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Distribution of quantum entanglement is investigated for an anisotropic quantum XY model with
variable range interactions and in the presence of a uniform transverse magnetic field. We report
the possibility of qualitative growth in entanglement between distant sites with an increase in the
range of interactions that vary either exponentially or polynomially as the distance between the sites
increases. Interestingly, we find that such entanglement enhancement is not ubiquitous and is depen-
dent on the factorization points, a specific set of system parameters where the zero-temperature state
of the system is fully separable. In particular, we observe that at zero-temperature, when the sys-
tem parameters are chosen beyond the pair of factorization points, the increments in entanglement
length due to variable range interactions are more pronounced compared to the situation when
the parameters lie in between the factorization points. By employing the sum of all the bipartite
entanglements with respect to a single site, we also show that the shareability of the bipartite en-
tanglements are constrained, thereby establishing their monogamous nature. Furthermore, we note
that the factorization points get reallocated depending on the laws of interaction fall-offs and pro-
vide an ansatz for the same. We reveal that the temperature at which the canonical equilibrium state
becomes entangled from an unentangled one increases with the increase in the range of interactions,
thereby demonstrating enhanced robustness in entanglement against temperature in the presence
of long-range interactions and only when the system parameters are chosen between the pair of
factorization points. We apply an energy-based entanglement witness to provide a justification to
the observed robustness with temperature.

I. INTRODUCTION

Towards the end of the last century, it was realized
that understanding of quantum mechanics from the
perspective of information theory is crucial in build-
ing quantum technologies [1–3]. It turns out that dif-
ferent forms of non-classicalities [4, 5] offered by quan-
tum theory can be useful resources [6], since they can
be employed to achieve higher efficiencies in certain
tasks than their classical analogs [7, 8]. Among all
the resource theories developed overtimes, the theory
of quantum entanglement [9–11] is the most promi-
nent one. Several pioneering protocols like quantum
teleportation [7, 12], quantum dense coding [8, 13],
entanglement-based quantum cryptography [14, 15],
one-way quantum computation [16] were designed by
using this novel resource.

Gaining experimental control at the quantum level
for scalable implementation of these schemes is one of
the major challenges over the last few years. Potential
physical systems that lend themselves for such appli-
cations include photons [17], superconducting qubits
[18], neutral cold atoms in optical lattices [19, 20],
ion traps [21, 22], and nuclear magnetic resonances
[23]. On the other hand, using many of these revo-
lutionary platforms, quantum spin models which of-
fer a solid bedrock for achieving quantum information
processing tasks [24, 25] like quantum state transfer
[26], measurement-based quantum computation [27],
can be realized with microscopic control over interac-
tion strengths and other system parameters in laborato-
ries.

Apart from the technological perspective, there are
also fundamental reasons to study quantum spin mod-

els by using information-theoretic quantities. Notably,
it was shown that the nearest neighbor entanglement
can serve as the detector of quantum phase transi-
tions (QPT)[28, 29]. Furthermore, it was found that for
the quantum spin-1 model proposed by Affleck, Lieb,
Kennedy, and Tasaki, the AKLT model [30], the entan-
glement length diverges at the quantum criticality [31],
although the classical correlation length remains finite,
thereby failing to detect the transition. Therefore, an
analysis of the entanglement profile of quantum spin
models is of utmost importance from the dual perspec-
tives of addressing fundamental issues and manufac-
turing quantum technologies. In the theoretical fron-
tier, several investigations have been carried out [32],
ranging from the thermal behavior [24, 33], out of equi-
librium dynamics [34], effects of environmental noise
[35, 36], to name a few. However, most of these stud-
ies (cf. [37–41]) are concentrated in two limiting cases,
namely models with the nearest neighbor or with long-
range interactions.

In this paper, we focus on a quantum XY spin model
with variable range interactions, thereby sweeping the
entire spectrum of interaction-ranges, starting from the
nearest neighbor case to the long-ranged ones, and
characterize the distribution patterns of nonlocal re-
sources in terms of entanglement shared between dif-
ferent sites of these models. For models with interaction
ranges longer than the nearest neighbor case, we con-
sider the subsequent interaction strengths to decrease
either exponentially or polynomially (power-law) from
the nearest neighbor value with increasing distance be-
tween the spins. Each of the two distributions of rela-
tive interaction strengths leads to a set of Hamiltonians
for carrying out the investigations. For a given range of
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interaction, the profiles of entanglement between dif-
ferent sites are computed when the system is either at
zero or at finite temperatures. We know that at zero-
temperature, the nearest neighbor quantum XY model
with a transverse magnetic field undergoes a quantum
phase transition and at the same time, there exists an-
other pair of magnetic field values at which the zero-
temperature states are doubly degenerate and unentan-
gled, known as factorization points. Note that the exis-
tence of factorization points is argued to be linked to an
entanglement phase transition, having no parallel notions
in the classical domain [42].

We report here that such factorization points exist
even in the presence of variable range interactions and
get shifted according to the law of decay of the relative
interaction strengths between the sites. Specifically, the
gap between the pair of factorization points increases
with the increase in the range of interactions. Interest-
ingly, we observe that factorization points create two
distinct regions in the parameter space according to the
spread of entanglement both in the zero-temperature
and the canonical equilibrium states. In the zero-
temperature case, we show that between the pair of fac-
torization points, a longer range of interactions has to
be introduced to generate entanglement between dif-
ferent spins compared to the case beyond the factoriza-
tion points, irrespective of laws of decays in the interac-
tion strength. Quantitatively, entanglement lengths also
confirm distinct features of these two regimes divided
via factorization points. From a different perspective,
we also investigate the constraints on the shareability
of bipartite correlations by examining the sum of all bi-
partite entanglements with the first party. We report a
non-trivial bound to this quantity that is substantially
lower than the algebraic maximum indicating the dis-
tribution of entanglement in the zero-temperature state
of this model to be monogamous. Although factorized
states are unique characteristics of the zero-temperature
state, we observe here a counter-intuitive consequence
of these points in the thermal state. Specifically, we
witness that when the system parameters are chosen
between the pair of factorization points, the tempera-
ture at which nearest neighbor entanglement becomes
non vanishing, increases with the increase in the range
of interactions, thereby revealing enhanced robustness
of entanglement for models possessing longer-ranged
interactions. Surprisingly, such variation of robustness
in the canonical equilibrium state with respect to range
is absent when we choose parameters beyond the fac-
torization point. In particular, far from these points, the
nearest neighbor states generated via a variable range
of interactions becomes entangled at the same temper-
ature, irrespective of the fall-off rates and the other pa-
rameters involved in the system. We attempt to explain
this improved robustness via a energy-based witness of
entanglement [43].

The paper is organized as follows. After a brief dis-
cussion of the prerequisites in Sec. II, we move on

to study the effects of increasing the interaction range
on the trends of entanglement in the zero-temperature
state in Sec. III. Sec. IV reports the increased robust-
ness of entanglement with the increase in the range of
interactions. We draw conclusions in Sec. V.

II. SETTING THE STAGE

In this section, we describe the model considered in
this paper for analysis. Its general properties are ex-
plored with a brief characterization of the phases at
zero-temperature. We discuss how we tune the range
of interactions, and the fall-off of the relative interac-
tion strengths as the distance between the interacting
spins increases. We also talk about other prerequisites
required to describe the results of our manuscript. In
particular, we specify the measure used for quantifying
entanglement, and define also the entanglement length,
the distance upto which entanglement remains finite.
The concept of the factorization points is also intro-
duced.

FIG. 1. (Color online.) Schematic diagram of a spin model
with variable range interactions. A particular case of a vari-
able range model is displayed where any given spin, denoted
by i, interacts with Z = 3 nearest neighbors, as indicated by
the green shaded region (|i− j| ≤ 3) about i. The range of the
model can be tuned by varying Z . For the exact form of Jijs
considered in the manuscript, see Eq. (3).

A. Spin Model with variable-range interactions

Let us consider an anisotropic quantum XY model
with variable range interactions having periodic bound-
ary conditions described by the following Hamiltonian:

H =
N

∑
i<j

|i−j|≤Z

Jij

[1 + γ

4
σx

i σx
j +

1− γ

4
σ

y
i σ

y
j

]
+

N

∑
i=1

h
2

σz
i ,

(1)

where σn̂
k is the Pauli spin operator associated with the

kth site in the n̂ direction with σn̂
N+k = σn̂

k , and h denotes
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strength of the uniform magnetic field in the transverse
direction. The interaction strength between the ith and
the jth spin is indicated by Jij, while γ is the anisotropy
parameter which marks the asymmetry in the interac-
tion strengths in x and y directions. The number of sites
in the lattice is N, and Z denotes the number of nearest
neighbors to which a particular spin couples, which is
simply the coordination number. Thus, for a fixed Z ,
a given spin i interacts with Z adjacent spins falling in
the region |i− j| ≤ Z , see Fig. 1. Therefore, the range
of interaction can be varied by changing Z .

In terms of the spin raising and lowering operators
σ± = (σx ± iσy)/2, the Hamiltonian in Eq. (1) can be
written as

H =
N

∑
i<j

|i−j|≤Z

Jij

[
σ+

i σ−j + σ−i σ+
j + γ(σ+

i σ+
j + σ−i σ−j )

]

+
N

∑
i=1

h(σ+
i σ−i − 1/2). (2)

Note that the terms in the Hamiltonian either counts
the number of up (down) spins or flips two spins at
a time. Therefore, under this Hamiltonian, the num-
ber of up (down) spins modulo 2 always remain a con-
stant. In other words, it preserves the parity. It makes
the Hamiltonian block diagonal into even and odd par-
ity sectors, H = Heven ⊕ Hodd. If the ground state is
non-degenerate, it comes from either of the two par-
ity sectors. However, in the case with the ground state
being degenerate, the eigenstates having minimum en-
ergy from both the sectors have the same energy, and
hence the ground state has its support from both the
parity sectors. Interestingly, our model shows both
these kind of features for different ranges of system pa-
rameters which we will discuss in subsequent sections.

Let us now consider the relative strength of interac-
tions as the distance between the spins increases. Moti-
vated by the experimental setup, we reasonably assume
that the relative interaction strengths decreases with the
increase in the distance between the concerned spins i
and j. Specifically, we consider two qualitatively differ-
ent fall-off behaviors, given by

• the exponential decay: Jij ∼ α
−(|i−j|−1)
e ,

• the power-law decay: Jij ∼ |i− j|−αp ,

where αe(p) denotes the fall-off rates for the exponential
and power-law decays respectively. Ultimately, putting
everything together, for a given spin i, the behavior of
interaction strengths Jij depending on the choice of Z
and the decay pattern of relative interaction strengths
can be summarized as

Jij

J
=

{
α
−(|i−j|−1)
e or |i− j|−αp , for |i− j| ≤ Z

0, otherwise
, (3)

where J is a constant which corresponds to a ferro-
magnetic model for J < 0, the case considered in this
manuscript.

In the case of Z = 1, the Hamiltonian in Eq. (1) re-
duces to the well known nearest neighbor anisotropic
quantum XY chain, which can be solved analytically
[44, 45] for all N and also in the thermodynamic (N →
∞) limit. It displays magnetically ordered and param-
agnetic phases with a quantum critical point at λ = ±1,
where λ = h/J, a notation we use throughout the
manuscript. However, the model in Eq. (1), is in gen-
eral, not exactly solvable for any other value of Z .
Hence for our analysis, we use numerical techniques,
in particular, the Lanczos algorithm [46], for finite sized
spin chains. It employs the idea of Krylov subspaces
to tridiagonalize the Hamiltonian matrix. By using this
method, we can find a few low-lying eigenstate of the
model accurately.and hence can construct the approx-
imate canonical equilibrium state of the model. The
zero-temperature state of the model [28] is obtained
from the canonical state by taking β→ ∞ limit as

$0 = lim
β→∞

e−βH

tr( e−βH)
, (4)

where β = 1/kBT is the inverse temperature with kB
being the Boltzmann’s constant. Notice that the ground
state of the model is degenerate for a certain range of
λ which is yet another reason to use exact diagonaliza-
tion method as opposed to other numerical procedures
like density matrix renormalization group method for
obtaining the ground state. $0 is a N-party mixed state,
containing equal mixtures of all the degenerate ground
states of H. When the ground state is non-degenerate,
$0 exactly represents the ground state. To distinguish
the former from the symmetry broken ground state, it
is usually referred to as the zero-temperature state or
the thermal ground state [28], a term which possibly
originated from its definition, as given in Eq. (4).

III. CONSEQUENCE OF VARIABLE RANGE OF THE
ZERO-

TEMPERATURE STATE

We investigate the entanglement profile of the zero-
temperature state (thermal ground state) by tuning the
strengths of the interaction ranging from the nearest
neighbor to the long-ranged one. As mentioned ear-
lier, since the chosen model (Z 6= 1) cannot be solved
analytically, we perform the entire analysis for a finite
sized system upto N = 16. We demonstrate the results
for N = 16 unless mentioned otherwise, in which the
relevant Ers, where E is the measure of entanglement,
precisely, logarithimic negativity (for further details, see
supplementary material, [47]) are upto r = [N

2 ] due
to periodicity, where r is the distance upto which the
entanglement of the reduced density matrix ($r) sus-
tains. We examine the behavior of entanglements in
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FIG. 2. (Color online.) Patterns of entanglement distribution in case of exponential decay of the relative interaction strengths
with αe = 2. Er, r = 1 . . . 8, (vertical axis) versus λ (horizontal axis). (a)-(d): For various ranges of interaction, Z = 1, 3, 5, and 8
respectively. Here N = 16 and γ = 0.5. Both the axes are dimensionless.
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FIG. 3. (Color online.) Spread of entanglement of the power-law fall-off with αp = 1. Ers (ordinate) are plotted by varying λ
(abscissa). (a)-(d): Z = 2, 4, 6, and 8. All other specifications are same as in Fig. 2. All axes are dimensionless.

two paradigmatic models where the relative interaction
strengths follow – A. the exponential fall-off for which
we present results for αe = 2 for demonstration; B. the
polynomial decay for which we report the well known
Coulomb-type fall-off, i.e., for αp = 1. The overall
entanglement profile remains qualitatively similar for
other fall-off rates and other finite systems, N (≤ 16).
We also highlight here that entanglement length gets
enhanced and the factorization points are shifted due to
the introduction of the variable range interactions. We
will also discuss the dependence of entanglement on αp
as well as αe and the anisotropy parameter γ. Since the
entire section is devoted to the zero temperature case,
we drop the subscript in $0 and just call it as $.

A. Entanglement profile

To discuss the consequence of variable range interac-

tions on the entanglement properties of {$r}
N
2

r=1 at zero
temperature, we first consider the case when the rela-
tive interaction strengths shows an exponential fall-off.
Our aim is to explore the situation where for a given
Z , an unentangled state, $r, becomes entangled on in-
creasing the interaction range. We find that such a pos-
sibility indeed exists, and call this feature as activation

where on increasing Z to Z + k (k ≥ 1), one or more
Ers become non-vanishing from the vanishing value.

A. Exponential fall-off case. Let us demonstrate the
observations for the quantum XY model with γ =
0.5. The results summarized below remain qualitatively
same for other anisotropy parameters with slight differ-
ences which will be addressed in succeeding sections.

1. Nearest-neighbor model. For nearest-neighbor inter-
action, i.e., Z = 1, from Eqs. (1) and (3), it is ob-
vious that the Hamiltonians are identical for both the
fall-off features, so in this case, one may omit the e(p)
labels, and thus henceforth, we call λ

e(p)
f (1) as λ f (1)

[47]. We observe that within the factorization points
(−λ f (1) ≤ λ ≤ λ f (1)), only E1 and E2 are non vanish-
ing, while all other Ers for r > 2 vanish [24]. Note that
λ f (1) obtained with N = 16 is very close to the analyt-
ical value with N → ∞ (see Table 1 and Fig. 2 (a) for
details). On the other hand, outside the factorization
points, i.e., when λ < −λ f (1) and λ > λ f (1) [48], we
discover that Ers show non-zero values, for r = 1, 2 and
3. In both the cases E1 > E2 > E3. Moreover, we notice
that Emax

1 − Emax
2 = 0.159 while Emax

2 − Emax
3 = 0.059,

where Emax
r denotes the maximal entanglement of Er in

the entire range of λ i.e., when λ ∈ (−3, 3).
2. Models with Z ≤ 3. Inside the factorization points

(corresponding to a given range ±λe
f (Z)), entangle-
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ment of only a few $rs (r ≤ 3) gets activated while out-
side the factorization points, we observe that for Z = 3,
entanglement of $rs becomes non-vanishing for r ≤ 6,
see Fig. 2 (b).

3. Quantum XY models having 4 ≤ Z ≤ 8. Progressive
activation of long-ranged entanglements (upto r = 5)
occurs with the variation of λ within the respective fac-
torization points. However, Er, r ≥ 7 with Z = 8 still
remains vanishing, thereby showing the absence of ac-
tivation in presence of exponential fall-off interactions
with γ = 0.5. It is important to mention here that to ob-
tain nonvanishing Er, ∀ r even in between factorization
points, one has to choose high values of γ, i.e., towards
the Ising limit. With |λ| > λe

f (Z), as in the previous
scenario, all Ers are non-vanishing and we notice that
entanglements with r ≥ 6 possess higher value in this
case than that of the model with Z ≤ 3, as depicted in
Figs. 2 (c) and (d).

Role of monogamy in entanglement distribution
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FIG. 4. (Color online.) Esum (vertical axis) with Z = 1 . . . 7
are plotted with respect to λ (horizontal axis). Here N = 14
with γ = 0.5. Both the axes are dimensionless.

We observe that for all values of Z , the maximal
entanglement always comes from the nearest neigh-
bor sector, i.e., Emax

1 > Emax
r≥2 . Note, however, that

Emax
1 decreases on increasing the range of interactions,

as shown in Fig. 2 and its decrease occurs due to
the generation of other long-range entanglement in the
model. This feature can be qualitatively explained from
the concept of monogamy of entanglement [49] which
states that a party of a multipartite state cannot share
an arbitrary amount of entanglement with other par-
ties. It implies that if a site, say 1, has a high amount of
entanglement shared with another party, say, 2, party
1 cannot share a high entanglement content with any
other party of a N-party state, which clearly justifies
the reduction of the nearest neighbor entanglement.

Quantitatively, it gets reflected in the following way.
For any given Z , the value of ∑N−1

r=1 Er = 2 ∑N/2
r=1 Er =

Esum is bounded above by a quantity, Q, substan-
tially smaller than the algebraic maximum of the same,
N/2− 1, i.e., 2 ∑N/2

r=1 Er ≤ Q. Therefore, when activa-
tion of entanglement takes place on increasing Z , more
and more Ers start becoming non-zero and hence with
some of the Ers which are non-vanishing for small val-
ues of Z has to be reduced to accommodate the acti-
vated Ers, so that the monogamy relation holds. Note
that Q can itself depend on the the number of sites and
the range of the model, see Fig. 4 which illustrates the
characteristics. Furthermore, traditionally, Q is taken to
be the entanglement of the zero-temperature state in the
1 : rest-bipartition, denoted by E($1:23...N). However, in
our case, Q > E($1:23...N) except the region, just outside
the factorization point. Hence, our analysis reveals that
the actual bounds are more complex function of state
parameters than the one considered in the traditional
monogamy inequality, i.e. Q = E($1:23...N), making the
situation more interesting.

Difference in maximal entanglement. The difference be-
tween the maximal entanglements of $r and $r+1 is
given by ∆Er = Emax

r − Emax
r+1 , for different Z . We ob-

serve that for a given Z , ∆Er decreases progressively
with increasing r. Furthermore, for all r, ∆Er , if non-
zero, decreases on increasing Z . We believe that such
features are seen owing to the comparatively small en-
tanglement values for larger choices of Z and r as well
as monogamy of entanglement, as discussed before.

B. Models with power-law fall-off. Let us now move to
the quantum spin models with the power-law decay of
relative interaction strengths. We observe qualitatively
similar features in the behavior of entanglement as seen
in the exponential ones (see Fig. 3). However, there are
some contrasting characteristics like pronounced activa-
tion of entanglement observed due to the slower decay
of subsequent interaction strengths in the case of the
power-law fall-off compared to the exponential ones.
In particular, if one turns on all the interaction terms
in the Hamiltonian (Z = 8), a finite amount of entan-
glement is generated with the variation of λ between
factorization points even in case of $6, $7 and $8, which
is not true for the exponential case (comparing Figs. 2

(d) and 3 (d)). On the other hand, beyond the factoriza-
tion points, activation features for both the decay types
are almost identical, although the entanglement con-
tents for the power-law fall-off are comparatively lower
than that of the exponential ones. However, the sub-
stantial decrease in the difference between Er and Er+1,
i.e., ∆Er happens in case of power-law decay which is
not the case for exponential ones.

As mentioned before, the behavior of entanglement
in these classes of quantum spin models depend on λ,
γ, α and Z . Upto now, we have discussed the trends of
Er with respect to λ and Z , by fixing γ and α. Although
the observations remain qualitatively similar for other
choices of system parameters, there are some subtle dif-
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ferences that can be seen on changing the anisotropy
parameter γ and the fall-off rate αe(p). We will ana-
lyze these differences in subsequent sections. Never-
theless, what emerges out of our analysis, and which
remains true irrespective of the choice of system pa-
rameters and fall-offs is that the factorization points di-
vide the magnetic fields into two regions having qual-
itatively distinct entanglement profiles. Specifically, in-
crease in the range of interactions outside the factor-
ization points stimulates entanglement in longer spatial
sites much faster than the scenario within the factoriza-
tion points for small values of anisotropy parameters
while in presence of high anisotropy, entanglements
over longer range can be generated in both the regimes.

B. Enhanced entanglement length

The preceding analysis confirms the activation of en-
tanglement by introducing the variable range of inter-
actions in a subjective manner. Let us quantify the
production of long-range entanglement by computing
the entanglement length, ξ, which is defined via Er =

a + be−
r
ξ , with a and b being the constants [47], for dif-

ferent values of Z .
Exponential fall-off case. Since we know that for a fixed

values of γ, Z and αe, the activation has a different
nature inside the pair of factorization points and be-
yond, we examine ξ by setting λe = 0.45 < |λe

f (Z)|
and λe = 2.3 > |λe

f (Z)| (To differentiate between the
strengths of magnetic fields in cases of exponential and
power law fall-offs, we use superscripts e and p in λs
for referring exponential and power law decays respec-
tively.) When λe = 0.45, ξ increases monotonically with
Z and after Z ≥ 4, the increase in ξ is almost insignifi-
cant (the change in the order of 10−2) while significantly
higher value of ξ is obtained with λe = 2.3 (see Fig. 5).
In the latter case, we also witness nonmonotonic behav-
ior of ξ with Z and the maximal value of ξ is obtained
for Z = 5 with N = 16. Both the situations clearly indi-
cates the production of entanglement over long distance
due to introduction of variable range interactions. Note
that although we fix λe values for illustration, similar
patterns in entanglement length also emerge for other
values of λe, chosen from inside and outside of the fac-
torization points.

Power-law fall-off case. In sharp contrast with the expo-
nential case, when λp is chosen between two factoriza-
tion points and beyond, entanglement lengths always
show nonmonotonicity with Z . As one can infer from
the entanglement profiles, ξ posses higher value with Z
when λp is outside the pair of factorization points than
that of the case chosen inside the factorization points.
Note that in this case, λp = 2.8 > |λp

f (Z)| is chosen,
since the factorization points shift according to the laws
of fall-off, as will be seen in the next section. Both the
scenarios clearly confirm the spread of entanglement

 0
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 = 0.45

λ
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λ
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FIG. 5. (Color online.) Entanglement length, ξ, (in the y-
axis) with respect to range of interactions, Z (in the x-axis).
For demonstration, λes and λps are chosen within the pair of
factorization points and outside of them. Note that for clarity,
we mark λs by superscripts e and p to denote exponential and
power-law fall-offs respectively. Other specifications are same
as in Figs. 2 and 3. Both the axes are dimensionless.

between distant sides due to the variable range interac-
tions, thereby illustrating the importance of long range
interactions in generation of resources.
Note: Upto now, all the analysis are presented for a
fixed value of αe(p) and γ. However, we check the be-
havior of entanglement pattern for different values of
anisotropy parameter as well as fall-off rates and find
out that the behavior is qualitatively similar as before.
For a detailed discussion, see supplementary material
[47].

C. Shifts in factorization points

All the analysis in the preceding section clearly
demonstrates that factorization points play a crucial
role in the trends of the entanglement distribution [50–
52] . Let us determine the effect of Z on the factoriza-
tion points. In the nearest neighbor case, factorization
points are given by λ f (1) = ±

√
1− γ2. Note that, for

any γ 6= 0, λ f (1) ≤ λ = 1, the quantum critical point.
Therefore, the factorization points for Z = 1 always lie
inside the magnetically ordered phase [53, 54]. We will
come back to this point later.
Proposition.

Considering variable range interactions, the factor-
ization point where the eigenstate with minimum en-
ergy is absolutely separable reads as

λ
e(p)
f (Z) = ±

√
1− γ2

Z
∑
|i−j|=1

Jij

J
, (5)

for any spin index i.
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Z EP E(λe
f )

1 -6.999 -7
2 -10.499 -10.5
3 -12.249 -12.25

4 -13.125 -13.125

5 -13.562 -13.563

6 -13.781 -13.781

7 -13.863 -13.863

TABLE I. EP is the minimum value of inner product of prod-
uct state with the Hamiltonian and E(λe

f ) is the energy of the
minimum eigenvalue at λ = λe

f , the predicted factorization
point.

Proof. :
Consider the arbitrary product state of N qubit spins

as

|ψP〉 =⊗i cos
θi
2
|0〉+ eiφi sin

θi
2
|1〉. (6)

Let us find out the inner product of the Hamiltonian
with this state, which gives the energy, parameterized
by {θi, φi}. We then minimize the energy by varying the
set {θi, φi}, i.e.,

EP = min
{θi ,φi}

〈ψP|H|ψP〉. (7)

On the other hand, we can also find that the minimum
eigenvalue of the Hamiltonian when λ = λ

e(p)
f (Z), la-

belled as E(λe(p)
f (Z)) which matches with EP, thereby

confirming that the zero-temperature state is factorized.
With N = 14 and the exponential case of λe = 2, the
results of EP and E(λe

f (Z)) are tabulated for given Z
(Table. I).

For the exponential fall-off, it reduces to

λe
f (Z) = ±

√
1− γ2

Z−1

∑
k=0

1
αk

e
. (8)

Note that it represents a geometric progression which
can be summed easily. If we choose αe = 2,

λe
f (Z) = ±2

(
1− 2−Z

)√
1− γ2. (9)

Let us now compute and compare the predicted
shifts in the factorization points, λe

f (Z), to that ob-
tained, via analysis with finite-size system N = 16, for
various choices of γ, denoted by Λe

f (Z), see Table. II.
We compute Λe

f (Z) upto a precision of ±0.01, which
is our chosen step size in the λ-axis for numerical
simulations while we round off the predicted value,
λe

f (Z) upto the third decimal point. We observe that

the predicted and observed factorization values almost
exactly coincide upto the third significant digits. Note
that on increasing the range of interaction, the gap
between two factorization points, |λ| < λe

f (Z) increase.
Moreover, by checking the order parameter, mx [29, 55],
we confirm that like the case with Z = 1, the pair
of factorization points always lie within the magnet-
ically ordered phase for any given range of interactions.

Z γ = 0.2 γ = 0.5 γ = 0.8
λe

f Λe
f λe

f Λe
f λe

f Λe
f

1 0.980 0.98 0.866 0.86 0.600 0.60

2 1.470 1.47 1.299 1.30 0.900 0.90

3 1.715 1.71 1.516 1.51 1.050 1.05

4 1.837 1.84 1.624 1.62 1.125 1.12

5 1.898 1.90 1.678 1.69 1.163 1.16

6 1.929 1.93 1.705 1.70 1.181 1.18

7 1.944 1.94 1.719 1.72 1.191 1.19

8 1.952 1.95 1.725 1.72 1.195 1.19

TABLE II. Predicted (λe
f ) and observed (Λe

f ) factorization
points for three different values of the anisotropy parameters,
γ = 0.2, 0.5, and 0.8. Z ∈ [1, 8] when the relative interaction
strengths show an exponential fall-off with αe = 2.

In case of power-law decay, the predicted
factorization-point formula in Eq. (5) takes the
following form:

λ
p
f (Z) = ±

√
1− γ2

Z
∑
k=1

1
kαp

. (10)

Note that unlike the exponential fall-off case, it cannot
be summed for a general αp. For αp = 1, we have

λ
p
f (Z) = ±

√
1− γ2H(Z), (11)

where H(n) denotes the nth Harmonic number, defined
as the sum of reciprocals of the first n natural numbers.
Like in the exponential case, we make a comparative
study of predicted and observed factorization points in
Table. III. Again, like before, we observe the widening
of the gap between the factorization points on increas-
ing Z . Note that we get a very good agreement be-
tween the predicted and observed factorization points
upto our precision of ±0.01.
Note: The typical values of entanglement (∼ 0.25) re-
ported in our work are quite generic for the model un-
der consideration. However, to understand the physics
of these models, for example, the detection of quantum
phase transitions, dynamical quantum phase transition,
the value of entanglement is not the quantity of inter-
est, rather the analyticity of entanglement near the tran-
sition points becomes the relevant marker. Apart from
theoretical insights, these models can be experimentally
realized in ultracold atoms trapped in optical lattices as
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Z γ = 0.2 γ = 0.5 γ = 0.8
λ

p
f Λp

f λ
p
f Λp

f λ
p
f Λp

f
1 0.980 0.97 0.866 0.86 0.600 0.60
2 1.470 1.47 1.299 1.30 0.900 0.90
3 1.796 1.79 1.588 1.59 1.100 1.10
4 2.041 2.04 1.804 1.80 1.250 1.25
5 2.237 2.24 1.977 1.98 1.370 1.37
6 2.400 2.40 2.122 2.12 1.470 1.47
7 2.540 2.54 2.245 2.24 1.556 1.56
8 2.663 2.60 2.353 2.30 1.631 1.60

TABLE III. Predicted (λ
p
f ) and observed (Λp

f ) factorization
points for γ = 0.2, 0.5, and 0.8 with Z ∈ [1, 8]. Here the
relative interaction strengths show a power-law fall-off with
αp = 1.

discussed in Sec. I, thereby making them a potential
candidate for quantum technologies.

IV. ROBUSTNESS OF ENTANGLEMENT TO
TEMPERATURE

The exact zero temperature regime is obviously an
idealization that cannot be realized in practice. Sys-
tems inevitably suffer from thermal noise, thereby, in
general, reducing the quantum correlations. The state
in thermal equilibrium with the bath reads as $ =

e−βH

tr( e−βH)
= ∑2N

i=1 e−βei |ei〉〈ei |
∑2N

i=1 e−βei
, where H is the model Hamil-

tonian as defined in Eq. (1), and {ei, |ei〉} are the eigen-
values and eigenvectors of H. To make β dimension-
less, we refer β/J as β. The typical investigation in this
context is to identify the temperature upto which the
thermal state remains entangled [56] which measures
the robustness of entanglement in the canonical equi-
librium state against thermal fluctuations [57, 58]. In
our case, we also study the role of the interaction range
and the choice of system parameters on the observed
robustness. Interestingly, we again report that the fac-
torization points obtained at the zero temperature plays
a crucial role in determining the thermal entanglement
profile.

Specifically, for both exponential and power-law fall-
offs, when we choose a λ value within the factorization
points of the zero-temperature state, we observe an in-
creased robustness of nearest neighbor entanglements
obtained for increased ranges of interaction, as shown
in Figs. 6 (a) and (c). To quantify robustness, we intro-
duce a quantity, named as critical temperature, 1/kBβ∗Z ,
at which the nearest neighbor entanglement, E1, for a
given Z starts becomes nonvanishing. We find β∗Z de-
creases with the increase of Z . It implies that with the
increase of range of interactions, nearest neighbor en-
tanglement remains nonvanishing even in presence of
higher temperature. For example, with γ = 0.5, and
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FIG. 6. (Color online.) (a)-(b) Nearest neighbor entangle-
ment, E1 (abscissa) vs. β (ordinate) for exponential decay of
relative interaction strengths, λe = 0.45 and λe = 2.3 respec-
tively. (c)-(d) E1 against β with λp = 0.45 and λp = 2.8 re-
spectively. Here N = 14 and γ = 0.5. The choices of λe(p)s
are same as in Fig. 5 (for details, see text). Both the axes are
dimensionless.

αe = 2, we find E1 > 0 when β∗7 = 1.25 for Z = 7
while β∗3 = 1.37 for Z = 3. In stark contrast, when
the λ is chosen from outside the factorization points,
no such robustness is observed and far from factor-
ization points, E1 for all Z becomes nonzero from the
same critical temperature, see Figs. 6 (b) and (d). We
want to stress here that such a strong dependence of
finite temperature physics on the property of the zero-
temperature state, namely factorization points, is highly
nontrivial.

Note that results presented here is for N = 14 for
which exact diagonalizations cannot accurately give all
the 214 eigenvalues and eigenvectors. Therefore, we
consider an approximate canonical equilibrium state of
the form

$ ≈ ∑m
i=1 e−βei |ei〉〈ei|

∑m
i=1 e−βei

, (12)

where m < 214 corresponds to the lowest m eigenval-
ues of H, obtained using the Lanczos algorithm as dis-
cussed in Sec. II A. We fix the values of m by examining
the results from two different angles, namely conver-
gence and continuity, as follows:

1. We first track β∗Z by changing m starting from
m = 200, increasing it in steps of 25. We claim
convergence when even on increasing m > m′,
β∗Z changes insignificantly, in particular change in
∆β∗Z = |β∗Z (m)− β∗Z (m

′)| < 10−4, for all Z .
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2. Secondly, we compare the β∗Zs obtained with
m = m′ for N = 14 with the values obtained
for N = 8, 10 and 12. Note that the results for
N ≤ 12 are obtained using the exact diagonal-
ization technique and hence {ei, |ei〉} are exactly
obtained. The β∗Z values and the qualitative en-
tanglement features with β in each of the cases
are comparable which assures consistency of our
results via continuity.

For both exponential (αe = 2) and power-law (αp = 1)
decays, m′ turns out to be 300.

1. Entanglement Witness

Let us consider a witness operator constructed based
on entanglement gap [43].

W = 〈H〉 − min
{sep}

Esep, (13)

where 〈H〉 is the energy with respect to the thermal
state, $, in Eq. (12) for a given β and Esep is obtained
after minimizing the energy over the set of fully factor-
ized states for a given configuration of H. It was argued
that the witness operator is capable to detect entangle-
ment of the global state by giving negative value for a
given β. Although this witness operator detects entan-
glement of the global state, we observe that its behavior
is qualitatively similar to that of the reduced bipartite
states, {Er} , obtained from the thermal state (see Fig.
6 for nearest neighbor entanglement profiles with tem-
perature for different Z). In terms of witness, when
|λ| < λ f and temperature is high, the rate at which
Esep increases with Z is much higher than the rate at
which energy of the thermal state (〈H〉) increases with
Z , thereby indicating witness to be negative and show-
ing robustness in entanglement with temperature (see
Fig. 7 (left)). On the other hand, when |λ| > λ f ,
both the rates are similar, and hence the temperature
at which W < 0 is almost same, thereby confirming the
observation that the non-zero entanglement is found at
almost the same temperature value irrespective of Z as
depicted in Fig. 7 (right) .

A. Rigidity of robustness to variations of magnetic field

Let us first recall that the robustness was dependent
on the interaction range when λ lies within the factor-
ization points of the thermal ground state (see Figs. 6

(a) and (c)). In particular, longer-ranged interactions
offer higher critical temperatures, i.e., enhanced robust-
ness and hence the highest robustness is obtained for
the maximal range, Zmax, possible for a given num-
ber of sites. We therefore define β∗ = β∗Z=Zmax

. In
the present case, we consider a lattice with N = 14

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  1  2  3  4  5  6

λe
 = 0.45

W

β
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Z = 2
Z = 3
Z = 4
Z = 5
Z = 6
Z = 7

-1
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 1

 2

 3

 4

 5

 0  1  2  3  4  5

λe
 = 2.3

W

β

Z = 1
Z = 2
Z = 3
Z = 4
Z = 5
Z = 6
Z = 7

FIG. 7. (Color online.) Witness W (abcissa) vs. β (ordinate)
for exponential decay of relative interaction (Left) λe = 0.45
and (Right) λe = 2.3. Here N = 14 and γ = 0.5. The choices
of λe are same as in Fig. 6 (for details, see text). Both the axes
are dimensionless.

sites, and the corresponding maximal range is there-
fore, Zmax = 7. We now investigate how β∗ changes
with the variation of λ and observe an interesting fea-
ture which we refer as rigidity. We call the constant
values obtained for β∗ with respect to λ as rigidity. In-
terestingly, we observe that β∗ obtained from the near-
est neighbor entanglement shows a Hall-like plateaus
with the increase of λ for a fixed value of γ (see Figs. 8

(a) - (d)). We enumerate the observations below:

1. For all values of γ, the highest critical tempera-
tures (lowest β∗ values), and maximal rigidity are
obtained near λ = 0.

2. Comparing Figs. 8(a)-(b) with Figs. 8(c)-(d), we
find that lower gamma values offer enhanced ro-
bustness, i.e., lower β∗ values in the entire λ range
inside the factorization points.

3. For γ = 0.8, we observe lower rigidity of β∗ values
in comparison to other considered γs. It can be ar-
gued by counting the number of plateaus which
is found to be almost double for covering the λ-
range inside the factorization points for high val-
ues of γ than that of the low values of γ.

In this respect, we also analyze the minimum β re-
quired for obtaining W in Eq. (13) to be negative, when
|λ| < λ

e(p)
f . Interestingly, we find that although wit-

ness operator is a global characteristics of the system, it
mimics the rigidity feature obtained via entanglement
in Fig. 8.

In summary, in the finite-temperature setting, we ob-
serve a wide range of novel and counter-intuitive fea-
tures in presence of variable range interactions which
are not present in the nearest neighbor models. Most
prominently, we report range-dependent robustness,
rigidity of robustness, and the effect of zero tempera-
ture physics on finite temperatures.
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FIG. 8. (Color online.) Plateaus representing constant β∗ (ordinate) with respect to magnetic field, λ, (abscissa) for different
values of the anisotropy parameters. Specifically, γ = 0.1 in (a), γ = 0.2 in (b), γ = 0.5 in (c), and γ = 0.8 in (d). For all the
γ values, when λ is close to 0 offer the highest critical temperature. Similarly, low γ values yield comparatively higher critical
temperatures than that of the high values of γ. The figures are for the exponential fall-off with αe = 2, and N = 12. All axes are
dimensionless.

V. CONCLUSION

Varying the range of interactions leads to novel fea-
tures in the distribution of entanglement between dif-
ferent sites in quantum spin systems. We explored
these properties using a variable range anisotropic
quantum XY model, for which we considered the rela-
tive interaction strengths between subsequent spins to
fall-off – (1) exponentially as well as (2) polynomially
(power-law decay).

In the zero-temperature limit, on increasing the in-
teraction range, we “expectedly" observed activation of
several long-ranged entanglements. However, surpris-
ingly, the activation of entanglement is not generic, and
is dictated by the pair of factorization points in which
the zero-temperature state is found to be a product. In
particular, the factorization points split the parameter-
space into two disjoint regions possessing different en-
tanglement activation rates, providing signatures of en-
tanglement phase transition. We quantitatively confirmed
these observations by computing entanglement lengths
for varied interaction ranges and system parameters.
Furthermore, we also tracked the reallocation of factor-
ization points in the parameter-space due to the tuning
in the range of interactions. Our investigations further
revealed that the distribution of entanglements follow
a monogamous nature, thereby helping us to explain
features of the entanglement profile as well as entan-
glement length in this model.

We also analyzed the finite temperature regime in
which the system suffers from thermal noise. We
observed increased robustness of entanglement with
the temperature when the model Hamiltonians involve
long-ranged interactions and are confined between the

factorization points. Specifically, we found a hierar-
chy among the nearest neighbor entanglements with
respect to the range of interactions – entanglements in
canonical equilibrium states obtained from the long-
ranged models remain non-vanishing even in presence
of higher temperatures in comparison to the models in-
volving relatively shorter range interactions which we
attempted to explain using an energy-based entangle-
ment witness. Interestingly, such an advantageous sit-
uation is present only when the system parameters lie
between the factorization points.

Our work provides a systematic survey towards the
control of the system parameters and interaction ranges
to extract the maximal possible resource in terms of
entanglement out of the zero- and finite-temperature
states of the quantum spin models. We believe that in-
vestigations in these directions can shed light on the im-
plementation of various quantum information-theoretic
protocols in quantum networks in which the distribu-
tion of entanglement plays a key role.
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A. Measure of Entanglement

We intend to investigate how entanglement (E) is distributed between two arbitrary sites. For this, we construct
the reduced two party density matrix between sites i and j after tracing out all the parties of a N-party state, $N ,
except i and j, given by

$ij = trij $N , (SEQ1)

where ij denotes all the spins except i and j. $N is either the zero-temperature state or the canonical equilibrium
state of the model, consisting of N spins. Owing to the translational invariance, all reduced density matrices with
|i− j| = r of this model are identical. Therefore, $ij only depends on the distance between the spins i and j, and
without loss of generality, we call $ij, with |i− j| = r as $r. Numerical analysis reveals that for the entire range of
the system parameters of this model, $r for all r is an “X"-state. It is called X-state since only non-zero elements in
the density matrix $ are the diagonal elements $iis, $23 and $14. Hence the density matrix can be divided into two
blocks and entanglement can be easily calculated although the exact coefficients depend on the system parameters
and r.

We quantify the entanglement content of $r using logarithmic negativity (LN) [SR1, SR2]. This measure comes
out of the partial transposition criterion [SR3] which gives a necessary and sufficient condition of entanglement for
two-qubits [SR4]. For an arbitrary bipartite state $AB, logarithmic negativity E can be computed as

E($AB) = log2[2N ($AB) + 1]. (SEQ2)

Here N is the negativity [SR1] of $AB, defined by

N ($AB) =
‖$TA

AB‖1 − 1
2

, (SEQ3)

where ‖$‖1 ≡ tr
√

$†$ is the trace-norm of the matrix $, with TA being the partial transposition with respect to party
A. Throughout the manuscript, we use the logarithmic negativity to measure entanglement of $r, and E($r) ≡ Er.
Since, $r is an X-state, its entanglement can be expressed in a closed form in terms of the state parameters. For a
general X-state, the logarithmic negativity can be given in a closed form in terms of the state parameters as

E($) = log2
[
− 2 min{λ1, λ2, 0}+ 1

]
, (SEQ4)

where,

λ1(2) =
1
2
× $11(33) + $22(44) −

√
($11(33) + $22(44))

2 − 4|$23(14)|2. (SEQ5)

We will use this formula to compute the entanglement of the $rs.

B. Entanglement Length

We are interested to determine the trends in the spread of entanglement, Er with the introduction of variable
range interaction. Specifically, we want to find out, r, the distance upto which $r remains entangled. If we can
rewrite Er as

Er = a + be−
r
ξ , (SEQ6)

we call ξ as the entanglement length where a, and b are constants which can be determined from the entanglement
behavior for a specific Hamiltonian. In a subsequent section, we investigate the improvement of ξ obtained for
entanglement due to variable range interactions in different parameter regimes.
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C. Factorization Points

The quantum XY model possess a unique pair of points in the parameter-space of λ for which the zero-
temperature states of the XY model are completely separable, thereby unentangled. It is a counter-intuitive feature
from the perspective of entanglement resource theory, since it is not adiabatically connected to any other factorized
state of the model. These points, for a given range of interaction Z , can be denoted by λ

e(p)
f (Z), and are called the

factorization points [SR5, SR6], where the superscripts e(p) indicate the exponential (power-law) fall-off features. At
these points, the zero-temperature state is of the form |ψ〉N = ∏N

i=1 |ψi〉. Note that for the nearest neighbor model

(Z = 1), in the thermodynamic limit, λ
e(p)
f (1) = ±

√
1− γ2 [SR43]. Furthermore, for the special case (Z = 1), the

quantum XY Hamiltonian remains same for both exponential and polynomial fall-off scenario. Therefore, in this
case, one may omit the e(p) labels, and thus henceforth, we call λ

e(p)
f (1) as λ f (1).
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FIG. SF1. (Color online.) Set of bipartite entanglements, {Er} (vertical axis) with r = 1 . . . 8 against λ (horizontal axis). Here
Z = 8 and αp = 5. Here N = 16 and γ = 0.5. Both the axes are dimensionless.

D. Dependencies on anisotropy and fall-off rates

In this section, we explore the effects of γ and α on entanglement profiles with the introduction of variable range
interactions.

Dependence on anisotropy. We observe that for low values of γ (see γ = 0.2 in each Figs. SF2 (a)-(c) ), i.e., when
we approach the XX-model, the gap between the factorization points increases, and the E1-hump between the
factorization points grows. Consequently, Emax

1 comes from within the factorization points. As γ increases further,
the maximal entanglement values inside and outside the factorization points become comparable as depicted in
Figs. SF2 (a) -(c) for γ = 0.5. When γ → 1 i.e., in the Ising limit, the factorization points come closer and the
E1-hump within the factorization points flattens by decreasing its magnitude in comparison to E1 values obtained
outside the factorization points. Therefore, for large values of γ, Emax

1 is obtained beyond the factorization points
as shown in Figs. SF2 (a)-(c) for γ = 0.8 with different range of interactions. Note that although the above
observations are presented when the relative interaction strengths follow an exponential decay with αe = 2, the
qualitative feature remains same even for the power-law decay.

Effects of fall-off rates on entanglement. As in the main article, it has been discussed that the characteristics of entan-
glement remains almost same for both types of fall-offs (exponential and power-law). Hence, all the observations
presented below hold for both the fall-offs and we skip the subscripts of α . Note that for a given interaction range
Z , the coupling strength between distant spins (spaced not more than Z sites apart) are comparatively larger for
lower values of α. Therefore, for a given Z , a lower α indicates a slower decay of the relative interaction strengths
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FIG. SF2. (Color online.) Effects of anisotropy on entanglement. E1 (vertical axis) is plotted against λ (horizontal axis) for three
different values of γ. Here γ = 0.2, 0.5, 0.8. (a)-(c): Different relative interaction strengths, namely Z = 1, 3, 5 respectively. Here
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the power-law decay of the relative interaction strengths. Here N = 16 and γ = 0.5. Both the axes are dimensionless.

which is expected intuitively to facilitate the enhancement (if not activation) of long-ranged entanglements, see Fig.
SF3 (b) and (c). Therefore, it is tempting to take the above argument one step forward and expect that lower values
of α are always “better" than that of the high values of α with respect to entanglement enhancement or activation.
This intuition holds in almost all cases involving longer-ranged interactions. However, we find that for any given
interaction range, Z , the nearest neighbor entanglement, E1, possess a higher values for higher αs. From Fig. SF3

(a), we notice that for Z = 2, αp = 1.5 leads to high nearest entanglement content, E1 compared to the case with
αp = 0.5. Such a behavior can again be explained in the light of a monogamy-based argument. In particular,
for a given interaction range, enhancement or activation of longer-ranged entanglements comes at the expense of
reducing the shorter ranged ones owing to constraints set by the monogamy relation. Therefore, for a fixed Z , one
has to resort to lower α values to create a large amount of long-ranged entanglements while it is wiser to choose
high values of α for maximizing short-ranged entanglements. This feature of entanglement is independent of the
choices of anisotropy parameters, γ.

Effects of moderate αp. When αp is moderate, the bipartite entanglement other than nearest neighbor entanglement
is very small. In Fig. SF1, we consider, α = 5 and N = 16 while the Hamiltonian is fully connected, i.e., with
Z = 8. Specifically, when |λ| < λ f , Er, r > 1 is almost negligible while when the |λ| > λ f , we were able to see
non-zero entanglement, for r = 1, 2 and 3 with significant values. Precisely we notice that with moderate value of
α, the system behaves almost as a nearest neighbor model. The trend of {Er} shows that For a fixed Z , one can
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distinguish whether αp is small or αp is moderately high.
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