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We design quantum refrigerators based on spin-j quantum XY Z and bilinear-biquadratic models with indi-
vidual spins attached to bosonic thermal baths. By considering both local and global master equations, we illus-
trate an enhancement in the performance of the refrigerators with an increase in the spin dimension irrespective
of the choice of the spin models. To assess the performance of the refrigerators, we introduce a distance-based
measure to quantify the local temperature of a particle with arbitrary spin quantum number j. Interestingly, we
find that the local temperature quantifier, defined via minimizing the distance between a spin-j thermal state and
the evolved state of the spin-j particle in the steady state, coincides with the population-based definition of local
temperature known in the literature for spin- 1

2
particles. Moreover, we demonstrate that the qualitative behavior

of the distance-based local temperature is independent of the choice of the distance measure by comparing the
trace distance, Uhlmann’s fidelity and relative entropy distance. We further observe by computing local master
equation that the quantum refrigerator consisting of a spin-1/2 and a spin-j particle can lead to a lower local
temperature compared to a refrigerator with two identical spin-j particles following the XY Z interactions.

I. INTRODUCTION

In the last few decades, the rapidly emerging field of quan-
tum thermodynamics [1–3] has offered the prospect for un-
ravelling fundamental laws of miniaturized quantum systems,
including thermal devices such as quantum batteries [4, 5],
quantum thermal transistors [6], diodes [7] and quantum re-
frigerators [8]. Recent progress in quantum technologies as
well as in the ability of controlling quantum systems [9–12]
has fueled the experimental urge of constructing quantum
thermal machines in order to see whether they outperform
their classical counterparts. In this respect, it is also shown
that quantum spin models, implementable in different physi-
cal substrates like cold atoms [13, 14], trapped ions [15–17],
and nuclear magnetic resonance systems [18–20], can serve
as important platforms to realize these quantum thermal ma-
chines [21–26].

The main task of a quantum refrigerator consisting of a few
d-dimensional quantum mechanical subsystems coupled with
local thermal baths is to decrease the temperature of a cho-
sen subsystem in the steady state [8, 27–30]. This has so
far been achieved using different combinations of qubits and
qutrits [8, 25, 26, 31–33]. The available proposals till date in-
clude devices in which cooling is either performed with the
help of one or more external energy source(s) [28], or in a
self-contained fashion [8]. To obtain the minimum possible
steady-state temperature, cooling assisted by various means,
such as solar energy [34], rapid measurement [35], repeated
collision [36], periodically modulated interactions [37], and
paradigmatic quantum spin Hamiltonians [25, 26] have been
reported, and even achievement of Carnot efficiency in a
two-qubit setup via a reverse-coupling mechanism has been
shown [38]. Moreover, recent experimental realizations of re-
frigerators using trapped ions [39] and several experimental
proposals employing superconducting qubits [40], quantum
dots [41], trapped ions [42], and optomechanical systems [43]
have made the implementation of a spin model-based fridge
in laboratories a possibility.

As of now, most of the proposed and implemented quan-
tum technologies typically involve two-dimensional systems

due to (a) the relative ease of handling a single or a multiqubit
system compared to a system involving qudits, and (b) the fact
that a quantum system moves towards the classical limit with
an increase in the spin quantum numbers of the constituent
spins, thereby eventually losing its quantum characteristics.
However, higher dimensional quantum systems are revealed
to be advantageous over their lower dimensional counterparts
in several quantum gadgets, including quantum key distribu-
tion [44], quantum switch [45], and quantum batteries [46–
48], to name a few. While there has been a few attempts in
constructing quantum refrigerators using constituent quantum
systems with a Hilbert space dimension higher than that of a
qubit or a qutrit [34, 49–51], to the best of our knowledge, re-
alization of quantum refrigerators using quantum spin models
constituted of particles with arbitrary spin-quantum number
remains an unexplored area, which we address in this work.

Our design of the quantum refrigerator bears two dis-
tinct features. (a) We employ interacting quantum spin sys-
tems with nearest-neighbor interactions, namely the quan-
tum XY Z model [52] and the bilinear-biquadratic (BB)
model [53–57], consisting of two or three spins having spin
quantum number j. (b) In order to quantify the performance
of the refrigerator, we introduce a definition of local temper-
ature for a spin-j system that uses the minimum distance be-
tween the time-evolved state of the system and a canonical
thermal state. We prove that the introduced measure reduces
to the measure of local temperature based on population of the
ground state in case of spin-1/2 systems that is already avail-
able in literature [8]. We further demonstrate that the proposed
definition of local temperature is independent of the choice of
the distance measure, by considering the trace distance, the
relative entropy distance [58] and Uhlmann’s fidelity [59].

We derive the explicit forms of the Lindblad operators cor-
responding to subsystems with spin quantum number j, when
the quantum master equation is constructed following a lo-
cal approach. We show, by solving the local quantum mas-
ter equation, that a two- and a three-spin system of identical
spins with spin-j governed by the XY Z type, or the bilinear-
biquadratic interactions and connected to local bosonic ther-
mal baths can serve as a refrigerator for a chosen spin in the
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FIG. 1. (Color Online.) Schematic representation of a quantum
refrigerator consisting of three spin-j particles. Each of the spin
is coupled with non-interacting thermal baths having temperature
T1, T2 and T3. J is the interaction strength between the spins.

system. The performance of the refrigerator, as quantified by
the proposed distance-based local temperature and the nor-
malized von Neumann entropy of the steady state of the cold
spin, exhibits diminution with an increase in j, demonstrat-
ing the dimensional advantage. We also show that a duo of a
spin- 12 and a spin-j system cooling the spin- 12 particle has bet-
ter dimensional benefit compared to a system of two identical
spin-j particles with local master equation. The dimensional
improvement is found to persist even when one considers the
global approach of constructing the quantum master equation.

The paper is organised as follows. The setup of the refrig-
erator with spin models, local thermal baths, and their interac-
tions, as well as the derivation of Lindblad operators for local
quantum master equations are described in Sec. II. In Sec.
III, we introduce the concept of quantifying local temperature
using distance measures, and prove that it coincides with the
population-based definition of local temperature for spin-1/2
systems. We also discuss the use of von Neumann entropy
as an indicator for local temperature. The performance of the
refrigerators constituted of two spins using these figures of
merit is reported in Sec. IV. The analysis on the refrigerator
with three spin-j particles is carried out in Sec. V, while we
conclude in Sec. VI.

II. DESIGN FOR QUANTUM REFRIGERATOR

In this section, we briefly discuss the system-environment
setup, a part of which acts as a quantum refrigerator for the
rest under specific conditions of the system as well as the
system-environment interaction parameters. For local master
equation, we also derive the Lindblad operators applicable in
higher dimensions.

A. Small spin clusters as system

We use small clusters of particles with specific types of two-
body interactions to design the refrigerator, where the individ-
ual particles can take half-integer as well as integer spins. The
total Hamiltonian Hsys = Hloc +Hint of the system consists
of two parts – (a) the local Hamiltonian Hloc given by

Hloc =

N∑
r=1

hrS
z
r , (1)

and (b) the interaction Hamiltonian Hint governed by the
spin-spin interactions. We particularly focus on two types of
spin-spin interactions, namely, the nearest neighbor XY Z in-
teraction giving rise to the Hamiltonian [52]

Hxyz = J

N∑
r=1

[
(1 + γ)Sxr S

x
r+1 + (1− γ)SyrS

y
r+1

]
+J∆

N∑
r=1

SzrS
z
r+1, (2)

and the bilinear-biquadratic Hamiltonian [53–57]

HB(φ) = J cosφ

N∑
r=1

~Sr · ~Sr+1 + J sinφ

N∑
r=1

(~Sr · ~Sr+1)2,

(3)

where we assume periodic boundary conditions unless oth-
erwise mentioned. Here, Sνr (ν = x, y, z) are the (2j +
1) dimensional spin matrices (for a spin-j particle, j =
1
2 , 1,

3
2 , · · · ) acting on the site r, and N is the total number of

particles in the system. The rth spin in the system is subject
to a magnetic field of strength hr in the z-direction. When the
interaction is of the XY Z type, J is the strength of the spin-
spin interaction strength between the nearest-neighbor spins,
while γ and ∆ represent the xy- and the z-anisotropy param-
eters respectively. When ∆ = 0 and γ = 0, the Hamiltonian
represents the XX model while γ = 0, and ∆ 6= 0 gives
the XXZ mmodel. On the other hand, J cosφ and J sinφ
are the interaction strengths for the linear and the quadratic
terms in the BB Hamiltonian respectively, where the param-
eter φ governs the phases of the system in the absence of the
local magnetic field [53–57]. With the aim of designing small
quantum thermal machines and investigating the effect of a
change in the Hilbert space dimension of the system on the
performance of the machine, we typically restrict the values
of N to be N = 2 and N = 3.

Note that in Eqs. (2) and (3), we assume all the particles
in the interacting quantum spin model to have identical spin
value j. However, in a more general situation, one may con-
sider different spin values for different particles at different
lattice sites. An example of such cases will be discussed in
Sec. IV B for N = 2.
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B. Interaction with local bosonic baths

Consider a situation where each spin r in the system is in-
teracting with a local bath Br, r = 1, 2, ..., N (see Fig. 1 for
an illustration with N = 3), which is a collection of harmonic
oscillators, described by the bath Hamiltonian

HBr
=

∫ ωc

0

dωa†ωaω, (4)

so that the total bath Hamiltonian for N baths is given by
HB =

∑N
r=1HBr

. Here, aω (a†ω) is the annihilation (cre-
ation) operator of the mode ω, such that [aω, a

†
ω̃] = δ(ω− ω̃),

and ωc is the cut-off frequency of the bath. We consider the
absolute temperature of the bath Br to be T 0

r , and the baths
are local in the sense that the bath Br affects only the spin r
in the entire bath-environment setup. The Hamiltonian defin-
ing the interaction between the systems and baths, denoted by
HSB , reads as

HSB =

N∑
r=1

∑
ω

(
S+
r ⊗ aω + S−r ⊗ a†ω

)
, (5)

where S+
r (S−r ) is the spin raising (lowering) operators of rth

spin, given by S±r = Sxr ± iSyr .

We consider a scenario where at t = 0, Hsys = Hloc, such
that each spin is in thermal equilibrium with its respective bath
and has an initial temperature equal to the bath temperature
T 0
r , such that the initial (t = 0) state of the rth spin is repre-

sented by a diagonal density matrix ρ0r . In the eigenbasis of

Szr having eigenvalues j, j − 1 . . .− j, it takes the form as

ρ0r = τ2jr (0) |2j〉〈2j|+ τ2j−1r (0) |2j − 1〉〈2j − 1|
+ · · ·+ τ0r (0) |0〉〈0| , (6)

where

τµr (0) =
exp
(
−µβ0

rhr
)∑2j

µ=0 exp(−µβ0
rhr)

(7)

with
∑2j
µ=0 τ

µ
r (0) = 1, such that the initial state of theN -spin

system is ρ(0) =
⊗N

r=1 ρ
0
r , and β0

r = 1/kBT
0
r , kB being the

Boltzmann constant, which is set to 1. After the interaction
Hamiltonian Hint is turned on at t > 0 such that Hsys =
Hloc + Hint at t > 0, the time-dynamics of the system is
governed by the quantum master equation (QME) [60], given
by

ρ̇ = −i[Hsys, ρ] + L(ρ), (8)

where L(.) represents the dissipator, emerging out of the spin-
bath interactions. The solution of Eq. (8) provides the state,
ρ(t), of the system as a function of t.

C. Dissipators: local vs. global

There exists two competing approaches to determine the
dissipator in the QME (Eq. (8)) – (a) a global approach, where
transitions between the eigenstates of the entire system repre-
sented by the Hamiltonian Hsys is considered, and (b) a local
treatment of the quantum master equation, considering only
the transitions between the eigenstates of the individual sub-
systems labelled by r = 1, 2, · · · , N . In the former, the dissi-
pator L(ρ) =

∑N
r=1 Lr(ρ), with

Lr(ρ) =
∑
ω>0

γr(ω)

[(
Ar(ω)ρA†r(ω) +A†r(ω)ρAr(ω)

)
− 1

2

({
A†r(ω)Ar(ω), ρ

}
+
{
Ar(ω)A†r(ω), ρ

})]
, (9)

where the operators Ar(ω) are the Lindblad operators corre-
sponding to the rth spin for a transition amounting energy ω
among the energy levels of the system, defined by the equation

eiHsyst
(
S+
r + S−r

)
e−iHsyst = 2

∑
ω

Ar(ω)e−iωt. (10)

Explicit forms of Ar(ω) can be derived by decomposing the
spin-part of the system-bath interaction Hamiltonian in the
eigenbasis of Hsys, and may not always be analytically deriv-
able in cases of complex Hamiltonians with large number
of spins. The transition rate, represented by γr(ω), corre-
sponds to the jump through an energy gap ω for the spin
r, and depends on the spectral function and the cut-off fre-
quency of the bath. For baths with an Ohmic spectral function
κr(ω) = [exp(βrω)− 1]

−1 and a cut-off frequency ωc which

are the same across baths,

γr(ω) = fr(ω)[1 + κr(ω)], for ω ≥ 0,

γr(ω) = fr(|ω|)κr(|ω|), for ω < 0, (11)

with fr(ω) = αrω exp(−ω/ωc), and αr being a constant for
the rth bath, representing the spin-bath interaction strength.
Under Markovian approximation, max{αr} � 1.

The explicit form of the Lindblad operators can, however,
be determined if one takes a local approach for deriving the
QME. Note that in the limit where the spin-spin and the spin-
bath interaction strengths are so small that Hsys ≈ Hloc

(γr(ω), J << hr), one may calculate the Lindblad operators
using the eigenstates of Hloc only, which we present in the
following for the systems consisting of spin-j particles .
Lindblad operators for spin-j local QME. Let us demon-
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strate the explicit form of the Lindblad operators considering
a system of two spin-j particles (r = 1, 2), subject to mag-
netic fields of strength h1 and h2 in the z-direction. Eigenval-
ues of the local Hamiltonian (Eq. (1)) for this system can be
written as (−j + a)h1 + (−j + b)h2, corresponding to eigen-
states |a〉 ⊗ |b〉, where a, b ∈ [0, 2j]. Writing the system-bath
interaction Hamiltonian as

HSB =

2∑
r=1

∑
ω

[
Sxr ⊗ (aω + a†ω) + Syr ⊗ i(aω − a†ω)

]
,

(12)
the Lindblad operators corresponding to the rth bath can be
determined as [60]

Ar(ω) =
∑

εq−εp=ω
|εp〉〈εp|Sxr |εq〉〈εq| , (13)

where εp (εq) is the pth (qth) eigenstates of Hloc. Perform-
ing algebra for spin-j particles corresponding to the first spin
leads to

A1(ω) =
∑

εq−εp=ω

1

2
[
√
j(j + 1)− a(a+ 1) |a′〉 〈a| δa′,a+1

+
√
j(j + 1)− a(a− 1) |a′〉 〈a| δa′,a−1]⊗ |b〉 〈b| ,

(14)

where A2(ω) can also be determined with similar calcula-
tion. Considering (a) only transitions with positive ω imply-
ing ω = h1, and noticing that (b) non-zero matrix elements
forA1(ω) requires transitions to be within consecutive energy
levels only, a ∈ [1, 2j], b ∈ [0, 2j], and a′ = a−1. Therefore,
the desired Lindblad operator can be represented as

A1(ω) =
1

2

[
2j∑
a=1

√
j(j + 1)− a(a− 1) |a− 1〉〈a|

]

⊗

[
2j∑
b=0

|b〉〈b|

]

=
1

2
(S−1 ⊗ I), (15)

where I is the identity operator in the Hilbert space of a spin-j
particle. This calculation can be extended to a system of N
spin-j particles also, where the Lindblad operators for the rth
bath are given by

Ar(ω) =
1

2
I⊗ · · ·S−r ⊗ . . . I,

A†r(ω) =
1

2
I⊗ · · ·S+

r ⊗ . . . I.

(16)

In this paper, we consider both local as well as global ap-
proach for constructing the Lindblad operators. However, it
is important to note that unlike the global QME, the local
QME may not always be appropriate for determining the non-
equilibrium properties of the system due to a potential vio-
lation of second law of thermodynamics [61], and therefore

should always be used carefully. Note also that in the case of
the local approach, the time-evolution of the state of a system
of identical spins depends on the initial state of the system, as
presented in the following proposition.
Proposition I. For a system of identical spins, if

hr
T 0
r

= constant ∀ r = 1, 2, · · · , N, (17)

the system does not evolve with time as long as the dynamics
if governed by a local quantum master equation.

Proof. To prove it, we first note that ρ(t + δt), with δt being
the small increment in time, can be expanded as

ρ(t+ δt) = ρ(t) +
∂ρ

∂t

∣∣∣∣
t

δt+O(δt2). (18)

Performing the expansion about t = 0, and neglecting higher
order terms, we obtain

ρ(δt) ≈ ρ(0) +
∂ρ

∂t

∣∣∣∣
t=0

δt

= ρ(0)− i[Hsys, ρ(0)]− L(ρ(0)). (19)

Since the interaction between the spins is absent at t = 0,
for dissipators constructed of Lindblad operators of the form
given in Eq. (16), L(ρ(0)) = 0. Also, at t = 0, the condition
in Eq. (17) suggests identical initial states for all spins in the
system, implying [Hsys, ρ(0)] = 0, leading to ∂ρ

∂t

∣∣∣
t=0

= 0.
This can be continued for an arbitrary small time increment δt
such that t = nδt, n being an integer, when ρ(t) = ρ(nδt) =
ρ(0). Therefore, there is no time-evolution of the state in the
system and the proof.

III. QUANTIFYING LOCAL TEMPERATURE IN HIGHER
DIMENSION

To assess the performance of the quantum refrigerator de-
scribed in Sec, II, we propose a definition of local temperature
which remains valid for arbitrary spins. In this paper, we shall
focus on the scenario where one aims to cool a chosen spin
in the spin-bath setup during the dynamics. The rth spin in
the system is said to achieve a local steady-state cooling by
virtue of the dynamics of the system if and only if T 0

r > T sr ,
where T sr = Tr(t→∞) is the local steady-state temperature
of the rth spin. Note that the chosen spin-bath interaction (see
Sec. II B) ensures a diagonal reduced density matrix,

ρr(t) = Tr j,k( 6=i)
j,k=1,2,3

[ρ(t))] , (20)

for the rth spin. In the case of a system having a spin-12 parti-
cle at the rth site, we know that ρr(t) takes the form as

ρr(t) = τ0r (t) |0〉〈0|+ τ1r (t) |1〉〈1| , (21)

where τ0r (t) (τ1r (t)) can be identified as the time-dependent
population of the state |0〉 (|1〉), and can be used to define a
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population-based local temperature (PLT) for the rth spin as
a function of time, given by

Tr(t) =
hr

ln
[
τ1r (t)

−1 − 1
] . (22)

While this protocol for defining the local temperature of a
spin- 12 particle is well-established [8], the definition of a local
temperature remains a scarcely explored area with little liter-
ature [62] (cf. [50, 51]), when the subsystems have Hilbert
space dimension larger than 2 (eg. spin-j particles). In the
latter situation, the local density matrix of the rth spin, having
the form

ρr(t) = τ2jr (t) |2j〉〈2j|+ τ2j−1r (t) |2j − 1〉〈2j − 1|
+ · · ·+ τ0r (t) |0〉〈0| , (23)

depends on a total of 2j parameters, and hence defining a
unique local temperature for the rth spin-j particle follow-
ing the protocol for spin- 12 particles [8] is not possible. In
this regard, we put forward a distance-based quantifier for lo-
cal temperature in the subsequent subsections, and justify its
importance in the context of investigating performance of a
quantum refrigerator constructed out of quantum spin models.
In this way, a set of definition for local temperature emerges
depending on the choice of valid distance measures although
we show that they qualitatively behave in a similar fashion.

A. Estimating local temperature using distance measures

Let us consider an arbitrary canonical thermal state of the
rth spin-j particle in the system, having an absolute tempera-
ture T ′r. The canonical thermal state is given by

ρ̃r =
exp(−β′rhrSzr )

Tr [exp(−β′rhrSzr )]
, (24)

where β′r = 1/kBT
′
r is the inverse temperature, and hr is the

strength of the external magnetic field of the rth spin. We de-
fine the distance-based local temperature (DLT), TDr (t), for
the rth spin described by the steady state ρr(t) obtained via
the dynamics (see Eq. (23)) as

TDr (t) =
1

min
T ′
r

D(ρ̃r, ρr(t))
, (25)

where D(σ̃, σ) is an appropriate distance measure between
the density matrices σ̃ and σ. There exists a number of dis-
tance measures in literature, including the trace distance [58],
the Hilbert-Schmidt distance [63], Uhlmann fidelity [59, 64],
and the relative entropy distance [65] to name a few, which
can be used to quantify the local temperature, and the use of
a particular measure may depend on specific situations. In the
following sections, we shall compare the performances of dif-
ferent distance measures in context of faithfully quantifying
the local temperature of a spin-j system. In order to justify
the importance of such a definition of local temperature, we
present the following proposition.

� Proposition II. For a spin- 12 particle, the distance-based
local temperature is equivalent to the population-based local
temperature at all times, when trace distance is chosen as the
distance measure.

Proof. Let us define

yr =
exp(−β′rhr/2)

exp(−β′rhr/2) + exp(β′rhr/2)
, (26)

and write D(ρ̃r, ρr(t)), at an arbitrarily fixed time instant t,
as a function of yr as

D(yr) =
1

2
Tr
√

(ρ̃r − ρr(t))†(ρ̃r − ρr(t))

=
1

2

(∣∣yr − τ1r (t)
∣∣+
∣∣(1− yr)− τ0r (t)

∣∣) , (27)

which, using τ0r = 1− τ1r , becomes

D(yr) =
1

2

(∣∣yr − τ1r (t)
∣∣+
∣∣τ1r − yr∣∣) . (28)

Since D(yr) ≥ 0 by virtue of being a distance measure, and
D(yr) = 0 for yr = τ1r , the DLT is obtained from the equation
yr = τ1r by solving for T ′r as

T ′r =
hr

ln
[
τ1r (t)

−1 − 1
] . (29)

Since Eq. (29) holds for an arbitrary t, the DLT is equivalent
to the PLT at all times. Hence the proof.

In the subsequent sections, we shall discuss the steady-state
cooling of a spin in the system using DLT as a quantifier for
cooling, where for brevity, we denote the steady-state DLT as
T sr = TDr (t→∞).

B. Entropy-based estimation of local temperature

In situations where a spin-j subsystem of a quantum spin
model in a system-bath setup described in Sec. II attains a lo-
cal steady-state cooling, the entropy of the subsystem in the
steady state should be lower than the initial entropy of the
subsystem at t = 0, providing a signature of the cooling phe-
nomena. In order to carry out a quantitative investigation, we
define an entropy-based estimated temperature, quantified by
the normalized entropy for the steady state, as

SsN =
S(ρr(t→∞))

S(ρr(0))
, (30)

where S(ρ) = −Tr(ρ log2 ρ) is the von Neumann entropy for
the density matrix ρ. A local steady-state cooling of the rth
spin is indicated by SsN < 1 while its positivity implies heat-
ing. The qualitative variations of SsN as functions of the rele-
vant system parameters as well as with increasing dimension
of the Hilbert spaces of the subsystems are similar to those for
DLT, as we shall demonstrate in the subsequent sections.
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FIG. 2. (Color online.) Variation of (a) heat current, (b) steady-state temperature and (c) normalized von-Neumann entropy (vertical
axis) as functions of the dimension of the first subsystem, j (horizontal axis). The refrigerator consists of two identical spins which are
interacting according to the XX Hamiltonian given in Eq. (2) with γ = 0 and J∆ = 0. We compute these quantities by solving local QME.
Circles, squares and triangles represent different interaction strengths, namely J = 0.02, J = 0.05 and J = 0.09 respectively. The local
external magnetic fields of the first and the second spins are respectively h1 = 1.1, and h2 = 1.3 while the corresponding initial temperature
of the first and the second spins are T1(0) = 1 and T2(0) = 1.1 respectively. Here the spin-bath interaction is chosen as Γ = 0.05. The
dimensional advantage according to the figures of merit for the refrigerator is clearly visible. All the axes are dimensionless.

C. Local heat current

An important quantity, providing the indication as to
whether an N -spin system is operating as a refrigerator for
the rth spin, is the local heat current at the steady state, de-
fined as [60]

Q̇r = Tr [HsysLr(ρs)] , (31)

where ρs is the steady state ρ(t → ∞) of the entire system.
A positive value of Q̇r represents a situation where heat flows
from the bath Br to the rth spin in the steady state, which is
at a lower temperature T sr < T 0

r if a steady-state cooling has
been achieved. The value of Q̇r, therefore, is expected to be
positive in accordance with a cooling indicated by TD,sr and
SsN . Note, however, that the definition of Hsys may vary de-
pending on the choice of a local, or a global approach to define
the QME, and an inappropriate choice of the QME may lead
to anomalous values of Q̇r, although the steady-state cool-
ing for the rth spin is indicated by the values of TD,sr and
SsN [26, 66]. We shall elaborate on this in the subsequent
sections as we discuss specific constructions of small refriger-
ators in a case-by-case basis.

IV. TWO-SPIN QUANTUM REFRIGERATORS

We now discuss the performance of quantum refrigerators
built with two spins, where one of the spins is cooled and the
other spin, along with the baths, constitute the refrigerator.
Unless otherwise mentioned, in the rest of the paper, we al-
ways choose the first spin, i.e., r = 1 to be the target spin for
cooling.

A. System of two identical spins

Let us consider two identical interacting spin-j particles
constituting the system, and increase the value of j simulta-
neously for both the spins to study how the refrigeration of
one of the spins depends on j. Unless otherwise mentioned,
in all our analysis, we use the trace distance to define the DLT.
For computing heat current, local temperature and entropy, we
solve the local as well as global QME using the Runge-Kutta
fourth order technique, and determine the reduced state of the
spin-j particle in the steady state that is used to compute the
relevant quantities.

Tuning refrigerator with system parameters

XY Z model as refrigerator. We first consider the
XY Z-type interaction between the spins, and solve the time-
dependent state of the system using the local QME to compute
Q̇1, T s1 , and SsN corresponding to the first spin. Fig. 2 depicts
the variations of these quantities as a function of j, clearly in-
dicating significant advantage in cooling of the first spin when
the dimension of the Hilbert spaces corresponding to the spins
increases. For example, with J = 0.09, in case of spin-1/2,
the decrease in temperature at the steady state from the ini-
tial state is ≈ 0.59% while it is 3.1% for the refrigerator with
spin-4 systems. Also, our results indicate that a higher value
of J favours the cooling of the first spin, compared to a lower
value. In our analysis, we have kept the value of J to be in
such a range that the local QME can be applied. However,
the improvement in cooling for higher values of J indicates
the need for an investigation with the global QME, which we
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steady state with j = 1/2, j = 1 and j = 3/2 respectively. Both the
axes are dimensionless.

shall discuss in the subsequent subsections.
Note that the results presented in Fig. 2 is for the case

of γ = 0 and ∆ = 0, representing the XX Hamiltonian.
Our data suggests that even in the presence of the xy- and
the z-anisotropy in the interaction, the dimensional advan-
tage in cooling persists although the variation of the relevant
quantities is almost negligible with non-zero values of the
anisotropies for a fixed value of j, especially with low j val-

ues. For high j, the slight change in the local temperature hap-
pens with the introduction of γ and ∆ and the results suggest
that the performance of the refrigerator based on the XXZ
model is the best among the class ofXY Z models. Therefore,
the behaviors of the heat current, entropy and local tempera-
ture depicted in Fig 2 faithfully capture all the relevant infor-
mation regarding the effect of increasing spin-dimension and
the spin-spin interaction strength on performance of the refrig-
erator. Note that the positive or negative coupling strength, J ,
leads to the same local temperature in the steady state.

Refrigerator with bilinear-biquadratic interactions. Us-
ing the local approach, we also investigate the performance of
the two-spin refrigerator when the spin-spin interactions are
governed by the BB Hamiltonian (see Fig. 3), and have found
the results to be qualitatively similar to that reported in Fig. 2.
The dimensional advantage of cooling is present irrespective
of the phase of the system from which the spin-spin interac-
tion parameter is chosen. Specifically, the parameters chosen
for demonstration reveals that the minimum temperature is ob-
tained when the corresponding system at equilibrium belongs
to the critical phase.
Note. A comment on the choice of the system parameters for
the demonstration of refrigeration is in order here. Although
numerous points in the parameters space of the system pa-
rameters exists where a local steady-state cooling for the first
spin is observed, the total volume of the parameter space that
represents such refrigerators is small compared to the entire
parameter space although it increases with the increase of the
spin-dimension. In Fig. 4, we depict, for j = 1

2 , 1,
3
2 , the

points in the parameter space of J and ∆h = h2 − h1 for
which a steady-state cooling of at least T 0

1 − T s1 = 10−3 is
obtained. The fraction of points representing a refrigerator
increases with an increase in j 2.7%, 14.3% and 23.82% for
j = 1/2, 1, and 3/2 respectively, demonstrating again a di-
mensional advantage in the accessibility of parameter space
in building a quantum refrigerator. Note also the higher clus-
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tering of the accessible points in parameter space towards a
high value of J , indicating the need for performing a global
QME-based analysis of the system. Interestingly, however,
we notice that there exists a forbidden regime in the (J,∆h)-
plane where the cooling with XX interactions does not occur
and it decreases with dimensions.

Tuning refrigerator with bath temperature

Along with system parameters, it is also important to in-
vestigate how the performance of the refrigerator can be con-
trolled when one has access to the tunable parameters of the
thermal baths, such as the bath temperatures T 0

r . Towards this
aim, we define a steady-state cooling factor relative to the ini-
tial temperature of the cold spin-j particle in the system, as

ηj =
T 0
1 − T s1
T 0
1

. (32)

In Fig. 5, we plot the variation of ηj as function of T 0
1 , which

exhibits a critical point T c1 on the T 0
1 -axis corresponding to a

zero-crossing of ηj . For T 0
1 < T c1 , a steady-state heating of

the first spin takes place represented by a negative value of ηj ,
while when T 0

1 > T c1 , a positive value of ηj is obtained due
to the occurrence of a steady-state cooling. Note that for the
reported data, the critical point T c1 corresponds to the situation
described in Proposition I, such that

h1
T c1

=
h2
T 0
2

, (33)

ensuring that no evolution of the system takes place. Note also
that our numerical analysis clearly suggests that

ηj= 1
2
< ηj=1 < ηj= 3

2
, (34)
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FIG. 6. (Color online) Behavior of steady-state local temperature of
the target spin obtained via trace and relative entropy distance (ordi-
nate) with respect to interaction strength, J (abscissa). Solid and hol-
low symbols represent trace and relative entropy distance. Squares,
circles and triangles are respectively for refrigerators with two iden-
tical spins having j = 1/2, 1, 3/2. Other specifications are same as
Fig. 2. All the axes are dimensionless.

thereby exhibiting the importance of higher dimensional sub-
systems in enhancing the performance of the designed refrig-
erator.

Local temperature with different distance measures. At
this point, it is natural to ask whether the reported results
remain invariant under a change in the choice of the dis-
tance measure used to quantify the DLT. We answer this
question affirmatively. Fig. 6 depicts a comparison be-
tween the DLT values obtained by using the trace distance
and the relative entropy distance, defined as S(σ1||σ2) =
Tr [σ1 log2 σ1 − σ1 log2 σ2], for two density matrices σ1 and
σ2. While the two measures provide identical results for qubit
systems, the values of the DLTs differ by ∼ 10−3 with in-
creasing j. Nonetheless, the qualitative behavior remains sim-
ilar in all these situations. It is also noteworthy that the dif-
ference is very small for low values of the spin-spin interac-
tion strength, and increases very slowly with an increase in J .
We also check the performance of the DLT using Uhlmann fi-
delity [59] as the distance measure, which coincides with the
DLT using relative entropy distance.

Refrigeration using the global QME

A question that naturally arises is to whether the results cor-
responding to a quantum refrigerator obtained using the lo-
cal QME remains the same even in situations where a global
QME is appropriate to describe the dynamics of the system.
To answer this question, we find that in the case of a two-
spin models described by the Hamiltonian Hxyz , cooling of
the first spin takes place only with a non-zero value of ∆J
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h1 = 1.1, h2 = 1.3, α1, α2 = 10−3 and ωc = 103 respectively, and
the initial temperatures of each spin are same as in Fig. 2. See text
for the improvement obtained with global QME over the local ones.
Both the axes are dimensionless.

(see Fig. 7 for a typical cooling phenomena for the first spin).
This is in stark contrast with the situations discussed so far
involving the local QME, where the zz-interaction term in
Hxyz does not have any significant effect on cooling (cf. [26]).
However, even in the case of the global QME, the features
like significant dimensional advantage remains unaltered, and
the amount of refrigeration of the first spin is much higher in
comparison to the case of the local QME. For example, for
spin-1/2 systems, the percentage of cooling in the first spin
is approximately 18.8% with global QME while for spin-3/2
quantum refrigerator, it is 53.5% for the XXZ model refrig-
erator with J = 0.05 and J∆ = −1.

B. System of two different spins

Let us design a refrigerator with two spins having differ-
ent values of j, and focus specifically on the situation where
j = 1

2 for the first spin (r = 1), while for the second spin
(r = 2), j can take an arbitrary value. While it is known that
a qubit can be cooled in a qubit-qutrit system with specific
interaction between them [8], it is not yet clear whether in-
creasing the Hilbert space dimension of the second party in a
2×(2j+1) system provides any advantage to the refrigeration
of the qubit system. To address this question, we consider the
Hamiltonian modelling the interaction between the spin-1/2
and spin-j particle to be

Hxx = J [S̃x1S
x
2 + S̃y1S

y
2 ], (35)

where S̃ (S) represents the spin operator corresponding to the
spin- 12 (spin-j) subsystem, and J is the strength of the spin-
spin interaction. In Figs. 8(a) and (b), we respectively observe
the patterns of Q̇1 and T s1 of the spin- 12 particle by varying
j for the second spin. With an increasing j for the second
spin, Q̇1 (T s1 ) starts from a low positive value and then in-
creases (starts from a value ≈ T 0

1 and then decreases), ex-
hibiting again the dimensional advantage in cooling the first
spin. Surprisingly, we observe that in this non-identical sce-
nario, the minimum temperature corresponding to j = 4 of
the second spin (i.e., the decrease of temperature, ≈ 4.82%)
is much lower (higher) than that obtained for the scenario
with identical spins (the decrease from the initial tempera-
ture, ≈ 3.1% (comparing Figs. 2 and 8). We also perform
the same analysis using the global QME to find a more pro-
nounced dimensional advantage. Specifically, with the XXZ
model (J = 0.05, J∆ = −1), we find that a 18.9% cooling of
the first spin in the case of j = 1

2 for the second spin occurs
while it becomes 48.53%, when the spin quantum number of
the second spin is increased to j = 3/2.

V. REFRIGERATION IN THREE-SPIN SYSTEMS

Let us now move to a set up of refrigerator consisting of
three identical spin-j particles, each of which is connected
to a local thermal bath as shown in Fig. 1. Starting with
the product state of a local Hamiltonian, Hloc, the system
evolves according to Hamiltonian, Hxyz or HB at t > 0.
In case of the XY Z refrigerator, we consider an isotropic
case (γ = 0,∆ = 0) for demonstration of the performance
of the refrigerator in a local QME approach. Fig. 9 depicts the
variations of Q̇1, T s1 , and SsN as functions of j for different
values of J , clearly demonstrating a dimensional advantage.
Note that although the qualitative results on refrigeration of
the first spin using the three-spin system remains similar to its
two-spin variant (see Sec. IV), quantitatively the two-spin re-
frigerator performs better than the three-spin one, which can
be seen by comparing Fig. 9 with Fig. 2.

In case of refrigerator with three-spins governed by the BB
Hamiltonian, T s1 and SsN again exhibit increasing cooling of
the first spin with increasing J as well as with the increase of
spin quantum number, j. As observed for the two-spin refrig-
erator, the phase dependence also remains unaltered. How-
ever, the heat current, Q̇1 exhibits a non-monotonic variation
with J for j = 2 when φ = π/3 and 2π/3, and becomes nega-
tive for moderate and high values of J . We point out here that
we have defined the local heat current following the global
approach (see Sec. II B) which may lead to such anomalous
behavior in the heat current (cf. [26, 61, 66–69]).

VI. CONCLUSION

Summarizing, we have designed a quantum refrigerator
built of a few spins whose individual Hilbert space dimensions
can go beyond the qubits, or qutrits. The spins are considered
to be interacting among each other via the XY Z and the bi-
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linear biquadratic interactions, while each of the spins are lo-
cally interacting with the bosonic baths. So far, such machines
have typically been built with spin-1/2 or spin-1 systems, and
the quantifiers of the performances of these machines, such
as definitions of local temperature for the constituent subsys-
tems, are designed accordingly. To deal with the higher di-
mensional systems, in this paper, we propose a new definition
of local temperature based on the minimum distance between
the dynamical state of a spin-j particle in the steady state, and
a canonical thermal state of the same particle, which proves
to be a faithful quantifier for the performance of the designed
refrigerator. The definition is proved to be consistent with the
existing definitions for qubit systems, and the behavior of the

distance-based local temperature is found to be in agreement
with the local heat current and the entropy of the subsystems.
We observed that our setup leads to a cooling of one of the
spins in the system, which enhances with the increase of the
spin quantum number of the spins, and thereby with the in-
crease of the Hilbert space dimension, hence establishing the
dimensional advantage in the refrigerators. On our way to ver-
ify these results by using both local and global quantum mas-
ter equations, we have also analytically derived the form of
the Lindblad operators corresponding to the individual spins
while constructing the dissipator for the local quantum master
equation.

Miniaturisation of devices are necessary to fulfil the current
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way of living. Although most of these devices work according
to the laws of classical physics, they have now started knock-
ing at the door of the quantum world due to immense advance-
ment in the design and control of machines at the microscopic
scale. In recent years, it has been established that appliances
based on quantum mechanics can remarkably enhance the ef-
ficiencies compared to that obtained from the existing ones,
thereby revolutionizing the world of technologies. In this re-
spect, our work explores and manifests building small quan-
tum refrigerators using quantum spin systems with large spins.
The scope for future exploration from our work is immense.
For instance, note that starting from a microscopic quantum
thermal machine, there exists two routes to macroscopicity
– (a) by increasing dimension of individual subsystems of a
composite quantum system while keeping the number of sub-
systems small, and (b) by having a large number of small sub-
systems [30, 70]. Our results explores the former, while the

latter also gained some interests in the recent past [71–76]. It
will be interesting to find out the hierarchies, if any, among
the macroscopic devices obtained following these two differ-
ent routes.

ACKNOWLEDGMENTS

TKK, SG and ASD acknowledge the support from the In-
terdisciplinary Cyber Physical Systems (ICPS) program of
the Department of Science and Technology (DST), India,
Grant No.: DST/ICPS/QuST/Theme- 1/2019/23. AKP ac-
knowledges the Seed Grant from IIT Palakkad. We ac-
knowledge the use of QIClib – a modern C++ library for
general purpose quantum information processing and quan-
tum computing (https://titaschanda.github.io/
QIClib), and the cluster computing facility at the Harish-
Chandra Research Institute.

[1] Binder.F, Correa.L.A., Andres.J, and Adesso.G, Thermo-
dynamics in the quantum regime,”Fundamental Theories of
Physics (SpringerBriefs in Physics, Springer, Spain, 2018).

[2] G. Gemmer, M. Michel, and G. Mahler, Quantum Thermody-
namics (Springer, New York, 2004).

[3] S. Deffner and S. Campbell, Quantum Thermodynamics, 2053-
2571 (Morgan and Claypool Publishers, 2019).

[4] R. Alicki and M. Fannes, Phys. Rev. E 87, 042123 (2013).
[5] D. Ferraro, M. Campisi, G. M. Andolina, V. Pellegrini, and

M. Polini, Phys. Rev. Lett. 120, 117702 (2018).
[6] K. Joulain, J. Drevillon, Y. Ezzahri, and J. Ordonez-Miranda,

Phys. Rev. Lett. 116, 200601 (2016).
[7] J. Ordonez-Miranda, Y. Ezzahri, and K. Joulain, Phys. Rev. E

95, 022128 (2017).
[8] N. Linden, S. Popescu, and P. Skrzypczyk, Phys. Rev. Lett.

105, 130401 (2010).
[9] J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys.

73, 565 (2001).
[10] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885

(2008).
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Phys. Rev. Lett. 93, 260404 (2004).

[28] Y. Elias, T. Mor, and Y. Weinstein, Phys. Rev. A 83, 042340
(2011).

[29] A. E. Allahverdyan, K. V. Hovhannisyan, D. Janzing, and
G. Mahler, Phys. Rev. E 84, 041109 (2011).
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