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The quantum XXZ spin model with alternating bond strengths under magnetic field has a rich
equilibrium phase diagram which includes Haldane, Luttinger liquid, singlet, and paramagnetic
phases. We show that the nearest neighbor bipartite and multipartite entanglement can detect quan-
tum critical lines and phases in this model. We determine a region in parameter space in which
the dynamical states, starting from the ground state of the Haldane (dimer) phase can create highly
multipartite entangled states for any time period, thereby establishing it as a potential candidate
for the implementation of quantum information tasks. We also exhibit that if the initial and evolved
states are in two different phases, the nonanalytic behavior of multipartite entanglement and the rate
function based on Loschmidt echo can signal quantum phase transition happened at zero tempera-
ture. In a similar spirit, we report that from the product state, the patterns of block entanglement
entropy of the evolved state with time can also infer the phase transition at equilibrium.

I. INTRODUCTION

At zero temperature, quantum phase transition oc-
curs by tuning the magnetic field or the interaction
strength in quantum spin models solely due to quan-
tum fluctuations [1]. Hence, with the help of analytical,
numerical and approximate methods, identifying these
phases and critical lines via suitable physical quantities
is important to increase the understanding of the sys-
tem. In this respect, it was argued that some phases
like Haldane phase [2] can only be observed in spin
models with integer spins and not with half integer
spins. However, it was discovered that spin-1/2 Heisen-
berg antiferromagnetic-ferromagnetic (AF-F) alternat-
ing spin model in presence of magnetic field (see Fig.
1) can show gapless Haldane phase [3–14]. After the
initial result, numerical searches and variational meth-
ods reveal that this model possess a richer phase dia-
gram which includes Luttinger liquid, Haldane, param-
agnetic phases [15] compared to the corresponding anti-
ferromagnetic or ferromagnetic Heisenberg spin chains
[16–21]. Although the static properties of this model
has been studied extensively, investigations on the dy-
namical states are still missing which may reveal some
counter-intuitive phenomena due to the competition be-
tween antiferromagnetic and ferromagnetic bonds. In
this paper, we will show that it is indeed the case.

On the other hand, quantum spin models which can
currently be simulated using cold atoms [22], trapped
ions [23] and superconducting qubits [24–26], turn out
to be important test beds [27–30] for several quan-
tum information processing tasks ranging from one-
way quantum computation [31–35], and quantum sim-
ulator [36] to quantum state transfer [37]. In many of
these processes, one requires highly entangled states
[38] which are either the ground or the thermal equi-
librium or the dynamical states of the spin models. It
is interesting to identify parameter regimes in the spin
Hamiltonian which possess highly entangled states as
the ground or the thermal state below some critical tem-
perature so that the model can be used as a resource of

entanglement.

J J Jλ λ

FIG. 1. A schematic diagram of an one-dimensional spin
model consisting of the spin-1/2 particles governed by the
Hamiltonian Halt, emphasizing on different bond strengths, J
and λ between alternating pairs of particles.

Over the years, several mechanisms which include
identifying physical observables have been developed
to study the equilibrium physics of the many-body sys-
tems while such advancement is lacking for the dynam-
ical states [39]. From the perspective of information the-
ory, the investigation of evolution has two-fold motiva-
tions – in one hand, determining initial states, quench-
ing parameters and optimal time which can produce
highly entangled states are useful for designing quan-
tum protocols; on the other hand, finding quantum in-
formation theoretic quantities whose dynamical behav-
ior can faithfully reveal the criticalities at zero tempera-
ture, thereby mimicking the equilibrium physics can be
important, both from the perspective of quantum infor-
mation theory and condensed matter physics.

In this work, we are mainly interested to analyze
the dynamical behavior of the XXZ model with alter-
nating bonds and magnetic fields, both from the per-
spective of answering fundamental questions as well as
from assessing its capability as quantum devices. Be-
fore doing so, we first concentrate on the static prop-
erties of this model. First, the critical lines between
most of the phases, paramagnetic (PM), Luttinger liq-
uid (LL), the combination of Haldane and singlet-dimer
phases are drawn by studying the symmetry properties
of the model [16–21]. We then employ bipartite and
multipartite entanglement measures, Logarithmic neg-
ativity (LN) [40, 41] and generalized geometric measure
(GGM) [42–45], respectively, to distinguish between
Haldane and singlet-dimer phase. Furthermore, LN
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and GGM vanish in the PM phase while bipartite en-
tanglement shows a decreasing nature in the LL phase
with the increase of the magnetic field, thereby truly
characterizing the phase diagram of this model. We
also report that bipartite entanglement at finite temper-
ature can go beyond the entanglement content found in
the zero-temperature state which can be important to
probe the system in laboratories.

Our investigations on dynamics in the XXZ model
with alternating bonds are divided into three parts – (1)
creation of entanglement by appropriately driving the
system parameters, (2) proposing multipartite entan-
glement as an indicator of dynamical quantum phase
transition, (3) exhibiting the dynamics of block entan-
glement entropy which can signal quantum phase tran-
sition at zero temperature. In the XXZ model with al-
ternating bonds and magnetic fields, sudden quench-
ing is performed either by tuning the anisotropy in the
z direction or changing the interaction strength in the
alternating bonds or both. We first identify a parameter
space, both for the initial state and the evolution oper-
ator, which leads to a creation of high multipartite en-
tanglement. Specifically, we observe that taking ground
states of Haldane or singlet phase as initials and per-
forming quench in these two phases, the evolved states
created contain high multipartite entanglement.

On the other hand, towards making connection be-
tween equilibrium and nonequilibrium physics, it was
realized that physical quantities like rate function based
on Loschmidt echo (LE) can show nonanalyticity with
time when the phase of the initial and the driving
Hamiltonian are chosen from two different phases,
thereby detecting a phenomenon known as dynamical
quantum phase transition [39, 46]. We show here that
both the rate function as well as GGM of the evolved
state show nonanalyticities with time when the system
is initially in the ground state of the Haldane phase and
finally quenched in the singlet-dimer phase and vice-
versa. Moreover, if the initial state is prepared in a suit-
able product state, the patterns of block entropy in the
evolved state can determine whether parameters in the
Hamiltonian responsible for the evolution is close to the
critical line or far from it. Specifically, we observe that
in the transient regime, the block entanglement entropy
remains almost constant with time for different system
parameters which are chosen from the Haldane or sin-
glet phase and far from the Haldane-singlet critical line
while the entropy behave differently with the variation
of time when the parameters in the Hamiltonian are
chosen close to the Haldane-singlet phase boundary.

The paper is organized in the following way. The
XXZ model with alternating bonds under investiga-
tion and its symmetry properties are described in Sec.
II while the detection of critical lines via bipartite as
well as multipartite entanglement is reported in Sec. III.
Sec. IV identifies a parameter regime and time period
in which maximal genuine multipartite entanglement
can be generated. In Sec. V, multipartite entanglement

as well as entanglement entropy obtained in the dy-
namical states are used to characterize quantum phase
transitions at zero temperature. We present concluding
remarks in Sec. VI.

II. XXZ ALTERNATING CHAIN AND ITS
SYMMETRIES
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FIG. 2. Phase diagram of the XXZ model with alternat-
ing bonds [16]. The critical lines are plotted in the λ, B-plane
by considering the energy gap between the two lowest eigen-
states (see text for details). Here ∆ = 1 and N = 16.
The phases, paramagnetic (PM) (I), Luttinger liquid (LL) ((II)
and (III)), Haldane (IV) and singlet-dimer (V) are mentioned
according to the literature (see Refs. [16–21] and reference
therein).

Let us describe the properties of the XXZ model
with the alternating bond strengths and magnetic field
which admits a richer phase diagram than the Heisen-
berg chain [7, 16]. The Hamiltonian of the model reads
as

Halt = J
N/2

∑
i=1

(Sx
2i−1Sx

2i + Sy
2i−1Sy

2i + ∆Sz
2i−1Sz

2i)

+ λ′
N/2

∑
i=1

(Sx
2iS

x
2i+1 + Sy

2iS
y
2i+1 + ∆Sz

2iS
z
2i+1)

− B′
N

∑
i=1

Sz
i , (1)

where Sk
i (k = x, y, z) represents the spin operators

(which is half of the Pauli spin operator) at site i, in the
chain of length N, the coupling parameters of odd and
even bonds are respectively J > 0, indicating antiferro-
magnetic interaction strength and λ which can be both
positive and negative, ∆ > 0 denotes the anisotropy pa-
rameter in the z direction and B′ is the strength of the
magnetic field. We set λ = λ′/J and B = B′/J through-
out the paper. We also assume the periodic boundary
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condition, i.e., SN+1 = S1 with N being the even. Notice
that it permits a regime where even bonds are antifer-
romagnetic while odd bonds are ferromagnetic, as well
as both the bonds are antiferromagnetic although the
strength can be different in alternating bonds, thereby
making both the systems nondiagonalizable analyti-
cally. We refer to the former one as antiferromagnetic-
ferromagnetic XXZ alternating chain and the latter one
as antiferromagnetic XXZ chain with alternating bond
strengths. The numerical techniques like Lanczos al-
gorithm [47, 48], and approximate procedures are em-
ployed to investigate the phase diagram via the energy
gap, spin correlation functions of this model.

It was found that the competition between antiferro-
magnetic and ferromagnetic bonds lead to a rich quan-
tum phase diagram in the (B, λ)-plane [7, 16] which
include Luttinger liquid (LL), Haldane, paramagnetic
(PM) phases. When both the bonds are AF although the
strengths in alternating bonds are different, it also pos-
sess singlet-dimer, LL and PM phases with the changes
of the magnetic fields and λ (as shown in Fig. 2). In
this paper, one of the primary goals is to investigate the
dynamical state, and so we use Lanczos algorithm for
diagonalizing the Hamiltonian [47]. This method first
converts the sparse-matrix Hamiltonian into a tridiago-
nal matrix in the Krylov subspace basis which makes
the diagonalization problem simpler. As mentioned
next, we also exploit some symmetry properties of the
system so that the higher number of total spins espe-
cially during dynamics can be addressed.

As depicted in Fig 2, we reproduce the phase dia-
gram of the Hamiltonian Halt with ∆ = 1.0 [17, 18, 49]
by computing the energy gap, denoted as ∆E, which
is the difference between the two lowest eigenenergies.
Except the transition from the Haldane (denoted as
(IV)) to the singlet-dimer phase (mentioned as (V)), we
draw the critical lines when the energy gap is less than
0.05 for N = 16 which are in a good agreement with
previously known results. However, the correspond-
ing phases are mentioned according to the literature
[17, 18, 49]. We will also show in succeeding section
that entanglement can detect all the critical lines in this
model.

A. Ground state symmetry properties

The Hamiltonian in Eq. (1) possess various symme-
tries – translation symmetry (T), parity (P) and spin
inversion (Z) for ∑N

i=1 Sz
i = 0 [50]. In the computational

(Sz) basis, they are represented by

T|Sz
0, Sz

1, Sz
2....Sz

N〉 = |Sz
2....Sz

N , Sz
0, Sz

1〉,
P|Sz

0, Sz
1, Sz

2....Sz
N〉 = |Sz

N , ......Sz
2, Sz

2, Sz
0〉,

Z|Sz
0, Sz

1, Sz
2....Sz

N〉 = | − Sz
0,−Sz

1,−Sz
2....− Sz

N〉.
(2)

These symmetries admit certain good quantum num-
bers which can be used to label the basis states. Due

to the translational symmetry, the states with momen-
tum can be represented as k ∈ {0, 1, ....N/4}, the par-
ity leads to p ∈ {1,−1} and the spin inversion gives
z ∈ {1,−1}. Interestingly, k becomes semi-momentum
when the parity symmetry is applied, which is 2πk

N/2 .
The Hamiltonian in Eq. (1) also preserves the to-
tal spin in the z-direction, and its quantum number
is represented by mz = ∑N

i=1 Sz
i . Therefore, mz ∈

{−N/2,−N/2 + 1, · · · , N/2− 1, N/2} for the ground
state. The behaviors of mz and spin inversion numbers
are shown in Fig. 3, from which one can also infer the
phases or critical lines of the model.

1. Total spin magnetization in the z direction. We are
interested in the trends of mz + N/2 ∈ {0, 1, ...N}
considering the ground state. If there is two-fold
degeneracy and mz is different for the two low-
est energy states, mz + N/2 is set to −1 while
for higher degeneracy, it is taken to be −2. No-
tice that the blue line differentiating LL with the
PM phases has two-fold degeneracy and the two
eigenstates correspond to two different mz values.

In the Haldane as well as the singlet-dimer
phases, mz + N/2 is N/2, thereby unable to dis-
tinguish them while it is N in the paramagnetic
phase, suggesting that it contains the spins, po-
larized in the up-direction (see Fig. 3(a)), which
can also be confirmed by nearest-neighbor corre-
lations in the next section. Since the Lutinger liq-
uid phase has degenerate eigenstates, it has no
definite value and it increases with the increase of
the magnetic field, B. Therefore, the behavior of
mz can differentiate the regions between param-
agnetic, Luttinger liquid and the Haldane-singlet
together.

2. Semi-momentum. The states with semi-momentum
number, k, can differentiate only between LL in
the AF-F alternating chain and the rest since in
all other phases, it vanishes for the ground state.
Like mz, again the critical line between LL and
PM phases (between (I) and (II)), there is two-fold
degeneracy with different k number and hence we
use same convension as mz.

3. Parity. Unlike semi-momentum, the parity opera-
tor, p is nonvanishing only when the ground state
is in the Luttinger liquid phase of the AF Heisen-
berg alternating chain. Again, in the degenerate
ground state space (between (I) and (III)), we use
the similar fixed value as in mz.

4. Spin inversion. The valid z values are 0, 1 and −1.
It can be seen that z can be used to differenti-
ate between every other phases and the Haldane-
singlet combination as shown in Fig. 3(d). Since
there is no spin inversion symmetry in phases
(I), (II) and (III), we put zero in the computation.
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FIG. 3. Symmetries of the ground state. (a) Map plot of the total magnetization in the z direction, mz + N/2, of the ground
state with respect to λ (horizontal axis) and B (vertical axis). (b) Map plot of spin inversion operator (Z) defined in Eq. (2) in the
λ, B-plane. Here the system-size is taken as N = 16. Magnetization can distinguish all the phases except (IV) and (V) while the
spin inversion operator can distinguish (I)-(III) together with (IV)-(V). For degenerate eigenstates, we use a convention which is
mentioned in the text. Both the axes are dimensionless.

Note that the critical point where all the phases
meet has higher degeneracy.

From the collective analysis of all the symmetries, we
can infer the paramagnetic (I), Luttinger liquid in the
AF-F chain (II), and LL (III) phase in the AF chain al-
though the Haldane and singlet phases cannot be dif-
ferentiated. We will show in the succeeding section that
patterns of entanglement is capable to distinguish the
Haldane phase from the singlet one.

III. DETECTING CRITICALITIES VIA
ENTANGLEMENT

In this section, we will argue that bipartite as well
as multipartite entanglement measures of the zero-
temperature (ground) states are capable to identify
quantum critical lines and they behave in a distinct
manner in each phases, thereby showing their recog-
nizing power in this model. This study also plays an
important role to establish that the trends of entangle-
ment measures of the evolved state can also mimic the
phase diagram observed in the ground state.

Before investigation of entanglement, let us first com-
pute the energy gap, ∆E, important for studying entan-
glement and nearest neighbor classical correlator in the
z direction. We also report the nonmonotonic behav-
ior of bipartite entanglement for the canonical equilib-
rium state of this model. The entire study has been
carried out by exactly diagonalizing the Hamiltonian
using Lanczos method and the symmetry properties
mentioned in the previous section. All the analysis at
the zero temperature is performed for N = 16 while in
case of the thermal and dynamical states, we consider
the system size to be 12.
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FIG. 4. Energy gap in different phases. Map plot of energy
gap between the ground and the first excited state against λ
(abscissa) and B (ordinate). System size is same as in Fig. 2.
Both the axes are dimensionless.

Energy gap. Let us first study its behavior in the
AF-F alternating spin chain. In the Haldane phase, ∆E
increases with the increase of λ for a fixed value of B
while in the PM phase, it remains constant with λ al-
though it starts increasing with the increase of B as de-
picted in Fig. 4. In the LL phase, it vanishes, thereby
suggesting the gapless phase [51]. We will show that
the information about gapless-gapped phases can be
important for computing bipartite as well as multipar-
tite entanglement.

On the other hand, in the AF XXZ model with al-
ternating bond strength, the energy gap decreases with
the increase of λ for a given magnatic field, B in the
singlet-dimer phase while in the PM phase, it increases
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with the variation of B although it decreases with the
increasing λ values as shown in Fig. 4. Moreover, some
regions of LL phase and the phase boundary between
the LL and the PM phase show vanishing energy gap.

Nearest neighbor spin correlation function. Since
we find that the ground state is degenerate in the LL
phase, to compute any nearest neighbor physical quan-
tities, we consider the canonical equilibrium state of
the Hamiltonian with a very low temperature, which

reads at temperature T as ρ(β) =
exp(−βHalt)

Z where
Z = Tr(exp(−βHalt)) is the partition function with
β = 1/KBT, KB being the Boltzmann constant. To dis-
tinguish it from the ground states, we call it as the zero-
temperature state.

To compute any two-party observables, the two-party
reduced density matrix, ρij(β) can be obtained from
ρ(β) by tracing out all the parties except sites i and j.
Note that the Hamiltonian has a double-translational
invariance due to the presence of the alternating bond
strengths J and λ, i.e., the Hamiltonian remains in-
variant, when spins are shifted twice. Therefore, two
nontrivial nearest neighbor density matrices, namely
ρi(i+1), i = 1, 2 corresponding to i ∈ {odd, even} have
to be studied.
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FIG. 5. Map plot of the classical correlators, Czz
12 for nearest

neighbor sites of the ground state. All other specifications are
same as in Fig. 4.

We now compute two nearest neighbor classical cor-
relators in the z direction, given by Czz

ij = Tr[ρijσ
z
i ⊗ σz

j ]

for the zero-temperature state where ρij is obtained
from the thermal state of the Hamiltonian with β = 104.
Firstly, in the PM phase, the values of the nearest neigh-
bor classical correlator in the z direction is maximum
for both i = {1, 2} and remains constant with the vari-
ation of λ as well as B while there is a variation from
negative to positive in the LL phase (see Fig. 5). On the
other hand, when λ increases, Czz

12 decreases in the Hal-
dane phase while it increases in the singlet-dimer phase

with λ, thereby distinguishing these two phases which
is not possible by using symmetries of this model. Note,
however, that the change with λ (increase or decrease) is
very small, which is almost unnoticeable. We will show
that such features become more pronounced when bi-
partite entanglement is calculated in the next subsec-
tion. Furthermore, Czz

23 does not show any additional
feature which cannot be seen in Czz

12.

A. An identifier of criticalities: Multipartite vs. bipartite
entanglement

Let us first present the bipartite and multipartite en-
tanglement measures used to investigate the behavior
of the static and dynamical properties of the system. Bi-
partite entanglement is quantified by logarithmic nega-
tivity (LN) [40, 41], given by

ELN(ρij) = log2 ||ρ
Ti
ij || (3)

where ρ
Ti
ij denotes the partial transposition over the site

i [52]. Since we are dealing with two spin-1/2 particles,
ELN(ρij) reduces to the modulus of the negative eigen-
value of the partial transposed state. In this scenario,
ρij is either ρ12 or ρ23 obtained from the thermal state
with high β.

We are also interested to find out the behavior of
genuine multipartite entanglement in the ground state.
A pure state, |ψN〉 is said to be genuine multipartite
entangled if it is not product in any bipartition. A
distance-based measure, called generalized geometric
measure (GGM), can quantify the genuine multipartite
entanglement content present in the N-party state [42–
45] which is defined as

G(|ψN〉) = 1− max
{|φnong〉}

|〈φnong|ψN〉|2

= 1−max
i
{(λm

i:rest)
2}, (4)

where maximization in the first line is performed
over the set of all nongenuinely multipartite entangled
states, {|φnong〉} while in the second line, the maximiza-
tion is over the set of all the maximal Schmidt coeffi-
cients obtained from all possible bipartitions of |ψN〉,
{(λm

i:rest)
2}. Since we will dealing with total number

sites to be sixteen or twelve, calculating G after maxi-
mizing over all eigenvalues from all bipartitions is com-
putationally costly and hence we restrict to G which
considers all single and two-site reduced density ma-
trices. Note that this restricted GGM is also a multi-
partite entanglement measure. Furthermore, numeri-
cal searches for N = 8 and N = 10 reveal that in this
model, the actual GGM coincides with the restricted
one except at the boundary of Haldane-singlet phase.
Hence, it is reasonable to assume that all the calcula-
tions presented in this paper is indeed quantifying gen-
uine multipartite entanglement.
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FIG. 6. Entanglement in the ground state of the XXZ model with alternating bonds. (a) Map plot of nearest-neighbor entan-
glement, ELN(ρ12) for the zero-temperature state in the (λ, B)-plane. (b) GGM, G for the ground state in the same parameter
space. As the Luttinger liquid phase corresponds to degenerate ground states, GGM is not computed. The corresponding color
palettes display the value of the ELN(ρ12) and G respectively. Interestingly, ELN(ρ12) decreases with the increase of |λ| in the
Haldane as well as singlet-dimer phase while the opposite picture emerges for GGM due to monogamy of entanglement. Here
N = 16. Both the axes are dimensionless.

Trends of LN and GGM. We start our investigation
by noting that the paramagnetic state is all up-spin,
which is separable at every bipartition, and therefore,
both LN and GGM vanish in this phase. Since LL phase
is degenerate, GGM cannot be calculated (since it is
hard to calculate for mixed state (cf. [53, 54])) although
ELN(ρ12) is significant in the LL phase and decreases
with the increase of B as shown in Fig. 6(a).

In a multipartite domain, monogamy of entangle-
ment [55–57] puts restriction on the shareability of en-
tanglement between pairs, i.e., it says in a N-party state,
if two of them are highly entangled, the other pairs pos-
sess a less amount of entanglement. In this respect,
the contrasting features emerge in the Haldane-dimer
phase (comparing Figs. 6(a) and (b)) – in the Hal-
dane phase, ELN(ρ12) increases with the increase of λ
while the decreasing nature of GGM can be observed in
this phase. The opposite picture is seen in the singlet-
dimer phase, i.e., GGM increases and LN decreases
with the increase of λ. It can be argued that the com-
petition between the interaction strength of even and
odd bonds leads to a high multipartite entanglement
in a system with high |λ|. It also manifests that if we
are interested to utilize bipartite entanglement of the
zero-temperature state, the region close to the transi-
tion of Haldane and singlet-dimer phases is favorable
while in case of multipartite entanglement, far from the
transition region of Haldane-singlet criticalities possess
highly entangled states.

Nonmonotonicity of entanglement with temperature. It
has been observed in almost all quantum spin mod-
els that nearest neighbor entanglement of the thermal
state with β > 100 mimic the entanglement of the
ground state. Similarly, entanglement vanishes when
β is sufficiently low. The question is whether entangle-

ment goes to zero monotonically with the variation of
β or not. It was reported for several one-dimensional
spin models that such monotonic behavior does not
hold [58–66]. The spin-1/2 XXZ model with alternat-
ing bonds has a rich phase diagram and so it will be
interesting to see whether any nonomonotonicty ap-
pears in this case also. To check that, we compute
βmax

ij = argmaxβ[ELN(ρij(β))] with (i, j) = (1, 2) and
(2, 3), i.e., we look for 0 < β ≤ 100 which can possess
maximum nearest neighbor entanglement. On varying
the inverse temperature, β, ELN(ρij(β)) is maximised.
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FIG. 7. Contour plot of the inverse temperature (βmax
12 ) corre-

sponding to the maximum entanglement of ρ12 in the B (ver-
tical axis) and λ (horizontal axis) plane. The color palette
displays the values of βmax

12 . It shows that there exists a fi-
nite temperature which possess a high bipartite entanglement
compared to the state at zero-temperature. Here N = 12.
Both the axes are dimensionless.
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The observations emerge from Fig. 7 are as fol-
lows: (a) we see that in the Haldane and singlet phase,
βmax

12 shows non-monotonic behavior in the neighbor-
hood of λ ∈ {−1.5, 0.5}, where the corresponding max-
imum entanglement is also high in the Haldane and the
singlet-dimer phases. Similar nonmonotonic behavior
is also observed in the LL phase.

IV. PRODUCTION OF HIGH MULTIPARTITE
ENTANGLEMENT IN DYNAMICS

In the literature, there exist quantum spin models like
Ising model which can produce maximal multipartite
entanglement for a certain time period with a suitable
initial state [31–35]. As discussed in the preceding sec-
tions, since the considered XXZ model with alternating
bonds contain rich and exotic phases, we expect that
its dynamical state can also have capability to generate
highly entangled states. Indeed we find that it is true.

Since we are interested in the computation of GGM,
the initial state cannot be chosen from the ground state
with PM and LL phases since the GGM of the for-
mer vanishes and in the latter case, the ground state
space is degenerate. The entire analysis in dynam-
ics is performed when the initial state is either chosen
as the ground state in the Haldane or in the singlet-
dimer phase. Let us denote the initial state at t = 0 as
|ψ0〉 which is prepared in the ground state of Halt

0 ≡
Halt(λ0, ∆0, B0). At t > 0, the sudden quench is per-
formed by changing λ0 to λ or ∆0 to ∆ or both. In this
study, sudden quench in the magnetic field is not exe-
cuted since B has no effect on the quenching. This can
be easily explained by the commutator of Halt

0 and Halt
1

at t = 0 and t > 0 respectively given by

[Halt
1 ,Halt

0 ] = i(λ− λ0)
N

∑
j=1

(−1)jεpqr(S
p
j Sq

j+1Sr
j+2) (5)

where λ0 and λ represent the initial and final inter-
action strengths, p, q, r ∈ x, y, z, εpqr is the Levi-Civita
symbol, SN+i = Si, ∀i. Since the commutator is in-
dependent of the initial and the final magnetic fields,
quenching with same λ and different B gives the same
eigenvector as initial and final, thereby leading to a triv-
ial evolution,

Therefore, the evolved state at time (t > 0) can be
written as

|ψt〉 = exp(−iHalt(λ, ∆, B)t)|ψ0(λ0, ∆0, B0)〉. (6)

As shown in Fig. 6(b), GGM of the ground state is very
low in the neighborhood of the Haldane-singlet transi-
tion line. Hence, it is reasonable to determine whether
entanglement generation is possible in this domain. To-
wards this aim, we prepare the initial state in the Hal-
dane phase and for illustration, we choose the initial
system parameters to be B0 = 0.25, λ0 = −0.5 and

∆0 = 1.0. At this point, G(|ψ0〉) = 0.0189. Evolving the
state with the unitary operator U(∆, λ, B) = e−iH(∆,λ,B)t,
and computing G(|ψt〉) by varying t, we observe the fol-
lowing characteristics:

1. Creation of maximal GGM states. We find that start-
ing from the initial state in the Haldane phase, at
t > 0, any sudden quench of λ in the Haldane or
in the singlet phase along with the sudden change
of ∆ from 1.0 to −1.0 leads to a high amount
of genuine multipartite entanglement generation
over the entire time period except the critical line
between the Haldane and the singlet phase as de-
picted in Fig. 8 (c). Specifically, we observe that
in this situation, the evolution can create almost
maximally genuine multipartite entangled state,
in the entire time duration, (see Fig. 8(c)) i.e.,

maxG(|ψt〉) = maxG(e−iHaltt|ψ0〉) ≈ 0.5 with

Halt(−2.5 ≤ λ ≤ 1.0, ∆ = −1.0, B = 0.25), t > 0. (7)

In Fig. 8 (c), time increment is taken as 1 while
quenching values of λ are taken with increment
0.05. In this situation, we find that at almost
86.85% points, GGM goes beyond 0.49, thereby
demonstrating maximal genuine multipartite en-
tanglement creation in dynamics.

2. If we only change λ values by fixing both ∆ and B
at t > 0, patterns of entanglement changes dras-
tically. Specifically, for any choice of λ values be-
tween −2.5 and 1.0, i.e., if the system evolves ac-
cording to Halt(−2.5 ≤ λ ≤ 1.0, ∆ = 1.0, B =
0.25), there is a range of −0.5 < λ < 0 where
G(|ψt〉) vanishes ∀t while far from that quench,
GGM can be created and the maximal amount is
also high ≈ 0.42 as shown in Fig. 8(d).

3. The above observations are tempted us to study
the behavior of entanglement when the state is
initially prepared in the Haldane phase with
Halt(λ0 = −0.5, ∆0 = 1.0, B0 = 0.25) and t > 0,
both λ and ∆ values are quenched. Specifically, at
t > 0, when −2.5 ≤ λ ≤ 1.0 and −1.5 ≤ ∆ ≤ 3.0,
contours of GGM is depicted in Fig. 8(a) and
(b) with two different fixed times, t = 5.0 and
t = 200. It again confirms that there is always a
λ, ∆-pair in which the creation of multipartite en-
tanglement reaches its maximal value. For exam-
ple, among the total number of ≈ 6500 quenching
points generated to create Fig. 8 (a) and (b), we
find 7.32% of states having GGM more than 0.4
at t = 5.0 while it is 12.53% at t = 200.0. The
percentage decreases with the increase of GGM
values although there are some quenching points
in (λ, ∆)-plane in which GGM can go beyond 0.49.
Notice that although the entire study is performed
with a fixed initial state, the behavior remains
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same if the initial state is chosen from other pa-
rameter set from the Haldane as well as from the
singlet-dimer phase. Specifically, the percentage
gets increased if the initial state is the ground state
of the singlet phase.

After the above investigations, we can safely con-
clude that if the Hamiltonian evolution takes place ac-
cording to the following rule:

H0 ≡ Halt(−2.5 ≤ λ0 ≤ 1.0, ∆0 = 1.0, B0 = 0.25), t = 0,

H1 ≡ Halt(−2.5 ≤ λ ≤ 1.0, ∆ 6= 1.0, B = 0.25), t > 0,
(8)

the genuine multipartite entanglement can be created in
any time period of the dynamics, thereby establishing
AF-F alternating chain as well as AF chain with alter-
nating bonds as potential entanglement resource.

V. DETECTING DYNAMICAL QUANTUM PHASE
TRANSITION VIA MULTIPARTITE ENTANGLEMENT

To describe equilibrium physics, several physical
quantities like partition function, free energy, correla-
tion length, and in recent times, entanglement are iden-
tified which can be used to understand the phenom-
ena like quantum phase transition, thermal properties
of the system [1, 67]. On the other hand, while describ-
ing dynamical states, no such universal quantities were
known. Recently, it was found that if the system is ini-
tially prepared in the ground state of a phase and is
then suddenly quenched to another phase for a later
time, there exist certain physical quantities like rate
function based on Loschmidt echo, fluctuations in mul-
tipartite entanglement are nonanalytic with time in the
transient regime – a phenomena is termed as dynam-
ical quantum phase transition and the times in which
nonanalyticities are observed is known as critical times.
In this work, we argue that multipartite entanglement
quantifiers, GGM is as good as the rate function to iden-
tify DQPT.

Let us define the function, known as Loschmidt echo
(LE), as

L(t) = |〈ψ0| exp(−iHaltt|ψ0〉|2. (9)

Based on it, we can define the rate function, given by
R(t) = LtN→∞

1
N logL(t) which can show nonanlytic-

ities with time, thereby determining the DQPT. Notice
that the rate function is analogous to the partition func-
tion in the equilibrium physics [39] provided we replace
β in the latter with the complex parameter it.

When the evolution is governed by the transverse
Ising model, the rate function clearly shows nonanalyt-
icity at critical times, t∗ = k(n + 1/2), n = 1, 2, 3, .. al-
though nonuniform critical times are also observed for
the XY model with uniform as well as alternating mag-
netic fields [68–70]. Some of us has also recently argued

that just like the rate function, fluctuations in multipar-
tite entanglement can also detect DQPT [68] (cf. [71]).

Before studying the critical times in the entire phase
diagram, let us first illustrate the behavior of LE and
GGM with time when the initial state is the ground
state of the Haldane phase with Halt(λ0 = −1.00, ∆0 =
1.0, B0 = 0.25). The sudden quench takes place in
the singlet-dimer phase, i.e. we choose at t > 0,
Halt(λ > 0.75, ∆ = 1.0, B = 0.25). Note here that the
initial state is the ground state of the AF-F alternating
spin chain while the quenching parameter belongs to
the AF chain with alternating bonds. Unlike the fluctu-
ations in GGM for the XY model with uniform and al-
ternating magnetic fields, we report here that the GGM
itself of the evolved state can show sharp kinks in the
transient time, thereby clearly manifesting nonanalytic-
ity with time. On the other hand, LE goes to vanish at
certain critical times which are responsible for nonan-
alytic behavior of the rate function. Note that we call
L(t) = 0 when we find numerically L(t) < 10−2.

1. Entanglement measures as indicators of DQPT

We now argue that multipartite entanglement mea-
sures have potential to act as a detector for DQPT like
Loschmidt echo. Specifically, we investigate whether
first critical time obtained from the non-analyticity in
GGM, G(t), match with those found from LE (see Fig.
11). To study it, we prepare initial states as the ground
states with three sets of parameters, two from the Hal-
dane phase, marked it as (A) and (B) and third one is
from the singlet phase, named it as (C). The sudden
quench is performed in all other points in the phase
diagram by varying λ and B and by keeping ∆ = 1.0
fixed with the initial point. The time range considered
for study is from t ∈ {0, 200}, the values of critical
times are represented in the color palette and if the crit-
ical value is not found in that range, we just mark it
as white. We observe a clear distinction between the
power of LE and GGM depending on the initial points.

Case (A). Both LE and GGM can identify the regions
when the quench is performed in phases other than
Haldane as shown in Figs. 11(a) and (b). The results
indicate as shown in the literature that non-analytic be-
havior by either rate function or GGM can only guar-
antee the corresponding phase transition in the equilib-
rium and not other way round, thereby providing the
sufficient condition.

Case (B) and Case (C). In both the scenarios, LE and
GGM can identify the DQPT although they both can
show anomalous behavior, eg. when λ ≈ 1 as shown in
Figs. 11(c) and (d). It is not clear whether this is due
to the calculations performed with finite system-size or
it wrongly signals the equilibrium transition. Further-
more, in dynamics, the evolution does not take place by
changing B0 to B although there are critical lines which
appear via tuning of B and hence this model is different
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FIG. 8. Creation of entanglement in dynamics of the XXZ with alternating bonds. (a) Contour plot of GGM, G for the
evolved state at time t = 5.00. The system is initially in the ground state of the Haldane phase, i.e., the ground state of
Halt(λ0 = −0.5, B0 = 0.25, ∆0 = 1, ) is the initial state marked by the cross. The values of λ (abscissa) and δ (ordinate) represent
the sudden quench of the Hamiltonian at t > 0. (b) Same as in (a) with t = 200. (c) Time evolution of G(t) against λ (values
after the sudden quench at t > 0) (vertical axis) and t (horizontal axis) with a fixed quench ∆ = −1.0. The initial state is same
as in (a). (d) Similar plot as (c) except no quenching in ∆. The color palette in all the four figures correspond to the values of G.
The entire analysis is performed with the system-size, N = 12. All the axes are dimensionless.
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FIG. 9. Loschmidt echo, L(t) (vertical axis) vs. time, t (hor-
izontal axis) for different λ values at t > 0. The initial state
is the ground state of Halt(λ0 = −1.0, B0 = 0.25, ∆0 = 1.0).
We observe the t values where L(t) = 0 which corresponds
to the non-analytic behavior in the rate function, R(t). Dif-
ferent textures of plots correspond to different λ values. Here
N = 12. Both the axes are dimensionless.

than the one considered before in the context of DQPT.

A. Identification of quantum phases from dynamics of
entanglement entropy

Until now, we consider the ground state of a model
as the initial state for evolution. Let us now start with
a Néel state as the initial state, i.e., |φ0〉 = | ↑↓↑↓
· · · 〉. We evolve the system according to a Hamilto-
nian Halt(λ, ∆, B) with different set of parameters so
that they correspond to different phases at equilibrium.
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FIG. 10. GGM G(t) (ordinate) against time, t (abscissa) for
different λ values. All other specifications are same as in Fig.
9. Both the axes are dimensionless.

The evolved state in this case reads as

|φt〉 = exp(−iHalt(λ, ∆, B)t)|φ0〉. (10)

The proposal is as follows:
The dynamics of multipartite entanglement quanti-
fied via the half-block entropy of the evolved state can
predict the equilibrium phase transition in the tran-
sient regime.
The half-block entropy is the von Neumann entropy
of the evolved state after partitioning it equally, i.e.,
we compute SN/2(t) ≡ S(|ψt〉N/2:N/2) with S(σ) =
−tr(σ log2 σ).

To establish the above proposition, we divide the
parameter regimes in three distinct parts for construct-
ing the evolution operator – (A) λ values are chosen
in the Haldane phase but away from the boundary
of Haldane and singlet-dimer phase, i.e., λ << 0, (B)
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around the boundary, i.e., λ ≈ 0 and (C) λ is deep into
the singlet-dimer phase, i.e., 0.4 ≤ λ ≤ 1.0.

Regions (A) and (C). The evolution of SN/2(t) for dif-
ferent values of λ is almost identical with the variation
of t, thereby making a band-like structure with time in
the transient regime as shown in Fig. 12. Moreover, we
notice that in the steady state, SN/2(t) converges to a
higher value when the system parameters in the evolu-
tion operator are chosen from the Haldane phase com-
pared to the situation when they belong to the singlet-
dimer phase in equilibrium (comparing Figs. 12(a) and
(c)).

Region (B). When the system evolves according to
the Hamiltonian close to the critical lines, SN/2(t) be-
comes distinguishable with t for different choices of
λ ≈ 0 and the band size gets increased in this case (see
fig. 12).

The entire analysis reveals that starting from a suit-

able product state, the band-width quantifying the
difference between the values of the block-entropies
with time for different system parameters can predict
whether during the evolution, parameters chosen cor-
respond to far from quantum phase transition at equi-
librium or to the quantum criticalities. Specifically, the
band-width increases when the system parameters are
chosen close to the quantum critical lines.

VI. CONCLUSION

Discovery of exotic phases, and counter-intuitive phe-
nomena make the study of quantum spin models at-
tractive. In recent times, these models can also be re-
alized and controlled in laboratories by using ultracold
atoms in optical lattices, trapped ions, superconducting
qubits, thereby raising possibilities to probe the system.
We consider a one-dimensional XXZ model with alter-
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nating bond strength which can be ferromagnetic (F)
or antiferromagnetic (AF) in presence of magnetic field.
It was shown that the spin-1/2 AF-F alternating chain
with magnetic field can possess certain phases which
were conjectured to be only present in models with in-
teger spins. Although the model cannot be solved ana-
lytically, the phase diagram is well understood via the
numerical and approximate techniques.

In this work, we addressed whether the properties of
the dynamical state of the system can mimic faithfully
the ground state phase diagram or not. Towards charac-
terizing non equilibrium physics, we first showed that
the trends of both bipartite as well as multipartite en-
tanglement can infer quantum criticalities at zero tem-
perature in the system, thereby reproducing the rich
phase diagram of the XXZ chain with alternating bond
strengths. The entire analysis is carried out by using
Lanczos algorithm with a spin chain consisting of six-
teen or twelve spins depending on the static or dynam-
ical scenarios.

Starting from the ground state, we found that high
multipartite entangled states can be created in this
model by suitably choosing the initial state and pa-
rameters in sudden quench, thereby establishing it as
a good entanglement resource. We then observed that
the phase transition at zero temperature from the Hal-
dane to the singlet-dimer phase can be identified by
studying the dynamics of the multipartite entanglement

which shows nonanalyticity with time provided the ini-
tial and the evolved state-parameters belong to two dif-
ferent phases. On the other hand, when a product state
evolves to an entangled state governed by the AF-F al-
ternating spin chain or AF spin chain with alternating
bond strength, the dynamics of block entropy with time
can also indicate whether the Hamiltonian correspond-
ing to the evolution operator is close to the phase tran-
sition or not.

The importance of the XXZ alternating spin chain is
that even when the spins are half-integer, due to the
competition between the interaction strengths in the al-
ternating bonds, it can mimic certain properties which
are typically present only in higher dimensional sys-
tems. The exotic phases turn out to be responsible for
high entanglement generation in dynamics, thereby in-
dicating that it has potential to design quantum devices.
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