demand with 

projected changes in the climate from the 5 GCMs  
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Fig.8 Water budget components in the Malaprabha catchment for the 20C3M scenario 

 

 

 

Fig. 9 Percentage changes in the future water budget components with respect to the 20C3M 

scenario 


