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Abstract

Recently, coherent radio emission has been discovered from a number of hot magnetic stars, via the process of
electron cyclotron maser emission (ECME). This emission, observed in the form of highly circularly polarized
pulses, has interesting properties that contain information about the host star. One of the important properties of
ECME is the frequency dependence of the pulse arrival time. This has been attributed to the propagation effect by
Trigilio et al. and could explain the sequence observed for CUVir qualitatively. However, no quantitative
treatment exists for this phenomenon despite it being a promising tool to estimate the density in the stellar
magnetosphere. Additionally, the effect of propagation through the magnetosphere on ECME has been thought to
be limited to giving rise to a particular sequence of arrival of pulses, and in some cases producing the upper cutoff
frequency for ECME. Here, we present a framework to deal with the propagation effect by considering continuous
refraction in the inner magnetosphere of the star. This framework is capable of incorporating any type of density
distribution, and in principle any type of magnetic field, though we limit ourselves to a dipolar magnetic field for
this work. We show by simulation that for stars with high obliquity, the propagation effect can influence not only
the sequence of arrival of pulses drastically, but also the pulse shapes, and the observability of a pulse from a
particular magnetosphere.

Unified Astronomy Thesaurus concepts: Early-type variable stars (432); Magnetic stars (995); Astronomical
simulations (1857); Astrophysical masers (103)

1. Introduction

Coherent radio emission via Electron Cyclotron Maser
Emission (ECME) has been observed from a small number
of hot magnetic stars (e.g., Trigilio et al. 2000), brown dwarfs
(e.g., Hallinan et al. 2006) and planets (e.g., Zarka 1998). The
observable signatures of this emission include high brightness
temperature, high directivity, and a high degree of circular
polarization. Since the presence of a magnetic field is a
prerequisite for the ECME phenomenon, discovery of ECME
from cold brown dwarfs has led to a surprising revelation that
such stars can harbor kilogauss strength magnetic fields
(Hallinan et al. 2006, 2008).

In the case of hot magnetic stars, the magnetic fields are
already well measured using spectropolarimetry and Zeeman
Doppler Imaging (e.g., Kochukhov et al. 2014) revealing the
dipole like nature of the magnetic field in most cases. However,
there are a few other properties of ECME that can be exploited
to study the properties of the host star. For example, the high
directivity of the ECME has been used to diagnose the rotation
period evolution of the star (Trigilio et al. 2008, 2011); and its
magnetoionic mode has been used to estimate the plasma
density at the site of emission (Leto et al. 2019). However, one
aspect of ECME that has not been exploited is that the high
directivity of the phenomenon makes it a sensitive probe of the
local density structures it passes through.

In a hot massive star, the interaction between the radiatively
driven stellar wind and the magnetic field gives rise to a
magnetosphere, which is divided into three parts (Andre et al.
1988; Trigilio et al. 2004): an inner magnetosphere, where the
magnetic energy dominates over the wind kinetic energy and
the magnetic field lines are closed; an outer magnetosphere,
where the wind dominates over the magnetic field; and a
middle magnetosphere, the transition region between the inner

and the outer magnetospheres. The middle magnetosphere is
the origin of radio emission, including gyrosynchrotron
emission and the ECME. The boundary of the inner magneto-
sphere, at which the magnetic field energy equals the wind
kinetic energy, is called the Alfvén surface. The inner
magnetosphere (hereafter IM) is the densest part of the
magnetosphere, with the largest imprints on the ECME
lightcurves. In this paper, we present a framework to under-
stand the effect of refraction on the ECME lightcurves while
passing through the stellar magnetosphere. This, in turn, will
allow us to acquire information about the density structure in
the stellar magnetosphere. This framework is valid for any
arbitrary density distribution and in principle for any type of
arbitrary magnetic field; however, we confine ourselves to a
dipolar magnetic field in this paper.
This paper is structured as follows. In the next section, we

present a brief summary of ECME observed from magnetic AB
stars (Section 2). We present our framework in Section 3,
followed by a few examples of its application in Section 4. We
end this paper with a discussion in Section 5.

2. ECME from a Star with an Axisymmetric Dipolar
Magnetic Field

The expected ECME lightcurve from a star with an
axisymmetric dipolar magnetic field consists of two pairs of
pulses, each pair consisting of one left circularly polarized
(LCP) and one right circularly polarized (RCP) pulse coming
from opposite magnetic hemispheres (Leto et al. 2016). The
LCP and RCP pulses for a given pair lie symmetrically around
a magnetic null phase, which is the rotational phase where the
line-of-sight (LoS) component of the magnetic field is zero
(BLoS). There are two such rotational phases per stellar rotation
cycle for a dipolar magnetic field, corresponding to two pairs of
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ECME pulses. The sequence of arrival of the RCP and LCP
pulses is opposite near the two nulls. Around the null where
BLoS is changing from positive to negative, the pulse from the
northern magnetic hemisphere will arrive first, followed by the
one from the southern magnetic hemisphere. Around the other
null, where BLoS is changing from negative to positive, the
pulse from the southern magnetic hemisphere will arrive before
the one from the northern magnetic hemisphere (Leto et al.
2016). This is a consequence of the fact that due to refraction,
the pulse from the northern magnetic hemisphere deviates
upward, and the one from the south deviates downward
(Trigilio et al. 2011; Leto et al. 2016). Note that this picture
assumes single refraction at the boundary between the middle
and the inner magnetosphere at the time the latter is entered. In
reality, we often see a more complicated sequence of arrival of
pulses (Das et al. 2019a, 2019b). Moreover, the pulses are
almost never seen to lie symmetrically about the magnetic null
phases (Das et al. 2019a, 2019b; Leto et al. 2019). We will
show subsequently that at least some of these features can be
explained by propagation effects alone.

3. The Framework

To date, not many studies have attempted to understand the
effects of the refraction experienced by ECME pulses while
traveling through the stellar magnetosphere on their way to the
observer. The importance of refraction was first realized by
Trigilio et al. (2011), who proposed it to be the cause of the
difference in pulse arrival time at two different frequencies in
CU Vir, the first known hot magnetic star with ECME (Trigilio
et al. 2000). They attributed it to the different amounts of
deviation suffered due to the refraction in a cold torus with a
constant plasma density of 109 cm−3 (taken from the simulation
of Leto et al. 2006) near the magnetic equator. While doing
that, they considered the refraction effect only at the time the
pulse entered the cold torus. This scenario was later shown by
Lo et al. (2012) to correctly reproduce the pulse arrival
sequence of the ECME from CUVir at 13 cm and 20 cm;
however, the amount of “lag” (difference in rotational phases of
arrival for the two frequencies) between the two pulses could
not be reproduced.

Here we propose a general framework that will enable the
effect of propagation on the ECME lightcurves for any
arbitrary density distribution in the IM to be studied. We use
the model proposed by Trigilio et al. (2011) for the emission of
ECME. According to this model, the pulses are emitted
tangential to the auroral rings such that they are perpendicular
to the local magnetic field vector and parallel to the magnetic
equatorial plane (Figure 1).

We divide the whole problem into three parts:

1. Determine the initial condition, i.e., the ray direction
immediately after entering the IM for a given point of
origin of the radiation on the auroral circle.

2. Solve the ray path inside the IM.
3. Find out the ray direction after exiting the IM.

We assume that the density in the middle and the outer
magnetosphere is low enough that the refractive indices are
unity outside the IM. Before presenting our framework in the
next section, we would like to clarify that the division of the
stellar magnetosphere into three discontinuous parts (inner,
middle, and outer) is a highly simplified description. In reality,
the transition from one region to another is much more

complex, as demonstrated in various MHD simulations of hot
magnetic stars (e.g., Townsend et al. 2007; Ud-Doula et al.
2008; ud-Doula et al. 2013, etc.).

3.1. The Initial Condition

In the frame of reference of the magnetic field, we choose the
Z-axis to lie along the dipole axis. The X- and Y-axes are
arbitrary at this point, but will be defined later (Section B). The
magnetic field lines in polar coordinates are given by

q=r L sin2 (Figure 2). The IM is bounded by the field line
q=r R sinA

2 , where RA is the Alfvén radius for the star; the
field lines inside IM have L<RA, and those outside have
L>RA.
Let the frequency of the ECME be ν, which is related to the

local magnetic field strength B as ν≈s×2.8B (ν is in MHz
and B is in G), where s is the harmonic number. In other words,

Figure 1. The “tangent plane beaming model” for ECME proposed by Trigilio
et al. (2011). ECME is produced tangential to the auroral rings such that the
direction is perpendicular to the local magnetic field and parallel to the
magnetic equatorial plane. Lower frequencies originate farther away from the
star and vice versa.

Figure 2. The closed magnetic field lines around a star (drawn as the central
circle) with a dipolar magnetic field. The axis of the dipole is shown as the
vertical arrow and the polar strength on the stellar surface is B. The equation of
a field line in polar coordinates is q=r L sin2 , where r is measured from the
center of the star and θ is measured from the dipole axis. L is the maximum
value of r along that field line, which is obtained for θ=90°, i.e., at the
magnetic equator. The IM contains field lines with L�RA.
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the ECME at a frequency ν will be produced at those points in
the middle magnetosphere, at which the magnetic field strength
is ( )n=B s2.8 . For a dipolar magnetic field, these points
constitute a (auroral) circle above each magnetic pole
(Figure 1) around magnetic field lines given by q=r L sin2 .
Each point on this auroral circle is a source of the ECME. We
consider one such point ( )q fA r , ,01 01 01 (Figure 3). If the polar
magnetic field on the stellar surface is B0, we have

ˆ ˆ
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where we have used q=r L sin01
2

01. By solving this
equation, we will get θ01 and subsequently r01.

To get the direction of the wavevector(k) at the point A,
immediately after emission, we use the fact thatk is
perpendicular to both the dipole axis and the local magnetic
fieldB at the point ( )q fA r , ,01 01 01 . The first condition implies
that k lies in the XY plane. The second condition implies that
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This equation gives two possible directions of the wave-
vector at the given point A that are antiparallel to each other.

The next task is to find the point Q(r0, θ0, f0) where the ray
will hit the boundary of the IM (Figure 3). As we have assumed
that the refractive index in the middle magnetosphere is unity,
the direction of the wavevectork will not change while
traveling from points A to Q. Sincek has no z component, we
must have the z coordinate of point Q be the same as that of

point A. Thus, we have

( )q q q=R rsin cos cos .A
2

0 0 01 01

By solving this equation, θ0 can be found. We can then obtain
r0 using q=r R sinA0

2
0.

To determine f0, we use the fact that the vector connecting
points Q and A must be parallel tok, i.e.,

( )
q f q f
q f q f

-
-

=
r r

r r

k

k

sin cos sin cos

sin sin sin sin
. 3x

y

0 0 0 01 01 01
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Now we require the angle of incidence at point Q. For that we
determine the normal (n̂) to the IM boundary, which is given by
the gradient to the surface at that point. The angle of incidence
is then given by ( ˆ · ˆ)p= - -i n kcos 1 (Figure 4).
We now determine the angle of refraction. As already

mentioned above, the refractive index outside the IM (μ1) is
assumed to be unity and that inside the IM (μ2) can be
calculated using the density model of the IM. One caveat here
is that μ2 depends not only on the plasma density, but also on
the angle between the wavevector and the magnetic field vector
immediately inside the IM (Equation (A1)). It is not possible to
know the direction of the wavevector inside the IM beforehand.
This difficulty can be overcome by adopting an iterative
approach. We first calculate the value of μ2 using the same
value for the angle between the wavevector and the magnetic
field as that before entering the IM. Using the angle of
incidence (i), μ1, and μ2, the angle of refraction θr can be found
from Snell’s law. To find the direction of the wavevector just
after entering the IM (kIM), we note that

ˆ ˆ ˆ ( )q q qf fµ + ¢ + ¢k r r r sin . 4IM

For obtaining the ray path, we are interested only in
the direction ofkIM. Hence we set ( ˆ ˆg q q= + ¢ +k r rIM

ˆ )qf f¢r sin , where γ=±1. We already know the values of r,
θ, and f at point Q, which are respectively r0, θ0, and f0. To
find q q¢ = d dr and f f¢ = d dr at point (r0, θ0, f0) inside the

Figure 3. A cartoon diagram showing ECME produced at point A that hits the
inner magnetosphere boundary at point Q.

Figure 4. The direction of the wavevectorkIM immediately after entering the
inner magnetosphere and its relation with the incident wavevectork and the
normal to the surfacen.
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IM, we solve the following two equations (Figure 4):

ˆ · ∣ ∣ ( )
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By solving these two equations, we can find q¢0 and f¢0
immediately after entering the IM. Once the new direction of
the wavevector is known, we can find the angle made by it with
the local magnetic field vector. This in turn is used to calculate
μ2 to get an improvement over the previous estimation. This
cycle is continued until we achieve convergence. q¢0 and f¢0 are
then calculated using the value of μ2 obtained after
convergence.

The five values: r0, θ0, f0, q¢0, and f¢0 will serve as the initial
conditions required to solve the ray path inside the IM.

3.2. Ray Path Inside the Inner Magnetosphere

To find the ray path inside the IM, we use the Fermat’s
principle (Wolin 1953). According to this principle, the path is
given by the minimization of òmds (note that μ=μ2 at the
point Q inside the IM). Now
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To minimize F, we use the Euler-Lagrange equation that gives:
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By integrating this equation numerically, we can find the ray
path { ( ) ( )q fr r, } inside the IM. To do that, we cast the above
equations in the following form:
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We assume the step size of the integration (in r) to be Δr.
Then, at step i, we have
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To obtain q¢+i 1 and f¢+i 1, we minimize the following equations:
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Once we find q¢+i 1 and f¢+i 1, we can obtain ( ) +dY dr i1 1 and
( ) +dY dr i2 1 in the following way:
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We stop the integration when we achieve the condi-
tion q r Rsin2

A.

3.3. Ray Direction after Exiting the IM

Let the point at which the ray exits the IM be
( )q fS r , ,exit,IM exit,IM exit,IM (Figure 5). Let the value of θ′ and

f′ inside the IM at point S be q¢exit,IM and f¢exit,IM, respectively.
Using these values, we can readily obtain the direction of the
wavevector inside the IM at the exit point k̂exit,IM
(Equation (4)). To find out the wavevector direction after
exiting the IM k̂out, we need the angle of refraction. This can be
found out using a procedure similar to the one adopted to find
the angle of refraction at the time of entering the IM (described
in Section 3.1). k̂out can then be found by solving the following
two equations:

ˆ · ˆ ( )
ˆ · ˆ ( )

q

p q

= -

= -

k k i

n k

cos

cos

exit,IM out exit,IM r,out

exit,IM out r,out

where iexit,IM and qr,out are respectively the angle of incidence
and angle of refraction at point S, and n̂exit,IM is the inward
normal to the IM at point S.

4. Application of the Model

In this section, we demonstrate the applicability of this
framework to studying the various properties of the ECME. We
consider two kinds of density distributions in the IM: the first is
the case of an azimuthally symmetric density distribution in the
IM, and the second is the case of an azimuthally asymmetric
density distribution in the IM. For the simulation presented
here, the step size was determined in an ad hoc manner in
which we varied the step size of integration until we got no
significant change in the results with a further decrease in the
step size. For practical purposes, we recommend using adaptive
step size, which can be obtained by determining the length

Figure 5. The relation between the direction of the wavevector after entering
the IM ( kout), the direction of the wavevector just inside the IM (kexit,IM), and
the direction of the normal to the boundary of the inner magneto-
sphere (nexit,IM).
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scale of the change in the number density at a given point in
the IM.

4.1. ECME from a Star with an Azimuthally Symmetric
Magnetosphere

We consider a star with an axisymmetric dipolar magnetic
field. The star has an inclination angle of 46°.5 and obliquity of
76° (close to the values for CUVir). We assume that the
density inside the IM is =n n rp p0 , where r is the distance in
the units of stellar radius from the center of the star and np0 is a
normalization constant with n np0 as r→1 (expected from
stellar rotation, Leto et al. 2006). We also assume that the
ECME is produced at the second harmonic, i.e., s=2. For this
type of distribution, the ECME emitted at each point of a given
auroral circle experiences identical densities and follows
identical paths, such that none of the observable properties of
ECME have any dependence on the magnetic azimuthal
coordinate f (hereafter fB).

To calculate the ray paths for the ECME, we assume
= -n 10 cmp0

9 3 and RA=15 R*, where R* is the stellar
radius. We also assume that the ECME is produced in the
auroral rings comprised of magnetic field lines with equatorial
radius L=18 R*. We show the results of our simulation at two
frequencies, 0.6 GHz and 1 GHz, in Figure 6. We compare our
results with the ones obtained by considering a single refraction
at the boundary between the middle and the inner magneto-
sphere (dashed lines), per the framework of Lo et al. (2012).
We carry out simulations for both extraordinary (X-) and
ordinary (O-) modes. We find that although the single
refraction approach can produce a qualitative picture quite
nicely, this underestimates the deviation suffered by the ray.
For example, both indicate that the lower frequency deviates
more than the higher frequency at a given magnetoionic
mode; and at a given frequency, radiation at the X-mode
deviates more than that at the O-mode. This is more evident
in Figure 7, where we plot the deviation angle (defined as

( ˆ · ˆ)q p= - - k z2 cosD
1

out , i.e., the angle made by the ray

direction after exiting the IM with the magnetic equatorial
plane) versus the frequency of the radiation. We see that as the
frequency of the radiation increases, the deviation suffered
decreases, and also the difference in the deviation obtained
from our code and that obtained by assuming single refraction
at the time of entering the IM decreases. This is expected
because as we go to higher frequencies (i.e., going closer to the
star), the ratio νp/ν (νp is the plasma frequency) becomes
smaller. Note that this phenomenon of νp/ν decreasing with
decreasing r is a consequence of the assumed density profile,
for which n µ r1p , whereas n nµ µ r1B

3 (νB is the
electron gyrofrequency at the site of emission) such that
n n µ rp

2.5.
From the point of view of an observer, the ray paths are not

directly measurable. We need a quantity that is directly
measurable from observations and then can be compared with
the values predicted by a model. One such quantity is the
difference in rotational phases of arrival of pulse at different
frequencies (we refer to this quantity as “lag”). For our simple
density profile, after obtaining k̂out for any f01 (Section 3.3), we
can obtain the deviation angle, which we define as

( ˆ · ˆ)q p= - - k z2 cosD
1

out . Here π/2 is the angle between
the dipole axis and the original direction of emission and

( ˆ · ˆ)- k zcos 1
out is the angle between the dipole axis and the

direction of the radiation after exiting the IM. This angle is
related to the rotational phase frot through the following
relation (Trigilio et al. 2000):

( )

( )
⎛
⎝⎜

⎞
⎠⎟

q b a p f f
b a

f f
p

q b a
b a

= -
+

 - =
--

sin sin sin cos 2

cos cos

1

2
cos

sin cos cos

sin sin
7

D

D

rot rot,0

rot rot,0
1

where α and β are the inclination angle and the angle between
the rotation axis and magnetic axis, respectively, and frot,0 is
the reference rotational phase (which corresponds to the
rotational phase when the LoS component of the magnetic
field is at maximum). Let the two frequencies be ν1 and ν2. The
rotational phases of arrival are frot,1 and frot,2, respectively, and

Figure 6. Ray paths inside the inner magnetosphere (IM) generated by our
code (solid lines) and those obtained by assuming single refraction at the
boundary between inner and middle magnetosphere (dashed lines). The thick
and thin lines are respectively for extraordinary (X-) and ordinary (O-) modes
of emission at the second harmonic. We have assumed a radially decreasing
density profile inside IM given by =n n rp p0 , where np0=109 cm−3. The
values of the other parameters used here are B0=4 kG, RA=15.0 and
L=18.0. All the distances are in units of stellar radius.

Figure 7. Deviation of the ECME after exiting the IM w.r.t. the initial direction of
emission vs. frequency of the radiation. The circles correspond to the deviations
obtained from our code, and the diamonds correspond to the deviations obtained
by considering single refraction only. The values of the other parameters are the
same as those in Figure 6.
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f f f- = Drot,2 rot,1 rot. From Equation (7):

( ) ( )
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2
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. 8

D

D

rot rot,2 rot,0 rot,1 rot,0

1 2

1 1

Thus from the calculated θDs for a pair of frequencies, the
corresponding lag (= fD rot) can be obtained from Equation (8)
and compared to observations.

We end this subsection by showing the X-mode ECME
lightcurves at four different frequencies, emitted at the second
harmonic (Figure 8). The details of how we obtain the lightcurves

from our code are given in Appendix C. We have assumed that
B0=4 kG, α=46°.5, β=76°, and = -n 10 cmp0

9 3. We have
also assumed a Gaussian profile for the ECME pulses (Section C)
with σθ=3° (this corresponds to a FWHM of≈7°). The values of
the flux densities at a given frequency are normalized by the
maximum value at that frequency. We also show normalized BLoS
in Figure 8. For convenience, we name the magnetic null, at which
BLoSchanges from negative to positive, as null 1 and the other
magnetic null, where BLoSchanges from positive to negative, as
null 2. We find that near null 1, the pulse from the south magnetic
hemisphere (blue curve) arrives ahead of those from the north
magnetic hemisphere (red curve), and vice versa. Note that this
characteristic was also obtained in Leto et al. (2016), in which
(effectively) the single refraction scenario was used. We also find
that the separation between pulses around a given null decreases as
we go to higher frequencies. This frequency-dependent separation

Figure 8. The normalized lightcurves for ECME at 1 GHz, 2 GHz, and 3 GHz, emitted at the second harmonic in the extraordinary mode. The red and blue correspond
to ECME produced at the north and south magnetic hemispheres, respectively. The density profile in the IM is given by =n n rp p0 , where =n 10p0

9 -cm 1. We have
used σθ=3° (Section C). We also show the normalized LoS component of the stellar magnetic field (BLoS, brown dashed curve). We have used a polar magnetic field
strength of 4 kG, inclination angle of 46°. 5, and obliquity of 76°.

Figure 9. The density profile given by Equation (9) for two different values of the magnetic azimuthal coordinate fB.
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is a strong function of density in the IM. The proposed framework
will be useful for exploiting this dependence to estimate density in
the IM.

4.2. ECME from a Star with an Azimuthally Asymmetric
Magnetosphere

Stars with high obliquity are predicted to have overdense
regions in their magnetosphere, which are not azimuthally
symmetric (the “Rigidly Rotating Model,” or “RRM”; Town-
send & Owocki 2005). The deviation from the azimuthal
symmetry is most severe for β close to 90°. Among the stars
known to produce ECME, many have high obliquities, e.g., the
magnetic B star HD 142990 has β≈84° (Shultz et al. 2019).
In this section, we carry out our simulation to ascertain the
effect of this azimuthally asymmetric density distribution on
the ECME properties of the star over a wide range of
frequencies.

The density profile that we will take as an example is
inspired from the RRM model of Townsend & Owocki (2005),
and is given by the following equation:

˜
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Note that the equations are written for the magnetic frame of
reference. This density profile is shown in Figure 9 for two
values of fB: 0° and 30°.

We again consider ECME at 0.6, 1, 2, and 3 GHz, emitted at
the X-mode, in the second harmonic. In Figure 10, we show the
normalized output lightcurves along with BLoS(brown dashed
curve) for σθ=3°. These lightcurves are different from those

in Figure 8, or those simulated by Leto et al. (2016), in many
important aspects:

1. At 0.6 and 1 GHz, there is no pulse from the south
magnetic hemisphere.

2. Between 0.6 and 1 GHz, the offset of the pulse from the
magnetic null is higher at higher frequencies, unlike the
case for the azimuthally symmetric IM (Section 4.1,
Figure 8).

3. At 2 and 3 GHz, the strengths of the pulses from the north
and the south magnetic hemispheres are different despite
the fact that we considered a perfectly dipolar magn-
etic field.

4. At 2 GHz, there are weaker secondary pulses, in addition
to the primary pulse.

5. The sequence of arrival of pulses at 2 and 3 GHz from the
opposite magnetic hemispheres are the opposite of what
would be expected for the azimuthally symmetric case
(Figure 8).

6. The magnetic null phases do not lie at the midpoint
between the pulses from the opposite magnetic
hemispheres.

We first address the last point, which is straightforward to
understand. Due to the asymmetry of the magnetosphere, the
radiation produced at the north and the south magnetic
hemispheres will undergo different amounts of deviation,
resulting in a loss of symmetry about the magnetic null.
The reason an ECME pulse is absent from south magnetic

hemisphere at 0.6 and 1 GHz is that for the density distribution
considered here, many of the rays produced at the relevant
auroral circles cannot pass through the IM because of the very
high density for which the refractive index becomes imaginary.
This happens for the rays originating at the south magnetic
hemispheres. Note that an order of magnitude estimate of the
critical density, above which radiation at 0.6 and 1 GHz cannot
pass, is 5×109 cm−3 and 1010 cm−3, respectively, which is
achievable for the density profile given by Equation (9).

Figure 10. Normalized lightcurves obtained for the IM density profile given by Equation (9), with σθ=3°. The red and blue lines correspond to ECMEs produced at
the north and south magnetic hemispheres, respectively. The brown dashed curves correspond to the normalized LoS magnetic field.
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The higher offset of ECME pulses from the magnetic null at
higher frequencies between 0.6 and 1 GHz is due to the fact
that the density experienced by ECME at 1 GHz is much higher
than that for 0.6 GHz.

The third point about the different pulse strengths for pulses
from the north and south magnetic hemispheres is actually not
surprising. In our framework the strength of an ECME pulse is
determined by three factors: (1) the number of rays that
contribute to the pulse, (2) the difference in deviations suffered
by the contributing rays, and (3) the angles made by the
contributing rays with the line of sight (LoS) at their closest
proximities. The larger the number of contributing rays, and
smaller the angle between the contributing rays and the LoS at
their closest encounters, the higher the corresponding pulse
strength. On the other hand, the larger the difference in
deviations suffered, the lower the pulse height and the broader
the pulse, since the contributing rays reach the observer over a
relatively large range of rotational phases. For the density
distribution that we have considered, these three factors need
not be the same for pulses from opposite magnetic hemi-
spheres, or at different frequencies, resulting in the discrepan-
cies mentioned above. However, an additional factor causing
ECMEs of different strengths at different magnetic hemi-
spheres is the instability at the emission site (e.g., Trigilio et al.
2011; B. Das et al. 2020, in preparation). Thus the different
strengths of ECME pulses do not give much insight for
extracting information on the density in the magnetosphere.

The existence of weaker secondaries at a particular
frequency (here at 2 GHz) is also a consequence of the three
factors (described in the preceding paragraph) assuming
different values for different frequencies and different magnetic
hemispheres. To illustrate the difference in ray paths, in the left
panel of Figure 11 we show one of the contributing rays
to the primary and one contributing to the secondary pulse from
the north magnetic hemisphere at 2 GHz. We also show the
corresponding densities encountered along the ray paths in the
right panel. We further find that the number of contributing

rays to the secondary is smaller than that for the primary, which
is expected from observations, as the latter is much stronger
than the former.
Finally, the most important way in which the refraction in

the IM can affect the ECME lightcurve is to alter the sequence
of arrival of pulses around the magnetic nulls. As mentioned in
the introduction (Section 1), we expect that when the north
magnetic pole of the star is approaching and the south magnetic
pole is receding (i.e., BLoS is changing from negative to
positive, the rotational phases around null 1), the pulse from the
south magnetic hemisphere will arrive before the pulse from
the north magnetic hemisphere, and vice versa. This expecta-
tion is based on the assumption that radiation produced at the
north magnetic hemisphere always gets deviated upward and
that at the south magnetic hemispheres gets deviated downward
(e.g., see Figure 2 of Leto et al. 2016). While this assumption
holds for the density profile considered in Section 4.1, or for a
constant density medium like the one considered in the “single
refraction model,” it need not be valid for the density profile
given by Equation (9). For example, we show paths followed
by some of the rays that contribute to the observable pulses at
3 GHz in the left panel of Figure 12, and the corresponding
densities along the ray path in the right panel. We find that the
radiation from the south magnetic hemisphere undergoes
significant deviation upward (instead of downward). For the
case of the north magnetic hemisphere, some of the rays get
deviated slightly upward and the rest deviate downward. The
net result is that we see an opposite sequence of arrival of
pulses near the magnetic nulls.
In reality, we often see ECME pulses not behaving ideally in

terms of pulse shapes, their phases of arrival, etc. For example,
Das et al. (2019a) observed a double-peaked ECME pulse from
HD 142990 for which there is not yet any satisfactory
explanation. For such cases, we can use a realistic model for
the magnetosphere and try to find out whether any such
nonideality can be obtained from the propagation effect. This in

Figure 11. Left:the ray paths that contribute to the 2 GHz pulse (X-mode) from the north magnetic hemisphere for an azimuthally asymmetric density distribution.
The red and blue lines correspond to the primary and secondary components of the pulse, respectively (Figure 10; for details, see Section 4.2). Right:the
corresponding number densities along the paths inside IM.
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turn will allow us to get a better idea of the density structure in
the stellar magnetosphere.

5. Discussion

The ECME observed from hot magnetic stars can become a
highly useful tool to probe their magnetospheres. Since
different frequencies arise at different heights, they pass
through different parts of the IM and can undergo significantly
different deviations depending on the density distribution they
encounter in the IM. Such a situation is more likely for a star
with high obliquity. In that case, if the type of density
distribution is known (e.g., from the RRM model), we can use
the framework presented here to simulate multifrequency
lightcurves. By comparing these lightcurves with the observed
ones, one can obtain the best-fit values for different parameters
associated with the density distribution. While doing so, one
must discard the assumption of density discontinuities at the IM
boundary and work with a density grid instead. The latter
strategy can be easily incorporated in the current code. This
framework can also be useful for disentangling effects
produced by a complex magnetic field and those due to
propagation effect. Until now, various nonideal properties
observed in the ECME lightcurves, such as offset from the
magnetic nulls, absence of pulse at a particular circular
polarization, etc., have been attributed to the presence of a
magnetic field more complex than a dipole (e.g., Trigilio et al.
2000; Das et al. 2019a; Leto et al. 2019). Here we show that
even for an ideal dipolar magnetic field, the ECME lightcurve
can be highly nonintuitive. To disentangle these effects from
those produced by a complex magnetic field, multifrequency
observations will be instrumental.

Although this framework is general enough to work for a
magnetic field more complex than a dipole, we have currently
implemented only the dipole case in our code. We plan to
generalize it in the future. We emphasize that this framework

will enable the scientific community to understand the
“nonideal” properties of ECME, and in the process of doing
so, will let us probe the density structure in the magnetosphere
of the host star.
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Appendix A
Formulae for Refractive Indices

The refractive indices μ for the X and O modes are given by
(Lee et al. 2013)
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Here ψ is the angle between the wavevector and the local
magnetic field, νp and νB are the local plasma frequency
and the electron cyclotron frequency, respectively, and τ is

Figure 12. Left:the ray paths corresponding to the different ranges of magnetic azimuthal coordinates fB that contribute to the observable pulses at 3 GHz (X-mode).
The legends show the values of fB of the contributing auroral points. Right:the number density experienced along the ray paths inside the IM.
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given by
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Appendix B
Rotation Matrices for Going from the Line-of-sight Frame

of Reference to That of the Magnetic Field

In order to obtain the lightcurve, we will have to define the
three frames of reference, namely, the reference frame of the
magnetic field, the reference frame of the rotation axis and the
reference frame of the LoS. In the magnetic frame of reference,
we have already taken the Z-axis to lie along the dipole axis; in
the rotation frame, the Z-axis lies along the rotation axis, and in
the LoS frame, the Z-axis lies along the LoS. We first write the
rotation matrix for getting the components of a vectorX in the
star’s rotation frame from the known components in the LoS
frame. Let the inclination angle be α and the obliquity be β. We
choose the LoS to lie in the YZ plane of the rotation frame as
shown in Figure B1.

From Figure B1, we get

( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟a a

a a
= -X X

1 0 0
0 cos sin
0 sin cos

. B1rot LoS

The above relation allows us to go from the LoS frame of
reference to the star’s rotation frame of reference. Next we have
to find the rotation matrix for going from the rotation to the
magnetic frame of reference. We define the zero of the rotational
phases in such a way that the LoS, rotation axis, and magnetic
axis lie in the same plane (Figure B2). We will find the rotation
matrix between the magnetic and rotation frame for any rotational
phase in two steps. In the first step, we take β=0 and the other
two axes in one frame are misaligned with their counterparts in
the other frame by an angle frot (rotational phase is frot/ 2π).
This is shown in the left panel of Figure B3. We denote the axes
in this “intermediate magnetic frame” as XB1, YB1, and ZB1.

From the left panel of Figure B3, we get

⎛
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f f
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In the second step, we consider the rotation matrix between
this intermediate frame and the real magnetic frame. From the
right panel of Figure B3, we have
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Substituting from Equation (B1) in Equation (B2), we get the
rotation matrix for going from the LoS to the magnetic frame of

reference, which is
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.

rot rot rot
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Using this matrix, we can write the LoS vector in the
magnetic frame of reference (LoSB) for a given rotational
phase f p2rot .

Figure B1. The relation between the LoS and rotational frame of reference.
The X-axes of both frames are aligned. The Z-axis of the rotation frame is along
the rotation axis and that in the case of the LoS frame is along the LoS. The
LoS lies in the-YZ plane of the rotational frame and is inclined by an angle α
w.r.t. the rotation axis. The rotation matrix is given by Equation (B1).

Figure B2. The relation among the LoS, rotation, and magnetic frames of
reference when the rotational phase is zero. At this phase, the LoS, rotation
axis, and the magnetic dipole axes lie in the same plane and the X-axes of
respective frames of reference are aligned. The magnetic axis makes an angle
of β w.r.t. the rotation axis and the angle between the LoS and the magnetic
dipole axis is ∣ ∣b a- at this rotational phase.
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Appendix C
Lightcurves of ECME for a Given Density Profile in the IM

The lightcurves at a given frequency can be obtained by the
following steps:

1. Obtainkout vectors for the full auroral circles (near both
magnetic hemispheres). The auroral circles are defined by
the frequency of ECME, harmonic number, and the
magnetic field strength (Section 3).

2. For each rotational phase, obtain the components of the
LoS vector in the magnetic frame of reference
(Equation (B3)).

3. For that rotational phase, calculate the angle θk, which is
the angle between the LoS vector and a givenkout.

4. Add a contribution of ( )q s- qexp k
2 2 to the lightcurve for

that rotational phase, where σθ is a measure of the ECME
beamwidth.

5. Repeat step 2 to step 4 for each rotational phase.
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