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Irreversibility between preparation and discrimination processes is manifested in the indistin-
guishability of orthogonal product states via local operations and classical communication (LOCC).
Characterizing quantum properties for sets of states according to their local distinguishing property
is one of the avenues to explain the surprising results obtained in the LOCC indistinguishability
domain. We introduce a measure based on l1 norm and relative entropy of coherence whose lower
values capture more quantumness in ensembles. In particular, it reaches the maximum for two-
way distinguishable product ensembles with minimum rounds. Moreover, to establish the hierarchy
between different product ensembles, we report that the trends of success probabilities for orthog-
onal product ensembles with one-way LOCC via minimum error discrimination scheme are also
connected with the coherence-based measures.

I. INTRODUCTION

One of the fundamental tasks in quantum mechanics
is to detect quantum states that are given from a known
ensemble. Under globally allowed operations, sets of
orthogonal quantum states can always be distinguished
while for nonorthogonal ensembles, the useful upper
bound on the accessible information, quantifying the
maximum amount of information extractable from the
ensemble is known as the Holevo quantity [1].

On the other hand, if quantum information is en-
coded into the composite system and subsystems of
it are sent to spatially separated observers, a set of
globally orthogonal states, in general, cannot be dis-
tinguished under a set of allowed operations, local op-
erations assisted by classical communications (LOCC)
which is a strict subset of global operations [2]. Initially,
it was thought that entanglement which cannot be cre-
ated by LOCC is responsible for local instinguishability.
However, such intuitive understandings turn out to be
false on several occasions. One of the surprising results
in this direction is the discovery of a set consisting of
nine orthogonal product states of two qutrits, which
cannot be distinguished perfectly by LOCC - known
as ‘nonlocality without entanglement’ [3]. In a simi-
lar spirit, unextendible product qudit basis (UPB) have
been discovered [4, 5], which are also LOCC indistin-
guishable and they provide a systematic way of con-
structing bound entangled states [4–6]. Further investi-
gations in this direction were carried out which found
several complete and incomplete LOCC indistinguish-
able product ensembles [7–12]. On the other hand, two
orthogonal states are shown to be always distinguish-
able via LOCC irrespective of their entanglement con-
tent [13]. Moreover, it was exhibited in two qutrits
that decreasing average entanglement from ensembles
can increase local indistinguishability, a phenomenon
known as “more nonlocality with less entanglement”
[14]. All the results strongly indicate that there are

other quantum characteristics in ensembles other than
average entanglement content which are responsible for
LOCC indistinguishability.

Over the years, the studies of local indistinguishabil-
ity are performed into two distinct directions – on one
hand, several counter-intuitive examples of ensembles
that are LOCC indistinguishable are reported, while on
the other hand, there are few attempts to quantify quan-
tumness in the ensembles which can capture the diffi-
culties in local distinguishing [15–22]. To address the
latter direction, the upper bound on locally accessible
information like Holevo bound in global case was ob-
tained which is useful to prove local indistinguishabil-
ity of ensembles with entangled states [15, 16] although
it fails to capture the results for product ensembles and
more nonlocality with less entanglement. Some of us
have resolved this problem by defining quantumness
for ensembles from two different perspectives – one is
based on the minimal entropy production after dephas-
ing the states in the set of a LOCC distinguishable basis
[15] while the other one is based on the generation of
entanglement by LOCC indistinguishable sets of prod-
uct states under some specific transformations on the
whole ensemble [22]. In the present work, we char-
acterize quantumness in ensembles using measures of
coherence [23, 24]. In modern day-quantum technol-
ogy, ‘coherence’ has been shown to be the key ingredi-
ent which underlies phenomena such as quantum in-
terference, quantum metrology, multipartite entangle-
ment, quantum communication, thereby establishing
it as a resource. In this respect, see the recent work
which characterizes the coherence of sets [25]. On the
other hand, the quantumness that we want to assess
in ensembles is due to the difficulty in distinguishing
states via LOCC with the help of coherence. Notice that
sets of product states belonging to the LOCC indistin-
guishable class are globally orthogonal although they
are locally nonorthogonal, which indicates an implicit
role of coherence under this phenomenon. We uncover
how ‘the unity of opposites’ determines local indistin-
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guishability by explicitly constructing coherence-based
measure of ‘quantumness’ associated with these sets.
Broadly these sets can be categorized into four classes –
(1) distinguishable by minimum round of LOCC, inde-
pendent of the parties who start the protocol, referred
to as two-way distinguishable, (2) distinguishable by
minimum round of LOCC although it requires a spe-
cific party to start with, called as one-way distinguish-
able ensembles, (3) distinguishable by finite but more
than minimum rounds of LOCC, which include both
one and two ways of distinguishable sets, and (4) sets
of states which are indistinguishable via infinite rounds
of LOCC. The measure introduced in this paper can dis-
tinguish the different classes mentioned above.

When a set of states are not distinguishable by finite
or infinite rounds of LOCC, the natural question is to
find their distinguishability probabilistically. There are
two directions in which imperfect strategies can be pro-
vided – unambiguous state discrimination [26–28] in
which the results are always correct although there are
certain probabilities in which the protocol fails, while
another direction is to design the protocol, known as
minimum error discrimination in which the error in
success probability has to be minimized [29–31]. Both
the protocols are developed in the LOCC paradigm. In
this work, we also establish a connection between the
optimal success probability for product ensembles with
two qubits and higher dimensions having restricted
classical communication (CC) [32] and the coherence-
based measure for ensembles. Moreover, we provide a
prescription to maximize optimal success probability in
a LOCC protocol for product ensembles.

We organize the paper in the following way. In Sec.
II, we describe LOCC distinguishability for sets of states
and define two measures of coherence for states used
in later sections. In Sec. III, we introduce coherence-
based measures for ensembles and show their effec-
tiveness by considering different examples of locally
distinguishable and indistinguishable ensembles. The
prescriptions for obtaining maximal success probabili-
ties are presented in Sec. IV and the relation between
coherence-based measures for sets of states and proba-
bilities are also argued. We conclude in Sec. V.

II. LOCC DISTINGUISHABILITY AND COHERENCE
MEASURES

LOCC distinguishability. In Cd1 ⊗ Cd2 , suppose two
parties, Alice (A) and Bob (B), situated in distant lo-
cations, share a state which are given with equal proba-
bility from an ensemble consisting of orthonormal set of
states, {|ξi〉i=1,2,..,N=d1×d2

}. The task of Alice-Bob duo
is to distinguish the shared state via local operations
and classical communication. In this work, |ξi〉s are al-
ways taken to be product and in the literature, several
general but striking results are known even for product
ensembles.

We first illustrate the contrasting features even in the
lowest dimension, i.e., in C2 ⊗ C2. Let us consider the
computational basis, E1 = {|00〉, |01〉, |10〉, |11〉}, which
is distinguishable via one round of LOCC, irrespective
of the party, i.e., Alice or Bob starting the protocol.
Notice that the characteristics of LOCC distinguisha-
bility of the ensemble does not change if one replaces
{|0〉 , |1〉} at Alice or Bob’s side by {|η〉 , |η⊥〉}, where
|η〉 = cos θ

2 |0〉+ exp(iφ) sin θ
2 |1〉 and its corresponding

orthogonal state, with {|0〉 , |1〉} being the eigenvectors
of Pauli matrix, σz. This ensemble is an example of
two-way LOCC distinguishable with minimum round
(i.e., one round) of CC required. On the other hand,
consider another ensemble of orthogonal product ba-
sis, given by E2 = {|00〉, |01〉, |1+〉, |1−〉} [7], where
|±〉 = (|0〉 ± |1〉)/

√
2 are the eigenbasis of the Pauli

σx operator. This ensemble is perfectly one-way dis-
tinguishable via LOCC. i.e., first A measures her qubit
in the computational basis and sends the result to B
who depending on the message, should measure his
qubit in {|0〉, |1〉} (if A finds her qubit in |0〉 state) or
{|+〉, |−〉} (if A finds her qubit in |1〉 state) basis. No-
tice that E2 is different than E1 since the former can-
not be distinguished if Bob starts the protocol. Hence
it is an example of one-way LOCC distinguishable set
with minimum round of CC. If difficulties in local dis-
tinguishabillity is a signature of nonclassicality in en-
sembles, quantumness present in E2 is expected to be
higher than that of E1 which can also be visualized from
the Bennett-Brassard (BB84) quantum key distribution
protocol [33].

In this work, our aim is to capture quantumness
present in ensembles which we will do with the help
of coherence measures.

Measures of coherence. We here use two distance-
based coherence measures, namely l1 norm- and rela-
tive entropy-based coherence [23]. The l1 norm of co-
herence for the state ρ, Cl1(ρ) [24] is defined as

Cl1(ρ) = min
σ∈SI
||ρ− σ||l1 = ∑

i 6=j
|ρij|,

where minimization is taken over the set of incoherent
states, σ. On the other hand, the relative entropy of
coherence, denoted by Crel(ρ), which can be connected
to thermodynamics, is given by

Crel(ρ) = S(δ[ρ])− S(ρ),

where S(ρ)=-Tr(ρ log2 ρ) is the von Neumann entropy,
and δ is the dephasing operation described by

δ[ρ] =
d−1

∑
k=0
|k〉 〈k| ρ |k〉 〈k| .

Crel(ρ) can also be interpreted as the deviation of ρ
from thermal equilibrium. Since coherence measures
are basis-dependent, we choose computational basis as
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Figure 1. Normalised minimum ensemble coherence (MEC)
both obtained via l1 norm and relative entropy of coherence
(ordinate) vs. relative local coherence, Cr, (abscissa). Blue
squares and green stars represent MECn

rel and MECn
l1 respec-

tively. It is calculated for arbitrary product ensembles in 2⊗ 2

with real coefficients, E4(R)
arb . Moreover, the trends of success

probabilities, Psucc (ordinate) (red circles) are plotted against
Cr. The departure from the maximum values obtained for
the all three quantities implies that the ensemble is not distin-
guishable by two-way LOCC with minimum rounds. More-
over, the patterns of MECn

rel, MECn
l1 and Psucc also match with

the increase of Cr in ensembles. Both the axes are dimension-
less.

the reference basis and any state that is diagonal in that
basis is called the incoherent.

Before introducing coherent-based measure for en-
sembles, let us first note the following observations. If
we measure the l1 norm of coherence for the equal su-
perposition of states in E1, the value is found to be 3.0
while for the second ensemble, E2, it is 1.914. It in-
dicates that the coherence of the ensembles which are
two-way LOCC-distinguishable with minimum round
is maximal while for the one-way distinguishable set
with minimum round, the value of Cl1 is non-maximal.

III. COHERENCE-BASED MEASURES FOR
ENSEMBLES

In this section, we introduce two coherence-based
quantifiers which can characterize quantumness in en-
sembles. We will also discuss the effectiveness and
shortfalls of each measure.

A. Quantifying quantumness in ensembles: Minimum
ensemble coherence (MEC)

Let us first define the measure for the full basis con-
sisting of product states although it also works for in-
complete basis. For a given ensemble of a bipartite
system, E = {|ψi〉 ⊗ |φi〉}i=1,2,..,N=d1×d2 in dimension

Cd1 ⊗Cd2 (which, in short, will be mentioned as d1⊗ d2),
we define a quantity called total local coherence as

τC
l1(rel) = min

{U1,U2}
∑

i
[Cl1(rel)(U1|ψi〉) + Cl1(rel)(U2|φi〉)],

(1)
where minimization is taken over the set of local uni-
tary operators, Ui, i = 1, 2. Suppose now that the min-
imum is attained by U∗ = U∗1 ⊗ U∗2 . Rotating all the
states of the original ensemble by U∗, i.e., {U∗|ψi〉 ⊗
|φi〉}i=1,2,..,N=d1×d2 , we now consider unitarily rotated
superposed state of the ensemble represented by

|Ψ〉∗ = U∗1 ⊗U∗2
1√
N

N

∑
i
|ψi〉 ⊗ |φi〉. (2)

A quantifier, dubbed it as ’minimum ensemble coherence’
(MEC), based on l1 norm or relative entropy of coher-
ence for ensembles, capturing nonclassicality in terms
of LOCC indistinguishability, can be introduced as

MECl1(rel) = Cl1(rel)(|Ψ〉
∗). (3)

It turns out that MECl1 reaches its maximum value, 3.0
for E1 and it is 1.914 for E2. The normalized MEC can
then be computed as

MECn
l1(rel) =

MECl1(rel)

max(MECl1(rel))
, (4)

so that its maximum value is always unity irrespective
of the dimension. Notice that the maximum value is
d1d2 − 1 for the l1-norm measure while it is log2 d1d2 in
case of relative entropy of coherence. We demand and
establish that like entanglement witness for quantum
states,
nonmaximal value of MECl1(rel), i.e., deviation from
unity of MECn

l1(rel) is capable to detect quantumness
present in the ensembles which are either one-way LOCC
distinguishable with minimum round or with rounds more
than the minimum or two-way LOCC distinguishable but
requires more rounds than the minimum round possible.
Remark 1. The same coherence measure should be
used to find τC and MEC. Although we present all
the results by using l1 norm of coherence or relative
entropy of coherence, the qualitatively similar results
can be obtained by using other coherence measures,
satisfying the basic postulates of coherence [23].
Remark 2. Note that if any side belongs to the computa-
tional basis, unitaries applied on that side to minimize
coherence can be shown to be the Identity operator.

1. Trends of MEC for arbitrary product basis in two qubits

Let us first consider an arbitrary full product basis in
2⊗ 2, given by E4(R)

arb = {|0η1〉 , |0η⊥1 〉 , |1η2〉 , |1η⊥2 〉} [34]
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where |η1〉 and |η2〉 are arbitrary nonorthogonal qubits
without complex coefficients, i.e.,

|η1〉 = cos
θ1

2
|0〉+ sin

θ1

2
|1〉 , and

|η2〉 = cos
θ2

2
|0〉+ sin

θ2

2
|1〉 .

In the superscript, ‘(R)′ is used to indicate the coeffi-
cients of states to be real. The imaginary coefficients
will also be considered separately.

To distinguish the set of states from the ensemble
which are two-way LOCC distinguishable with mini-
mum round, we introduce a quantity, referred to as rel-
ative local coherence, Cr, corresponding to the ensemble
{|0η1〉 , |0η⊥1 〉 , |1η2〉 , |1η⊥2 〉}, given by

Cr = (Cl1(|η2〉 〈η2|) + Cl1(|η
⊥
2 〉 〈η⊥2 |))/2.0

where Cl1(ρ) is the l1 norm coherence of the state ρ and
coherence is measured in {|η1〉 , |η⊥1 〉} basis. If the value
of Cr vanishes, the set {|η1〉 , |η⊥1 〉} and {|η2〉 , |η⊥2 〉} co-
incide, and hence the corresponding ensemble is both
way LOCC-distinguishable with minimum round. Fig.
1 shows the plot of the normalised MEC value in terms
of l1 norm and relative entropy of coherence for the en-
semble E4(R)

arb with respect to Cr. The decreasing trends
of MECn

l1(rel) with the increase of relative local coher-
ence, Cr actually establishes that it can quantify the
quantumness in the ensembles according to their com-
plexity of LOCC distinguishability. In fact, we will
show in the next section that the pattern of MEC with
relative coherence is connected to the success probabil-
ities of restricted LOCC protocol [32]. Moreover, it is
clear from the figure that the measure for ensembles is
independent of the choices of the coherence measures.

2. MEC beyond two qubits

Let us now analyze whether the ensemble quanti-
fier also works in higher dimension or not. Towards
answering it, let us first consider a class of orthog-
onal product ensemble in 2 ⊗ 3, given by E6(R)

arb =

{|0η1〉 , |0η⊥1 〉 , |0η⊥⊥1 〉 , |1η2〉 , |1η⊥2 〉 , |1η⊥⊥2 〉}, where the
components of the nonorthogonal qutrit states |η1〉 and
|η2〉 are real, i.e.,

|η1〉 = sin θ1 cos φ1 |0〉+ sin θ1 sin φ1 |1〉+ cos θ1 |2〉 ,
and
|η2〉 = sin θ2 cos φ2 |0〉+ sin θ2 sin φ2 |1〉+ cos θ2 |2〉 .

Here {|0〉 , |1〉 , |2〉} form the computational basis for
qutrit system. In this situation, if coherence is mea-
sured in the {|η1〉 , |η⊥1 〉 , |η⊥⊥1 〉} basis, the relative local

coherence, in this case, turns out to be

Cr =
1
3
(Cl1(|η2〉 〈η2|) + Cl1(|η

⊥
2 〉 〈η⊥2 |)

+Cl1(|η
⊥⊥
2 〉 〈η⊥⊥2 |)).

Again Cr vanishes when {|η1〉 , |η⊥1 〉 , |η⊥⊥1 〉} and
{|η2〉 , |η⊥2 〉 , |η⊥⊥2 〉} coincide, and they are two-way
LOCC distinguishable with minimum rounds. Other-
wise, it is nonvanishing. Notice that unlike in 2 ⊗ 2,
numerical optimizations involved in τC for obtaining
MECn

l1 with the variation of state parameters become
hard with the increase of dimensions due to the in-
crease of parameters in Uis, thereby making numeri-
cal analysis difficult for general ensembles in higher di-
mensions.

Observation 1. In 2 ⊗ 2 and 2 ⊗ 3 dimensions, if
a given ensemble {|ψi〉 ⊗ |φi〉}i=1,2,··· ,N (N = 4 and 6
for 2⊗ 2 and 2⊗ 3 dimensions respectively), equipped
with the condition that all the components of the
states of the ensemble are real, is both way LOCC-
distinguishable with minimum rounds, we find that
the resulting superposed local unitarily rotated states,

|χ〉 = U∗
1√
N

∑N
i=1 |ψi〉 ⊗ |φi〉 are maximally coherent

ones [23, 35].
Remark 3. The measure does not give satisfactory re-

sults, when Alice or Bob’s side possess arbitrary qubits,
i.e., when

|η1〉 = cos θ1
2 |0〉+ eiφ1 sin θ1

2 |1〉 , and

|η2〉 = cos θ2
2 |0〉+ eiφ2 sin θ2

2 |1〉 . (5)

E.g., consider |η1〉 = ( 1√
2

, i√
2
)T and |η2〉 =

(cos(π
8 ), i sin(π

8 ))
T , the corresponding ensemble, E2 is

one-way LOCC-distinguishable. Since the absolute
value of the inner product between |η1〉 and |η2〉 is
0.92388, the value of Cr is nonvanishing. However, one
can find that MECl1(rel) is maximum irrespective of the
coherence measures. There are other examples of en-
sembles having nonvanishing φi, i = 1, 2 for which the
similar maximal values of MEC can be found. In the
next subsection, we will show that one can define an-
other coherence-based measure with the help of MEC
for ensembles which are effective in characterizing any
ensembles.

Moving beyond qubits, we know that for orthog-
onal product ensembles, several interesting results
are reported both for the full product basis as
well as for the incomplete basis [3, 4]. In 3 ⊗ 3 ,
prominent ones are the basis known as nonlocality
without entanglement (NLWE) [3] and unextendible
product basis (UPB) [4]. The common property of
these ensembles is that they are indistinguishable
by LOCC (even if one involves infinite rounds of
classical communication), thereby leading to an ir-
reversibility between preparation and distinguishing
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1

2

3

                    A0/1                      A2

      B0/1                B2            B0             B1/2

      A0           A1/2
    4              2                 3

 1            3

Figure 2. Schematic diagram of the three stages of LOCC
rounds to distinguish the Tiles UPB without the fifth states
(stopper), denoted by E ′tiles. A and B indicate the party per-
forming the measurements. The numbers mentioned next A
or B specifies the outcome of the measurements, i.e., A0/1
means that A obtains the outcome |0〉 or |1〉 and so on. As
mentioned in the text, the ensemble is two-way LOCC distin-
guishable and here we show the protocol when A starts.

processes. We find that for the NLWE basis, Enlwe =
{|1〉 |1〉 , |0〉 |0 + 1〉 , |0〉 |0− 1〉 , |2〉 |1 + 2〉 , |2〉 |1− 2〉 ,
|1 + 2〉 |0〉 , |1− 2〉 |0〉 , |0 + 1〉 |2〉 , |0− 1〉 |2〉} where

|i + j〉 =
1√
2
(|i〉 + |j〉), MECn

l1(Enlwe) = 0.491 while

for the “Tiles UPB”, MECn
l1(Etiles) = 0.772 with

Etiles = {|0〉 |0− 1〉 , |2〉 |1− 2〉 , |1− 2〉 |0〉 , |0− 1〉 |2〉 ,
1
3
(|0〉+ |1〉+ |2〉)⊗ (|0〉+ |1〉+ |2〉)}. All of them are

less than unity, thereby detecting their quantumness
via MEC successfully.

To check the effectiveness of MEC, let us omit one of
the states of the ensemble and make them distinguish-
able. For example, if one omits the fourth state from
NLWE basis which we call it as E ′nlwe, the new ensem-
ble is distinguishable with four rounds of LOCC proto-
col provided B starts the protocol as shown in Ref. [3]
and we compute MECn

l1(E
′
nlwe) = 0.567 which is higher

than the value obtained for the full product basis. On
the other hand, removing fifth state from the Tiles UPB,
the ensemble can be distinguished with three rounds
of LOCC although it is independent of the parties who
start the protocol as shown schematically in Fig. 2 and
MECn

l1 gets increased and is 0.875.

B. Coherence Deficit

Based on the previously introduced quantities, one
can intuitively understand that the minimal difference
between the total local coherence and minimum ensem-
ble coherence can characterize the inherent quantum
features responsible in local indistinguishability among
product states. The difference can be referred to as ‘co-

Figure 3. Coherence deficit (CD), Dcoh
l1

(ordinate) and Psucc
(ordinate) with respect to Cr (abscissa) for arbitrary product
ensembles in 2⊗ 2. Squares (blue), big circles (red) and small
circles (green) correspond to CD values for general ensem-
bles with complex coefficients, CD values for arbitrary en-
sembles with real coefficients and success probabilities respec-
tively. Again the maximum value is obtained for the ensem-
bles which is two-way distinguishable by LOCC with mini-
mum rounds and otherwise, they are non optimal. Both the
axes are dimensionless.

herence deficit’ (CD), represented as

Dcoh
l1(rel) = |τ

C
l1(rel) −MECl1(rel)|. (6)

Again the ensemble which are two-way locally dis-
tinguishable with minimum rounds gives the maxi-
mum while the deviation of the maximal value detects
the difficulty in distinguishing product ensembles via
LOCC.

Arbitrary ensembles in 2⊗ 2. Considering the ensem-
ble, E4

arb with complex coefficients (i.e., with φi 6= 0, i =
1, 2 in Eq. (5), we observe that Dcoh

l1
decreases with

the variation of Cr and the maximum value is attained
for states having Cr = 0 (see Fig. 3). Clearly, the
ensemble for which it reaches unity (after dividing it
with the maximum value 3.0) is two-way distinguish-
able with minimum round, i.e., the ensemble, E1, even
when {|0〉 , |1〉} is replaced by {|η〉 , |η⊥〉}.
Non-uniqueness. We notice that several ensembles cor-
responding to different values of DC may yield same
Cr value as shown in Fig. 3, although we observe that
nonmaximal CD never corresponds to vanishing Cr.

Higher dimensional ensembles. The similar decreasing
pattern for Dcoh

l1
(E6

arb) with the increase of relative local
coherence can also be found in 2⊗ 3 and the nonopti-
mality of Dcoh

l1
guarantees the difficulties in distinguish-

ing sets of orthogonal product states. Moreover, we find
that Dcoh

l1
(Enlwe) = 4.076 and Dcoh

l1
(Etiles) = 1.823. Sim-

ilar calculation reveals that for Pyramid UPB, given by
{|v0〉 |v0〉 , |v1〉 |v2〉 , |v2〉 |v4〉 , |v3〉 |v1〉 , |v4〉 |v3〉} where

vi = N(cos
2πi

5
, sin

2πi
5

, h) with N =
2√

5 +
√

5
and
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Figure 4. Schematic diagram of finding the configuration of
the ensemble and searching for the set of rank-1 projectors to
be performed by B for arbitrary product ensembles in 2⊗ 2.
For a given ensemble in 2⊗ 2 dimension, there are two pos-
sible configurations which are shown in (a) and (b). Rele-
vant rank-1 projective measurements to reduce the ensemble
to any of the four possible sets, Si, i = 1 . . . 4, given in Eq.
(7), are also shown for each configurations. For case (a), the
outcome of the projectors P and P⊥ ensure that the ensemble
reduces to the set S1 and S4 respectively, while for case (b),
the outcome of the same conclude the reduction to S2 and S3
respectively.

h =

√
1 +
√

5
2

, MECl1 and Dcoh
l1

are respectively 7.055
and 1.197. Therefore, we again find that the CD values
deviate from the maximum value for locally indistin-
guishable sets of states.

IV. PRESCRIPTION FOR PROBABILISTIC LOCC
DISCRIMINATION AND ITS CONNECTION WITH

COHERENCE-BASED MEASURES

The aim of this section is two-fold. First, we pro-
vide a prescription of discriminating arbitrary orthog-
onal product ensembles which are one-way locally dis-
tinguishable, following the similar techniques of BB84

protocol and the protocol introduced in Ref. [32]. Sec-
ondly, we show that the optimal success probabilities
follow the similar trend like the quantumness measures
based on coherence, MEC and CD, for ensembles with
the variation of relative local coherence.

A. Success probabilities of arbitrary two qubit product
ensembles and its relation with coherence

Let us illustrate the method of probabilistic discrim-
ination for E4

arb which can be distinguished by LOCC
provided Alice starts the protocol. For discriminating
probabilistically, we assume that instead of Alice, Bob
starts the protocol, for which the deterministic discrim-
ination of the ensemble is not possible, and hence Bob’s
aim is to maximize the success probability of LOCC dis-
crimination. In general, if one restricts the LOCC proto-

col in such a way that the party who does not share the
computational basis, has to start the protocol, the de-
terministic discrimination is not possible and hence the
probability of discriminating ensembles has to be opti-
mized. In particular, B first measures his qubit, shares
the outcome with A via CC, A then measures her qubit
and decides the state which was given to them from the
ensemble. A has to measure her qubit in {|0〉 , |1〉} ba-
sis and can distinguish the state if the measurement of
B reduces the ensemble to any one of the four possible
sets, given by

S1 = {|0η1〉 , |1η2〉}, S2 = {|0η1〉 , |1η⊥2 〉},
S3 = {|0η⊥1 〉 , |1η2〉}, and S4 = {|0η⊥1 〉 , |1η⊥2 〉}. (7)

The procedure described below can then be followed to
distinguish E4

arb with maximum success probability.

1. Finding the configuration. For a given ensemble,
E4

arb for which |η1〉 and |η2〉 are known, B can find
the absolute value of the inner products 〈η1|η2〉
and 〈η1|η⊥2 〉 for the given ensemble in order to
determine the configuration. If he finds that
| 〈η1|η2|〉 is higher than | 〈η1|η⊥2 〉 |, the possible
configuration of the ensemble is shown in Fig.
4(a), otherwise the configuration to be chosen is
depicted in Fig. 4(b).

2. Fixing the set of rank-1 projectors for party B. Af-
ter determining the configuration, B has to find
a set of rank-1 projectors which can reduce the
ensemble to any one of the four possible sets,
Si, i = 1, . . . , 4, as mentioned before with maxi-
mum success probability.
E.g., if a given ensemble belongs to the configu-
ration in Fig. 4(a), B can construct a set of rank-1
projectors, {P = |φ〉 〈φ| , P⊥ = |φ⊥〉 〈φ⊥|}, such
that the outcome of P ensures that the qubit of
B is either in the state |η1〉 or in the state |η2〉
which leads to the reduced set, S1. On the other
hand, the outcome of P⊥ indicates that the re-
duced set is S4. In this case, the set of opti-
mal projectors is chosen in such a way that the
quantity | 〈φ|η1〉 |2 + | 〈φ|η2〉 |2 or | 〈φ⊥|η⊥1 〉 |2 +

| 〈φ⊥|η⊥2 〉 |2) is maximum over all projectors. In
this case, after optimizing, |φ〉 can be found to be
intermediate state between |η1〉 and |η2〉 and the
optimal probability of successful discrimination is
given by Psucc = | 〈φ|η1〉 |2.

3. Measurements of A. After determining the correct
reduced set, A has to measure her qubit in the
computation basis, {|0〉 , |1〉}, to decide the state
given from the ensemble.

The success probabilities with the variation of rela-
tive local coherence are shown for arbitrary two-qubit
product ensembles E4

arb with real and complex coeffi-
cients in Figs. 1 and 3. In both the scenarios, we find
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that Psucc reaches its maximum value, unity when Cr
vanishes. It decreases with the increase of Cr which is
in good agreements with the patterns of minimum en-
semble coherence and coherence deficit. Therefore, it
demonstrates that the coherence-based measures intro-
duced here to characterize quantumness in ensembles
can not only serve as a detector but it has potential to
quantify quantum features in ensembles.

B. Relating success probabilities in higher dimensional
ensembles with coherence

Let us now check whether the connections between
Psucc and coherence remain valid in higher dimensions.
Before doing that, let us present briefly the modifica-
tions required in each step to obtain success probabili-
ties, discussed for E4

arb. Let us first start the discussion
with product ensemble, E6

arb in 2⊗ 3. In this scenario
with restricted LOCC from B to A, the ensemble can
be distinguished with optimum probability if the mea-
surement of B reduces the ensemble to any one of the
nine possible sets,

S1 = {|0η1〉 , |1η2〉}, S2 = {|0η⊥1 〉 , |1η2〉},
S3 = {|0η⊥⊥1 〉 , |1η2〉}, S4 = {|0η1〉 , |1η⊥2 〉},
S5 = {|0η⊥1 〉 , |1η⊥2 〉}, S6 = {|0η⊥⊥1 〉 , |1η⊥2 〉},
S7 = {|0η1〉 , |1η⊥⊥2 〉}, S8 = {|0η⊥1 〉 , |1η⊥⊥2 〉}, and

S9 = {|0η⊥⊥1 〉 , |1η⊥⊥2 〉}. (8)

The prescription consisting of finding the configura-
tion, setting of rank-1 projective measurements by B
and finding the probabilities gets modified with the in-
crease of dimensions in the following way:

1. Since the states in the ensemble are known to both
the parties, they can find the configuration easily
by just finding the absolute value of the inner
products, given by 〈η1|η2〉, 〈η1|η⊥2 〉, 〈η1|η⊥⊥2 〉,
〈η⊥1 |η2〉, 〈η⊥1 |η⊥2 〉, 〈η⊥1 |η⊥⊥2 〉, 〈η⊥⊥1 |η2〉, 〈η⊥⊥1 |η⊥2 〉,
〈η⊥⊥1 |η⊥⊥2 〉.

E.g., | 〈η1|η2〉 ||, 〈η⊥1 |η⊥2 〉 | and | 〈η⊥⊥1 |η⊥⊥2 〉 |
are relatively higher than the rest of the abso-
lute values of the inner products, the possible
configuration of the ensemble is given in Fig.
5(a).

2. After fixing the configuration, B requires to find
a set of optimal rank-1 projective measurement
that can reduce the ensemble to any one of the
sets stated earlier with maximum success proba-
bility. If the given ensemble has the configura-
tion in Fig. 5(a), the measurement of B reduces to
the ensemble to any one of the sets S1, S5 and
S9 depending on the outcome of the measure-
ment. In this situation, a set of rank-1 projectors

for B reads as {P1 = |φ〉 〈φ| , P2 = |φ⊥〉 〈φ⊥| , P3 =
|φ⊥⊥〉 〈φ⊥⊥|}, where the outcome of P1 ensures
that state at B’s end is either |η1〉 or |η2〉 and the
corresponding reduced set is S1. Similarly, for the
outcome of P2, the sets are either S5 or S9. Hence
to confirm the actual reduced set corresponding
to the projector P2, B has to find the absolute
value of the inner products 〈φ⊥|η⊥1 〉, 〈φ⊥|η⊥2 〉,
〈φ⊥|η⊥⊥1 〉 and 〈φ⊥|η⊥⊥2 〉. For this configuration,
given in Fig. 5(a), either the first two inner prod-
ucts are relatively higher than the rest or the op-
posite with the last two occurs. If B finds the for-
mer, the outcome of P2 infers the reduced set to
be S5 and evidently the outcome of P3 reduces
to the set S9, and vice versa (see Fig. 6). Let us
now address the question how the set of optimal
projectors can be found. We now illustrate a pro-
cedure that B can follow to systematically find the
optimal projector if the ensemble has the configu-
ration Fig. 5(a). Of course, the similar procedure
after modification can be followed for other con-
figurations.

(a) First, B finds the following set of the ele-
ments:
P={| 〈η1|φ〉 |, | 〈η2|φ〉 |, | 〈φ⊥|η⊥1 〉 |,
| 〈φ⊥|η⊥2 〉 |, | 〈φ⊥|η⊥⊥1 〉 |,| 〈φ⊥|η⊥⊥2 〉 |,
| 〈φ⊥⊥|η⊥1 〉 |, | 〈φ⊥⊥|η⊥2 〉 |, | 〈φ⊥⊥|η⊥⊥1 〉 |,
| 〈φ⊥⊥|η⊥⊥2 〉 |}
with {|φ〉 , |φ⊥〉 , |φ⊥⊥〉} being given by

|φ〉 = sin θ cos φ |0〉 + sin θ sin φeiφ1 |1〉 +
cos θeiφ2 |2〉, |φ⊥〉 = − sin φ |0〉 +
eiφ1 cos φ |1〉, |φ⊥⊥〉 = cos θ cos φ |0〉 +
cos θ sin φeiφ1 |1〉 − sin θeiφ2 |2〉.

(b) Secondly, for a fixed ensemble, the parame-
ters in the state |φ〉 (i.e., θ, φ, φ1, φ2) can be
varied and arranging the set P in descending
order for the specified values of the parame-
ters (θ, φ, φ1, φ2), the set, Pdes is formed where
each pair from the first three pairs of the el-
ements corresponds to the absolute value of
the inner products between any one of the
three states {|φ〉 , |φ⊥〉 , |φ⊥⊥〉} and its two
adjacent states ( e.g., if we choose |φ〉 such
that its adjacent states are |η1〉 and |η2〉, the
pair of the elements | 〈φ|η1〉 | and | 〈φ|η2〉 |
will be one in the first three pairs). The sum
of the first six elements from the set Pdes is
maximized over all possible values of the pa-
rameters which lead to the optimal projec-
tors. E.g., if the first six elements of the
set Pdes are | 〈η1|φ〉 |, | 〈η2|φ〉 |, | 〈φ⊥|η⊥1 〉 |,
| 〈φ⊥|η⊥2 〉 |, | 〈φ⊥⊥|η⊥⊥1 〉 | and | 〈φ⊥⊥|η⊥⊥2 〉 |
respectively (i.e., the outcome of P1, P2
and P3 corresponds to the reduced set S1,
S5 and S9 respectively), the probability of
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Figure 5. Schematic diagram of the configuration for the arbitrary product ensemble, E6
arb in 2⊗ 3 dimension. In this case, there

are six possible configurations as depicted from (a) to (f).

Figure 6. Schematic diagram of finding the set of rank-1 pro-
jectors for party B in 2⊗ 3 dimension provided the ensemble
is found to be in the configuration given in Fig. 5(a). In (a),
the outcome of the projectors P1, P2 and P3 ensure that the en-
semble reduces to the set S1, S5 and S9 in Eq. (8) respectively.
In (b), the outcome of the same reduces to the set S1, S9 and
S5 corresponding to the projects P1, P2 and P3 respectively.

the successful discrimination is the square
of the sixth element of the set Pdes which
turns out to be the worst case scenario, i.e.,
| 〈φ⊥⊥|η⊥⊥2 〉 |2.

After finding the success probability of discriminat-
ing arbitrary product ensembles E6

arb, we observe that
the envelopes of Psucc decreases with the increase of rel-
ative local coherence (see Fig. 7). Again when Cr van-
ishes, i.e., the sets of basis vectors {|η1〉 , |η⊥1 〉 , |η⊥⊥1 〉}
and {|η2〉 , |η⊥2 〉 , |η⊥⊥2 〉} coincide, B can measure and
distinguish them deterministically, thereby obtaining

Figure 7. Success probability with one-way LOCC, Psucc
(vertical axis) vs. Cr (horizontal axis) for arbitrary product
ensembles in 2⊗ 3 with real coefficients. Both the axes are
dimensionless.

Psucc to be unity.
We now briefly sketch the prescription dis-

cussed above for the product ensembles in
2 ⊗ 3 to 2 ⊗ d. In this scenario, E2d

arb =

{|0η
(0)
1 〉 , |0η

(1)
1 〉 , · · · , |0η

(d−1)
1 〉 , |1η

(0)
2 〉 , · · · , |1η

(d−1)
2 〉},

where {|η(0)
i 〉 , |η(1)i 〉 , · · · , |η(d−1)

i 〉}, i = 1, 2 are
d-dimensional mutually orthogonal arbitrary qudit
states. If we consider the restricted LOCC from B to
A, as described earlier, the ensemble can be locally
distinguishable with maximum success probability if
the measurement of B reduces the ensemble to any of
the d2 number of possible sets, given by
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S1 = {|0η
(0)
1 〉 , |1η

(0)
2 〉}, S2 = {|0η

(0)
1 〉 , |1η

(1)
2 〉}, · · · , Sd = {|0η

(0)
1 〉 , |1η

(d−1)
2 〉},

Sd+1 = {|0η
(1)
1 〉 , |1η

(0)
2 〉}, Sd+2 = {|0η

(1)
1 〉 , |1η

(1)
2 〉}, · · · ; S2d = {|0η

(1)
1 〉 , |1η

(d−1)
2 〉 ,

. . . . . . . . . . . . . . . . .
S(d2−d+1) ={|0η

(d−1)
1 〉 , |1η

(0)
2 〉}, S(d2−d+2) = {|0η

(d−1)
1 〉 , |1η

(1)
2 〉}, · · · , Sd2 = {|0η

(d−1)
1 〉 , |1η

(d−1)
2 〉}.

In this case, there are d! number of possible configura-
tions possible and hence the first task is to find the con-
figuration of the given ensemble. After fixing the con-
figuration, B can find the optimal projective measure-
ments, discussed above which leads to the final mea-
surement at A’s end in the computational basis, giving
the optimal Psucc.

V. CONCLUSION

In the entanglement resource theory, the free states
are the separable ones while the free operations are the
local operations and classical communication (LOCC)
by which free states can be created. It is natural to pre-
dict that the difficulty in discrimination of set of states
via LOCC is related to the average entanglement con-
tent of the ensembles. However, it was found that such
an intuition in LOCC distinguishability does not hold in
general. Specifically, it was surprisingly, reported that
there are product ensembles, full as well as incomplete
basis, which cannot be discriminated by LOCC.

Characterizing properties which are responsible for
showing LOCC indistinguishability of product as well
as entangled ensembles, is one of the central questions
in this field. There are few attempts in this direction
which include locally accessible information which fail
to characterize product ensembles, entanglement pro-
duction by using global operations. In this work, we
quantify quantumness of ensembles by using the con-
cept of coherence. Specifically, we showed that the

coherence of the superposed states in ensembles after
suitably rotating them via unitary operations (which
are obtained by optimizing coherence locally) can have
potential to distinguish product ensembles which are
two-way locally distinguishable with minimum rounds
of classical communication from the rest. Moreover, we
showed that the patterns of coherence-based measures
match with the optimal success probability by which
the states can be distinguished by LOCC probabilisti-
cally.

Among product ensembles, there are several hierar-
chies present according to their LOCC discrimination
protocol. The coherence-based quantifier can capture
some features present in the ensembles and so it will be
an interesting direction to search for the possible mea-
sures of ensembles consisting of both product as well as
entangled states which can provide more fine-grained
structure.
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