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Future observations of continuous gravitational waves from single neutron stars, apart from their
monumental astrophysical significance, could also shed light on fundamental physics and exotic particle
states. One such avenue is based on the fact that magnetic fields cause deformations of a neutron star,
which results in a magnetic-field-induced quadrupole ellipticity. If the magnetic and rotation axes are
different, this quadrupole ellipticity may generate continuous gravitational waves which may last decades,
and may be observable in current or future detectors. Light, milli-magnetic monopoles, if they exist, could
be pair-produced nonperturbatively in the extreme magnetic fields of neutron stars, such as magnetars.
This nonperturbative production furnishes a new, direct dissipative mechanism for the neutron star
magnetic fields. Through their consequent effect on the magnetic-field-induced quadrupole ellipticity,
they may then potentially leave imprints in the early stage continuous gravitational wave emissions. We
speculate on this possibility in the present study, by considering some of the relevant physics and taking a
very simplified toy model of a magnetar as the prototypical system. Preliminary indications are that new-
born millisecond magnetars could be promising candidates to look for such imprints. Deviations from
conventional evolution, and comparatively abrupt features in the early stage gravitational waveforms,
distinct from other astrophysical contributions, could be distinguishable signatures for these exotic
monopole states.

DOI: 10.1103/PhysRevD.101.075028

I. INTRODUCTION

Recent observation of gravitational waves (GWs) by the
LIGO-VIRGO collaboration [1,2] has ushered in a new era
of multimessenger astronomy. Apart from its significant
astrophysical [3–5] and cosmological [6,7] implications,
gravitational wave astronomy also has the potential to
illuminate many important questions in fundamental phys-
ics [8–12]. A fast emerging area in this context is the
endeavor to detect continuous GWs from single neutron
stars. As opposed to GW signals from binary coalescence,
which are short lived, the continuous gravitational waves
are due to intrinsic deformations or other phenomena of
the compact star itself, and may last decades or centuries.
The cause for these continuous GWs may be due to
various distinct phenomena—stellar seismic activity, mode

instabilities, mountains, oscillations or glitches in the
angular velocity (see for instance [13–15] and references
therein). There has been rapid progress in this area, with
many recent searches [16–18], and future third-generation
GW detectors, such as the Einstein Telescope, expected
to significantly improve the sensitivity and reach in the
relevant frequency bands [19–22]. All-sky surveys,
looking for continuous gravitational waves, also hold great
promise, with their ability to detect hitherto unknown
sources [23–26].
Magnetic fields are known to cause a star to become

oblate or prolate, depending on the field configuration
[27,28]. This generates a quadrupole moment and asso-
ciated quadrupole ellipticity. In cases where the rotation
and magnetic axes do not coincide, this opens up the
possibility of generating continuous gravitational waves
[29–31]. As opposed to gravitational waves from binary
coalescences, these waveforms will last for much longer
durations—days or years. This enables the application of a
plethora of signal processing techniques in their analyses
and understanding. The LIGO-VIRGO collaboration is
already searching earnestly for such signals from pulsars
[18]. Future third-generation detectors are expected to
increase the reach much further and into the niche fre-
quency ranges of such signals [19].
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Magnetic monopoles have so far not been observed in
nature. They are however a very generic prediction of many
quantum field theories [32,33] and may be awaiting
discovery. Current bounds on magnetic monopoles come
from colliders [34–37], terrestrial and balloon observations
[38–40], considerations of galactic magnetic field attenu-
ation [41–43], searches in bulk matter [44,45], and limits
on monopole-catalyzed proton decay in compact stars
[46–48]. Very interesting limits have also been placed
on heavy magnetic monopoles by considering their non-
perturbative production in heavy ion collisions and in the
extreme magnetic fields of neutron stars [49].
We are specifically interested in the case ofmilli-magnetic

monopoles (MMM), with masses below Oð1 eVÞ. They are
monopoles with fractional effective magnetic charges, and
which appear in many Standard Model (SM) extensions,
especially those involving kinetic mixing [50] with a gauge-
singlet dark sector. There are previous works that have
considered milli-magnetic monopoles [51–54], in various
contexts. Recently, it was also demonstrated that using
energetic arguments from a magnetar, one may place very
stringent, nontrivial bounds on the magnetic charge of such
light MMMs [54]. Similar bounds have also been placed on
light milli-electrically charged particles [55], for which the
relevant pair-production and astrophysical considerations are
very different from MMMs.
If MMMs exist, they may be nonperturbatively pair

produced [56,57], via Schwinger pair production, in the
extrememagnetic fields of a neutron star, such as amagnetar
[58,59]. This causes a decay of the magnetic field hitherto
different from conventional mechanisms operational in a
neutron star. The modified magnetic field evolution in turn
may affect the time evolution of the quadrupole ellipticity,
assuming the concerned neutron star crustal strains are
below the breaking limit [60,61]. This opens up an avenue
for probing these exotic states by their imprints on the
gravitational waves emitted. A time evolution of the mag-
netic-field-induced quadrupole ellipticity, and its impact on
gravitational wave emissions, has been considered previ-
ously, in other contexts [62–65]. Wewould like to explore if
MMMs could potentially leave markers in the gravitational
waveforms, from single neutron stars, that are distinguish-
able from common astrophysical features.
In Sec. II we briefly review the relevant, well-known

theoretical underpinnings behind the generation of con-
tinuous gravitational waves, from single neutron stars, and
outline how magnetic fields may generically lead to mass
quadrupole moments. In Sec. III we then briefly review
how MMMs may be incorporated in SM extensions,
involving kinetic mixing, and also the relevant theoretical
background on Schwinger pair production of MMMs. With
the foundations laid, in Sec. IV we then present our
analyses and main results. We summarize and conclude
in Sec. V. There, we also highlight some of the short-
comings of the study, along with a few future directions.

II. GRAVITATIONAL WAVES FROM SINGLE
NEUTRON STARS

A. Continuous gravitational waves

Let us briefly review the standard theory behind the
generation of continuous GWs [66,67]. Isolated neutron
stars may emit GWs through various processes [15]. A
neutron star may sustain a deformation in some cases, and
if not axisymmetric with respect to its rotation axis, then
emit GWs. Such sustained distortions, due to the elasticity
of the neutron star crust [68–71], are generically termed
neutron star mountains. Neutron star mountains may be
caused by thermal gradients [68,72] or magnetic fields
[29–31,73]. Wewill be interested in the latter, in the context
of MMMs, and will elaborate on this further in Sec. II B.
In the transverse traceless gauge and an asymptotically

Cartesian and mass centered coordinate system (S) [66,67],
the leading contribution to the gravitational wave amplitude
is given by [74,75]

hTTij ¼ 1

r
Λ̂ij;klðn̂Þ

2G
c4

Q̈kl

�
t −

r
c

�
: ð1Þ

Here, for propagation direction n̂ and P̂ijðn̂Þ ¼ δij − n̂in̂j,
one defines the transverse projection operator as Λ̂ij;kl ¼
P̂ikP̂jl − 1

2
P̂ijP̂kl. Q is the mass quadrupole moment of the

object.
Pulsars and magnetars are rotating neutron stars. If they

are endowed with a quadrupole moment, there is the
possibility of generating continuous GWs. The case of
interest to us is where the deformations are such that there is
a privileged direction—as in cases of a magnetic-field-
induced deformation (see Sec. II B). Here, the star’s
magnetic moment furnishes a privileged direction, as
illustrated in Fig. 1. We also neglect any precession.
Such deformations are usually parametrized either by a
surface ellipticity εS ¼ ðRequator − RpolarÞ=Rpolar [27] or by
a quadrupole ellipticity, defined as [29–31]

εQ ¼ −
Q
I
: ð2Þ

Here, I is the mean moment of inertia about the rotation
axis, defined in terms of angular momentum J as I ¼ J=Ω.
εS and εQ quantify slightly different physics, geometrical
and bulk distortions respectively, and coincide only for a
star with a constant-density equation of state [30].
εQ, which quantifies the star’s bulk deformation, is the

most relevant quantity in our case. Contributions to εQ,
purely due to stellar rotations, will not contribute to
continuous GWs. For the case of magnetic deformations,
with the privileged direction for the deformations making
two of the mass quadrupole moment eigenvalues equal, we
may write the relevant quadrupole ellipticity ε̃Q as [29]
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ε̃Q ¼ −
3

2

Q̃33

I3
: ð3Þ

Here, Q̃ is the mass quadrupole moment due to the
magnetic field, in a frame of reference (S̃) where it is
diagonal. I3 is the principal moment of inertia about the
rotation axis. The S and S̃ coordinate system quantities are
related by Q ¼ RQ̃RT, where R is an appropriate rotation
matrix.
Consider now a neutron star, rotating with an angular

speed ΩNS, whose rotational and magnetic field axes are
misaligned by a wobble angle α. Then, from Eq. (1), we
may derive the leading GW waveform to be [29]

hþ ¼ h0 sin α

�
1

2
cos α sin θ cos θ cosΩNStr

− sin α
1þ cos2θ

2
cos 2ΩNStr

�
;

h× ¼ h0 sin α

�
1

2
cos α sin θ sinΩNStr

− sin α cos θ sin 2ΩNStr

�
: ð4Þ

In the above expressions, we have defined

h0 ¼ −
6G
c4

Q̃33

Ω2
NS

r
: ð5Þ

þ and × denote the two polarizations. r is the distance to
the source and the retarded time is defined as tr ¼ t − r

c. θ is
the line-of-sight angle to the observer, measured from the
rotation axis. Through Eq. (3), note that Eq. (4) indeed has
a dependence on ε̃Q. From above, we see that for a general
wobble angle, GWs may be emitted at ΩNS or 2ΩNS
frequencies. Equation (4) is valid under the assumption
that the magnetic field and angular velocity do not change
significantly during a single period of the neutron star’s
rotation. This “slow-roll” assumption is generally true for
most neutron stars and will specifically be valid for the
cases we study.
The GW amplitude (h0) may be directly related to the

strain (ΔL=L) of the GW detector arms. The reach in h0,
for Advanced LIGO1 and the proposed Einstein telescope,2

are around 10−24–10−26 and 10−26–10−27 respectively
[13,15,18,20], in the 10–100 Hz frequency range of
interest. This is assuming a year of phase-coherent obser-
vations and signal integration times [13,15]. There have
been many pioneering searches already for continuous
GWs [16–18], and future third-generation GW detectors
are expected to significantly improve the sensitivities in the
niche frequency bands [19–22].
Equation (4) may now be used in detail, to understand

how the magnetic-field-induced deformations affect con-
tinuous GWs, and how specifically modifications induced
by the production of MMMs will impact it. As we will
remark later, we will specifically concentrate on the 2ΩNS
frequency mode, without much loss of generality, for
making our estimates. This choice will help us express
the GW amplitude h0 almost solely in terms of observable
parameters, like the neutron star time period and spin-
down rate.

B. Magnetic-field-induced quadrupole moments

In this subsection, let us now briefly review the rudi-
mentary ideas behind magnetic-field-induced stellar defor-
mations [27,28]. It has long been known that amagnetic field
threading a star may induce a mass quadrupole moment
[27,28]. The underlying physics behind this phenomenamay
be understood based on simple energetic arguments.
Consider a special case for the potential deformation, in a

simple model for the neutron star—a perfect sphere, of
radius R, comprising an incompressible fluid [27]. Assume
that there is a uniform magnetic field in the interior and a
dipolar magnetic field in the exterior. The respective field
profiles are

FIG. 1. A representation of a neutron star, with its rotation and
magnetic field axes misaligned with respect to each other. The
quadrupole deformation due to the magnetic field [27,28] is
exaggerated for clarity. The presence of a quadrupole ellipticity,
with respect to the rotation axis, leads to the generation of
continuous gravitational waves.

1https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?.submit=
Identifier&docid=T1800044&version=5

2https://workarea.et-gw.eu/et/WG4-Astrophysics/base-sensitivity/
et_b_spectrum.png/view
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Br ¼ B0 cosθ Bθ ¼ −B0 sinθ ðr < RÞ;

Br ¼ B0

�
R
r

�
3

cosθ Bθ ¼
1

2
B0

�
R
r

�
3

sinθ ðr > RÞ:

ð6Þ

Consider now a small deformation of the neutron star,
parametrized as

rðcos θÞ ¼ Rþ ζPlðcos θÞ ðζ ≪ RÞ: ð7Þ

Plðcos θÞ are the Legendre polynomials.
If the net change in energy due to this deformation is

negative, then the deformation is more stable, relative to the
initial, perfectly spherical configuration. It may be shown
that the nontrivial change is mainly for the spherical
harmonic mode l ¼ 2 [27,28], and hence we focus on
this. Such quadrupole deformations are also the ones most
relevant to continuous GWs.
The net change in the energy stored in the magnetic

fields may be readily computed, by summing the interior
and exterior contributions. This gives [27]

δEB ¼ 9

20
ζB2

0R
2: ð8Þ

Note that this is first order in ζ. This change in magnetic
field energy is positive if ζ > 0 (prolate) and negative if
ζ < 0 (oblate). The corresponding change in gravitational
energy, due to the deformation, is

δEG ¼ 3

25

�
ζ

R

�
2GM2

R
: ð9Þ

Note that in contrast to δEB, this is second order in ζ and is
thus always positive. The total change in energy is obtained
by summing the magnetic and gravitational energy con-
tributions. This gives

δE ¼ 3

25

�
ζ

R

�
2 GM2

R
þ 9

20
ζB2

0R
2: ð10Þ

Note from above that, for ζ ≪ R, the sign of the net
change in energy will be determined directly by the sign
of ζ.
To obtain the most stable configuration, we need to

minimize δE, and if it comes out to be negative, would
suggest an energetically more favorable configuration [27].
Minimization gives

ζ̄

R
¼ −

15

8

B2
0R

4

GM2
¼ −

9

2

�
B0

B�

�
2

: ð11Þ

Here, B2� ¼ 12GM2=5R4 is the limit on the magnetic field
coming from the virial theorem [27], and corresponds to
around 1018 G for neutron stars. Thus, under this magnetic
configuration, the incompressible fluid star undergoes an
oblate deformation, departing from pure spherical sym-
metry. This is the basic idea behind how quadrupole
moments are generated by magnetic fields threading a star.
This is in fact a generic phenomena, with the exact nature
and extent of the deformation depending on the magnetic
field configuration and the star’s specific equation of state.
For an external dipolar magnetic field configuration in a

neutron star, let us now examine a few simple equations of
state, and their effects on bulk deformation (quantified by
ε̃Q). To simplify discussions, define a dimensionless
deformation parameter (D) through the relation

ε̃Q ¼ D
B2

B2�
: ð12Þ

Without loss of generality, we have made the normalization
with respect to B�. The deformation parameter D, may be
related to the magnetic distortion factor defined in [29].
Consider the case of a constant density fluid. In this case,

the quadrupole ellipticity may be computed as [73]

ε̃const:Q ¼ 2

15

B2

B2�
; ð13Þ

givingD ¼ 2=15. For the case of an n ¼ 1 polytrope, again
with an exterior dipolar magnetic field, we have [73]

ε̃1-poly:Q ¼ 36π5ð12 − π2Þ
5ðπ2 − 6Þ3

B2

B2�
; ð14Þ

in which case D ¼ 36π5ð12−π2Þ
5ðπ2−6Þ3 .

Considering the values of the deformation parameter, in
these examples, it seems D ∼ ½10−1; 102�. These ranges for
D are also believed to be typical for more realistic
equations of state and field configurations [29,73], and
we will use them for making our estimates.
There are a few observational upper bounds on ε̃Q, for

neutron stars in their early stages. X-ray light curves from
short gamma ray bursts have been used to constrain ε̃Q of
postmerger stable neutron stars, giving mean bounds in the
range [15,76]

ε̃Obs:GRBQ ≲ 10−2 − 10−1: ð15Þ

For pulsars in their later stages, there are constraints from
continuous GW searches by the LIGO-VIRGO collabora-
tion, giving fiducial ellipticity bounds in the range
½10−2; 10−8� [16–18]. Theoretical models suggest bounds
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on fiducial ellipticities of compact stars in the range
10−2–10−7 [31,68–71]; depending on the stellar mass,
hadron composition, epoch, equation of state and theoreti-
cal approximations used. Interestingly, there is even pos-
sibly an indication for a lower bound on ε̃Q, of about 10−9,
from analyses of millisecond pulsars [77]. We will always
work with values well below the mean bounds in Eq. (15).
In summary, the elastic properties of the neutron star

crust [31,68–71], and presence of very strong magnetic
fields, may lead generically to the presence of sustained
deformations, resulting in a nonzero quadrupole ellipticity.
As remarked earlier, there may even be a time evolution of
the magnetic-field-induced quadrupole ellipticity in these
early phases. This is a plausible scenario assuming that the
concerned crustal stresses and strains, due to the magnetic
pressure, are below the breaking limit [60,61]. An evolving
quadrupole ellipticity has been previously studied, in other
GW contexts [62–65], and we would like to explore if the
presence of MMMs may leave imprints on this quadrupole
ellipticity evolution, and consequent GW generation.

III. MILLI-MAGNETIC MONOPOLES AND
NONPERTURBATIVE PRODUCTION

A. Milli-magnetic monopoles
and theoretical foundations

Magnetic monopoles are yet to be observed in nature.
They nevertheless seem to be a very generic prediction of
many quantum field theories and model frameworks (see
for instance [78], and related references).
In conventional Maxwellian electrodynamics, the homo-

geneous equation ∇⃗ · B⃗ ¼ 0, or equivalently the Bianchi
identity of the field tensor Fαβ, presupposes the nonexist-
ence of magnetic monopoles. In this framework, the
manifestly covariant equations in vacuum take the form

∂μFμν ¼ 0; ∂μF̃μν ¼ 0: ð16Þ

Here, F̃μν ¼ 1
2
ϵμνρσFρσ is the dual field tensor, and the

Bianchi identity implies Fμν ¼ ∂μAν − ∂νAμ. As is well
known, the vacuum equations are symmetric under the
duality transformation

Fμν → F̃μν; F̃μν → −Fμν: ð17Þ

Once we introduce an electric source, say Jα, this
symmetry is lost. To consider restoration of the symmetry,
we may speculate the addition of an analogous magnetic
source term Kα. The equations then take the form

∂μFμν ¼ −eJν; ∂μF̃μν ¼ −gKν; ð18Þ

which are clearly symmetric under the transformations

Fμν → F̃μν; F̃μν → −Fμν

eJν → gKν; gKν → −eJν: ð19Þ

The addition of the Kα term introduces magnetic
monopoles.
The theoretical underpinnings for milli-magnetic

monopoles, in the context of kinetic mixings, were dis-
cussed in [54], and put on a firmer theoretical foundation
later in [79]. Among the theoretical subtleties, in incorpo-
rating magnetic monopoles directly in a quantum field
theory, is the fact that it is not possible to write a local,
Lorentz invariant Lagrangian containing both electric and
magnetic charges [80–83]. We briefly review the theoretical
framework [79] for incorporating MMMs, through kinetic
mixing, as a specific example of incorporating MMMs into
beyond Standard Model extensions. This will also help fix
notations.
One theoretical strategy to incorporate magnetic monop-

oles, by Zwanziger [82], contains two gauge potentials Aα

and Ãα, with a local Lagrangian, but without any manifest
Lorentz invariance [82,84]. In this formulation, one of the
gauge potentials, Aα, couples locally to the electric current
Jα, while the other, Ãα, couples to the magnetic current Kα.
The Lagrangian density takes the form [79,82,84]

L ¼ −
nαnμ

2n2

�
ηβνðFA

αβF
A
μν þ FÃ

αβF
Ã
μνÞ −

1

2
ϵμ

νγδðFÃ
ανFA

γδ

− FA
ανFÃ

γδÞ
�
− eJμAμ −

4π

e
KμÃ

μ: ð20Þ

Here, FA
αβ ¼ ∂αAβ − ∂βAα and FÃ

αβ ¼ ∂αÃβ − ∂βÃα are the
respective field tensors. nα is an arbitrary four vector,
corresponding to the direction of the Dirac string in certain
gauge choices. The presence of nα, projects out two, on-
shell photon polarizations, breaking manifest Lorentz
invariance [79,82,84]. It has been argued that physical
observables of the theory are independent of nα [83]. The
above Lagrangian density correctly gives the modified
Maxwell’s equations in Eq. (18), with the definition

Fμν ¼
nα

n2
ðnμFA

αν − nνFA
αμ − εμνα

βnγFÃ
γβÞ: ð21Þ

Let us now understand how MMMs may specifically be
included, in this framework, in the context of kinetic
mixing [50]. For this, consider the Lagrangian density
[79] incorporating kinetic mixing with a dark sector (whose
low-energy states are all Standard Model gauge singlets;
labeled by subscript “D”)
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LMMM ⊃ −
nαnμ

2n2

�
ηβνðFA

αβF
A
μν þ FÃ

αβF
Ã
μνÞ −

1

2
ϵμ

νγδðFÃ
ανFA

γδ − FA
ανFÃ

γδÞ
�

− eJμAμ −
4π

e
KμÃ

μ −
nαnμ

2n2

�
ηβνðFA

DαβF
A
Dμν þ FÃ

DαβF
Ã
DμνÞ −

1

2
ϵμ

νγδðFÃ
DανF

A
Dγδ − FA

DανF
Ã
DγδÞ

�

−
m2

DA

2
ADμA

μ
D − eDJDμA

μ
D −

4π

eD
KDμÃ

μ
D þ χ

nαnμ

n2
ηβνðFA

DαβF
A
μν − FÃ

DαβF
Ã
μνÞ: ð22Þ

FA
D and FÃ

D are the field tensors corresponding to the dark
gauge potentials AD and ÃD. JD andKD are the dark electric
and magnetic currents, with eD being the dark electric
charge. e and eD are in general independent parameters of
the model. Without loss of generality, we take the nα four-
vector to be the same in both the sectors; this can always be
achieved with appropriate gauge transformations. The two
sectors are connected by kinetic mixing, via the last term in
Eq. (22). This term is equivalent to χ=2FμνF

μν
D , from the

definition in Eq. (21). The mass term for ADμ breaks the
SOð2Þ symmetry of the kinetic terms and is uniquely
responsible for MMMs [79].
Considering Aμ

D to be massive, after field redefinitions,
we get magnetic monopoles that have effective milli-
magnetic charges [54,79], at low energies. Explicitly,
consider the field redefinitions

Aμ → Aμ þ χADμ; Ãμ → Ãμ

ADμ → ADμ; ÃDμ → ÃDμ − χÃμ: ð23Þ
Note that the above field transformations ensure that the
visible-sector gauge potentials (Aμ, Ãμ) do not get mass
terms, and hence Uð1ÞEM remains unbroken. After these
field redefinitions, making the kinetic terms canonical, the
relevant interaction terms become

Lint: ⊃ eJμAμ þ eχJμA
μ
D þ eDJDμA

μ
D þ 4π

e
KμÃ

μ

þ 4π

eD
KDμÃ

μ
D −

4πχ

eD
KDμÃ

μ: ð24Þ

After making the kinetic terms canonical, one now has an
effective interaction of the form 4πχ=eDKDμÃ

μ. This makes
the dark-sector magnetic monopoles milli-magnetically
charged under the visible photon, with an interaction
strength of 4πχ=eD. χ in general is an arbitrary, irrational
number. This is the origin of the fractional magnetic charge,
and of MMMs. Naively, χ being an irrational number may
seem to violate the Dirac charge quantization condition at
low energies. The emergence of milli-magnetically charged
particles, through kinetic mixing, is nevertheless still con-
sistent with a global Dirac quantization condition [51,79].
Moving forward, let us henceforth define all MMM

charges with respect to the visible sector g≡ 4π=e.
Towards this end, define the MMM charge parameter ξ as

ξ≡ χ

�
gD
g

�
: ð25Þ

Here, we have defined gD ≡ 4π=eD. With respect to our
photon, MMMs therefore have magnetic charges ξg≡ χgD.
We will express all analyses and limits with respect to ξ
henceforth.

B. Nonperturbative pair production
of milli-magnetic monopoles

In quantum electrodynamics, when the field strengths are
very large, one may have nonperturbative production of
electrically or magneticallly charged particles, through the
Schwinger pair-production mechanism [56,57,85–87]. This
is a distinct phenomena compared to, for instance, pertur-
bative electron-positron pair production (γ þ γ → eþ þ e−).
For field strengths comparable to the particle masses, the
nonperturbative rates may be exponentially enhanced.
For zero temperature and homogeneous magnetic fields,

as compared to the Compton wavelength and separation of
the particles, the average MMM pair-production rate, per
unit volume, is given by [56,57]

Γ0 ¼
ξ2g2B2

8π3
exp

�
−
πm2

ξgB

�
: ð26Þ

The zero temperature rate assuming a magnetic field of
1016 G is shown in Fig. 2. This is the first term in the
vacuum decay rate [56,57,88]. Recently, this computation
was also extended to strong coupling and finite temper-
atures [89].
We are interested in light, milli-magnetically charged

monopoles of massm ≪ Oð1 eVÞ, with effective magnetic
charges ξg ≪ 1, as in Eq. (24). We assume that
gD ≲ g≡ 4π=e, and that any higher order instanton cor-
rections to the MMM pair-production rates [56,57,88,89]
may be neglected, to good approximation. Also note that
for the MMM mass ranges we consider, the Compton
wavelengths (λmax

Compt: ≲ 1 m) are such that local magnetic
field inhomogeneities in the neutron star may be neglected,
to leading order.
Based on theoreticalmodels andmeasurements, currently

observed neutron stars are believed to have mean surface
temperatures of the order of 106 K. It is believed that in the
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early stages of their formation, the mean temperatures may
have been even higher (∼1011 K). In the standard cooling
scenario for neutron stars, it is presumed that a neutron
star when formed has internal temperatures approaching
1011 K or more, and subsequently cools down by various
processes—neutrino emissions (through the Urca and
modified Urca processes), neutrino pair bremsstrahlung,
thermal photon emissions and so on (see, for instance,
[90,91] and references therein). The rate of cooling differs
widely during themany stages,with timescales varying from
seconds to thousands of years. The neutron star mean
temperature is thought to evolve from around 1011 to
104 K over a few million years [90,91].
Thus, a more relevant quantification of the MMM

production rate, at least in the initial phases of the neutron
star’s life, should try to incorporate the effects of this
finite temperature. As mentioned earlier, there has been
tremendous progress recently in computing Schwinger
pair-production rates at finite temperature, both for electri-
cally charged as well as for strongly coupled magnetic
monopoles [49,89,92–102]. There is currently some dis-
agreement on the exact functional form of the worldline
instanton (see for instance discussions in [49,89,98–102]).
Nevertheless, there seem to be a few generic predictions—
an exponential enhancement in the pair-production rate
relative to zero temperature rates, and a critical temper-
ature below which the thermal enhancements switch off
[49,89,94,95,98,99,101].
The critical temperature (TC) is a function of the

magnetic field, monopole mass and magnetic charge
[49,89,94,95,98,99,101]

TCðm; ξ; BÞ≡ ξgB
2m

: ð27Þ

Below this critical temperature, the thermal enhancements
turn off and the rate subsequently follows the zero temper-
ature rate, given by Eq. (26). The critical temperature
estimates for our regions of interest are illustrated in Fig. 3.
The thermal rate, at a finite temperature T ≡ β−1, may be

approximated as [99,101]

ΓTðm; ξ; B; TÞ

≃
X∞
p¼1

ð−1Þpþ1ξ2g2B2

8π3p2
exp

�
−
pπm2

ξgB

�

þ ΘðT − TCÞ
X∞
p¼0

Xnmax

n¼1

2ð−1Þp ðξgBÞ2
ð2πÞ3=2ðnmβÞ1=2ϑ2

×

"
1 −

�
nβξgB
2m

�
2
�
−1
4

exp

�
−

m2

2ξgB

�
2πðpþ 1Þ

− 2 arcsin

�
nTC

T

��
þ nm

2T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

n2T2
C

T2

r #
; ð28Þ

following the notion of an electromagnetic dual to Schwinger
pair production by an electric field [56,89,99,101].
Here, ΘðxÞ is the Heaviside step function, nmax ≡ b2m=
ðξgBβÞc ¼ bT=TCc, and ϑ ¼ 2πðpþ 1Þ − 2 arcsinðnTC

T Þ.
bxc denotes the integer less than or equal to x. This explicit
analytic expression derived in the worldline instanton
framework, utilizing a saddle-point approximation, is valid
for the semiclassical parameter ξgB=m2 ≲ 2π [56,89,99,
101,103]. Note that the enhancement is present only when
T > TC, as already mentioned, and changes abruptly below
it. In fact, Eq. (28) seems to suggest that the rate also changes
abruptly at all integer multiples of TC, owing to nmax ¼
bT=TCc. We will utilize the above expression, in regions
satisfying ξgB=m2 ≲ 2π, to estimate Schwinger pair-
production rates at finite temperatures.
Note that at a characteristic worldline sphaleron temper-

ature, much higher than TC, the pair production transitions
from a quantum tunneling phenomena to a classical, thermal
process, described by a worldline sphaleron [100]. The
characteristic worldline sphaleron temperature [100], where
this transition occurs, is greater than ∼1011 K for the
parameter space of interest to us. Since the neutron star is
believed to cool to around 1011 K within just a few seconds
of its formation, we aremostly outside the sphaleron regime.
For the MMM and dark photon mass ranges we will

consider, the MMM Compton wavelength and string sep-
aration between monopole and antimonopole [54,79,104]
are also such that the magnetic field spatial inhomogeneities
may be neglected, to good approximation. The temporal
variation of the magnetic field is also very gradual, and its

FIG. 2. The pair-production rates per unit volume
(log10½Γ0=1 m−3 s−1�), for milli-magnetic monopoles at zero
temperature, are shown. The magnetic field has been taken to
be 1016 G. The zero temperature rates bracket the true rates that
may be operational in systems with a finite temperature.
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effects may similarly be neglected while computing rates, to
leading order.
The additional magnetic field dissipation, due to

Schwinger pair production of MMMs, may cause a
deviation in the time evolution of the gravitational wave
amplitude, and frequency, relative to the conventional case.
The fact that the nonperturbative pair-production rate
reverts to the zero temperature rate, below a characteristic
temperature TC [49,89,94,95,98,99,101], also opens up an
intriguing possibility. As the neutron star cools down
during its lifetime, if milli-magnetic monopoles exist, there
could potentially be an abrupt change in the monopole
production rate, in the vicinity of TC, that relatively
brusquely affects the gravitational wave amplitude and
frequency subsequent to it. As emphasized before, TC itself
is a function of the magnetic field, monopole mass and
magnetic charge ξ. Note that as the MMMs we are
considering have very small masses and tiny magnetic
charges, we do not expect them to drastically affect the
ordinary thermal evolution or dynamic processes in the
neutron star in a very significant way.
These comparatively abrupt features in the waveform

would be a universal signature, potentially visible across
different magnetar systems, in their early phase continuous
gravitational wave emissions. They should also be distinct
from signals originating due to typical astrophysical phe-
nomena, and hence potentially distinguishable. As may be
deduced from Fig. 3, for a field of 1016 G, the critical
temperature may be as high as 108 K, in the viable ðm; ξÞ
parameter space of interest.

IV. EFFECTS OF MILLI-MAGNETIC
MONOPOLES ON GRAVITATIONAL WAVES

With the basic concepts in place from the previous
sections, we may now undertake a study of what potential
affects MMMs may have on continuous gravitational
waves from single neutron stars.
The MMMs are generally confined objects with a string

connecting the monopole and antimonopole [54,79,104].
They behave like magnetically charged objects only
beyond a particular distance Oð1=mDAÞ. This suggests a
characteristic lower value for the dark photon mass mDA.
There is also an upper bound to mDA that must be
considered. The external magnetic field will accelerate
the MMMs out of the magnetar, as long as the string
tension between the pair produced MMMs [Oðm2

DAÞ] is
smaller than the external electromagnetic force. The gravi-
tational forces on the MMMs, due to the neutron star, are
many orders of magnitude smaller than the Lorentz forces,
and hence do not furnish any further bounds. These
requirements altogether translate finally to [54]

1

RNS
≲mDA ≲ ffiffiffiffiffiffiffiffi

ξgB
p

: ð29Þ

For the parameter space of interest, the upper bound gives
mDA ≲ 108 km−1, which may be trivially incorporated.
Neutron stars have typical radii ∼10 km and we set the
lower limit for the dark photon mass by it. This will also
make robust our assumption of magnetic field homogeneity,
relative to the particle Compton wavelength and separation.
We will work assuming the above two bounds for mDA.
Lower dark photonmasses and correspondingmodifications
maybe readily incorporated phenomenologically, by assum-
ing an exponential suppression [54] of the external field, as
felt by the monopole and antimonopole.
The subsequent history of the MMMs, after they are pair

produced and expelled by the magnetic field, is not
important, as they do not return energy back into the
magnetic fields. As mentioned earlier, due to the tiny
MMM mass and charge, any direct imposition on the
thermal or dynamical evolution of the neutron star should
also be very marginal, after production. This is in sharp
contrast to heavy magnetic monopoles, if they exist, that
may be captured and trapped by neutron stars, and which
may impact the internal neutron star processes and dynam-
ics more drastically. For instance, these heavy magnetic
monopoles may efficiently catalyze nucleon decays in the
neutron star [46–48]. It is also distinct from interesting
scenarios where very heavy dark matter states could be
captured by neutron stars, sometimes through multiple
scatterings, heating them up kinetically or through sub-
sequent annihilations [105,106]. In such cases, measuring
the temperatures of very old neutron stars could lead to very
interesting constraints [105,106].

FIG. 3. Plot of log10½TC=1 K� is shown, for a fixed magnetic
field of 1016 G. Certain regions are irrelevant, due to the
exponential suppression of Schwinger pair-production rates.
Mean energetic arguments from magnetars [54] also render
regions with ξ ≳ 10−17 (gray band) unviable, for m ≲ 1 eV.
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It was pointed out recently, in [54], that by considering
an average magnetar field of 1015 G, monopole antimono-
pole pair-production rates bracketed by the zero temper-
ature rate, and an assumed magnetar active lifetime of
104 yrs, one may place strong bounds on viable MMMs.
For magnetars with magnetic fields in the range
1015–1016 G, and for various dark photon masses, such
energetic considerations give limit estimates of

ξ≲ 10−17; ð30Þ

for m≲Oð1 eVÞ. Following [54], we will explicitly
compute the limit on ξ and impose it, at each MMM mass
of interest, before utilizing that point to study the evolution
of the gravitational wave amplitude.
Let us now turn to the GW waveforms that could be

expected. To be concrete, let us focus specifically on the
GW mode with frequency 2ΩNS. Assuming the dominance
of electromagnetic dipole radiation, from Eq. (4), the
amplitude corresponding to the 2ΩNS frequency mode
may be expressed as

h2ΩNS;þ
0 ¼ 8

5
D

R2
NS

cr

_P
P
1þ cos2θ

2
;

h2ΩNS;×
0 ¼ 8

5
D

R2
NS

cr

_P
P
cos θ: ð31Þ

Note that when expressed in terms of the observables _P and
P in this fashion, the amplitude at frequency 2ΩNS is
independent of the moment of inertia and the unknown
wobble angle α. This is an advantage to considering this
specific frequency mode, as we had alluded to earlier. There
is a dependence on the line-of-sight angle θ, that just gives
an Oð1Þ factor, and may be ignored for our order of
magnitude estimates. The dominance of electromagnetic
dipole radiation may be explicitly checked for reasonable
values of ε̃Q, and we shall comment further on this later.
From Eq. (31), the order of magnitude estimate for the

GW amplitude gives

h2ΩNS
0 ≃ 10−31D

�
RNS

10 km

�
2
�
kpc
r

��
s
P

��
_P

10−11

�
: ð32Þ

As we had remarked earlier, in Sec. II A, the sensitivity in
strain (h0) for advanced LIGO and the proposed Einstein
telescope, are around 10−24–10−26 and 10−26–10−27 respec-
tively [13,15,18,20], in the 10–100 Hz frequency range of
relevance to these continuous GWs. This is assuming one-
year signal integration times [13,15]. We note therefore
from above that the amplitude is typically very small,
except when the compact object is spinning rapidly,
undergoing rapid braking with large _P or has large
magnetic-field-induced deformations. One may therefore

intuit, from Eq. (32), that one must search for candidate
compact stars with aforementioned characteristics.
This may be further sharpened by estimating the typical

GWamplitudes one may expect from observed pulsars and
magnetars, due to their assumed magnetic-field-induced
quadrupole ellipticities, for reasonable ranges of the defor-
mation parameter D. These estimates are shown in Fig. 4,
for a few representative pulsar and magnetar candidates.
The parameter values were taken from the ATNF3 pulsar
[107] and McGill4 magnetar [108] catalogs. Estimates in
Fig. 4 suggest that magnetars with large time periods
(∼10 s) and conventional radio pulsars with relatively small

FIG. 4. Estimates for the magnetic-field-induced GW ampli-
tudes, from a few representative pulsar (top) and magnetar
(bottom) candidates. The relevant parameter values were taken
from the ATNF pulsar [107] and McGill magnetar [108] data-
bases. D is varied in the range ½10−1; 102�.

3https://www.atnf.csiro.au/research/pulsar/psrcat/
4http://www.physics.mcgill.ca/∼pulsar/magnetar/main.html
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magnetic fields (∼1011 G), or equivalently small _P, may
not be the most promising candidates to look for persistent
GWs; or for that matter MMM imprints in them.
Based on these broad inspections, perhaps the most

promising candidates are a class of newly born magnetars,
in their early stages of evolution—the so-called millisecond
magnetars [109–116]. Millisecond magnetars are new-born
neutron stars with very high magnetic fields and very small
time periods, and have already been speculated to be
promising sources for continuous GWs [13,15,112].
They have also garnered much interest recently, in the
context of fast radio bursts [116,117]. The other reason for
optimism, while considering these candidates, is that the
internal magnetic fields and temperatures are presumed to
be much higher, during the early stages of the magnetar’s
formation; relative to their mean values taken over the
entire magnetar lifetime. This opens up the possibility that
detectable signatures may still be present in the early
stages. The mean temperature of the neutron star is also
varying very rapidly in the early epochs, and as we shall
discuss later, this increases the possibility of MMM
induced abrupt features in the GW waveforms. We there-
fore explore imprints on gravitational waves from milli-
second magnetars, induced by MMMs; with magnetic
charges below the bound set by mean energetic limits,
as in Eq. (30).
Let us therefore look at the effects of MMM non-

perturbative pair production in a very simplified toy model,
for a newly born millisecond magnetar. Consider specifi-
cally the magnetic field evolution in this toy model,
assuming an external dipolar and uniform internal magnetic
field, which attempts to capture the salient features. The
simplified evolution equation [49,59,118–121] may be
written as

dBNSðtÞ
dt

≃
BNSðtÞ
τdyn:

e−t=τdyn: −
BNSðtÞ
τohm

−
B2
NSðtÞ

BNSð0Þτhall
−
2ξglVm

R3
NS

ΓTðm; ξ; BNSðtÞ; TðtÞÞ: ð33Þ

The various terms try to crudely encapsulate the char-
acteristic timescales of the various relevant processes that
are operational.
The first term is a dynamo term [59] that is believed to be

operational for the first few seconds of a neutron star’s
birth, after which it winds down. It amplifies and regen-
erates the magnetic field in the magnetar. The second and
third terms are the Ohmic and Hall drift terms that
contribute conventionally to the decay of the magnetic
fields in a neutron star. Following standard literature, we
take the dynamo, Ohmic and Hall drift time constants as
τdyn: ¼ 10 s, τohm ¼ 106 yrs and τhall ¼ 104 yrs [118,119]
respectively. The respective time constants are in reality
nontrivial functions of temperature and density, but the

above values have been found to capture relevant effects
[119]. A toy model of the magnetic field evolution, as
encapsulated by Eq. (33), has also been seen to semi-
quantitaively reproduce [119] essential results from more
detailed magnetothermal simulations [119–121]. A similar
evolution equation was also considered recently in [49], to
set interesting limits on strongly coupled, heavy magnetic
monopoles.
The last term in Eq. (33) is due to the Schwinger pair

production of MMMs, and is derived from energy con-
servation arguments. Specifically, it is obtained by equating
the loss of energy from the electromagnetic field, to the
energy needed for Schwinger pair production and to the
work done in accelerating the monopole antimonopole
pairs outward. Vm is the active volume over which MMMs
are being nonperturbatively pair produced, and is taken to
be the volume of the neutron star. l is the mean distance
over which MMMs are being accelerated by the magnetic
field, after production, and is equated to the diameter of the
neutron star. The Schwinger pair production of the MMMs
causes a nonperturbative decay of the magnetic flux. This is
a potentially new source of flux decay in neutron stars,
different from classical processes. Energy is being
expended from the magnetic field during pair production
and during their expulsion.
Equation (33) must be solved in tandem with the neutron

star spin-down equation,

_ΩNS ≃−
5

12

R4
NS

MNS
B2
NSðtÞΩ3

NSðtÞ−
64

25
GMNSR2

NSε̃
2
QðtÞΩ5

NSðtÞ:

ð34Þ

In this spin-down equation, we have assumed that the
magnetic axis is orthogonal to the rotation axis, i.e., α ¼ π

2

[115]. Note from Eq. (4) that this choice would also cause
continuous gravitational emissions solely at 2ΩNS frequen-
cies. In the above expression, the neutron star has been
idealized to an almost spherical object, with moment of
inertia ∼ 2

5
MNSR2

NS. The first term in Eq. (34) is due to
electromagnetic dipole radiation, and the second term
incorporates the gravitational quadrupole radiation. The
latter term incorporates braking due to GWemissions and is
proportional to ε̃2QðtÞ. The GW emission contribution is
small compared to the dipole term, for all ε̃Q values of
interest to us, as may be explicitly verified. It hence
validates the assumption in Eq. (31). We neglect effects
due to precession, in the time evolution.
When there is nonperturbative pair production of

MMMs, the full gravitational waveform is plausibly
affected, relative to the conventional case, in both ampli-
tude and frequency. As seen from Eqs. (3), (4), (5) and (12),
the amplitude of the waveform is modified directly due to
the refinement of the quadrupole ellipticity. It is also
affected indirectly through the adjustments in ΩNSðtÞ,

CHANDRA, KORWAR, and THALAPILLIL PHYS. REV. D 101, 075028 (2020)

075028-10



induced via the modified magnetic field evolution of
Eq. (33) and by the GW emission term in Eq. (34). The
latter effects also modify the frequency of the emitted
gravitational waveform 2ΩNSðtÞ:

h0ðtÞ ∝ ε̃QðtÞΩNSðtÞ2;
_ΩNSðtÞ ∝ B2

NSðtÞ; ε̃2QðtÞ: ð35Þ

Remembering that ε̃QðtÞ ∝ BNSðtÞ2, ultimately all the
altered characteristics are a consequence of the MMM
modified magnetic field evolution, condensed in the sim-
plified Eq. (33). Thus, a revised modulation in the fre-
quency and amplitude envelope of the GW waveform
should be a consequence of MMM production in general.
On a related note, observe from Eq. (33) that during the

first many seconds after the millisecond magnetar’s birth
(say around time t0) one may in some instances have a
steady state situation ( _BNSðt0Þ ∼ 0). This may be prompted
by a near cancellation of the positive dynamo and negative
MMM contributions:

BNSðt0Þ
τdyn:

e−t0=τdyn: ∼
2ξglVm

R3
NS

ΓTðm; ξ; BNSðt0Þ; Tðt0ÞÞ: ð36Þ

This quasi-steady-state, if achieved, should also reflect in
the persistent GW emissions during these brief intervals;
before the dynamo shuts off after Oð10 sÞ. The timescales
for the Ohmic and Hall-drift processes are much longer,
and should not play a significant role at these very early
times. The possibility of such a steady state was also
effectively leveraged in [49], to place very interesting lower
bounds on the mass of heavy magnetic monopoles.
To explore further, we numerically solve Eqs. (33) and

(34), with a starting point taken as 10 yrs after the
millisecond magnetar formation [109–114,116]; in a binary
neutron star merger or supernovae explosion. For the
estimates, initial starting values of B0

NS ¼ 1016 G, Ω0
NS ¼

2π=ð30 msÞ and T0
NS;pole ¼ 4.5 × 106 K, as well as temper-

ature evolution profiles, are taken following representative
values in the literature [113,114,116,120]. The neutron star
equatorial temperature is usually much lower than the polar
temperature [120] and the internal temperatures are
believed to be much higher. Discounting magnetic fields,
the interior temperature is thought to be related to the
surface temperature via an approximate scaling that
roughly goes as TNS;in ∼ T2

NS;surf: [122]. To reduce model
assumptions, to the extent possible, we will take the
neutron star polar temperature prediction [120] as a crude
proxy for the mean neutron star temperature. Assumption
of a higher mean temperature would cause a further
enhancement to the thermal Schwinger pair-production
rate, and would only cause more pronounced deviations
from conventional evolution. D is taken to be 81, corre-
sponding to the case of an n ¼ 1 polytropic equation of

state. This gives an initial ε̃Q of about 10−4. This magnitude
seems to be consistent with typical expectations, for
millisecond magnetars [117]. The distance to the source
is taken as 1 kpc. For a magnetic charge of ξ ¼ 10−19, the
MMM masses have been taken to be 15, 20, and 25 meV.
The magnetic charge adopted for these masses satisfies the
limit from mean energetic arguments, as derived in [54].
The parameter space points also satisfy ξgB=m2 ≲ 2π,
making Eq. (28) valid, and hence directly usable in
Eq. (33). The dark photon mass has been taken as
mDA ¼ 103 m−1, which is consistent with current limits
(see for instance discussions in [123,124], and references
therein).
Using Eq. (32), the results of these numerical evolutions

are displayed in Fig. 5. As is clearly seen from these curves,
the amplitudes deviate drastically from the conventional
case, in the first few decades of the millisecond magnetar’s
birth. If ε̃Q, or equivalently D, is even smaller, the main
difference will be that the GW amplitudes will fall below
their detectability much earlier in the epoch. As already
mentioned, assuming a higher mean temperature would
cause more conspicuous deviations with respect to conven-
tional evolution. For the MMM masses and charges
adopted in Fig. 5, the neutron star temperature, for the
time period displayed, is always higher than the respective
critical temperatures TCðm; ξ; BðtÞÞ. Thus, for these param-
eter points, one does not expect, nor see, any relatively

FIG. 5. Evolution of the gravitational amplitude, a decade into
the birth of the millisecond magnetar. The MMM charge has been
fixed at 10−19, and the MMM masses have been taken at 15 meV
(dashed), 20 meV (dot-dashed), and 25 meV (dotted). The
evolution of the gravitational wave amplitude, when there are
no MMMs, is shown as a solid line. The initial conditions for the
polar temperature (4.5 × 106 K), time period (30 ms) and mean
magnetic field (1016 G) were taken from representative values in
the literature [116,120]. The distance to the source is assumed to
be 1 kpc. D has been assumed to be 81, corresponding to an
n ¼ 1 polytropic equation of state. The amplitude must poten-
tially be observable in third generation gravitational wave
detectors, like the Einstein telescope, which are expected to
have a sensitivity of 10−26–10−27, in the 10–100 Hz frequency
range, assuming integration times of one year [13,15,20].
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abrupt features in the gravitational wave amplitudes. Note
also that the mean energetic arguments [54] for these
MMM masses, and corresponding limits on ξ based on
it, are still relevant. The thermal Schwinger pair-production
rates are very prolific in the early epochs, but almost
completely switch off once the magnetic field value
decreases below the critical field value ∼m2=ξg; this
happens after just a few decades. Thus, taken as an average
over the entire lifetime of the magnetar, the mean energetic
arguments should still furnish meaningful and interesting
limits, while still being consistent with the enhanced rates
and prominences in the early stages.
In general, as emphasized in Sec. III B, one should

expect to see comparatively abrupt features in the gravi-
tational wave amplitude and frequency. They would have a
distinct pattern, correlated with temperature and magnetic
field evolution. The presence or absence of such abrupt
patterns, in the GW waveform, would of course depend on
the ðm; ξÞ values of the MMMs that may exist in nature.
More specifically, such abrupt patterns may appear if the
mean temperature of the neutron star TNSðtÞ falls below the
MMM critical temperature TCðtÞ at some point in time
(equivalently, it may manifest through some evolution of a
temperature gradient, across neutron star layers). After this
crossover there should be a relatively abrupt change in the
MMM pair-production rates, and hence a relatively abrupt
change in the gravitational wave amplitude and frequency
evolution. Assume one is starting at an initial time t0, with

TNSðt0Þ > TCðt0Þ: ð37Þ
For a crossover to occur, a necessary criterion that the
monotonically decreasing mean temperature and mean
magnetic field profiles should satisfy, during some point
subsequent to t0, is

_TNSðtÞ
_BðtÞ ≳ ξg

2m
: ð38Þ

Here, the dot denotes a first time derivative.
For the gravitational waves to be detectable, such a

crossing should also occur in the early stages of the
millisecond magnetar’s birth. Depending on the allowed
values of ε̃Q, this may mean a time frame of seconds to
decades, following birth. An MMM imprint detection is
also more plausible during the early stages, since the
internal magnetic fields are at their highest (implying large
pair-production rates), and the temperatures are also vary-
ing rapidly [implying Eq. (38) is more prone to be
satisfied]. As seen from Fig. 3, in the viable ξ range, for
MMM masses m≲ 10−5, the critical temperatures can vary
from 105–108 K. As the neutron star is expected to cool
from 1011 to 106 K, over its initial phase of a few hundred
years, if MMMs exist with the above-mentioned masses
and charges, they may leave imprints in the amplitude
and frequency evolution that have a comparatively

discontinuous character. During these epochs, they should
also fall in the sensitivity ranges of future third generation
gravitational wave detectors.
If they exist, these MMM imprints on GWs must be an

almost universal feature across different newly born milli-
second magnetars. They must have a very unique pattern
correlated with the temperature and magnetic field evolu-
tion, and hence should be potentially distinguishable from
many other astrophysical phenomena. At the moment, it is
difficult to quantitatively demonstrate this in a satisfactory
manner, through an explicit rate computation and evolu-
tion, even in the simplified toy model. This is because, in
the potentially interesting ðm; ξÞ regions where such abrupt
features may show up, we have ξgB=m2 ≫ 2π. Therefore,
in these regions, all the known analytic expressions for
thermal Schwinger pair production break down, and their
applicability is unclear [49,89,94–102].

V. SUMMARY AND CONCLUSIONS

The search for continuous gravitational waves from
neutron stars is well under way [16–18]. Exotic particle
states beyond the Standard Model have the potential to
leave their imprints on these waveforms. In this work, we
speculated on the effect of milli-magnetic monopoles on
persistent gravitational wave signals, sourced by single
neutron stars.
Magnetic fields are known to cause distortions from

spherical symmetry, in compact astrophysical objects,
generating a quadrupole moment [27,28]. If the magnetic
and rotation axes are misaligned, this may produce detect-
able gravitational wave signals. Milli-magnetic monopoles
may be copiously pair produced in the extreme magnetic
fields of neutron stars, such as magnetars; through the
Schwinger pair-production mechanism [56,57]. This
causes an additional attenuation of the magnetic field,
relative to conventional field decay mechanisms opera-
tional in a magnetar. Consequently, through a modification
of the quadrupole moment time evolution, this may leave
imprints in the continuous gravitational waves, during the
early stages of a neutron star’s life. A time evolution of the
neutron star quadrupole moment has been considered
previously in other contexts [62–65]. We found that the
most promising candidate compact objects are a class of
newly born magnetars, the so-called millisecond magnetars
[109–114,116]. In addition to deviations from conventional
evolution, an imprint may potentially be present, as com-
paratively discontinuous features, in the gravitational wave-
form amplitude and frequency, in the early phases of a
millisecond magnetar’s life. Since the temperatures are
rapidly evolving in the early stages, and the internal
magnetic fields during these periods are also at their
highest, these early times hold much promise. These
signatures, if they exist as evidence for milli-magnetic
monopoles, should be universally seen across new-born
millisecond magnetars, with a very distinct pattern, and
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may therefore be potentially distinguishable from other
astrophysical signatures.
A more detailed implementation of the neutron star

magnetothermal evolution [119–121], incorporating milli-
magnetic monopole nonperturbative production, should
help further clarify and add to the ideas of the present
study. Another crucial aspect is reaching a consensus on the
functional form of the thermal Schwinger pair-production
rates [49,89,98–102] and striving to extend them to regions
beyond the weak-field regime [56,125,126]. This would
facilitate quantitative analyses in all regions of the viable
ðm; ξÞ parameter space, and directly probing the presence
of abrupt features in the GW waveforms. Incorporating
effects due to field inhomogeneities [103] and finite
chemical potentials [93,127], to account for the baryon
environment and finite densities in a neutron star, would

further sharpen future studies. Another crucial question is
regarding how prevalent millisecond magnetars are
[113,114,116], and what their detection prospects are,
across the lifetime of advanced LIGO and future third
generation GW detectors. We hope to address some of these
in future works.
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