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Entangled states like two-mode squeezed vacuum states are known to give quantum advantage in the illu-
mination protocol, a method to detect a weakly reflecting target submerged in a thermal background. We use
non-Gaussian photon-added and subtracted states as probes for the single shot quantum illumination both in the
presence and absence of noise. Based on the difference between the Chernoff bounds obtained with the coherent
state and the non-Gaussian state having equal signal strengths, whose positive values are referred to as a quan-
tum advantage in illumination, we classify the performance of non-Gaussian states, when photons are added
(subtracted) in (from) a single mode or in (from) both the modes. We highlight the hierarchy among Gaussian
and non-Gaussian states obtained via this method, which is compatible with correlations per unit signal strength.
Interestingly, such hierarchy is different when comparisons are made only using the Chernoff bounds. The entire
analysis is performed in presence of different noisy apparatus like faulty twin-beam generator, imperfect photon
addition or subtraction as well as with noisy non-Gaussian probe states.

I. INTRODUCTION

The non-classical features offered by quantum mechanics
have revolutionized the development of modern technologies,
ranging from computation [1–5], communication [6–12] to
metrology and memory devices [13], far superior to their clas-
sical counterparts. Remarkable protocols like quantum tele-
portation [14–21], dense coding [22–29], quantum key dis-
tribution [30–34] boost the communication sector both with
and without security while in the computational domain, al-
gorithms based on quantum mechanics were discovered which
offer as much as exponential speedup compared to the known
methods in a classical computer [35–37]. The enhancing per-
formance in most of the schemes rely on the amount of quan-
tum correlations (QCs) present in the system, establishing
them as the resource [38] for quantum advantage.

In the field of quantum metrology [39–43], illumination is
the process to detect a target with low reflectivity encapsu-
lated in a noisy thermal background [44–46]. In particular, a
probe signal is sent towards the target and its presence or ab-
sence is inferred by analyzing the reflected beam. In quantum
illumination (QI) [47–55], it was shown that the sensing capa-
bilities of the target, modeled by a beam splitter (BS), can be
improved by using entangled probes like two-mode squeezed
vacuum (TMSV) state [56–60]. In this situation, one mode
of the entangled pair is used as the signal mode, while the
other mode (acting as idler) is directly sent to the detector to
be stored and measured jointly after the signal mode reflected
from the beam splitter returns (see Fig. 1 for schematics of
the protocol). In this context, it was also shown that the ini-
tial shared entangled state between the signal and the idler
modes still remains beneficial even in presence of loss and
noise, which can destroy the resource [61–63]. Moreover, the
idler mode needs to be stored until the time the signal returns
which significantly reduces the range of QI since the storage
of the idler for a longer duration is difficult [64]. For the clas-
sical illumination protocol using coherent states, homodyne
detection turns out to be the optimal one [65] while for the
Gaussian QI, more involved detection schemes are required
to extract the quantum advantage, predicted theoretically [66–

74]. Finally, unlike other quantum devices, it is not yet clear
whether quantum correlations, especially entanglement con-
tent of the initial Gaussian state is responsible for quantum
advantage in the illumination process [59, 75–80].

On the other hand, it has been shown that non-Gaussian
states, created by adding (subtracting) photons in (from) the
TMSV states, which possess a higher amount of QCs than
that of the Gaussian parent states, have potential to provide
an advantage in the performance of QI [81–84] in a noiseless
situation [67]. In this paper, we investigate the efficiency of
non-Gaussian probe states in the presence of different kinds
of noise or imperfections. The performance of QI is typically
quantified by the minimum error probability for distinguish-
ing the presence or absence of target states which is upper
bounded by the quantum Chernoff bound (CB) [85–91]. In a
noiseless scenario, we report a monotonic decrease of the CB
with increasing number of added or subtracted photons from
a single mode of the two-mode squeezed vacuum state. Sym-
metric two-mode operations (i.e., when equal number of pho-
tons are added or subtracted from both the modes) lowers the
CB even further from the single mode value. We also observe
that the non-Gaussian states can lower the CB even when
the target reflectivity is very small and such an advantage in-
creases with the number of photons added (subtracted). In a
noisy situation, we find that the robustness in the CB against
Gaussian noise which is admixed with the non-Gaussian states
increases with the increase of non-Gaussianity. Similar trends
can also be exhibited when the twin beam generator producing
the parent TMSV state is faulty or when there is an imperfec-
tion in the photon addition and subtraction processes. Accord-
ing to the low values of Chernoff bounds, we can provide a hi-
erarchy among the photon-added and -subtracted states which
is quite similar to the QC present in these states (cf. [81, 82]).

We now refer a state to be quantum advantageous in the
illumination protocol if the difference between the Chernoff
bound of a coherent state and that of a given non-Gaussian
state having the same signal strength is strictly positive. Based
on it, we now classify different non-Gaussian states according
to their performances in QI. We report that for low reflectiv-
ity, photon addition in the idler mode (or photon subtraction in
the signal mode) and photon subtraction from both the modes
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FIG. 1. A schematic representation of quantum illumination with
noisy probes. The signal mode is sent towards the target, which
is modeled by a weakly reflecting beam splitter. The idler mode
is stored till the reflected signal comes back and the measurement
is performed jointly on the two modes to infer the presence or ab-
sence of the target. The strong thermal background is always present,
neighboring the target. Moreover, we consider different noise models
in the probe states.

do yield quantum advantage while photon addition in both the
modes or only in the signal mode cannot beat the classical
limit, thereby giving non-positive difference. However, the
hierarchy changes with the increase of the reflectivity of the
BS. In a noisy scenario where the signal transmission line is
assumed to be noisy, thereby affecting both non-Gaussian as
well as coherent states, we, interestingly, observe that quan-
tum advantage with non-Gaussian states increases even with
the increase of noise upto a certain threshold value and then
decreases as expected. Additionally, we arrive at a minimum
operational efficiency of the photon addition (subtraction) ap-
paratus to obtain quantum advantage which also takes care
the probabilistic nature involved in the generation of non-
Gaussian states from the TMSV states. This analysis also
helps us to decide the most favorable resource, non-Gaussian
or Gaussian, depending on the apparatus available. Note that
although the entirety of the work focuses on advantage ren-
dered by just a single copy of the probe state, the extension to
QI with multiple copies is quite straightforward in our frame-
work. Moreover, we report that the ranking of non-Gaussian
states according to the advantage in the QI turns out to be in a
good agreement with correlations quantified by mutual infor-
mation and entanglement of the given state per signal photon.

The paper is organised in the following way. In Sec. II, we
provide the prerequisites which include the Chernoff bound,
the upper bound on the efficiency of the illumination proto-
col, its classical limit and the non-Gaussian states together
with the noise models which we will use in our calculations.
We also briefly describe our numerical methods. This is fol-
lowed by Sec. III where we elucidate the advantages offered
by non-Gaussian states, with particular focus on the compari-
son between the single-mode addition and subtraction of pho-
tons and the two mode operations. We then move on to the

definition of quantum advantage and show how only certain
non-Gaussian states can actually outperform the classical pro-
tocol, while others fail to do so. At the end of section, we also
deal with the illumination protocol in the situation of vary-
ing target reflectivity. In Sec. IV, we introduce noise in probe
states, modeled by Gaussian local noise, faulty twin beam
generators as well as imperfect non-Gaussian apparatus and
we establish the robustness exhibited by non-Gaussian states
to various noise models while in Sec. V, we compare Gaus-
sian TMSV states with non-Gaussian states in two ways – one
is when non-Gaussian apparatus is inefficient and another one
is via correlation content of the states. We end our paper with
the discussions of results in Sec. VI.

II. INGREDIENTS FOR ANALYZING QUANTUM
ILLUMINATION WITH NON-GAUSSIAN RESOURCES

In this section, we discuss the tools required to analyze QI
using non-Gaussian states both in presence and absence of
noise. First, we present a brief primer about the non-Gaussian
states to be used as probes for QI generated by photon ad-
dition and subtraction. We then describe the various compo-
nents involved in the QI protocol. In particular, we specify
the methodology to compute the performance of the QI proto-
col including numerical recipes used for evaluation. We then
move on to present the various noise models that we employ
to investigate noisy QI.

A. Non-Gaussian operations: Adding and subtracting photons

Non-Gaussianity has been proven to be performance en-
hancer in different contexts, ranging from entanglement [92,
93] to non-locality [94], and in the case of QI as well
[81]. Among a plethora of de-Gaussification techniques, en-
gineering non-Gaussian state via photon addition and sub-
traction offers the advantage of experimental realizability
[95, 96] which, in turn, motivates us to take this route of de-
Gaussification.

Before moving on to non-Gaussian resources, let us first
consider the Gaussian two-mode squeezed vacuum state,
given by

|ψr〉 =

∞∑
n=0

cn|n, n〉, (1)

where cn = (1 − x)
1
2x

n
2 with x = tanh2 r, r being the

squeezing parameter and {|n〉} representing the Fock basis.
By de-Gaussifying the TMSV state in both the modes (i.e.,

by adding k and l photons in the first and the second mode
respectively), the (normalized) photon-added state can be rep-
resented as [92]

|ψ(k,l)
r 〉 =

∞∑
n=0

c(k,l)n |n+ k, n+ l〉, (2)
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where

c(k,l)n =
x
n
2√

2F1(k + 1, l + 1, 1, x)

√(
n+ k

k

)(
n+ l

l

)
,

(3)

2F1 is the Gauss Hypergeometric function, and c(0,0)n = cn,
while the photon-subtracted state obtained after subtracting
photons from both the modes can be written as

|ψ(−k,−l)
r 〉 =

∞∑
n=max{k,l}

c(−k,−l)n |n− k, n− l〉 (4)

with

c(−k,−l)n =
x
n−k

2√
2F1(k + 1, k + 1, 1 + k − l, x)

√(
n
k

)(
n
l

)(
k
l

) .

(5)

Without loss of generality, here we assume k ≥ l. Notice,
however, that Eq. (5) holds even for l > k with k and l be-
ing interchanged in Gauss Hypergeometric function and in de-
nominator.

Note. Instead of two modes, if addition (subtraction) is per-
formed in a single mode, say, in the second mode, the corre-
sponding output state can be obtained by putting k = 0, i.e.,

c(0,l)n = x
n
2 (1− x)

1+l
2

√(
n+ l

l

)
, (6)

and in case of subtraction, it is

c(0,−l)n = x
n−l
2 (1− x)

1+l
2

√(
n

l

)
. (7)

Notice that here we consider the subtraction operation beyond
k ≥ l.

B. Elements of quantum illumination

The QI protocol comprises three main components – (i)
the probes (signal and the idler), (ii) the weakly reflecting
target embedded in a thermal background, and (iii) the de-
tection scheme involving a joint measurement of the signal
and the idler, as depicted schematically in Fig. 1. The task
of inferring the presence or absence of the target reduces to a
two state discrimination problem [89, 97–107] and hence, the
performance of QI relies on the efficiency of the distinguisha-
bility protocol. The figure of merit of QI is then the minimum
error probability that arises while discriminating the two non-
orthogonal states, each of which corresponds to either of the
two hypotheses: H0 representing the scenario when the target
is absent while H1 identifying the presence of the target.

Mathematically, the weakly reflecting target is modelled by
a beam splitter with a low reflectivity, κ. It is immersed in a
thermal bath ρT , with mean photon number, NB . The entan-
gled probe used for QI is ρIS , where the subscript, I , is for

the idler and S represents the signal mode. When the target is
present (hypothesis H1), the reflected signal is admixed with
the noise and the resultant state in the detector is given by

Target present (H1) : ρ1 = TrT (ÛST ρIS ⊗ ρT Û†ST ), (8)

where ÛST is the unitary representation of the BS acting on
the signal and the thermal state, having the form ÛST (ξ) =

exp(ξâ†S âT−ξ∗âS â
†
T ), with ξ = sin−1

√
κ. Here âS , âI , and

âT are the annihilation operators for the signal, the idler, and
the thermal modes respectively. For a very generic photon-
added and -subtracted, TMSV state, as ρIS , Eq. (8) reduces
to

ρ1 =

∞∑
n,n′=n0

∞∑
m=0

n±l∑
r=0

m∑
s,s′=0

f ({n}, {r}, k, l, κ,NB)

|n± k, n+m± l − r − s〉 〈n′ ± k, n′ +m± l − r − s|IS (9)

where the set {n} = (n, n′,m), {r} = (r, s, s′) and n0 = 0
for addition and n0 = max{k, l} for photon subtraction. The
prefactor f ({n}, {r}, k, l, κ,NB) is given by

f =
c±k,±ln c±k,±ln′√
(n± l)!(n′ ± l)!

(NB)m

(1 +NB)1+m
1

m!

(
m

s

)(
m

s′

)
(r + s)!(

n± l
r

)(
n′ ± l

r + s− s′

)
(−1)n+m−s+s

′
κ

1
2 (n+n

′)−r+s′±l

(1− κ)m+r−s′
√

(n+m− r − s± l)!(n′ +m− r − s± l)! (10)

where for the TMSV state, k = l = 0 and ±l and ± k repre-
sent photon addition and subtraction from the signal and idler
modes respectively. The c±k,±ln for various combinations of
photonic operations are given in Eqs. (3), (5), (6), and (7).

Let us move to the hypothesis H0, i.e., when the signal is
lost and the detector just gets the thermal state and the idler.
In this case, the state simply takes the form as

Target absent (H0) : ρ0 = TrS ρIS ⊗ ρT . (11)

The explicit expression for ρ0 reads as

ρ0 =

∞∑
n=n0

∞∑
m=0

(c(±k,±l)n )2
Nm
B

(1 +NB)m+1

|n± k,m〉 〈n± k,m|IT , (12)

where the lower limit n0 of the first summation satisfies the
same condition as for ρ1 in Eq. (9) and the subscript I and
T denote the idler and the mode of the thermal states respec-
tively.

As mentioned before, the efficiency of QI reduces to the
problem of effectively distinguishing ρ0 from ρ1, or multiple
copies of them with the least possible error using an optimal
measurement scheme. Assuming that there is apriori equal
probability of the target being present or absent, the minimum
error probability for distinguishing ρ⊗M0 and ρ⊗M1 can then
be expressed as [44]

PM =
1

2

(
1− 1

2
||ρ⊗M0 − ρ⊗M1 ||1

)
, (13)
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where ||X||1 = tr|X| represents the trace norm [49, 81, 82,
108]. From the above expression, it is not easy to calculate the
error probability, and hence we will focus on the upper bound
of it, the quantum Chernoff bound [85–91], given by

PM ≤
1

2
QM . (14)

where

Q = min
0≤α≤1

tr [ρα0 ρ
1−α
1 ]. (15)

Note that the Chernoff bound for M copies is just the M th

power of the Chernoff bound for a single copy. Moreover,
since the quantum CB is asymptotically tight [89, 91], the
single-copy bound dictates the hierarchies of error probabil-
ities obtained in the large M -case. We, therefore, through-
out the manuscript, work with the single shot case, i.e., for
M = 1. Results for any finiteM can simply be obtained from
Eq. (14).

C. The classical limit

The scheme [44, 49, 88, 109] which uses coherent states,
|
√
NS 〉, as signal probe for illumination can be referred

as classical illumination method. The single-shot Chernoff
bound for the same is computed to be

Qc = e−κNS(
√
NB−

√
NB+1)2 , (16)

which in the limit NB >> 1 reduces to

Qc ≈ e−
κNS
4NB . (17)

The corresponding minimum error probability for M -copies
of the coherent state is then upper bounded by

P cM ≤
1

2
QMc . (18)

In this paper, when we observe PM < P cM , where average
number of photons in the signal probe is fixed to NS in both
the cases under comparison, we claim that quantum advantage
is obtained in the QI method.

D. Noise models for probes

To analyse the case of noisy illumination protocol, we in-
duce certain types of imperfections in the probe states. We
enlist them now.

1. Local noise in probes

We consider two-mode entangled states in the presence of
local noise, acting independently on each mode. The noise

model which we consider, yields the mixed state (see ref.
[94]), given by

ρ = (1− p)|ψ〉〈ψ|+ p

( ∞∑
n=0

µn|n〉〈n| ⊗
∞∑
m=0

νm|m〉〈m|

)
(19)

where |ψ〉 denotes the non-Gaussian entangled state, and∑∞
n=0 µn =

∑∞
m=0 νm = 1. In our analysis, µn and νm

are taken to have a Gaussian form, with

µn =
2

1 + ϑ3(0, e−σ
−2
1 )

e−n
2/σ2

1 ,

and νm =
2

1 + ϑ3(0, e−σ
−2
2 )

e−m
2/σ2

2 . (20)

Here, σ1 and σ2 are the chosen noise parameters which con-
trol the average number of photons in either mode of the noise
part, and ϑ3 is the Jacobi theta function [110] of order 3.
Throughout our analysis, we set σ1 = σ2 = 1. The results
remain qualitatively similar with other choices of σi, as long
as they are not too high to erase the quantum advantage.

2. Faulty generation of two-mode state

Another inefficiency during the production of probes can
occur when the twin beam generator making the TMSV state
is faulty [94]. As a result, the probe state has less squeez-
ing than actually expected. Therefore, the protocol may be
designed for a squeezing parameter r but the actual resource
may have less efficiency due to a lower squeezing parameter
r′ (< r) which in turn translates to x′ (< x). Thus the per-
formance obtained may not be optimal and there may even be
a situation when there is no advantage at all, over the blind
guess. We explore the role of non-Gaussianity in this respect,
to figure out whether quantum advantage can be increased
or even restored through the application of photon-added or
-subtracted states in this scenario.

3. Imperfect photon addition and subtraction

Due to several imperfections, e.g., dark counts of the de-
tector [111–113], the probe states produced may not have the
desired number of added or subtracted photons. As a result,
the final state is a mixture of states with varying levels of non-
Gaussianity. We assume that, for a given number k of photons
to be added or subtracted, the state is mixed with other states
having k, k−1, k−2, . . . , k−m (m ≤ k) added or subtracted
photons, with different probabilities. Here, m represents the
cutoff in the discrepancy which can be incorporated due to
the imperfect creation process. The state, therefore, takes the
form as

ρ̃±k =

m∑
i=0

piρ±|k−i|. (21)

We will be interested to compute the performance of QI using
ρ̃±k and compare it with the corresponding classical bound.
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E. Method for computing Chernoff bounds:

Let us discuss the method which we use to calculate
the Chernoff bounds for non-Gaussian states. The den-
sity matrices corresponding to ρ1 and ρ0 are constructed
according to Eqs. (9) and (12). The truncated infinity,
i.e., N in the summation is chosen in such a way, that
the tolerance in trace and the computed CB is less than
10−8. Under such conditions, the matrices have dimension
(N ± k + 1)(2N ± l + 1) × (N ± k + 1)(2N ± l + 1),
where (N ± k + 1) × (N ± k + 1) denotes the size of the
idler subsystem and (2N ± l + 1) × (2N ± l + 1) is that
for the signal subsystem, with + and − representing the
photon addition and subtraction respectively. In case of the
TMSV state, and the photon-added states, it is observed that
any N ≥ 35 is sufficient while for photon subtraction, we
have to take N ≥ 45. In case of mixed states, as defined
in Eqs. (19) and (28), convergence is achieved for the same
limits. Thereafter, we optimise Eq. (14) over α to obtain
the Chernoff bound. All the calculations are performed for a
fixed value of κ, NB and x with k and l running from 0 to
10. In most of our analysis, we set κ = 0.01, representing the
target reflectivity, unless mentioned otherwise and the mean
number of photons in the thermal background is taken to be
unity. A major part of our calculations are done by setting
x = 0.2 and 0.05.

Remark: An error probability of 0.5 is trivial and any de-
viation from the same may be considered as enhancement of
performance. In the entirety of our analysis, we consider any
difference which is ≤ 10−4 to be negligible and thus a Cher-
noff bound≥ 0.4999 is rounded off to be 0.5. Throughout our
work, we represent states with photons added in one mode as
“sPA”, and those with photons added in both the modes as
“PA” while photon subtracted states are dubbed as “PS”. In-
terestingly, states with photons added in the signal mode be-
have exactly similar to those with subtracted photons from the
idler mode and vice versa [94]. Thus, we deal only with single
mode addition of photons and the performance of probes with
subtracted photons from one mode follows trivially.

III. NON-GAUSSIAN QUANTUM ILLUMINATION

It has already been established that the introduction of non-
Gaussianity in the resource state through photon addition and
subtraction can generate high amount of quantum correla-
tions. Hence there is a possibility that these classes of states
can lead to a lower error probability, in terms of CB in the
illumination protocol, than that of the coherent state. The in-
dication in this direction was obtained by taking examples of
photon-added and -subtracted states [81, 82].

We here analyze the performance of QI via computing the
Chernoff bound into two situations – (1) single mode opera-
tions which include adding photons in either the idler or the
signal mode; (2) when addition and subtraction are performed
in both the modes. Moreover, we study the effects of variation
of target reflectivity on the performance of quantum illumina-

tion.

A. Single mode operations: Signal vs. Idler

Let us add photons in the single mode of the TMSV as
specified by the coefficients in Eqs. (6) and (7) and com-
pute the QI performance. As mentioned before, QI scheme
with subtracting photons from a single mode is already in-
cluded in the results for photon addition. For example, we
know |ψ(k,0)

r 〉 = |ψ(0,−k)
r 〉. Let us specify the behavior of

Chernoff bound, Q, under single mode operations.

1. Monotonicity. Q decreases monotonically with the
number of added photons, n, both in the idler and the
signal modes as shown in Fig. 2 with x = 0.05 and
x = 0.2. Interestingly, owing to the low squeezing
at x = 0.05, the error probability for the TMSV state
cannot go below 0.5 although non-Gaussian states are
successful in doing so. However, later we will address
whether such decrements really imply the advantage in
QI or not.

2. Asymmetry. Although the CB behaves monotonically
with the added number of photons in a single mode,
it depends on the mode, (signal or idler), in which the
photons are added. In particular, photons added in the
idler mode always gives a poorer detection probabil-
ity than the case when photons are added in the signal
mode of the entangled state. The effect becomes promi-
nent with the addition of higher number of photons,
thereby inducing more non-Gaussianity in the state, see
Fig. 2.

Note. For measures like entanglement (E), there is a
symmetry between the modes, and we have E(|ψ(k,0)

r 〉) =

E(|ψ(0,k)
r 〉). However, for CB, in case of single mode pho-

tonic operations, Q(|ψ(k,0)
r 〉) < Q(|ψ(0,k)

r 〉) and hence there
is an asymmetry inherent in its definition. Therefore, for
photon subtraction, we get a reversed relation compared to
that of addition, i.e., subtraction of photons from the idler
mode induces lower CB than that of the photon subtraction
from the signal mode and hence we have Q(|ψ(−k,0)

r 〉) >

Q(|ψ(0,−k)
r 〉).

B. Two mode operations: Addition vs. subtraction

We now address two main questions pertaining to photonic
operations – (1) whether single mode operations are better
than two-mode operations; (2) whether addition in both the
modes is better than subtraction in terms of lowering CB. Let
us first examine the first question. When an equal n number
of photons are added in both the modes of the TMSV, we get
lower CB compared to the single mode operations, with the
symmetric combination yielding the best performance. How-
ever, surprisingly when photons are subtracted from both the
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FIG. 2. (Color Online.) Chernoff bound, Q, (ordinate) against num-
ber of photons added (subtracted), n, (abscissa) to create different
non-Gaussian states from TMSV. Stars and squares are for the states
with photons added either in the idler mode, denoted by sPA-idler
and signal mode (sPA-signal) respectively while circles and triangles
represent states when n number of photons are added (PA) and sub-
tracted (PS) from both the modes. Notice that Q for sPA-idler and
sPA-signal are equal to that of photon-subtracted state from the sig-
nal mode and idler modes respectively. The squeezing parameter is
set to x = 0.2 for the upper panel and x = 0.05 for the lower panel.
All the axes and dimensionless.

modes, it actually gives higher CB over the single mode op-
erations. In particular, it implies that subtraction of photons
from the idler (i.e., addition in the signal) is better in terms of
lowering CB than subtracting equal number of photons from
both the modes, irrespective of x, as shown in Fig. 2.

Secondly, we compare the CB between photon addition and
subtraction. The computation of CB shows that photon addi-
tion in both the modes gives lower CB than that of the photon-
subtracted states and the difference increases with the increase
of n. Moreover, adding photons in the signal mode (similarly,
subtracting photons in the idler mode) leads to low CB com-
pared to that of the subtraction from both the modes. Notice,
however, that among all the non-Gaussian states, the states
with photons added in both the modes can give the lowest CB,
although it does not lead to an advantage in QI, which will be
discussed in the subsequent section.

C. Does reduction in Chernoff bound ensure quantum
advantage in QI?

The analysis upto now shows the benefit of non-Gaussianity
in terms of an ubiquitous decrease in CB, when more photons
are added or subtracted from the TMSV. If CB reduction does

translate into quantum advantage, then one can conclude that
the non-Gaussian photon-added and -subtracted states show
better performance than the parent TMSV (cf. [81, 82]). Note
that such a comparison scheme may be considered natural and
intuitive since it follows the same strategy when considering
enhancements of entanglement [92, 93], violations of Bell in-
equalities [94] etc.

Moreover, we know that photon addition and subtraction
can be considered as a sort of distillation procedure where
fewer number of higher entangled states are obtained from
a large number of low entangled states, and hence for entan-
glement, content, such comparison is perfect. However, for
schemes like quantum illumination where higher number of
copies are involved, reduction of copies via distillation must
be associated to the performance-calibration scheme, which
we will consider in a subsequent section. Hence compar-
ing identical number of copies of Gaussian and non-Gaussian
states does not lead to a fair conclusion. If they are done, they
must be considered as independent states and the comparison
must be made by fixing one relevant physical quantity, which,
in case of QI, is the signal strength [81].

Let us set up a more appropriate scheme to assess quantum
advantage for QI. Under the more realistic method of com-
parison, the hierarchy of states gets altered and sometimes,
the non-Gaussian states which provided low CB fail to pro-
vide any quantum advantage. Therefore, the central question
that we want to address, under the new comparison methods,
is when does non-Gaussianity provide quantum advantage in
illumination?

The quantum advantage in QI for the TMSV state is defined
by the difference between the Chernoff bounds for the TMSV
state and that of the coherent state with identical intensity in
the signal mode. In a similar fashion, quantum advantage for
the photon-added or -subtracted states can be defined as the
difference between the Chernoff bounds for the non-Gaussian
states and the coherent state for a fixed signal strength. In this
case, for a given photon-added (-subtracted) state, |ψ(±k,±l)

r 〉,
we first compute the average number of photons it possesses
in its signal mode, which reads as

NS =

∞∑
n=

k−(±k)
2

(n± k) |c(±k,±l)n |2. (22)

The classical limit is then found by using the coherent state
which has the same signal strength as in |ψ(±k,±l)

r 〉, i.e.,
NS(|ψ(±k,±l)

r 〉). In particular, for a given NS , we track the
gap between the single shot quantum Chernoff bounds for the
state |ψ(±k,±l)

r 〉 and the corresponding coherent state with the
same signal strength. Mathematically, we are interested in the
quantity, which we call quantum advantage in quantum illu-
mination, given by

∆(|ψ(±k,±l)
r 〉) = Qc −Q(|ψ(±k,±l)

r 〉), (23)

where Qc can be computed from Eq. (16) using the
same signal strength, NS , as obtained from Eq. (22). If
∆(|ψ(±k,±l)

r 〉) > 0, we report a quantum advantage in QI,
while ∆(|ψ(±k,±l)

r 〉) ≤ 0 implies that the classical protocol
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outperforms or performs in a similar fashion as the QI scheme,
for the given quantum probe ρIS .

D. Classification of non-Gaussian states according to their
performance in quantum illumination

We are now going to classify the non-Gaussian states ac-
cording to this figure of merit, ∆. We observe that ∆ is pos-
itive for the state with photons subtracted state from both the
modes, thereby establishing quantum advantage in QI while
the states with photons added in the idler mode (i.e., photon
subtracted from the signal mode) also prove to be a good re-
source for illumination according to ∆ (see Fig. 3). Our re-
sults indicate that in order to obtain quantum advantage from
non-Gaussian operations, it is favorable to perform photon
subtraction, either from the signal mode or from both the
modes. Furthermore, photon-subtraction being easier exper-
imentally, [114] adds to the importance of our result.

As it is evident from Fig. 3, all non-Gaussian states, having
NS equal to the classical signal, do not perform equally well.
In particular, the non-Gaussian states with photons added only
in the signal as well as in both the modes, cannot surpass the
classical limit which is clearly visible from the negative values
of ∆.
Note 1. The same hierarchies will be maintained for higher
number of copies of the probe states used for QI which di-
rectly follows from Eq. (14).
Note 2. Such a definition of quantum advantage also has lim-
itations. In particular, it ignores the probabilistic nature of the
photon addition (subtraction) operation in (from) the TMSV
state.
Note 3. In presence of low reflectivity, TMSV is found to be
better than the corresponding photon-added and -subtracted
states, having the same signal strength [115]. To match the
signal strength for both the states, the squeezing parameter of
the TMSV, turns out to be higher. This feature is not unique to
QI, but also happens in case of entanglement as well, where
for a given average number photons, the TMSV state gives the
maximal amount of entanglement [81] over any photon-added
(- subtracted) state.

E. Quantum advanatge by varying target reflectivity

In QI protocol, as described in Sec. II, a weakly reflect-
ing target is modelled by a beam splitter of low reflectivity.
Now, the detection scheme may have to cater to various tar-
gets having different reflectivities κ. If κ is low, the efficiency
of the protocol always decreases. In this context, it is inter-
esting to find the trade-off between the low reflectivity and
the enhancement of QI due to non-Gaussianity. In case of the
TMSV state, we find that for κ ≤ 0.001, there is no advantage
over the blind guesses of the target, while non-Gaussian states
can still provide a better detection probabilityQ even for such
a low reflectivity as illustrated in Fig. 4.

For low reflectivity, even the state with photons added only
in the idler mode is unable to provide low CB unless the added
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FIG. 3. (Color Online.) Quantum advantage in the illumination pro-
tocol, ∆ defined in Eq. (23), (vertical axis) vs. n (horizontal axis).
All other specifications are same as in Fig. 2. Both the axes are
dimensionless.

number of photons is n ≥ 4. However, similar to previous
scenarios, single photon addition (subtraction) from the sig-
nal (idler) mode incorporates enough non-Gaussianity to have
a low value of CB. The hierarchy of the non-Gaussian states in
terms of lower error probability is maintained such that pho-
ton subtracted states perform better than states with photons
added in the idler but cannot overpower states with photons
added in the signal mode.

Effect of varying target reflectivity on quantum efficiency.
For a fixed number of photons added (subtracted), we now
compare ∆ obtained from different non-Gaussian states by
varying κ. For reflectivities of the order of 10−2 or higher,
addition of photons in the idler mode, and in both the modes
as well as subtraction of photons from both the modes can
outperform the classical protocol, thereby demonstrating the
quantum advantage (see Fig. 5 where number of photons
added (subtracted) in (from) a single or both the modes is 5).
However, the states having photons added in the signal mode
(subtracted from the idler mode) can never give ∆ > 0 and
thus, it is not suitable as a probe state. Notice, however, that
for extremely low reflectivity, κ < 10−2, neither the TMSV
state nor the non-Gaussian states can provide any quantum ad-
vantage, thereby showing the coherent state-based protocol to
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be good for a single-shot case.

IV. CHERNOFF BOUND VS. QUANTUM ADVANTAGE IN
ILLUMINATION WITH NOISY NON-GAUSSIAN PROBES

In this section, we consider the performance of entangled
states in presence of different kinds of noise in resource states,
as discussed in Sec. II D. Till now, noise is considered as a

strong thermal background, present around the target. Here,
we focus on a situation when the two-mode photon-added and
-subtracted entangled states, admixed with i) local noise, ii)
generated via faulty twin beam generator, iii) having imper-
fect photon addition or subtraction, are used as a probe. We
investigate the behavior of CB as well as quantum advantage
in QI, defined in Eq. (23), for these noisy probes. In spite
of the worsening performance in QI in presence of noise, we
report several advantages exclusive to non-Gaussianity such
as robustness against noise in QI and activation of quantum
advantage in CB.

A. Chernoff bound against local noise in non-Gaussian states

Let us first consider the local noise models given in Eqs.
(19) and (20). The robustness against noise is characterized
by the maximum value of the mixing probability, p = p∗,
in Eq. (19) below which CB is lower than 0.5 (upto numer-
ical accuracy of the order of 10−4). Before moving to the
photon-added and -subtracted states, let us first notice that for
the TMSV state, p∗ turns out to be 0.5 when x = 0.2 while it
reduces to 0.4 for low squeezing strengths, x = 0.05.

1. Enhanced robustness against noise

As photons are added or subtracted from a single mode, ei-
ther from the signal or from the idler, we denote, the maximal
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FIG. 6. (Color Online.) Robustness and activation of CB against
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probes are mixed with local Gaussian noise, given in Eq. (19). The
upper panel represents states with p = 0.9 (which shows activation
of Chernoff bound in case of addition of photons in the idler or signal
mode) while the lower panel corresponds to p = 0.3. Here x = 0.2.
All other specifications are same as in Fig. 2. Both the axes are
dimensionless.

amount of noise, for which the error probability is Q < 0.5,
as p∗. An increasing value of p∗, indicates enhanced robust-
ness to noise, see Fig. 6. We illustrate our results for two ex-
emplary squeezing parameters, x, although the results remain
qualitatively similar for other squeezing parameters:

1. For x = 0.2, when photons are added or subtracted in
the signal or in the idler, p∗ increases to 0.7 from 0.5,
indicating an enhanced robustness. When more pho-
tons are added (subtracted) in a single mode, and when
two mode operations have been employed, p∗ increases
further.

2. Such robustness decreases with the decrease of squeez-
ing parameter of the original TMSV state used for non-
Gaussian operations. For example, when x = 0.05, the
tolerance against noise increases for single mode opera-
tions, increasing p∗ = 0.6 from p∗ = 0.4 in the TMSV
Gaussian state from which non-Gaussian states are cre-
ated, i.e., p∗nG > p∗TMSV . The trend is more prominent
when photons are added (subtracted) in both the modes.

Note. Since µn and νm represent the number of photons in
each mode of the noise, if they increase, so does the average
number of noisy photons, and thus the performance of CB
becomes poor. In case of the Gaussian noise model, the mean
number of noisy photons increases with an increase of σ1 and
σ2 in Eq. (20), thereby providing higher error probability with
the increase of noise.

2. Activation of Chernoff bound via non-Gaussianity

Another interesting feature of non-Gaussianity is that, for
noise strengths that undermine the performance of the TMSV
state such that it is not better than blindly guessing the tar-
get, photon-added and -subtracted states give a reasonable
CB (which is much below than 0.5). It means that the non-
Gaussianity can help to counter the adverse effect of noise
and lead to activation of Q. For example, with x = 0.05, for
local noise, TMSV state cannot outperform the blind guess
probability, p = 0.5, while the states with photons added in
the idler mode, show activation for n ≥ 3 (see Fig. 6 (upper
panel)) and with x = 0.2, n ≥ 2 is enough.

B. Quantum advantage with noisy non-Gaussian probes

In presence of Gaussian noise, we find that the quantum ad-
vantage in terms of positive ∆ cannot not be achieved using
the photon-added and -subtracted states if the noiseless co-
herent and noisy non-Gaussian states possess the same signal
strength. Specifically, in this scenario, ∆(ρ) ≤ 0.

Instead of comparing the performance of noisy non-
Gaussian states with the optimal classical scheme by coherent
states, let us consider a scenario where the signal transmis-
sion line itself is affected by noise and hence any state pass-
ing through it suffers from same amount of noise, i.e., noisy
channel affects both coherent and photon-added (subtracted)
states. When local Gaussian noise acts on it, a coherent state,
transforms in the following way:

ρ = (1− p)|ω〉〈ω|+ p

∞∑
n=0

µn|n〉〈n| (24)

where |ω〉 = e−
1
2 |ω|

2 ∑∞
n=0

ωn√
n!
|n〉〈n| is the coherent state

and µn is given in Eq. (20). The signal strength is then given
by

NS = (1− p)|ω|2 + p
∞∑
n=0

nµn. (25)

When the target is present, the state ρ1 (as in Eq. (8)) reads

ρ1 = e−|ω|
2
∞∑

n,n′=0

∞∑
m=0

n∑
r=0

m∑
s,s′=0

f ({n}, {r}, κ,NB)

|n+m− r − s〉 〈n′ +m− r − s|S (26)

where f ({n}, {r}, κ,NB) has the same form as Eq. (10) with
k = l = 0 and cn = ωn√

n!
. Since the coherent state constitutes

a single mode probe, in the absence of the target, the signal is
lost and all that the detector receives is the background ther-
mal noise i.e., ρ0 = ρT . We evaluate the Chernoff bound for
the noisy coherent state using these expressions.

We compare now the noisy non-Gaussian states with the
corresponding noisy coherent state, i.e., noise effects both
non-Gaussian and coherent states in a similar fashion, so that
the signal strength gets modified in exactly the same way as in
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Eq. (25). For the comparison under the same signal strength,
the choice of the intensity of the coherent light can be chosen
using Eqs. (25) and (22) by

|ω|2 =

∞∑
n=

k−(±k)
2

(n± k) |c(±k,±l)n |2 (27)

which is nothing but the signal strength of the entangled mixed
state given in Eq. (19). It is evident from Fig. 7 that ∆ > 0 for
all non-Gaussian states for a certain range of p. This is due to
the fact that with the increase of noise, the classical resource
is much more affected by the noise and hence its performance
degrades drastically. However, at low levels of noise, the state
with photons added in the signal mode performs poorly as
compared to the classical probe (as shown in Fig. 7 where
∆ of this state becomes positive when p ≥ 0.3, from the neg-
ative value in presence of low noise). With the increase of the
noise strength, all the non-Gaussian resources perform much
better than that of the classical probe until the noise probabil-
ity becomes too large (≥ 0.5) and ∆ starts to decrease again,
although remaining positive. Thus we demonstrate that under
the destructive effect of noise, the non-Gaussian probes are
more robust than the noisy classical probes having the same
signal strength, thereby exhibiting quantum advantage. In this
scenario, the state with photons added in both the modes con-
stitutes the most robust resource. The results remain qualita-

tively similar even when the squeezing strength, x is moder-
ately small.

C. Effects of faulty twin beam generator on quantum
efficiency

As described in Sec. II D 2, we consider the effects of faulty
twin beam generator which produces TMSV with x′ < x
(where x is the promised squeezing strength) on CB. Notice
that a similar investigation can be carried out with x′ > x
which we are not considering since states with higher squeez-
ing are typically hard to prepare compared to those with lower
one. The Chernoff bound for the non-Gaussian states is cal-
culated for squeezing parameter x, thereby yielding αx as its
optimal parameter. However, due to faulty twin beam genera-
tor, we obtain the TMSV state having squeezing x′ which we
are unaware of. Hence during computation of CB, we apply
optimal αx in Eq. (15), instead of αx′ , thereby leading to a
higher error probability compared to that obtained via x. We
refer it as Q̃. Notice here that CB increases, with the decrease
of x of TMSV, thereby increasing the probability of error.

We now consider a non-Gaussian state with squeezing x′

and show that it can offer a lower Q̃, i,e., a better detection
probability, even with an inefficient protocol. Specifically, for
a fixed x, the minimum error probability of discriminating tar-
gets, quantified by Q increases with the increase in the differ-
ence between x and x′.

For x = 0.05, in our analysis, we obtain that CB decreases
for all non-Gaussian states irrespective of the number of pho-
tons added (subtracted), provided x − x′ ≤ 0.035, as shown
in Fig. 9. On the other hand, when x − x′, increases and
it is ≥ 0.035, we observed that Q almost remains fixed to
0.5, even for a moderate number of photons added in the idler
mode, thereby showing no improvement in error probability
with non-Gaussianity.

Quantum advantage due to faulty twin beam generator. For
this analysis, let us fix x = 0.05 and choose various values
of x′ < x. Here we consider coherent states with NS corre-
sponding to x, since x′ is an artefact of the faulty device and
beyond the scope of the experimentalist. As illustrated in Fig.
9, in presence of low faulty twin-beam generator, i.e. when
x−x′ < 0.03, the positivity of ∆ guarantees the quantum ad-
vantage by the photon-subtracted and the photon-added states
in the idler mode while addition of photons in both the modes
and in the signal modes fail to show any advantage. The bene-
ficial nature of non-Gaussian states disappears with the slight
increase of x− x′. Notice also that the results remain similar
for other values of squeezing parameter.

D. Condition for quantum advantage with imperfect photon
addition or subtraction

Let us demonstrate the case when the photonic operations
are imperfect, and non-Gaussianity still continues to provide
improvements in QI. To demonstrate it, we consider imper-
fect subtraction of photons with k = l = 2 and m ≤ 2,
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in accordance with Sec. II D 3. Thus we have a two photon
subtracted state, mixed with a single photon subtracted state
and the Gaussian TMSV state as the probe in the illumination
scheme which reads as

ρ̃ = pρ2 + p′ρ1 + p′′ρTMSV (28)

with p + p′ + p′′ = 1. Here ρi represents the state where ith
number of photons have been subtracted from both signal and
the idler modes.

It is seen that, even with imperfect probe generation, the
CB is always lower than that with the Gaussian state, i.e.,
Q(ρ̃) > Q(ρTMSV ). We consider three probabilities, p–
corresponding to the perfect two photon subtracted state, p′–
for the single photon subtracted state and p′′–for the TMSV
state respectively. For our investigation, we set a fixed value
of p′′ and vary p, with p′ being determined by the normaliza-
tion condition in Eq. (28). As the probability of obtaining the
required state decreases, the CB monotonically increases, as
is evident form the bottom panel in Fig. 10. Moreover, we
notice that as long as the desired perfect state has p ≥ p′′, the
CB possess a lower value than that obtained for the photon-
added state in a single mode. Therefore, even if the required
non-Gaussian state is obtained with a very small probability,
its mere presence is enough to ensure a low error probability
for discriminating targets.

Deterioration of the performance of QI under imperfection.
Comparing the performance of non-Gaussian states with that
of a coherent state having the same signal strength, we find
that even if the photon subtraction mechanism is imperfect,
the resulting state can always beat the classical limit, as de-
picted in the top panel of Fig. 10 by the positive values of
∆. However, such states can never perform better than the
perfect two photon- and a single photon-subtracted states. As
the probability, p′′ of generating the TMSV state, due to the
imperfection of the apparatus, increases, the illumination effi-
ciency falls considerably, thereby implying that even a highly
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imperfect photon subtraction protocol can yield substantial
quantum advantage. Our results indicate that photon subtrac-
tion is an efficient process to obtain quantum advantage over
the coherent state even if the state generation process is not
perfectly optimal. Notice that in case of photon addition, such
an advantage cannot be seen.

V. PROBABILISTIC IMPROVEMENTS VIA
NON-GAUSSIANITY

In this section, we employ another procedure to compare
the efficiency of QI method by Gaussian and non-Gaussian
states. In particular, we consider the indefiniteness involved
in the photon addition and subtraction operations in which
a fewer number of non-Gaussian states are distilled from a
higher number of TMSV states. This is different from the
imperfection in the photon addition (subtraction) mechanism
(Sec. IV D), as we will discuss shortly. Our comparison
scheme in the first subsection takes into account of the in-

determinacy in the photon addition and subtraction process,
both in presence and absence of noise. Moreover, we com-
pute bipartite entanglement and mutual information towards
identifying the physical properties responsible for obtaining
quantum gain in illumination.

A. Inefficient non-Gaussian apparatus

Photon addition and subtraction are not deterministic pro-
cesses (cf. [92] and references therein). Due to inefficiency
of the non-Gaussian protocol, the desired photon-added or -
subtracted state may be produced only with a certain prob-
ability. This means that to produce M

′
copies of a non-

Gaussian state, we need M copies of the TMSV resource,
with M > M

′
. Therefore, it can be argued that compar-

ing the QI performance of photon-added or -subtracted states
with the same number of TMSV states is incorrect (unless
they are treated as independent states and the comparison is
made under fixed signal strength). If the overall efficiency of
the photonic operation is η, then we have M

′
= ηM copies

of a non-Gaussian state having started with M copies of the
TMSV state. Note that the probability η can be interpreted
as the efficiency of the apparatus implementing a particular
photonic operation. Hence the correct comparison has to be
made between M copies of the TMSV and M

′
= ηM copies

of the non-Gaussian state. In this section, we try to illustrate
that, even if the apparatus is not a 100% efficient in preparing
photon-added and -subtracted states, non-Gaussianity can of-
fer added advantage in the illumination protocol, as compared
to the TMSV states’ performance. In particular, we find out
the minimum efficiency η required to extract quantum advan-
tage. This analysis is different from that of imperfect addition
(subtraction) of photons discussed before. In case of imperfect
non-Gaussian mechanism, a mixed state is always produced,
which has states with varying number of added (subtracted)
photons with different probabilities. However, in case of inef-
ficient non-Gaussian protocol, we always obtain a pure state
as the probe, albeit with a probability η which is less than
unity.

The main idea is to find the minimum number of non-
Gaussian states (M

′
), which can outperform M copies of the

TMSV state. Equivalently, we are able to calculate the min-
imum probability of success (η) of the non-Gaussian appara-
tus. As mentioned before, we now try to find the minimum
efficiency which the non-Gaussian apparatus must have, so
that, on obtaining a less number of output states, we can beat
the protocol of a greater number of input Gaussian states. In
that case, instead of using M copies of the TMSV state, we
can feed them to the apparatus, thereby receiving ηM copies
of the photon-added (-subtracted) state, and then use these
probes for a more efficient illumination protocol. This illus-
trates the power of non-Gaussianity, where a smaller number
of non-Gaussian states can help to achieve better error proba-
bility of target detection, in contrast to the TMSV states.

To calculate the minimum efficiency required by the appa-
ratus, so that quantum advantage is achieved over the TMSV
state, we compute the minimum value of η which satisfies the
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FIG. 11. (Color Online.) Minimum operational efficiency (η) re-
quired (ordinate) to create states with n added (subtracted) photons
(abscissa) which can outperform a higher number of Gaussian states
with (x = 0.2), given in Eq. (29). (Upper panel) The probes are
noisy mixed states with p = 0.3 and Gaussian noise parameters
σ1 = σ2 = 1 in Eq. (19). (Lower panel) The probes are pure
non-Gaussian states. All other symbols used here are same as in Fig.
2. Both the axes are dimensionless.

following:

(Qopt)MTMSV = (Qopt)ηMnon−Gaussian (29)

whereQopt is the Chernoff bound in Eq. (14). When the pho-
tonic operation fails, which does with a probability of 1 − η,
we are left with a junk state which is useless for any informa-
tion processing purpose.

Our results indicate that the minimum operational effi-
ciency required by the non-Gaussian apparatus, decreases
with the increase in the number of photons added or sub-
tracted. This is also consistent with experiments, since it is
more difficult to introduce higher non-Gaussianity in a state
(see Fig. 11). It turns out that addition of photons to the idler
mode demands the most efficiency while subtraction of pho-
tons from both the modes succeeds the former type of states,
followed by addition of photons in the signal mode. Thus in-
stead of subtracting photons from both the modes, we can deal
with addition of the same to the signal mode to obtain a low
CB.

1. Enhancement of robustness against noise

We now try to address whether the enhancement features
of non-Gaussianity obtained in the case where TMSV was ad-
mixed with local Gaussian noise in Sec. IV A, persist when

the indeterministic nature of photonic operations are consid-
ered while calibrating the performance of QI.

Let us illustrate this via an example. Consider a noisy
TMSV state of the form in Eq. (19) with x = 0.2 and
p = 0.3. In this configuration, the TMSV continues to provide
Qopt < 0.5. When photons are added or subtracted prob-
abilistically, we report in Fig. 11, the minimum efficiency
required for such a process to decrease Qopt over the TMSV
value. Interestingly, we can observe that the non-Gaussian
states can beat the TMSV state with even less efficiency of
production when inherent noise is present in the probe states
compared to the noiseless scenario. Therefore, in the presence
of local Gaussian noise, there is an improvement in decreas-
ing error probability in presence of non-Gaussianity over the
noiseless case.

2. Probabilistic activation of quantum advantage

Like activation reported in Sec. IV A 2, we now investigate
the possibility of activation when the probabilistic nature of
photonic operations is considered. To do that, we again con-
sider the noisy TMSV state as in Eq. (19) with x = 0.2, but
this time with p > p∗ = 0.5. The choice p > p∗ ensures
that the noisy TMSV state does not provide any advantage in
decreasing CB.

Interestingly, since the initial state from which non-
Gaussian states are produced is useless for quantum illumi-
nation, and our analysis in Sec. IV A 2 suggests that non-
Gaussian states corresponding to the parent TMSV state are
beneficial, we clearly see that we can obtain probabilistic ac-
tivation of quantum advantage for any non-zero efficiency of
the photonic operations. The probability of getting a ”useful”
state for QI from the initial “useless” TMSV state is equal
to the efficiency of the photon addition (subtraction) process.
Our analysis clearly demonstrates how updating the interpre-
tation of quantum advantage changes the nature of the en-
hancements obtained in QI.

B. Role of correlations on quantum illumination

We now investigate the role of correlations between the
two modes of the probe state on the illumination protocol
– mutual information (MI) [116–118] which is defined as
MI = S(ρA) + S(ρB) − S(ρAB) for a two-mode state
ρAB where S(ρ) denotes the von-Neumann entropy of a quan-
tum state, and entanglement present per signal photon in the
probe states. In our analysis, entanglement for mixed state
is quantified via logarithmic negativity [119, 120], defined as
LN = log2(2N(ρAB) + 1), where N(ρAB), known as nega-
tivity, is the sum of absolute value of the negative eigenvalues
of the partial transposed version ρTAAB of the two-mode state.
Let us carry out the investigation for the noisy probes as spec-
ified by Eq. (19).

We find that the Gaussian TMSV state possess the max-
imum amount of correlation, both in terms of MI/Ns and
LN/Ns as depicted in Fig. 12. This may be an indication
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FIG. 12. (Color Online.) Correlations per signal photon (ordinate)
against Gaussian noise strength, p. (Upper panel) Mutual informa-
tion (MI) and (lower panel) logarithmic negativity. Diamonds cor-
respond to TMSV states and other legends are same as in Fig. 2. For
all non-Gaussian states, the number of added (subtracted) photons in
each mode is n = 5.

of such a state being the optimal probe for the illumination
purposes [81]. Interestingly, among the non-Gaussian states,
the states with photon added in the idler and the ones
with photons subtracted from both the modes have higher
correlation with respect to p per signal photon than that of the
states having photon addition in signal and in both the modes.
Specifically, non-Gaussian states which cannot furnish any
quantum advantage over coherent states having the same Ns
lie at the bottom of our figure. Moreover, as expected, QCs
decay with the increase of noise. Therefore, a hierarchy in
QCs observed in Fig. 12 is in a good agreement with the
quantum advantage obtained for the QI process, thereby
connecting the inherent property of the quantum states with
the illumination.

Interestingly, unlike most other quantum information pro-
tocols, it is not clear whether the entanglement content of the
state leads to the quantum advantage in QI. In particular, we
know that for QI with the TMSV state, in the limit of large sig-
nal strength, the quantum advantage vanishes [49], although
the entanglement content, E, of the pure state quantified by
the von-Neumann entropy of local mode (entanglement en-
tropy), diverges. We now check how the normalized version,
E/NS , behave under the large NS limit. For the TMSV state,
|ψr〉, we know

E(|ψr〉) = cosh2 r log cosh2 r − sinh2 r log sinh2 r,

(30)

Since NS(|ψr〉) = sinh2 r, entanglement reduces to

E = (NS + 1) log(NS + 1)−NS logNS . (31)

Moreover, using Eq. (30), we have

lim
NS→∞

E

NS
= lim
r→∞

coth2 r log cosh2 r − log sinh2 r = 0.

(32)

We know that for a given NS , the TMSV provides the max-
imal entanglement since its reduced subsystems are thermal.
Recall, the thermal states are the ones that yield the maximum
entropy for a given temperature (average number of photons),
and, therefore, for a fixed signal strength, the entanglement
entropy content of the TMSV state is maximal among all other
pure states. For any other state with a given value of NS , the
entanglement content, E′ satisfies

E′ < (NS + 1) log(NS + 1)−NS logNS = E. (33)

Consequently, from Eq. (32), we can see that in the asymp-
totic limit,

lim
NS→∞

E′

NS
= 0. (34)

Physically, NS value is highly dependent on the reflectivity,
κ, and the number of copies, M used in QI. For example, in
the case of the TMSV, NS = 1 can be considered large for
M = 1000 and κ = 0.1, while for the same value of κ but
M = 1, NS have to be taken to much higher value than unity
to be considered as “large.”

Nevertheless, we clearly observe that unlike entanglement,
the normalized version of it provides consistent results in
the asymptotic case as well, and for large signal strengths,
it clearly predicts vanishing quantum advantage for any state
considered for QI. When one couples this fact with its accurate
predictions of hierarchies of states based on the scale of quan-
tum advantage, the normalized version of correlations make a
strong case for themselves on having a deep connection with
the quantum advantage obtained in the QI protocol.

VI. CONCLUSION

By exploiting the “weird” features of quantum mechan-
ics, especially quantum correlations in the joint system, it
was demonstrated that the performance in the detection of a
weakly reflecting target immersed in a noisy environment can
be improved, and was named as quantum illumination (QI).
It is in some sense the quantum version of the radar. Since
its inception, theoretical studies have come a long way and
several efforts have been made to identify regimes for effi-
cient implementation of the theory in order to achieve maxi-
mal quantum advantage. Several experiments have also been
performed both in optical and microwave regimes exhibiting
quantum advantage in illumination.

One of the most recent endeavors in the theoretical front is
to use non-Gaussian states for quantum illumination. Since
non-Gaussian states possess a high amount of quantum corre-
lations, thereby becoming useful in several quantum informa-
tion processing tasks which Gaussian counterparts fail to do,
such an extension is natural. In our work, the non-Gaussian
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states are obtained by adding or subtracting photons from the
two-mode squeezed vacuum state, an efficient mechanism to
generate non-Gaussian states experimentally. Our aim was to
categorize non-Gaussian states based on their performance in
quantum illumination which, in turn, reduces to the discrimi-
nation of two states.

Motivated from the study of entanglement in continuous
variable systems, one of the ways in which the performance
of the photon-added and -subtracted states can be analyzed is
by comparing the Chernoff bound of non-Gaussian states with
the Chernoff bound offered by the two-mode squeezed vac-
uum (TMSV) state from which they are obtained. Based on
such comparison, the non-Gaussian states ubiquitously pro-
vide better performance, both in presence and absence of
noise. On the other hand, a suitable quantity to quantify quan-
tum advantage in QI is to compare Chernoff bounds between
the given state and the coherent state having an equal sig-
nal intensity. In particular, it is defined as the difference be-
tween the Chernoff bounds of the coherent state and the given
state under consideration for a fixed signal strength. Among
the considered non-Gaussian states, photon-subtracted states
from both the modes and states with photons added only in the
idler mode (equivalently, subtraction of photons performed
in the signal mode) turned out to be beneficial for obtaining
quantum advantage in QI in absence of noise.

In any experimental implementation, noise is inevitable,
and in our work, effects of different noisy probe states gener-
ated via different imperfections on the illumination procedure
are investigated. Considering local noise, modeled by Gaus-
sian distributions, we found that if the signal transmission
line equally affects both the non-Gaussian and coherent states
having equal signal strength, unlike a noiseless scenario, all
non-Gaussian states give quantum advantage. Specifically,
in presence of certain critical noise values, benefits via non-
Gaussian states increase with the increase of noise. In addi-
tion, we considered faulty twin beam generators producing
two-mode squeezed states having lower squeezing strength
than the promised one, as well as imperfect photon addition
and subtraction mechanisms. In all these situations, photon-
subtraction in both the modes and in the signal mode always

give improvements in QI.
The final aspect that we discussed involves inefficiencies

in the apparatus required in the photon addition and subtrac-
tion protocol. One of the principal issues is that the desired
non-Gaussian states cannot be produced deterministically. In-
stead, we obtain the same only with some limited probability,
while rest of the time, the states which we obtain are unus-
able. In such a situation, we derived the minimum efficiency
required by the machine so that the probabilistic non-Gaussian
states still outperforms the protocol with the TMSV state. We
showed that, as the states incorporate more and more non-
Gaussianity, the required efficiency of the machine decreases.
Thus, we provided an effective routine to use the available re-
sources in order to construct a better detection protocol. All
these results demonstrating superiority of quantum states in
the illumination process are also shown to be connected with
the correlations present in the probe states.

We believe that our analysis provides a consistent way to
analyze quantum illumination with non-Gaussian states, es-
pecially when imperfections are affecting the process. More-
over, our work provides an appropriate platform for classify-
ing Gaussian and non-Gaussian states based on their perfor-
mance in quantum illumination.
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[8] R. Demkowicz-Dobrzański, A. Sen(De), U. Sen, and

M. Lewenstein, Phys. Rev. A 80, 012311 (2009).
[9] A. Sen(De), U. Sen, and M. Żukowski, Phys. Rev. A 68,
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