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We design a quantum battery made up of bosons or fermions in an ultracold atom setup, described by Fermi-
Hubbard (FH) and Bose-Hubbard (BH) models respectively. We compare the performance of bosons as well
as fermions and check which can act more efficiently as a quantum battery for a given on-site interaction and
temperature of the initial state. The performance of a quantum battery is quantified by the maximum power
generated over the time evolution under an on-site charging Hamiltonian. We report that when the initial battery
state is in the ground state, fermions outperform bosons in a certain configuration over a large range of on-site
interactions which are shown analytically for a smaller number of lattice sites and numerically for a considerable
number of sites. Bosons take the lead when the temperature is comparatively high in the initial state for a longer
range of on-site interaction. We perform the study of a number of up and down fermions as well as the number
of bosons per site to find the optimal filling factor for maximizing the power of the battery. We also introduce
disorder in both on-site and hopping parameters and demonstrate that the maximum power is robust against
impurities. Moreover, we identify a range of tuning parameters in the fermionic as well as bosonic systems
where the disorder-enhanced power is observed.

I. INTRODUCTION

In recent years, tremendous efforts have been devoted to
decorate the avenue of quantum technologies which include
the development of miniaturized quantum devices [1], indis-
pensable in various practical purposes. Such quantum gadgets
are shown to outperform the existing classical ones in different
sectors ranging from metrology [2], cryptography [3], cyber-
security, to data analysis and computing [4]. The technolog-
ical progress towards realizing efficient and smaller devices
automatically drives the system in the field of quantum me-
chanics. In this respect, microscopic thermodynamic devices
are also shown to provide a remarkable precision in thermom-
etry [5], thereby contributing to the field of quantum thermo-
dynamics [6, 7]. To explore and model the quantum thermal
machines such as quantum refrigerators[1, 8–12], quantum
batteries[13–23], modified definitions of work, heat, and en-
tropy are introduced that can take into account the effects of
quantumness in the system.

The behavior of traditional chemical batteries that can store
energy is purely classical in nature, and hence cannot be used
in quantum mechanical apparatus. With this requirement,
Alicki and Fannes first proposed the concept of quantum
battery (QB) [13], a d-dimensional quantum mechanical
system composed of N non-interacting subsystems which
are able to store energy for future use and can efficiently be
charged by global entangling operations. After the initial
proposal, several interesting works were reported [23] which
include quantum batteries with dicke state [24, 25], the role
of entanglement-production in the process of work-extraction
[16, 26], the effects of decoherence on quantum batteries
[22, 27]. On the other hand, interacting spin systems com-
posed of spin-s particles can also be used to design QBs
which can be charged via local magnetic field [18, 28, 29]. In
a similar spirit, the nearest-neighbor hopping interaction of a
spin chain acted as a battery and coupled with a cavity mode
is shown to enhance the capability of storing energy in the
system [15]. More importantly, quantum batteries are shown
to be realized in different platforms like solid-state systems
where each of the two-level systems are either enclosed in

a single cavity or the ensembles of two-level systems is in
a single cavity [24, 30], and superconducting circuits which
can be charged by using external magnetic field [31].

In this work, we propose to design a quantum battery with
a one dimensional Hubbard model, realizable via cold atoms
in an optical lattice, where the lattice is filled up with either
fermions or bosons, well-described by the Fermi-Hubbard
(FH) and the Bose-Hubbard (BH) [32–35] models respec-
tively (see Fig. 1). Specifically, the initial state of the battery
is prepared as the ground or the canonical equilibrium states of
the FH and the BH models while the charging of the battery
can take place by tuning the strength of the on-site intraatomic
interactions. It is important to stress here that in all the afore-
mentioned proposals of QBs, the subsystems are distinguish-
able as their positions are fixed in space while in the current
proposal, the particles can hop from one lattice site to others
and as a consequence become indistinguishable within the lat-
tice system. We also know that both the models possess rich
phase diagrams having phases like mott insulator, superfluid,
superconducting, Fermi liquid [32, 36, 37], and density-wave,
Haldane insulator phases in the extended BH model [38, 39]
and hence such a study may establish a new connection be-
tween physical properties of the bosonic as well as fermionic
systems and quantum thermodynamics.

A comparative study carried out between the FH and the
BH models reveal that the fermionic batteries with more than
two lattice sites can generate a higher amount of power than
that of the bosonic systems provided the repulsive or attractive
on-site interactions are suitably tuned by varying the scatter-
ing lengths and the initial state of the battery is at the zero tem-
perature with half-filling. The hierarchy gets reversed, i.e., the
batteries made up of BH models demonstrate advantage over
the FH ones, when the initial state is prepared at a finite and
high temperature. We also illustrate that apart from the ratio
between the intraatmoic on-site and the interatomic hopping
interactions, the patterns of the power output also depend on
the even or odd lattice sites in both models. For a fixed lattice
site, we optimize the maximum average power output over
configurations allowed for fermions and bosons where in the

ar
X

iv
:2

10
9.

06
81

6v
1 

 [
co

nd
-m

at
.q

ua
nt

-g
as

] 
 1

4 
Se

p 
20

21



2

latter case, we also fix the particles per site and observe that
the optimized power decreases (increases) with the increase of
lattice sites (the increase of the particles per site) for fermions
(bosons).

With the significant advancement in experiments with dif-
ferent physical substartes, the disordered quantum systems
[40–44] are of great interest to study since it is almost impossi-
ble to prepare a system avoiding the impurities in laboratories.
Although, intuitively, disorder detrimentally affects the char-
acteristics of the quantum systems and hence the performance,
it was shown to be not true [18, 29, 45–52], i.e., certain fea-
tures of the quantum system are found to get enhanced even
in presence of impurities. Moreover, disordered systems show
a lot of counter-intuitive phenomena which include Ander-
son localization [53], many-body localization which pinpoints
the distinction between thermalization and localized phase
[54–57], high-temperature superconductivity [58] to name a
few. Interestingly, cold atomic systems turn out to be one of
the experimental-friendly platforms where disordered systems
can be realized and engineered. In this respect, we show that
the quenched power outputs are robust against random hop-
ping and random the on-site interactions in both FH and the
BH models. In case of disorder introduced in hopping, we
report that there is a regime of the hopping strength in which
both bosonic and fermionic disordered systems can produce
higher maximal power than that of the ordered ones which we
refer to as the disorder enhanced power. The randomness in
hopping and on-site interactions are chosen from Gaussian as
well as uniform distributions with a fixed mean and standard
deviations and both types of randomness can be realized in
cold atomic setup.

The paper is organized in the following manner. The de-
sign of the quantum battery based on Hubbard models and
their charging processes are introduced in Sec. II. In the next
section (Sec. III), the performance of the QB and the com-
parative studies between bosonic and fermionic systems are
carried out. In Sec. IV, the effects of the filling factor and
the temperature of the initial state are investigated while the
disordered BH and FH models are considered as batteries in
Sec. V. Finally, the concluding remarks are discussed in Sec.
VI.

II. MODELLING OF QUANTUM BATTERY USING
HUBBARD HAMILTONIANS

We model a quantum battery as the one-dimensional Hub-
bard Hamiltonian (see Fig. 1 for schematic represnetation)
with L lattice sites filled with fermions or bosons, known
as Fermi-Hubbard and Bose-Hubbard models respectively
which can be engineered in the laboratory with cold atoms
in optical lattices [32, 33]. Such a study also identifies the
regime where fermionic systems show a better performance
as a QB than that of the bosonic ones and vice-versa.

Model of the battery. The initial state of a quantum bat-
tery [13, 18, 28] is taken as the ground state or the canonical

equilibrium state i,e., ρth = e−β
′Hµ
B

Z , (µ = f, b) of the Fermi-
Hubbard or Bose-Hubbard Hamiltonian, Hµ

B , where the su-

FIG. 1. (Color Online.) Schematic representation of a quantum
battery based on one-dimensional Fermi-Hubbard Hamiltonian with
and without disorder with L lattice sites. Hf

c in Eq. (3) is used to
charge the battery. As shown in the paper, similar modelling of QB is
also possible with Bose-Hubbard system. The robustness observed
in the performance of the QB against Gaussian as well as uniform
disorder in the on-site interactions as well as in the hopping terms
are also reported.

perscripts represent fermionic or bosonic systems. Here β′ =
1

kBT
with kB being the Boltzmann constant, T being the abso-

lute temperature and the partition function, Z = Tr(e−β
′HµB ).

When the lattice sites are occupied with fermions, Fermi-
Hubbard Hamiltonian can be represented as

Hf
B = −

∑
<ij>,σ

Jfijc
†
iσcjσ + h.c+

∑
i

Ufi ni↑ni↓. (1)

Here Jfij is the hopping strength between the sites, i and j,
where 〈ij〉 indicates that the nearest-neighbor hopping is only
allowed, and Ufi is the on-site interaction on the site i of
fermions which can be repulsive as well as attractive. ciσ
(c†iσ) is fermionic annihilation (creation) operator obeying the
canonical anti-commutation relations, {ciσ, c†jσ′} = δijδσ,σ′ ,
{ciσ, cjσ′} = 0 and {c†iσ, c

†
jσ′} = 0, and niσ = c†iσciσ is the

number operator on the site i having spin σ.
Instead of fermions, when the lattice sites are filled with

bosons, the Bose-Hubbard Hamiltonian reads as

Hb
B = −

∑
<ij>

Jbijb
†
i bj + h.c+

∑
i

U bi
2
ni(ni − 1), (2)

where Jbij and U bi are the hopping strength from site i to j and
the on-site interaction strength at the i-th site respectively, and
bi (b†i ) is bosonic annihilation (creation) operator following
the standard canonical commutation relations for bosons.

Charging. In order to charge the system, we construct the
charging Hamiltonian for fermions and bosons respectively as

Hf
c = Ufc

∑
i

ni↑ni↓, and Hb
c =

U bc
2

∑
i

ni(ni − 1). (3)

Here Uµc is the charging strength and in general, Uµc 6= Uµ.
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Quantifying performance. By employing cyclic unitary op-
erations, Uc = exp(−iHµ

c t), such that ρ(t) = Ucρ(0)U†c , with
ρ(0) being the initial state of the QB, the total amount of en-
ergy that can be stored as well as extracted from the QB (the
work output) at time t reads as

Wµ(t) = Tr(Hµ
Bρ(t))−Tr(Hµ

Bρ(0)), (4)

where the first and the second terms in Eq. (4) are the final
and initial energies of the system respectively. Notice that the
maximum amount of extractable work from the quantum bat-
tery in terms of ergotropy coincides with the above in case of
reversible unitary process. Moreover, the maximum average
power output from the battery at time t, is quantified as

Pµmax = max
t

Wµ(t)

t
. (5)

Throughout the paper, we will use Pµmax as the figure of merit
for determining the performance of the QB. Notice also that
Pµmax = 0 when the hopping term of the QB vanishes.

Scaling. By increasing the numerical value of Uµi , and
Jµi (µ = f, b), of Hµ

B , one can generate more and more ex-
tractable power output from the quantum battery. Moreover,
for comparing batteries with bosons and fermions, we normal-
ize the Hamiltonians as

1

Emax − Emin
[2Hµ

B − (Emax + Emin)I]→ Hµ
B , (6)

which has a bounded spectrum, [−1, 1], irrespective of the
values of the system parameters and bosons or fermions with
Emax andEmin being the maximum and the minimum eigen-
values of Hµ

B .

III. PERFORMANCE OF QB FOR ARBITRARY NUMBER
OF LATTICE SITES: COMPARING BOSONS WITH

FERMIONS

Let us now concentrate on a hierarchy among QBs based
on BH and FH models according to their performance. We
start with two lattice sites and then investigate the trends of
the power output for arbitrary lattice sites. In this section, the
number of particles is same as the number of lattice sites.

Two-lattice sites: Equivalence between bosonic and fermionic
systems

First consider a scenario when two particles occupy a lat-
tice having two sites. In this situation, the work output can
be found analytically both for bosons and fermions and their
relation is as follows.

Proposition 1. The average work outputs for BH and FH
models coincide for a lattice with two sites occupied by two
particles if the values of on-site interactions, hopping and
charging strengths are identical, and the initial state of the
battery is prepared as the ground state of the Hamiltonian.

Proof. The two-sites Fermi-Hubbard model occupied with
two fermions has four basis states. Generically, the Fock state
bases are defined as |x1y2〉↑|z1w2〉↓. Here {x1, y2, z1, w2} ∈
(0, 1), where 0 denotes the situation when the lattice site is
not occupied by fermions while 1 is when the fermion occu-
pies the lattice site and subscripts denote the lattice sites which
we drop now on and we will use only the binary method to in-
dicate the entire configuration. In this basis, the normalized
Hamiltonian reads as

Hf
B =

1√
16Jf

2
+ Uf

2


Uf −2Jf −2Jf 0
−2Jf −Uf 0 −2Jf

−2Jf 0 −Uf −2Jf

0 −2Jf −2Jf Uf

 ,
while the ground state Hf

B as the initial state of the battery is
given by

ρ(0) =



1
4 (1− a) b b 1

4 (1− a)

b 1
4 (1 + a) 1

4 (1 + a) b

b 1
4 (1 + a) 1

4 (1 + a) b

1
4 (1− a) b b 1

4 (1− a)


, (7)

where a = Uf√
16Jf 2+Uf 2

and b = Jf√
16Jf 2+Uf 2

. The charging

Hamiltonian in the Fock basis reduces to

Hf
c = Ufc (|1010〉〈1010|+ |0101〉〈0101|) (8)

which is used upto a certain time t to charge the battery, re-
sulting to an evolved state,

ρ(t) =



1
4 (1− a) be−itU

f
c be−itU

f
c 1

4 (1− a)

beitU
f
c 1

4 (1 + a) 1
4 (1 + a) beitU

f
c

beitU
f
c 1

4 (1 + a) 1
4 (1 + a) beitU

f
c

1
4 (1− a) be−itU

f
c be−itU

f
c 1

4 (1− a)


. (9)

The work output in this case simplifies as

W f (t) =
Jf

2

Jf
2

+ (Uf )2

16

(1− cos
(
tUfc

)
). (10)

Following the same prescription, we also calculate (for de-
tailed calculation, see Appendix-A) the total work output con-
sidering BH model for the same time interval t,which is given
by

W b(t) =
Jb

2

Jb
2

+ (Ub)2

16

(1− cos
(
tU bc
)
). (11)

Hence, if Jf = Jb, Uf = U b and Ufc = U bc , the average
work output in both the cases are same.
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FIG. 2. (Color Online.) (a) Power output, P fmax, (ordinate) with respect to Uf/Jf (abscissa) of the battery constructed via the Fermi-Hubbard
model. (b) P bmax (ordinate) Ub/Jb (abscissa) for bosonic systems. The system is half-filled in both the cases and the initial state of the battery
is the ground state of the system. In case of Bose-Hubbard model, at most two bosons per sites are only allowed. The charging of the battery
is performed by using on-site interaction with the strength being Ufc = Ubc = 2. Different lines correspond to different number of lattice sites,
L. Both the axes are dimensionless.

Arbitrary number of lattice sites: Boson vs. Fermions

Let us now move further and consider a lattice having site
more than two. First we consider three sites occupied by three
particles, bosons or fermions. Unlike the previous case, we
establish a hierarchy between batteries with bosons and with
fermions.

Proposition 2. The battery composed of three lattice sites
filled with three fermions is better in terms of the work out-
put than that of the bosonic systems in the absence of on-site
interaction of the battery Hamiltonian, provided the charg-
ing strength of the on-site interactions for both fermions and
bosons are same, i.e., Ufc = U bc = Uc .

Proof. Following the same procedure (see Appendix-B) as in
the previous proof, we calculateW f (t) andW b(t) for a lattice
with sites, L = 3, occupied with three fermions, and three
bosons governed by FH and BH respectively, having Uµ =
0, µ = f, b. If the value of the charging strength for both the
cases are identical, the difference between the work output
turns out to be

W f (t)−W b(t) = 0.13(1− cos(tUc)), (12)

which is positive and hence the proof.

The Proposition 2 indicates that the increasing value of lat-
tice sizes and the number of particles can have significant ef-
fects on the power output for these two models. In partic-
ular, identifying parameter range where the FH-battery out-
performs the BH ones can be an interesting question to ad-
dress with L ≥ 3. Towards the aim, the initial battery-state is
considered to be the ground state of the FH lattice filled up
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FIG. 3. (Color Online.) Bosonic vs. fermionic QBs. Per-
formance score, ∆f−b

P = P fmax − P bmax (vertical axis) against
U/J = Ub/Jb = Uf/Jf (horizontal axis). All other specifications
are same as in Fig. 2. Both the axes are dimensionless.

with Nf
↑ = bL/2c + L(mod 2) and Nf

↓ = bL/2c fermions
where total number of fermions, L = Nf = Nf

↑ +Nf
↓ while

the BH-battery is occupied with N b = L number of bosons
with 2 particles per site, i.e., a single site can occupy at most
two bosons – distribution of fermions and bosons in this way
is called half-filling. We will lift the restriction of particles
per site in the succeeding section. In the rest of the paper, we
carry out our analysis of Pµmax by varying Uµ/Jµ, (µ = f, b)
since the various phases like Mott-insulator, superfluid, Fermi
liquid and quantum phase transitions can successfully be de-
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U/J , denoted by (U/J)critical (y-axis) above which the batteries
build with the BH model can store more energy than that of the
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dimensionless.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

-4 -2  0  2  4

P~
f m

a
x

U
f
/J

f

L=2

L=3

L=4

L=5

L=6

L=7

FIG. 5. (Color Online.) Variation of P̃ fmax (see text for the defini-
tion)) (ordinate) vs. Uf/Jf (abscissa). Notice that the symmetry
missing around Uf/Jf = 0-line in Fig. 2 for odd lattice sites can be
attained by considering the quantity P̃ fmax obtained after maximizing
over configurations. Both the axes are dimensionless.

scribed in the different limits of this ratio. Moreover, in the
entire calculation, we take the strength of the charging field as
Ufc = U bc = 2. Notice, however, that with the increase of the
charging on-site interactions, the power gets enhanced. It can
also be understood from the expressions of work in Eqs. (10),
(11) and (12) which clearly show that the maximum power is
obtained for small time when one increases Uµc .

Contrasting trends for FH- and BH-batteries. The pat-
terns of Pµmax with Uµ/Jµ for a paradigmatic example of
half-filling of lattice sites both for fermions and bosons are
depicted in Fig. 2 and we observe that the contrasting behav-
ior emerges for bosons and fermions – (1) the FH-based bat-
tery produces more power output than that of the BH model
almost in the entire range of Uµ/Jµ. We will determine the

 1
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FIG. 6. (Color Online.) P̃ bmax (vertical axis) vs. Ub/Jb (horizontal
axis) for the BH model-based battery. Different lines corresponds
to different values of particles per site (ps) which can go at most n.
Here L = 4. The optimization involved in P̃ bmax is performed over
all the nL configurations. All the axes are dimensionless.

exact range of advantage obtained via fermionic systems in
Figs. 3 and 4 which we will discuss later; (2) In case of even
number of lattice sites with the FH model, P fmax is symmetric
about Uf/Jf = 0-line, thereby leading to maximum power
output with Uf = 0, although no such symmetry is observed
in case of bosons; (3) In the half-filling regime, among all the
lattice sites considered, i.e., when 3 ≤ L ≤ 7, we find that
P fmax reaches its maximal value for L = 4 while P bmax shows
maximum with L = 3 and U b/Jb > 0. Although, there is, in
general, no visible correlation between lattice size and higher
work output, Pµmax converges to a certain value for all values
ofL in presence of strong repulsive and attractive interactions,
thereby illustrating a site-independent power output.

To compare the batteries constructed with fermionic and
bosonic systems, we introduce a quantity which we call the
performance score,

∆f−b
P = P fmax − P bmax,

by fixing Uf = U b = U and Jf = Jb = J . From Fig. 3,
we observe that when −5 . U/J < 0, i.e. with attractive on-
site interactions, FH-batteries can always store (extract) more
energy than that of batteries with BH model although the sit-
uation changes when U/J & 3. Specifically, there exists a
critical U/J-value, (U/J)critical, above which the bosonic
systems can produce more power than that of the fermionic
systems, i.e., ∆f−b

P < 0 when U/J > (U/J)critical . We
also notice that (U/J)critical depends on L as shown in Fig.
4 which indicates that with the increase of L, a higher on-site
interaction is required to achieve a higher power by using the
BH model than that of the FH one.
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lattice sites while the odd number of lattice sites are plotted with dashed lines. All other specifications are same as in Fig. 2. All the axes are
dimensionless.

IV. EFFECTS OF FILLING FACTOR AND
TEMPERATURE ON AVERAGE POWER OUTPUT

Upto now, the entire analysis is carried out by considering
the half-filling and when the battery is the ground states of the
Hamiltonian. Let us lift both the restrictions and study their
consequences on the performance of the QB.

First we explore the dependence of filling factors on the
power output of the battery. Before going further, let us first
discuss two extreme situations for which the power outputs
vanish when the battery is made of fermions.

Remark 1. For a fixed lattice site, if all the lattice sites
are completely occupied by up or down or both up and down
fermions allowed by the Pauli exclusion principle, no work
can be extracted from the system since no excitation is possi-
ble in this scenario.

Remark 2. Suppose all the lattice sites are filled with
down (up) fermions. If we now increase the number of up
(down) fermions one by one on a lattice, the power output
again vanishes. This is due to the fact that in this process,
the charging Hamiltonian comes out to be an identity matrix
multiplied with a constant, which is the strength of the
charging field and after evolving for a time interval t, the
evolved state ρ(t) remains identical with the initial ground
state ρ(0). Hence to obtain a non-trivial power output from
the QB, the number of up and down fermions in the system of
L lattice sites must be upper bounded by L− 1.

In the fermionic system, we also find the following:
Observation 1. The maximum extractable power is same
under the exchange of the total number of up and down
fermions in the system i.e., Pmax(N1

↑ , N
2
↓ ) = Pmax(N1

↓ , N
2
↑ )

where N i, i = 1, 2 is the number of up (down) and
down (up) fermions respectively. Moreover, we notice that

Pmax(N1
↑ , N

2
↓ ) = Pmax(L−N1

↑ , L−N2
↓ ).

Let us first discuss the fermionic model with L = 2. In
this scenario, Nf

↑ = 2, Nf
↓ = 2 and the number of possible

configuration is (L + 1)2 − 1 = 8. We observe that a
particular configuration among all those choices which is
responsible to obtain the maximum amount of average power
from the battery, turns out to be Nf

↑ = 1 and Nf
↓ = 1 for the

entire parameter regime of Uf/Jf . However, by increasing
the lattice sites, we obtain the maximum power contribu-
tion from different filling factors depending on the tuning
parameter, Uf/Jf . To capture it, we introduce a quantity
P̃ fmax = maxP fmax (see Fig. 5) where the maximization is
performed over all possible ((L + 1)2 − 1) configurations.
First of all, P̃ fmax decreases with the increase of lattice sites
although the decrease rate depends on the even or odd L.
Secondly, the average power output is symmetric about
Uf/Jf = 0 (comparing with Fig. 3). Thirdly, unlike even
number of lattice sites, the value of P̃ fmax is independent of
L at Uf/Jf = 0 for odd number of lattice sites, although
the maxima occurs at some point with Uf/Jf > 0 and
Uf/Jf < 0 symmetrically.

In the case of BH model, we consider a scenario where
the number of lattice site is fixed to L, and particles per site
available is at most n. Again we examine P̃ bmax = maxP bmax

where the maximization is taken over all the allowed configu-
rations possible under the constraint of n particles per site,
thereby optimizing over nL configurations (see Fig. 6 for
L = 4). For a fixed number of lattice sites, P̃ bmax increases
with the increase of n. In contrast to the fermionic battery, the
power output for the bosonic battery is not symmetric about
U b/Jb = 0-line.

Role-reversal of bosonic and fermionic batteries depend-
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ing on temperature. In a more realistic situation, one expects
that the initial state of the quantum battery is the thermal state
or the canonical equilibrium state (ρth) of the Hamiltonian.
To illustrate the effects of temperature on the maximum aver-
age power output of the battery built by the BH and the FH

models, we examine the performance score, ∆f−b
P , by vary-

ing U/J , where U b = Uf = U and Jf = Jb = J and set
β = |J |β′ . With the increase of temperature, we find that the
Proposition 1 for two lattice sites does not remain valid, i.e.,
P fmax 6= P bmax with some moderate temperature. E.g., we find
that U/J = 5, ∆f−b

P becomes negative when the initial state
is prepared at β . 39.5. Such an advantageous role of bosonic
systems persists also for a higher number of lattice sites with a
certain β value and a wide range of U/J as depicted in Fig. 7.
Specifically, if the initial state is prepared at a very high tem-
perature, the maximum average power output obtained from
the BH models is higher than that of the FH ones in most
of the repulsive on-site interaction, i.e., for positive values of
U/J .

V. ROBUSTNESS OF BATTERIES BASED ON HUBBARD
MODELS IN PRESENCE OF DISORDER
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FIG. 8. (Color Online.) Disorder enhanced power. (a)-(b) Quenched
averaged power, 〈Pµmax〉, by varying 〈Uµ〉/J and 〈Jµ〉/U with µ =
f, b. Here L = 4 and the initial state is the ground state of the
system. σµG and σµu represent the standard deviations of the Gaussian
(solid line) and the uniform (dashed line) distributions respectively
from which the on-site interactions and the hopping are randomly
chosen. Note that σ = 0 represents the ordered systems. The higher
〈Pµmax〉 value correspond to the disordered FH models while the
lower values are for the bosonic systems. (c)-(d) 〈P bmax〉 and 〈P fmax〉
are plotted with respect to 〈Jb〉/U and 〈Jf 〉/U respectively. In both
the situations, systems with impurities turn out to be a better storage
device than that of the ordered systems, thereby showing disorder
induced power. All the axes are dimensionless.

In an ultracold atom experiment, disorder can be intro-
duced in the system in a controlled manner [32], leading to
the quenched disordered system. In particular, van der waals
losses are mitigated by placing atoms at a significant distance
from the atom chip, which results in an adjustment of the
magnetic wire, leading to the uniform disorder in the on-site
intraparticle interactions, Uµ/Jµ (µ = f, b) [59, 60] of the
Hubbard Hamiltonian. The disorder is chosen from uniform
distribution, Uµu /J

µ ∈ [a, b] with mean 〈Uµu 〉/Jµ = a+b
2 and

standard deviation as σµu =
√

(b−a)2
12 . On the other hand, the

local potential can also be sampled from Gaussian distribution

[61], UµG/J ∈
1

σµG
√
2π
e
− 1

2

(
x−〈Uµ

G
〉/Jµ

σ
µ
G

)2

with mean 〈UµG〉/Jµ

and standard deviation σµG. Here the subscripts, u and G in
mean and standard deviations represent the uniform and the
Gaussian distributions respectively.

By incorporating uniform as well as Gaussian randomness
in the on-site interactions, 〈Uµu 〉/Jµ, and 〈UµG〉/Jµ of the bat-
teries built by FH and BH models, we examine the quenched
maximum average power [62], 〈Pµmax〉. It is obtained by com-
puting Pµmax for every value of Uµ/Jµ chosen randomly from
both uniform and Gaussian distributions with the correspond-
ing means and the standard deviations. The number of real-
izations considered here for calculations is 1500 leading to a
convergence upto 10−2 decimal points. In order to maintain
a fair comparison between systems with and without disorder,
we choose L = 4 sites with half-filling, the particles per site
for bosons are restricted to 2 while the number of spin-up and
spin-down fermions are same. We report that both for bosons
and fermions, 〈Pµmax〉 does not change substantially in pres-
ence of impurities in the on-site interactions as shown in Fig.
8 (a), thereby illustrating robustness in the performance of the
battery against disorder.

On the other hand, disorder in the hopping parameter of
the Hubbard Hamiltonian can be realized by modulating the
applied electric field of the laser or by doping impurities in
the system [61, 63]. In this scenario, the quenched disor-
der power output, 〈Pµmax〉 from the FH and the BH mod-
els are again computed by varying 〈JµG(u)〉/U

µ for different
but fixed standard deviations. Like randomness in the on-
site interactions, when both uniform and Gaussian disorders
are impinged in the hopping terms of the Bose- and Fermi-
Hubbard Hamiltonians, thereby changing the initial state of
the battery, no significant consequences on power of the bat-
tery are observed over the ordered case (see Fig. 8 (b)). In-
terestingly, however, when inspected closely, we notice that
for 〈JµG〉/Uµ < 0.15 (〈Jµu 〉/Uµ < 0.15), the quenched aver-
aged power output from the disordered battery is higher than
that of the ordered case, thereby showing improvements in the
performance of the battery in presence of impurities in hop-
ping. Such a disorder enhanced power is discovered both for
fermionic as well as bosonic systems. Notice that when the
hopping terms of the Bose- and Fermi-Hubbard models van-
ish, i.e., Jµ/Uµ = 0, Pµmax = 0 in the ordered case while for
〈JµG〉/Uµ = 0 (〈Jµu 〉/Uµ = 0), Pµmax 6= 0 from definition.
However, the non-trivial results emerge when disorder en-
hanced power is noticed for a moderate value of 〈JµG(u)〉/U

µ.
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Specifically, advantage in power with impurities is detected in
the regime 0 ≤ 〈Jbu〉/U ≤ 0.12 for bosons while the range
of parameters, 〈Jfu 〉/U ∈ [0, 0.148], increase in case of FH
model (comparing Figs. 8 (c) and 8 (d)).

VI. CONCLUSION

Batteries are integral parts of any technology for storing
power and utilizing it as a source of energy at any point in
time. We know that the existing battery that we termed as
a classical batteries convert the chemical energy to the elec-
trical one and is quite useful although current technological
developments demand miniaturization, which inevitably has a
possibility to enter the quantum regime. To fulfil the require-
ments, quantum technologies are designed which also neces-
sitates the modelling of the storage device based on quan-
tum mechanics, leading to quantum batteries (QB). In recent
times, several experimental proposals for QBs using quantum
dots coupled to cavities, superconducting qubits have been de-
veloped and realized.

In the current work, we designed a quantum battery in pres-
ence and absence of impurities using ultracold atoms in op-
tical lattices which can be implemented via currently avail-
able technologies. In particular, we prepared an initial state of
the quantum battery as the ground or the thermal state of the
Fermi- Hubbard as well as Bose-Hubbard models. The charg-
ing process of the battery is carried out by tuning the on-site
interactions. We showed that in the case of lattice sites more
than two, and with half-filling, the QB based on the Fermi-
Hubbard model can store a higher amount of energy compared
to the battery with the Bose-Hubbard model provided the on-
site interactions are attractive or repulsive with moderate val-
ues. The situation gets reversed if the temperature in the initial
state is reasonably high. Moreover, we noticed that the filling
factor in both the bosonic and fermionic models plays a cru-
cial role in the power output of the battery. Specifically, the
maximum average power after optimizing over all the config-
urations increases with the increase of particles per site in the
case of bosons.

One of the success stories in the ultracold atomic systems
is the realization of disorder in a controlled manner. We found
that the randomness chosen from the uniform and the Gaus-
sian distributions in the hopping and in the on-site interac-
tions does not affect the performance of the QB significantly,
thereby demonstrating the advantage of preparing these bat-
teries based on ultracold atoms. We also identified a region
of mean hoping strength below which the quenched averaged
power is higher for the disordered system than that of the or-
dered ones – disorder enhanced power. The entire engineer-
ing of QB proposed via bosonic and fermionic systems opens
up a possibility to design thermal machines based on Hubbard
models, realizable in laboratories, and at the same time, it can
pinpoint the regime in which the machinery based on bosons
is better than that of fermions and vice-versa.
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Appendix A: Two-site two-particle system

Let us consider the scenario when the lattice has two sites
occupied with two bosonic particles. The normalized Hamil-
tonian in the Fock state basis looks like

Hb
B =

1√
16Jb

2
+ U b

2


U b −2

√
2Jb 0

−2
√

2Jb −U b −2
√

2Jb

0 −2
√

2Jb U b

 .
(A1)

The initial state ρ(0) of the system is the ground state of this
Hamiltonian Hb

B , given by

ρ(0) =



1
4 (1− a)

√
2b
′ 1

4 (1− a)

√
2b
′ 1

2 (1 + a)
√

2b
′

1
4 (1− a)

√
2b
′ 1

4 (1− a)

 , (A2)

where a = Ub√
16Jb2+Ub2

and b
′

= Jb√
16Jb2+Ub2

. We construct

the charging Hamiltonian by putting Jb = 0 which reads as

Hb
c =

U bc 0 0
0 0 0
0 0 U bc

 . (A3)

After evolving the state ρ(0) by the unitary operator Uc =

exp
(
−iHb

c t
)

for a time interval t, the resultant state ρ(t) be-
comes 

1
4 (1− a)

√
2b
′
e−itU

b
c 1

4 (1− a)

√
2b
′
eitU

b
c 1

2 (1 + a)
√

2b
′
eitU

b
c

1
4 (1− a)

√
2b
′
e−itU

b
c 1

4 (1− a)

 . (A4)

The average work output can then be computed as

W b(t) =
Jb

2

Jb
2

+ (0.25U b)2
(1− cos

(
tU bc
)
) (A5)

https://weinbe58.github.io/QuSpin/
https://weinbe58.github.io/QuSpin
https://weinbe58.github.io/QuSpin
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Appendix B: Three sites and three particle scenario in absence
of on-site interaction

Let us consider the lattice having three sites and for FH

model, it has Nf
↑ = 2 and Nf

↓ = 1. In absence of Uf , the
three-particle Hamiltonian reads as

Hf
B =

1

4
√

2Jf



0 −2Jf 0 −2Jf 0 0 0 0 0
−2Jf 0 −2Jf 0 −2Jf 0 0 0 0

0 −2Jf 0 0 0 −2Jf 0 0 0
−2Jf 0 0 0 −2Jf 0 −2Jf 0 0

0 −2Jf 0 −2Jf 0 −2Jf 0 −2Jf 0
0 0 −2Jf 0 −2Jf 0 0 0 −2Jf

0 0 0 −2Jf 0 0 0 −2Jf 0
0 0 0 0 −2Jf 0 −2Jf 0 −2Jf

0 0 0 0 0 −2Jf 0 −2Jf 0


. (B1)

Following the same construction procedure as for two lattice
sites, the charging Hamiltonian takes the form as

Hf
c = diag{Ufc , Ufc , 0, Ufc , 0, Ufc , 0, Ufc , Ufc }

which leads to the average work for the system composed of
fermions as

W f (t) = 0.75(1− cos
(
tUfc

)
). (B2)

On the other hand, for the BH system with L = 3 and
N b = 3 with maximum two particles per site, the Hamiltonian
becomes

Hb
B =

1

(3 +
√

17)Jb



0 −2Jb −4Jb 0 0 0 0

−2Jb 0 0 −2
√

2Jb 0 0 0

−4Jb 0 0 −2
√

2Jb 0 0 0

0 −2
√

2Jb −2
√

2Jb 0 −2
√

2Jb −2
√

2Jb 0

0 0 0 −2
√

2Jb 0 0 −2Jb

0 0 0 −2
√

2Jb 0 0 −4Jb

0 0 0 0 −2Jb −4Jb 0


. (B3)

In this case, the charging Hamiltonian reads as

Hb
c = diag{U bc , U bc , U bc , 0, 0, U bc , U bc , U bc },

and the average work turns out to be

W b(t) = 0.621(1− cos
(
tU bc
)
). (B4)
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Zinner, Phys. Rev. E 100, 032107 (2019).

[21] F.-Q. Dou, Y.-J. Wang, and J.-A. Sun, EPL (Europhysics Let-
ters) 131, 43001 (2020).

[22] S. Ghosh, T. Chanda, S. Mal, and A. Sen(De), Phys. Rev. A
104, 032207 (2021).

[23] F. Campaioli, F. A. Pollock, and S. Vinjanampathy,
arXiv:1805.05507 .

[24] D. Ferraro, M. Campisi, G. M. Andolina, V. Pellegrini, and
M. Polini, Phys. Rev. Lett. 120, 117702 (2018).

[25] G. M. Andolina, M. Keck, A. Mari, V. Giovannetti, and
M. Polini, Phys. Rev. B 99, 205437 (2019).

[26] K. V. Hovhannisyan, M. Perarnau-Llobet, M. Huber, and
A. Acı́n, Phys. Rev. Lett. 111, 240401 (2013).

[27] D. Farina, G. M. Andolina, A. Mari, M. Polini, and V. Giovan-
netti, Phys. Rev. B 99, 035421 (2019).

[28] T. P. Le, J. Levinsen, K. Modi, M. M. Parish, and F. A. Pollock,
Phys. Rev. A 97, 022106 (2018).

[29] S. Ghosh and A. S. De, “Dimensional enhancements in quan-
tum battery with imperfections,” (2021), arXiv:2104.06899
[quant-ph].

[30] L. G. D. M. R. B. W. L. E. M. G. J. K. G. C. D. G. L. T. V.
J. Q. Quach, K. E. McGhee, arXiv:2012.06026 .

[31] C.-K. Hu, J. Qiu, P. J. P. Souza, J. Yuan, Y. Zhou, L. Zhang,
J. Chu, X. Pan, L. Hu, J. Li, Y. Xu, Y. Zhong, S. Liu, F. Yan,
D. Tan, R. Bachelard, C. J. Villas-Boas, A. C. Santos, and
D. Yu, “Optimal charging of a superconducting quantum bat-
tery,” (2021), arXiv:2108.04298 [quant-ph].

[32] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski,
A. Sen(De), and U. Sen, Advances in Physics 56, 243 (2007),
https://doi.org/10.1080/00018730701223200.

[33] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[34] T. Esslinger, Annual Review of Condensed Matter Physics
1, 129 (2010), https://doi.org/10.1146/annurev-conmatphys-
070909-104059.

[35] O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D.-S. Lühmann,
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