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We characterize the boundary of the convex compact set of absolutely separable states, referred
as AS, that cannot be transformed to entangled states by global unitary operators, in 2 ® d Hilbert
space. However, we show that the absolutely separable states of rank-(2d — 1) are extreme points of
such sets. We then discuss conditions to examine if a given full-rank absolutely separable state is
an interior point or a boundary point of AS. Moreover, we construct two-qubit absolutely separable
states which are boundary points but not extreme points of AS and prove the existence of full-rank
extreme points of AS. Properties of certain interior points are also explored. We further show that
by examining the boundary of the above set, it is possible to develop an algorithm to generate the
absolutely separable states which stay outside the maximal ball. By considering paradigmatic noise
models, we find the amount of local noise which the input entangled states can sustain, so that the
output states do not become absolutely separable. Interestingly, we report that with the decrease
of entanglement of the pure input state, critical depolarizing noise value, transferring an entangled
state to an absolutely separable one, increases, thereby showing advantages of sharing nonmaximally
entangled states. Furthermore, when the input two-qubit states are Haar uniformly generated, we
report a hierarchy among quantum channels according to the generation of absolutely separable

states.
I. INTRODUCTION

Characterization of resourceful quantum states is im-
portant from the perspective of several quantum infor-
mation processing tasks [1, 2]. These include quantum
communication protocols like quantum state transfer
[3, 4] using entangled states [5, 6], encoding of classical
information into quantum states [7, 8], secure commu-
nication via entangled states [9-13], and measurement-
based quantum computation [14-16]. In a resource the-
ory, along with the characterization of set of states ac-
cording to certain tasks, understanding the set of oper-
ations, known as free operations, by which resourceful
states cannot be created is also important. For exam-
ple, in the theory of entanglement, the set of local oper-
ations and classical communication constitute the free
operations by which only separable states can be pro-
duced. Therefore, characterizing useless states in any
paradigm can be essential to understand the free oper-
ations.

Two-qubit gates or joint unitary operators acting on
two-qubit pure states can, in general, create entangle-
ment in the systems [17-19]. For example, from the
initial product state |—)|0), with |—) = \%(|0> —11)),
a two-qubit CNOT gate can create a maximally entan-
gled state. However, it was shown that there are bipar-
tite states from which it is not possible to generate en-
tanglement by acting joint (global) unitary operations.
They are called absolutely separable states [20, 21] (see also
Refs. [22—27] in this regard). In a resource theory in
which global unitary operators are free operations, the
set of absolutely separable states are not useful states.
However, it is important to understand the properties

of such states from a resource theoretic point of view.

Recently, the witness operators (for entanglement
witnesses, see Refs. [28-30]) have been constructed to
separate the absolutely separable states from the sepa-
rable ones (which are not absolutely separable) [25] by
using the fact that the set, containing absolutely sepa-
rable states, is convex and compact, so that the Hahn-
Banach separation theorem [31] can be applied. In this
context, we note that to construct optimal witness op-
erators, it is important to explore the boundary points
of the set of absolutely separable states. Moreover, the
Krein-Milman theorem [32] states that a convex compact
set corresponding to a finite dimensional vector space
is equal to the convex hull of the extreme points of that
set. Therefore, to understand a convex compact set, it
is enough to know about the extreme points of that set.

The main objectives of the present work is twofold: (i)
We consider the characterization of the boundary of
the set of absolutely separable states when the quan-
tum system is associated with a 2 ® d Hilbert space. In
particular, we show the states having rank-(2d — 1) in
2 ® d always are extreme points of the set. On the other
hand, the states having full-rank can be interior as well
as extreme points of the above set, which can be on or
outside of the maximal ball. By exploring the boundary
of this set, it is also possible to develop an algorithm to
generate the absolutely separable states which stay out-
side the maximal ball (it is the maximal ball around a
maximally mixed state in which all the states are sepa-
rable) [33, 34]. Moreover, we construct two-qubit abso-
lutely separable states which are boundary points but
not extreme points of the set of absolutely separable
states. We then prove the existence of full-rank ex-
treme points of that set (see Fig. 1 for schematic rep-



resentation). (ii) We further search for noisy scenar-
ios which result in absolutely separable states. Finding
such situations can be interesting from the perspective
of experiments. Specifically, we find critical strengths
of local noise for different prototypical noise models
[1, 2], which lead to absolutely separable states. Fur-
ther, we find that when Haar uniformly generated two-
qubit states are sent through noisy channels, the process
of generating an absolutely separable state can distin-
guish three quantum channels, depolarizing, amplitude
damping and phase damping channels. Since entan-
gled states cannot be generated from absolutely separa-
ble states by applying global unitary operators, effects
of local decoherence on state space induces irreversibil-
ity in the theory of entanglement.

FIG. 1. (Color online) MB represents the maximal ball. It is
fully contained in AS, the set of absolutely separable states,
while the set of separable states is marked as SEP. Similarly,
SEP is the subset of D denoting the entire state-space. In2®?2,
the portion where the boundaries of MB and AS are touch-
ing with each other, contains the rank-3 extreme points of AS
while the region in the boundary of AS which is not touching
that of MB, contains rank-4 extreme points of AS. Further-
more, the line segments at the boundary of AS represent the
boundary points which are not extreme points.

This paper is arranged as follows: After a few ba-
sics, presented in Sec. II, we characterize the set of abso-
lutely separable states in Sec. III. In Sec. IV, we address
the question of irreversibility appearing due to the exis-
tence of absolutely separable states when an entangled
state is affected by decoherence. Finally, we conclude in
Sec. V.

II. PRELIMINARIES

Absolutely separable states are those which cannot
be transformed to entangled states under the action of
global unitary operators. For any given Hilbert space,
the identity operator is an example of an absolutely

separable operator. For a 2 ® d Hilbert space, there is
a necessary and sufficient condition to check whether a
separable state is absolutely separable [21, 22, 24]. In
particular, it was shown that in a 2 ® d system, a state
is absolutely separable if and only if

A= Aga1 — 24/ Apg0A0g <0, (1)

where Aq,..., Ay, are the eigenvalues in decreasing or-
der corresponding to a bipartite density matrix p4p, as-
sociated with a 2 ® d Hilbert space.

With increasing importance of the entangled states,
the properties of states lying in the neighborhood of the
maximally mixed states [35] were studied. It was shown
that the largest ball of separable as well as absolutely
separable states around a maximally mixed state in a
two-qubit system can be described by Tr(p?) < 1 [20,
33, 34]. This ball is known as a maximal ball. In general,
for a d ® d system, the maximal ball can be described by

Tr(p?) < 5121—71[33, 34]. However, it was found that there
are absolutely separable states which reside outside the
maximal ball [20]. So, to understand these states, it is
important to construct such states.

The possible structures of witness operators which
separates absolutely separable states from the separable
states were explored in [25]. But to make these opera-
tors optimal, one may require to explore the boundary
points of the set of absolutely separable states. So, un-
derstanding these boundary points is one of the main
objectives, discussed in the succeeding section. In this
regard, remember that a state is not an extreme point
of a convex set if it can be written as a convex combi-
nation of two or more absolutely separable states. On
the other hand, if an absolutely separable state does not
allow any such decomposition, then it must be an ex-
treme point of the set.

III. CHARACTERIZATION OF ABSOLUTELY
SEPARABLE STATES

Let us now concentrate on any two-party state, p 4p in
2 ® d which is absolutely separable. It is known that the
pure product states can always be transformed to entan-
gled states under global unitary operations. From con-
dition (1), it is also clear that rank-2 states cannot be ab-
solutely separable states in 2 ® d [21, 22, 24]. Moreover,
the condition given in (1), says that the mixed states
having rank < (2d — 2) cannot be absolutely separable
in2®d. So, in 2® 2, absolutely separable states can
have rank 3 and 4. Since the set of absolutely separa-
ble states is a convex and compact set in any dimension
[25], it is possible to explore certain geometric proper-
ties of such a set, especially the structure of the extreme
points of the set of absolutely separable states. Here,
we call this set as AS. We prove the following proposi-
tion for absolutely separable states having lowest rank
n2®2:



Proposition 1. All rank-3 absolutely separable states are ex-
treme points of AS in 2 ® 2.

Proof. In2 ®2, a state is absolutely separable if and only
if Ay — A3 —24/A2A4 < 0, where Ay, ..., A4 are the eigen-
values of a given density matrix in decreasing order.
For a rank-3 state, Ay = 0, which implies that a rank-3
state is absolutely separable iff A1 < A3. But we have
assumed that A; > Asz. This indicates that a rank-3
state is absolutely separable if and only if A = A; =
A3 = L. Now, consider the spectral decomposition of a
state, 0ap = 3 1) (1] + 3 [¥2) (Y2l + 3 |93) (3], where
{ly:)}, i=1,2,3 are orthogonal states. Obviously, this
state is the only absolutely separable state in the three-
dimensional subspace spanned by {|y1),|¢2),|¥3)}.
Therefore, this state cannot be written as a convex com-
bination of two or more absolutely separable states,
proving the fact that all rank-3 absolutely separable
states are extreme points of AS.

Since, there is only one particular structure, possible
for rank-3 absolutely separable states, any rank-3 state
which does not capture such a structure must not be an
absolutely separable state. Now, we make the following
remark:

Remark 1. The number of rank-3 extreme points of AS in
2 ® 2 can be infinitely many and they reside on the maximal
ball.

This is because in a two-qubit Hilbert space, one can
choose three orthogonal states in infinitely many pos-
sible ways and then, take an equal mixture of three or-
thogonal states, leaving the final state to be an extreme
point of AS. Next, using the condition given in (1), the
generalization of the above proposition for a 2 ® d sys-
tem is presented:

Proposition 2. All rank-(2d — 1) absolutely separable states
are extreme points of AS in 2 ® d.

Proof. The proof is along the same line as Proposition
1. It uses the fact that any state of AS, having rank-
(2d — 1), is the only state of AS supported in a proper
subspace (of 2 ® d Hilbert space) spanned by a set of

orthogonal states {|y;) ?i;l. O

The above state has a spectral decomposition: p =
ﬁ():lzif |;) (¢i]), where |¢;)s are orthogonal states.
’]

Clearly, purity of the state p is given by Tr[p”] = 2;—71. In

the context of Proposition 1 and Proposition 2, see also
Refs. [26, 36].

Remark 2. All rank-(2d — 1) absolutely separable states in
2 ® d having purity 21117—1 are included in the maximal ball

characterized by [Tr(p%p) < 51— and they all lie on the
surface of the ball.

Interestingly, there exist rank-4 absolutely separable
states in 2 ® 2 which can stay outside the maximal ball
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[20]. In this context, we mention that there are ways
to check if a given state is an absolutely separable state
and if it belongs to the maximal ball but there is no
known protocol to produce rank-4 absolutely separa-
ble states systematically in 2 ® 2 which reside outside
the maximal ball. We now propose a prescription to
produce rank-4 absolutely separable states which reside
outside the maximal ball. This can be done by exploring
the boundary of AS.

1. Take a rank-3 state in 2 ® 2 which is not absolutely
separable, i.e., such states must reside outside the
maximal ball. From Proposition 1, it is clear that
such states are of the form Y3, p; ;) (y;| with at
least one p;, not equal to the other p;s.

2. Consider a pure state in 2 ® 2 which is orthogonal
to the previous state. Pure states are not included
in the maximal ball and they cannot be absolutely
separable either.

3. A suitable convex combination of these two states
can produce rank-4 states in 2 ® 2 which are abso-
lutely separable. But we have to take the convex
combination in such a way that the newly gen-
erated states reside outside the maximal ball for
some choices of parameters.

Example. Let us now illustrate the recipe discussed
above by an example. We consider a two-qubit rank-3
state p1 = % |00) (00| + § |01) (01| + § |10) (10|, which is
not an absolutely separable state. Also consider a pure
state pp = |11) (11| which cannot be absolutely sepa-
rable. These two states are orthogonal to each other.
So, any convex combination of them must be a rank-4
state. We now take convex combination of these two
states gp1 + (1 —¢q)p, in a way that g = 5. It can
be checked that the newly prepared state is an abso-
lutely separable state. Interestingly, if g4 = %, then

Tr[go1 + (1 — q)p2]*> > 1, indicating that the state re-
sides outside the maximal ball. We observe that the
value of g is not independent of the choice pj.

Notice that in the above, when g = 1, the newly pre-
pared rank-4 state is just included into AS. Therefore,
it is a boundary point of the set. But it is not known
whether the state is an extreme point of AS. Note that
the above protocol is quite easy to generalize for 2 ® d.
In that case, one has to start with a rank-(2d — 1) state
which is not included in the maximal ball as well as in
AS (this can be found by Proposition 2). Then consider
a pure state which is orthogonal to the previous state
and the rest is as described above.

Let us now move to full-rank, i.e., rank-4 absolutely
separable states in 2 ® 2 and discuss different properties
of a set consisting of such states. It is known that there
exists a ball around the maximally mixed state, (I/d?),
in d ® d and all the states, belonging to that ball, are
absolutely separable [33, 34]. So, the maximally mixed
state is an interior point of AS in d ® d. Clearly, any



state p (except the maximally mixed state) which is an
interior point of AS, can be written as a convex combi-
nation of the maximally mixed state (I/d?) and another
absolutely separable state o, where p # ¢, and both p
and o are not maximally mixed. Note that for differ-
ent states p, the states o can be different. However, the
states which do not allow such a decomposition must
be boundary points of AS. We now present the follow-
ing observation:

Proposition 3. In 2 ® 2, any rank-4 absolutely separable
state p which satisfy the condition Ay — A3 = 24/ ApMy, can-
not be written as a convex combination of the maximally
mixed state (1/4) and another absolutely separable state o,
not maximally mixed, with p # o, where A;s are the eigen-
values of p in decreasing order.

Proof. We consider a spectral decomposition of the

above state p = Y% A; [;) (¢;]. Now, consider a de-
composition of p as the following:

9_2?1)"|¢i> <1/)1| (1_46)2;11 T i 46 |1/)1>< ‘
+(4e) Ty £ |9n) (il = (1 —4e)o+ (4e)],

()

where € can be considered as a very small number
and I is the identity operator. Now, the question is
whether ¢ is an absolutely separable state. The state
o is absolutely separable if and only if the eigenval-
ues of it (A; —e€)/(1 — 4e) (in decreasing order) obey
the condition (1). If it is the case then A1 — A3 <
2\/(Ay —€)(Ag —€). But this cannot be because we
have assumed Ay — A3 = 24/A2A4. So, for any € > O,
(A —A3) > 2/(A2 — €)(Ag — €), leading to the fact that
o cannot be absolutely separable. Thus, it is proved that
if the eigenvalues of p (in the decreasing order) obey
the condition Ay — A3 = 24/AA4 then the state cannot
be written as a convex combination of the maximally
mixed state and another absolutely separable state. [

In the above, it is clear that any state p whose eigen-
values (in the decreasing order) obey the condition
A1 — A3 =24/AAy, are the boundary points of AS. Next,
we describe an important property of certain interior
points of the set.

Remark 3. It is interesting to note that by using sim-
ilar arguments, Proposition 3 can be extended to 2 ® d.
Let us consider the spectral decomposition of a state p =

zil Ai [i) (@i, where A; are in decreasing order. Now,
consider a decomposition of p as

L2 A l) (il = (1—2de) 32y T2 |i) (i

i)

(Zde) Y2 5 i) (il = (1 —2d€)0+ (2de) 53, ()
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where € can be considered as a very small number and 1 is
the identity operator. Now, the question is whether o is an
absolutely separable state. The state o is absolutely separable
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if and only if the eigenvalues of it (A; — €) /(1 — 2de) (in the
decreasing order) obey the condition, given by

(A1—€)

o — (Ad—1—¢€) <2

(1—2de)

If it is the case then A1 — Ay g <
2/(Ayg_o—€)(Aog—€). But this cannot be true if

we begin with A — Ay = 24/Apg_oAy5.  The rea-
son behind it is that for any € > 0, Ay — Ayg_1 >

2/ (Agq_2 — €)(Aog — €), leading to the fact that o cannot
be absolutely separable. ~Thus, it is proved that if the
eigenvalues of p (in the decreasing order) obey the condition
A — Agg—1 = 24/ Aog_oAoy, the state cannot be written
as a convex combination of the maximally mixed state and
another absolutely separable state. This also implies that the
states, which satisfy the above equality, are boundary points
of AS when the associating Hilbert space is 2 @ d.

Proposition 4. In 2 ® 2, if the eigenvalues (in the decreasing
order) of a rank-4 absolutely separable state (except the max-
imally mixed state) satisfy the condition Ay — A3z < 24/AxAy
the state can be written as a convex combination of the max-
imally mixed state and a boundary point of AS.

Proof. We consider the states other than the maximally
mixed state. Suppose that the spectral decomposition
of such a state is given by p = Y4 ; A; ;) (y;]. This
state can be decomposed into the followmg form:

p=Xh iy (il = (1—4e) T, 2 1) (wil
+(4e) Ty & ) (il = (1 - 4e)o + (4e),

Our goal is to prove that the state ¢ in the above decom-
position is a boundary point of AS. Because if it is the
case then the absolutely separable state p can be written
as the convex combination of the maximally mixed state
and a boundary point of AS. Notice that the eigenval-
ues of ¢ are given by (A; —e€)/(1 — 4e). It is a boundary
point of AS if Ay — A3 = 2/(A; —€)(A4 — €). We have
assumed that Ay — A3 < 24/AzA4. Clearly, it is possi-
ble to consider € < A4, such that ¢ becomes a bound-
ary point. The value of € can be found by solving the
quadratic equation A} — A3 = 24/(A; —€) (A4 — €). This
completes the proof. O

(5)

Obviously, the states of Proposition 4 are interior
points of AS. By Propositions 3 and 4, we analyzed the
known necessary and sufficient condition, given in (1),
to a further extent for two qubits. This condition was to
check whether a given state is absolutely separable or
not. In our case, we have established the conditions to
find out whether a given absolutely separable state is a
boundary point (when the equality holds) or an interior
point (when the inequality holds) of the set consisting
of absolutely separable states. However, like Proposi-
tion 1, Proposition 4 can also be generalized in 2 ® d by
following the same argument given in the above proof
and hence we have the following:



Proposition 5. For a 2 ® d system if the eigenvalues (in
decreasing order) of a given absolutely separable state (ex-
cept the maximally mixed state) satisfy the condition A —
Aog_1 < 24/ Aoq_2Ayy, the state can be written as a convex
combination of the maximally mixed state and a boundary
point of AS. Obuviously, such a state must be an interior point
of AS.

Let us now address another important question: Are
all boundary points of AS extreme points? In the fol-
lowing, we show that this is not the case.

Proposition 6. In 2 ® 2, there exist rank-4 absolutely sepa-
rable states which are the boundary points of AS but they are
not extreme points of the set.

Proof. We simply construct a class of states, the eigen-
values (in the decreasing order) of which satisfy the
condition (1) with equality and the constructed states
allow some convex decomposition. Specifically, let
us consider a two-qubit state o1 = Y i A; ;) (]
(spectral decomposition), where A;s are in decreas-
ing order and they satisfy the condition A; — Az =
24/AyA4. Similarly, we have another two-qubit state
o= Yh, Al i) (i| (spectral decomposition), with
Ajs being in decreasing order, satisfying the condi-
tion A} — A5 = 2,/A,A). For any convex combination
xoq + (1 —x)op, 0 < x < 1, the newly generated state
can have the following eigenvalues: y; = xA; + (1 —x)A,
fori = 1,...,4. u;s are also in decreasing order. It
can be shown that py — p3 = 2,/jiapiy if Ay /Ay = Ay /Ay,
We assume A5 /M) = Ay/Ay4 = k. Using this along with
the conditions };A; = };A; = 1, it can be shown
that A = [1 - (1 + K)/\4 + ZﬁA4]/2, Ay = KAy, Az =
[1— (1+x)As —24/kA4]/2. Als also satisfy similar rela-
tions. [Notice that fori =1,2,3, A;s or Afs are the func-
tion of A4 or A) respectively. Similarly, fori = 1,2,3, y;s
are also the same function of y4.] However, for proper
choice of x, A4, A}, one can get A;s and Als in decreas-
ing order. Thus, one can generate absolutely separa-
ble states which satisfy the condition given in (1) with
equality. Moreover, these states allow convex decom-
position, implying the fact that such states are bound-
ary points but not extreme points of AS. To constitute
an example, one may consider ¥ = 2.5, Ay, = 0.1, and
Ay =0.11. O

In the above context, we mention that if we assume
for o9, A1 — Az < 24/AxA4 and for oy, /\/1 — /\é <

2,/A4A), for any newly generated state, y; — p3 must

be less than 2, /jio14. Nevertheless, which states are the
rank-4 extreme points of AS in 2 ® 2 is still an open
problem but we are able to prove the existence of such
states in the succeeding proposition.

Remark 4. Applying the Remark 3 along with Proposi-
tion 6, we can now construct examples of boundary points
which are not extreme points of AS in 2® d. An explicit
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example can be given as follows: We take vy = 0.1, 11
= [1— (1 +x)vag + 2v/kv24] /2, V242 = KApq, Vog—1 =
[1— (14 x)vog — 2¢/Kkvp4]/2. We can assume x = 2.5.
We next take vy = -+ = vpy_3 = k', v > &' > voy_5 and
then normalize the spectrum {v;} such that the normalized
quantities {v!} satisfy the condition Y24, v/ = 1. So, any
density matrix, having eigenvalues {v!}, is a boundary point
of AS. In the similar fashion, if we take v,5 = 0.11 and follow
the above procedure, we can obtain another boundary point of
AS. Now, taking a suitable convex combination of these two
boundary points, we can get a third boundary point which is
surely not an extreme point of AS (as shown in Fig. 1).

Proposition 7. In 2 ® 2, there exist rank-4 absolutely sepa-
rable states outside the maximal ball which are extreme points
of AS.

Proof. In Proposition 1, we have proved that all rank-
3 absolutely separable states are extreme points of AS.
Moreover, they reside on the surface of maximal ball, de-
fined by Tr[p?] < 1. We mention here that the maximal
ball is a convex set, based on the fact that a convex com-
bination does not allow to increase purity. We know
that there are rank-4 absolutely separable states outside
the maximal ball as depicted in Fig. 1. An example
of such a state is explicitly constructed after Proposi-
tion 1. Obviously, these rank-4 states cannot be written
as a convex combination of rank-3 extreme points of
AS since these states reside outside the maximal ball.
Therefore, either such a state is an extreme point of AS,
or they can be written as a convex combination of rank-
4 extreme points of AS out side the maximal ball. This
completes the proof. O

IV. INTERCONVERTABILITY BETWEEN ABSOLUTELY
SEPARABLE AND ENTANGLE STATE

Entanglement is a resource for different quantum in-
formation processing tasks. Since absolutely separable
states cannot be transformed to entangled states under
global unitary operations, their existence puts a restric-
tion on the state space. First, we discuss how auxiliary
systems can help to overcome absolute separability and
prescribe a method to identify operations on AS so that
it becomes entangled. Second, we address how an en-
tangled state get converted into separable or absolutely
separable state through noisy channels.

A. Qubit assisted entanglement generation

It is easy to notice that given an absolutely separa-
ble state if one enlarges the local dimension by con-
sidering auxiliary qubit(s), one may find unitary oper-
ator(s), acting on the newly generated higher dimen-
sional state, which can produce entanglement. So, the
newly generated state, is basically the given absolutely
separable state along with the auxiliary qubit(s), which



corresponds to the higher dimensional Hilbert space.
Now the question is: which kind of auxiliary qubit(s),
one should take along with a given absolutely separa-
ble state such that at least one unitary operator exists,
which acts on the newly generated state and can pro-
duce entanglement. Clearly, there might be a restriction
on the form of the auxiliary qubit(s), depending on the
given absolutely separable state, which can create en-
tangled states. In this regard, we present the following:

Observation 1. If the absolutely separable state is of full-
rank, there can be a restriction on the form of the auxiliary
qubit, while for a non-full-rank absolutely separable state,
any auxiliary qubit together with an absolutely separable
state can produce entangled states by applying global unitary
operator(s) which are being applied on the newly generated
state in the higher dimensional Hilbert space.

The first part is simple to establish. Suppose, for a
two-qubit system, the maximally mixed state is given.
Obviously, that state is an absolutely separable state.
Now, if the second party enlarges the local dimension
by considering an auxiliary qubit, then it must not be
prepared in the maximally mixed state in order to gen-
erate entanglement by applying a global unitary opera-
tor. Because if the auxiliary qubit is prepared in a maxi-
mally mixed state, the overall state is again a maximally
mixed state in 2 ® 4 and thus, generating entanglement
using any global unitary operator is not possible.

On the other hand, suppose, a non-full rank abso-
lutely separable state is given in 2 ® 2. Then any aux-
iliary qubit can be chosen if one wants to enlarge the
local dimension, so that a separable state of rank lower
than 24 — 1 can be obtained, which by construction is
not absolutely separable. So, using the final state, en-
tanglement can be generated via a suitable global uni-
tary operator. This follows from the fact thatin2®d, a
state which have rank less than 2d — 1 cannot be abso-
lutely separable.

From the above observation, we prescribe a possible
way of creating entangled state from AS and derive
Kraus operators for that kind of operations. Suppose
a global unitary operator, U, acts both on an absolutely
separable state and an auxiliary state |0) (0]. Mathemat-
ically, we can say the following:

Alpas) = Trp[U(pas @ |0)p(ONU'] = T, KuoasKf, — (6)

where K, = (u|U0) with ¥ K} K, = T.

B. Identifying absolutely separable states in noisy
environments

In realistic scenarios, due to imperfections in prepa-
ration procedure or interaction with the environment,
the entangled state generated in the laboratory is not a
pure one. This effect of noise can be modeled in various
ways. Typically, a local noisy channel destroys entan-
glement, and thereby creates a separable state [5] which

may or may not be absolutely separable. We are inter-
ested in finding the amount of noise required in the
channel to produce absolutely separable states. Such a
study can be important for two reasons — (1) in experi-
ments, a state is always affected by noise and (2) deter-
mining the range of noise parameter which makes the
state absolutely separable, is significant to avoid them.

We deal with three paradigmatic noise models: de-
polarizing, amplitude damping, and phase damping
channels which can affect an initial state differently
and, thereby, generate absolutely separable states in in-
dependent ways. Before discussing the consequence
of noisy channels on a given state, let us first fix the
transformation of the input state that happens due to
the interactions between the environment and the sys-
tem. The depolarizing channel (DPC), Appc takes an
arbitrary quantum state, p to p’ = Appc(p) = pp +
(15—7’) Yi—xy,z 0ipc; where 0; (i = x,y,z)s represent the
Pauli operators and (1 — p) is the strength of the noise.

On the other hand, the amplitude damping channel
(ADC), Aapc acts asymmetrically on the states |0) and
|1). In particular, it keeps |0) unchanged while it flips
|1) to |0) with probability (1 — p) and the correspond-
ing Kraus operators which describe the effects of ADC
are given by

0=(35) =(37). o

The input state p after sending through the ADC results
in an output state, represented as

2
Aapc(p) = Y KipK]. 8
i=1

Finally, we consider a scenario in which a qubit is sent
through a phase damping channel (PDC), described by

3
Appc(p) = Y KipK], )
=

1

with the operators K;, i = 1,2,3 given by
10 10
Kl_\/l_p<0 1)/ KZ_\/?(O())/

=i (39).

A noisy environment always takes an initial pure state,
) = cos £|00) + e @sin%|11) with 0 < x < 7 and
0 < ¢ < 27 to a mixed one which may or may not be
an entangled state. Note that the input state [¢) is en-
tangled for all values of x and ¢ except when x = 0 or
7t. We assume here that two independent and identical
channels, A'(p) @ A?(p), act on the input state where
Al can be either DPC, ADC, or PDC, and we are inter-
ested with the properties of output state.

(10)
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FIG. 2. (Color online) Creation of absolutely separable states
from a pure state |p) = cos(x/2)[00) + e~ sin(x/2)[11).
Note that |¢p) is maximally entangled with x = 7/2. It is
sent through local depolarizing channels which produce sep-
arable as well as absolutely separable states with the varia-
tion of parameter p (abscissa). Red, blue, and green lines
correspond to x = /2, x = /6, and x = 71/12 respec-
tively. Dashed lines correspond to the minimum eigenvalues
of the partial transposed output states for different values of
x (ordinate) , thereby quantifying the entanglement contents
of the output states while solid lines represent the quantity
A1 — Az — 24/AzA4 (ordinate) for examining the absolute sep-
arability in 2 ® 2, given in (1). It is clear that there exists a
range of p where the output state is separable but not abso-
lutely separable when the input state is a pure nonmaximally
entangled state while for maximally entangled state, the crit-
ical value of noise above which state is separable as well as
absolutely separable coincide (see red solid and dashed lines).
Both axes are dimensionless.

1. Absolutely separable states via depolarizing channels

Let us start the investigation by studying the features
of the output state obtained after sending the initial
state via local depolarizing channels (also see Ref. [37]
in this regard):

[$) = Appc @ Appc([9) (W]) = p'(p.x, ). (11)

The characteristics of the resulting state can be summa-
rized as the following:

1. The output state is a rank-4 state. As discussed
in Sec. III, the full-rank states can in principle be
an absolutely separable for certain choices of p,
x, and ¢. For any fixed values of x, we find that
there exists a critical value of noise above which
the output state is absolutely separable.

2. Two eigenvalues of the output state are the same
and are independent of the input state parameter,
x and ¢, while the other two depend on x and p.
For a fixed value of x, we observe that there exists
a critical value of noise 1 — p,s, above which the
state is absolutely separable (see Fig. 2).

3. The partial transposed output state leads to the
condition that the state is entangled when sinx >
[4(1+2p)(1 - p)]/(4p — 1)? as depicted in Fig. 2.
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Remember that we have taken here the strength of the
noise as (1 — p) while in this figure, the plots are made
with respect to the parameter p. However, looking at
properties 2 and 3, we observe that when x < /2,
(1 — paps) is strictly greater than (1 — psp), below which
the state is entangled. Interestingly, when x = /2,
i.e., the input state is maximally entangled, (1 — pgps) =
(1 — psep). The gap obtained between the threshold
values of noise for separability and absolute separabil-
ity when the input state is a nonmaximally entangled
state, can be interesting. We know that nonmaximally
entangled states are less useful than maximally entan-
gled states in several quantum information protocols.
Nonetheless, such disadvantages can be compensated
since in the presence of a certain amount of noise, sep-
arable states that are not absolutely separable are cre-
ated which can be converted to entangled states under
global unitary operations. This is shown in Table I.

We also observe that if the entanglement of the in-
put state decreases, the output state becomes separa-
ble quickly under the action of local DPCs. But lower-
ing the input state entanglement, the range of the noise
in which the output state remains only separable (not
absolutely separable) increases. Specifically, for max-
imally entangled and nonmaximally entangled states,
denoted by |¢max) and |Pnm) respectively, we obtain
that

(1 = psep) ([Pmax)) > (1 = psep) (|nm))

while

(1 = Pabs) (|Pmax)) < (1 — paps) (|nm))-

Entanglement of input|1 — psep| 1 — Pups |AP = Psep — Pabs

0.7715
0.33225

0.29133 | 0.36114
0.21413 0.426103

0.0698
0.21197

TABLE I. Entanglement of the input state is measured in von
Neumann entropy [38]. We show that with the decrease of
entanglement of the input state, the range of separability but
not absolute separability increases.

Remark 5. A maximally entangled state sent through a
global depolarizing channel results in the Werner state [39],
given by p|lp~ ) (P~ | + @I (with |~ ) being the singlet
state) which is separable as well as absolutely separable with
p < 1/3. On the other hand, if a nonmaximally entan-
gled state is admixed with the white noise, the gap in the
strength of noise between separability and absolute separa-
bility emerges like the local depolarizing channels, establish-
ing the usefulness of nonmaximally entangled states over the
maximally entangled ones.



Generation of absolutely separable states from Haar uni-
formly simulated inputs. Let us generate two-qubit pure
states Haar uniformly, and both qubits are sent through
local depolarizing channels. We find a critical value of
noise below which the states become absolutely sepa-
rable. In particular, we plot p, below which the state
is absolutely separable by varying the initial entangle-
ment content of the pure states. Results show that
with respect to noise, states with higher entanglement
are more robust than the states with low entanglement
value from the perspective of generation of ASs (see

Fig. 3).

0.55

0.25

0 01 02 03 04 ol'_:.5 06 07 08 09 1

FIG. 3. (Color online.) Plot of p. (critical noise value below
which the state is absolutely separable) (vertical axis) against
initial entanglement, E (horizontal axis). We generate 10*
pure states Haar uniformly. Both qubits are sent through the
local depolarizing channels. Entanglement of a pure state is
characterized by the von Neumann entropy of the local den-
sity matrices. The vertical axis is dimensionless while the hor-
izontal one is in ebits.

2. Absolutely separable states via amplitude damping channels

Let us now move to the scenario where two local
ADCs are acted on |¢), resulting in an output state of
rank-4. It turns out that the output state is separable
when tan(x/2) > 1/(1 — p). By using condition (1),
we can find the condition on p and x for which the
resulting state is absolutely separable. Here also the
eigenvalues are independent of the phase of the initial
state.

Unlike the depolarizing channels, we find that the fi-
nal state is absolutely separable only when x > 2.325.
The criteria for absolute separability are satisfied in the
neighborhood of p = 0.5. The range of p in which
the state is absolutely separable increases with the in-
crease of x and becomes maximum when x = 7. For
example, when x = 7, the state is separable in the

1.0 -
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X

FIG. 4. (Color online) Regions in (x, p)-plane indicates separa-
ble and absolutely separable states when |¢) is sent through
local amplitude damping channels. The parameter x corre-
sponds to the state |¢) and the parameter p corresponds to
the channels. The blue (bigger) region is for separability while
the yellowish (smaller) region represents states that are abso-
lutely separable. The parameter p in the vertical axis is a di-
mensionless quantity, while the parameter x in the horizontal
axis is in radian.

entire range of p although it is absolutely separable
when p € [0.302,0.6998]. For the input state with
x = 2.4, the state remains absolutely separable when
p € [0.414,0.586] and separable for 0 < p < 0.61.
Therefore, like depolarizing channels, there also exists a
range of parameter p in which the state is separable, but
not absolutely separable as depicted in Fig. 4. However,
the absolute separability of the resulting state with re-
spect to amplitude damping noise requires a minimum
amount of entanglement in the input state which is in a
sharp contrast to DPC.

Interestingly, we find that in case of amplitude damp-
ing channel (ADC), there exist no random pure states
that, after sending through the double-sided local chan-
nels become absolutely separable. If we start with rank-
2 or higher rank Haar uniformly generated states and
ADC acting on both the qubits, such states are pro-
duced although unlike depolarizing channels, we ob-
serve that the percentage of absolutely separable states
grows with the increase in the rank of the initial states.

3. Absolutely separable states via phase damping channels

Phase damping channels make the pure rank-1 state
to a rank-2 one and hence the output state produced
after PDCs cannot be absolutely separable, as discussed
in Sec. III. To obtain an absolutely separable state by
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FIG. 5. (Color online) Map of separable (blue) and absolutely
separable (yellow) states for local PDC with the Werner state
as input. The abscissa and ordinate respectively represent
the noise parameter, p, and the mixing parameter, g, of the
Werner state. Both axes are dimensionless.

using PDCs, either we consider a rank-2 state which can
produce a rank-3 state with equal mixing parameter, or
we can start with a rank-3 or a rank-4 state that can be
absolutely separable.

To illustrate this feature, let us first consider a rank-3
state, given by

P3 | Wl + |01 01|+*|10><10| (12)

where [¢) = cos (x/2)|00) + e~ sin (x/2) [11). By
Proposition 1, it is an extreme point of AS. If one sends
the state through local PDCs, it is easy to check that the
state becomes rank-4 except x = 0 as well as x = 7 and
remains absolutely separable, i.e., it satisfies the condi-
tion (1) in a strict sense. Note that at x = 0 and x = 7,
the state remains unaffected by the PDCs.

As a second example, let us consider the initial state
for the PDCs as the Werner state, given by q|¢™) (¢T| +
(1 —q)1 which is of rank-4. It is known that the state is
separable as well as absolutely separable when g < 1/3.
When the state is sent through two noisy PDC chan-
nels, entanglement gets destroyed and hence the state
becomes separable even for 4 > 1/3. We find that the
state becomes separable against g in a bigger range than
the value of g below which it is absolutely separable, as
shown in Fig. 5. Therefore, phase damping noise intro-
duces a gap between separable and absolutely separa-
ble regions for Werner states.

Numerical simulations of Haar uniform generation of
two-qubit states reveal that no pure, rank-2 and rank-3
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states under the action of PDC can produce absolutely
separable states, thereby showing its high amount of
robustness in the preservation of entanglement. Specif-
ically, we find that among 10* rank-4 randomly gener-
ated states, only 60 states can create absolutely separa-
ble states when local phase damping channels act on
both the qubits. It also indicates that the production of
absolutely separable states via depolarizing, amplitude
damping and phase damping channels from random
input states is capable to distinguish these three chan-
nels.

V. DISCUSSION

Absolutely separable states are those which cannot
be made entangled by the action of global unitary oper-
ations. Therefore, from the resource theoretic perspec-
tive, it is important to study the set of useless states,
also known as absolutely separable states. In this work,
we considered 2 ® d dimensional states and showed
that absolutely separable states of rank-(2d — 1) are all
extreme points of the set of such states. We proved
that the states with full-rank satisfying strict absolute
separability condition are the interior points, otherwise,
they are boundary points of the set of absolutely sepa-
rable states. We also showed that there exist full-rank
states which are the boundary points but not extreme
points of the above set. We further proved the existence
of full-rank extreme points of the set.

We showed a possible method to make absolutely
separable states entangled by adding an auxiliary sys-
tem. We also considered the reverse process, specifi-
cally the generation of absolutely separable states with
the help of decoherence. In particular, we found the
range of noise parameter which can produce abso-
lutely separable states from entangled states when sent
through local noisy channels. We also showed that after
sending maximally entangled states via a local depo-
larizing channel, threshold noise value producing sep-
arable and absolutely separable states coincide, while
with the decrease of entanglement content of the input
pure state, the gap between these two critical values
increases. Moreover, when Haar uniformly generated
two-qubit states are sent through noisy channels, we
found that the production of absolutely separable states
depends on the rank of the input states, thereby show-
ing a discrimination method for noisy channels.
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