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Prior information about the input state can be utilized to enhance the efficiency of quantum teleportation
which we quantify using the first two moments of fidelity. The input knowledge is introduced by relaxing the
uniformity assumption in the distribution of the input state and considering non-uniform distributions, namely
the polar cap and von Mises-Fisher densities. For these distributions,we show that the average fidelity increases
depending on the shared resource state between the sender and the receiver while the deviation decreases with
the increase of information content about the input ensemble, thereby establishing its role as a resource. Our
comparative study between these two distributions reveals that for the same amount of information content about
inputs, although the average fidelity yield is the same for both, the polar cap distribution is “better” as it offers a
smaller deviation. Moreover, we contrast the resource of prior information with other resources involved in the
protocol like shared entanglement and classical communication. Specifically, we observe that unlike uniform
distribution, the amount of classical communication required to fulfill the task decreases with the increase of
information available for inputs. We also investigate the role of prior information in higher (three) dimensional
teleportation and report the signatures of dimensional advantage in prior information-based teleportation.

I. INTRODUCTION

The power of quantum physics brings the idea of teleporta-
tion from the pages of science fiction to the realms of physical
reality [1]. From the very inception of quantum teleportation
[2], it has always been at the central point of study from vari-
ous perspectives and currently turns out to be one of the main
ingredients in building quantum technologies. Apart from in-
stigating the endeavour of quantum information theory, it pro-
vides the premise for the art of technology including quan-
tum repeaters [3], remote state preparation [4], quantum gate
teleportation [5], measurement-based quantum computing [6],
telecloning [7].

In the process of teleportation, some unknown quantum
states are transmitted to a distant location without sending the
state physically [2], which is impossible only by using classi-
cal communication. Specifically, non-classicality of telepor-
tation can be quantified by measuring the gap between the fi-
delities obtained by using quantum resources and the one via
classical ingredients like the shared unentangled state [8]. Fi-
delity is defined as the overlap between the input and the ac-
tually teleported states [9–11]. In the classical protocol, it is
computed by some kind of prepare and measure procedure to-
gether with classical communication from the sender, called
Alice, to the receiver, Bob [12] (see [13] for other notion of
nonclassicality in teleportation). In laboratories, nonclassi-
cal fidelity has successfully been achieved in various phys-
ical systems involving photonic systems [14–18], ion traps
[19, 20], nuclear magnetic resonances [21], solid state sys-
tems [22, 23] (see [1] for more references).

Teleportation scheme showing quantum advantage typi-
cally has several components on which the fidelity depends.
Perfect fidelity is achieved when the shared state is maximally
entangled, Bell measurement at Alice’s end is projective (c.f.
[24]) and the information about the outcomes of the measure-
ment is perfectly communicated to Bob via a noiseless chan-
nel. However, this is an ideal situation and all of them never
meets with full perfection in experiments. The presence of
noise can, in general, degrade the entanglement content [25]
of the state shared by the sender-receiver duo, thereby low-

ering the fidelity compared to the one obtained in the perfect
case, even when the measurement at Alice’s end is perfect.
The reduction can sometimes go below the fidelity achieved
by an unentangled state which can be overcome by employ-
ing suitable local preprocessing methods developed over the
years on the shared state [26–32].

In the present work, we concentrate on another ingredi-
ent, specifically, the distribution of the input state, involved
in teleportation. In this regard, it was shown that instead of
choosing input states uniformly from the entire Bloch sphere
if Alice has to teleport one of the two non-orthogonal states,
given randomly with equal probability, one ebit (one copy of a
maximally entangled state) of the shared resource is necessary
which was named as “two-state teleportation” [33]. Notice
that if Alice apriori has the information about the input state,
she can teleport only via classical channel without requiring
the expensive entangled state while for completely unknown
inputs taken uniformly from the Bloch sphere, perfect telepor-
tation is not possible if Alice-Bob pair share a quantum state
having less than one ebit. In another work, optimal teleporta-
tion was designed by considering noisy inputs together with a
noisy channel [34].

In our work, we enforce another kind of restrictions on in-
puts. In particular, instead of limiting the set of states to be
teleported, we impose that the input distribution is not uni-
form. We show explicitly how prior information about the in-
put states encoded in the non-uniform distribution enhances
average teleportation fidelity. Specifically, we employ two
different distributions over Bloch sphere for choosing inputs,
namely polar cap distribution which is obtained by changing
the polar angles of the Bloch sphere, and von Mises-Fisher
distribution [35]. We characterize the nonclassicality of tele-
portation protocol via average fidelity where the averaging is
performed over the corresponding distribution of inputs. In
addition, we also evaluate fidelity deviation which indicates
for a given channel, how different states get teleported far
from the target state [36] (see also [37–40]). In case of the
polar cap as well as von Mises-Fisher distributions, we ob-
tain compact forms of average fidelities for arbitrary two-qubit
density matrices in terms of the correlation matrix and show
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that similar formalisms can also be applied to obtain fidelity
deviations. It is worth mentioning here that the non-uniform
distribution has very recently been considered in the context of
average gate fidelity to distinguish between two noisy scenar-
ios [41, 42]. For arbitrary pure two-qubit states, we observe
that the average fidelity increases and deviation decreases with
the increase of prior information. The information content of
the initial ensemble is quantified by the fidelity of classical
cloning i.e., measure-prepare method [12] in both situations.
Interestingly, we find that for a fixed amount of information
extractable by using classical protocol, polar cap distribution
yields less deviation compared to von Mises-Fisher distribu-
tion for pure shared states while the average fidelities for both
the distributions coincide. Moreover, we show that in con-
trast to a uniform distribution, classical communication (CC)
required for obtaining a fixed value of teleportation fidelity
decreases with the increase of information in inputs. More-
over, we present an adaptive local operations and classical
communication (LOCC) scheme depending on the prior in-
formation required to enhance the fidelity. Since all the results
obtained here are similar to the original teleportation protocol
with respect to the measurements and unitary operations per-
formed by the sender and the receiver respectively, the pro-
posed scheme can be experimentally realized with currently
available technologies.

In the last two decades, it was also discovered that in several
quantum information processing tasks, higher dimensional
systems can provide some advantages over the lower dimen-
sional ones [43–50]. Towards extracting such power from
higher dimensions, we also evaluate the average fidelity of
the teleportation protocol for the restricted set of spin-1 in-
puts and the shared two-qutrit states. Our analysis confirms
that for a fixed value of information contained in inputs, the
gain in fidelity obtained via qutrit systems is approximately
double compared to the one that can be achieved via the two-
dimensional ones.

The paper is organized in the following manner. After dis-
cussing briefly the method used to evaluate the average tele-
portation fidelity and fidelity deviation in Sec. II which in-
clude the way, we quantify, information content in inputs and
the role of adaptive LOCC, we present the results for two
choices of distributions for inputs in Sec. III, the polar cap in
Subsec. III A, and the von Mises-Fisher distribution in Sub-
sec. III B. The importance of prior information content in in-
puts is analysed in Sec. III C in the context of other resources.
The next section (Sec. IV) compares the gain obtained in the
average fidelity and the corresponding deviation by consider-
ing the polar cap and von Mises-Fisher distribution. In Sec.
V, we consider the higher-dimensional system and show that
the advantages due to the non-uniform distribution continues.
We conclude in Sec. VI.

II. METHODOLOGY

The success of quantum teleportation [2] relies on the syn-
ergy between various resources from both quantum and clas-
sical domains. The quantum ingredients involved in the pro-

tocol are undoubtedly the entanglement of the shared state
between Alice and Bob, the measurement performed by Al-
ice and the state to be teleported while the required classical
one includes the communication of Alice’s measurement out-
comes to Bob. Note that any components which take part in
enhancing the performance of the teleportation protocol are
called to be a resource.

Here we examine yet another resource, i.e. the partial in-
formation content of the input state to be teleported. Note that
we call prior information as resource in the sense that we can
utilize it to enhance the teleportation fidelity. We will also
show the effects of it on other ingredients of the protocol.

Let us begin by the canonical form of an arbitrary two-qubit
state, given by

ρ =
1

4
(I4+

∑
i=x,y,z

(miσi⊗I2+m′iI2⊗σi)+
∑

i=x,y,z

tiσi⊗σi),

(1)
where magnetization, mi = tr(σiρ1), ρ1 being the local den-
sity matrix at Alice’s part, similarly m′i, and the correlators
are defined as ti = tr(σi ⊗ σiρ), i = x, y, z which con-
stitutes a diagonal correlation matrix, T . Under the stan-
dard teleportation scheme, a two-qubit state with correla-
tion matrix T , teleports a state having a Bloch vector a =
(sin θ cosφ, sin θ sinφ, cos θ) with a fidelity of [10]

f(θ, φ) =
1

2
(1− aTTa). (2)

which reduces in terms of tis as

f(θ, φ) =

1

2
(1 − t1 sin2 θ cos2 φ− t2 sin2 θ sin2 φ− t3 cos2 θ).

(3)

The average fidelity (Fp) is obtained by averaging f(θ, φ)
with respect to a general probability density function on the
Bloch sphere, p(θ, φ) as

Fp = 〈f(θ, φ)〉 =

∫ π

θ=0

∫ 2π

φ=0

sin θ p(θ, φ) f(θ, φ) dθdφ.

(4)

The standard deviation of fidelity, commonly known as fi-
delity deviation [36], is computed to be

Dp =
√
〈f2(θ, φ)〉 − F 2

p , (5)

where we have

〈f2(θ, φ)〉 =

∫ π

θ=0

∫ 2π

φ=0

sin θ p(θ, φ) f2(θ, φ) dθdφ. (6)

Naturally, p(θ, φ) satisfies
∫ π
θ=0

∫ 2π

φ=0
sin θ p(θ, φ) dθdφ = 1.

Note that the completely random input case corresponds to a
uniform distribution puni(θ, φ) = 1

4π , for which F for any
state with detT < 0 can be expressed as F uni = 1

2 (1 +
1
3 Tr |T |) [10]. We will discuss how the average fidelity
and deviation get altered for different probability densities,
p(θ, φ)s, in the succeeding section. The above method can be
extended to a higher dimensional system which will be dis-
cussed in Sec. V in details.
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A. Quantification of prior information

Since the idea of our work is to change the distribution of
the input states from uniform to a non-uniform one, it is im-
portant to quantify the optimal amount of extractable infor-
mation from an ensemble of states. When the set of states
are uniformly distributed in the state space in any dimension
d, the maximal information that can be extracted is given by
[12]

S =
∑
ξ

∫
Dφ P (φ, ξ) S(ξ, φ), (7)

where ξ denotes the measurement outcomes, P (φ, ξ) is the
probability of a particular outcome ξ depending on the ini-
tial state φ while Dφ is the measure for the given distribu-
tion of the states φ, and S(ξ, φ) denotes the distance between
the two states. When S(ξ, φ) is chosen to be the fidelity dis-
tance, |〈ξ|φ〉|2, S becomes the classical fidelity of teleporta-
tion (Fcl), which is achieved by communicating the measure-
ment outcomes ξ to Bob classically. When the ensemble form
a uniform measure on the state space, Suni = Funicl = 2

d+1 .
For a non-uniform ensemble, the maximal amount of ex-
tractable information S = Fcl is higher than Funicl . We quan-
tify prior information about the input state as the difference
between the amount of information that can be obtained from
the given ensemble and from the uniform one, given by

I = S − Suni = Fcl − Funicl . (8)

One can also consider the fractional enhancement of fidelity
as the prior information content,

If =
Fcl − Funicl

Funicl

, (9)

which turns out to be useful for inter-dimensional compar-
isons.

B. Adaptive local operations and classical communication
protocol

We now lay out the sketch of the general strategy to im-
plement an adaptive local operations and classical communi-
cation protocol on top of the standard teleportation scheme
(STS) to maximize the fidelity output depending on the prior
information. The general LOCC scheme has the following
two parts:

1. Pre-processing. Depending on the partial information
of the distribution from which the states to be teleported
come from, before starting the protocol, Alice performs
one of the M local operations to orient the input state
depending on the symmetries of the shared state and the
distribution for the optimal fidelity yield via the STS as
shown in Figs. 1 and 2 for the particular case of inputs
coming from a polar cap on the Bloch sphere. It would
be discussed in detail in subsequent sections.

I. Preprocessing: Optimal 
Orientation using Local 

operations

II. STS: Apply the standard 
teleportation scheme

III. Post processing: Revert 
back to the original 

distribution

FIG. 1. LOCC strategy for aligning the probability distribution cap
with the pole (measurement direction).

I. Preprocessing: Local operations 
depending on prior information. 
Classically communicate the  

operation type 

II. Post processing: Revert back to the 
original distribution via local 

operations depending on the CC  

1-bit of CC for U or V

standard teleportation 
scheme

FIG. 2. LOCC protocol when the input state to be teleported may
come from one of two polar cap distributions.

2. Post-processing. Depending on the classical communi-
cation of (CC) log2M -bits of data to Bob about mea-
surement outcomes by Alice, Bob re-orients the tele-
ported state back to the original distribution (for post-
processing in the particular case of polar distribution of
inputs, see Fig. 2).

Note, however, that such an LOCC update of standard tele-
portation protocol depends on the partial knowledge of the
input as well as on the shared entangled state. For exam-
ple, for the same polar cap distribution, if the shared state
is a Werner state, there is no point in updating the protocol
since the Werner states teleport all states of the Bloch sphere
with identical fidelities (since it possesses zero deviation). We
shall elaborate on this point in the subsequent sections. We
must also add that without applying a LOCC protocol, not
only the obtained fidelity in presence of prior information can
fall below the best classical (entanglement-free) protocol but
can even be lower than the classical fidelity (2/3) in the uni-
form case.

III. EFFECTS OF PRIOR INFORMATION ON FIDELITY

We can expect that when some information about the in-
put state to be teleported is available, the relevant parties can
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use that information to enhance the performance of the tele-
portation which can be measured by the fidelity or the fidelity
deviation. As we will show, such an enhancement is not ubiq-
uitous and is dependent on the shared entangled resource. In
this section, we perform a detailed analysis of how some prior
information about the input state in terms of distributions ef-
fects the teleportation fidelity. The knowledge about the in-
put comes from the fact that there can be situations where
the state to be teleported comes from a specific region of
the Bloch sphere. More generally, some states on the Bloch
sphere may be more probable to get teleported than others.
We model such prior information as non-uniform probability
density functions on the Bloch sphere and illustrate via two
scenarios – (1) input is given from the polar cap and (2) from
the von Mises-Fisher distribution.

A. The polar cap distribution
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F

θ0

(a)

C = 0.0
C = 0.2
C = 0.4
C = 0.8

 0
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 0.06
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D

θ0

(b)

C = 0.0
C = 0.2
C = 0.4
C = 0.8

FIG. 3. (a) Average fidelities (ordinate) and (b) their deviations (or-
dinate) vs. the various sizes of the polar cap as controlled by θ0 (ab-
scissa). Different curves correspond to the different contents of en-
tanglement of the shared pure state, quantified by concurrence. The
curve with the legend C = 0 represents a shared unentangled state
between the sender and the receiver for which the classical protocol
has to be followed. Note that smaller the polar cap, as indicated by
lower θ0 values, greater is the obtained fidelity and lower is the devi-
ation. Interestingly, for θ0 → 0, the states at or near the pole always
get teleported with almost unit fidelity for any values of C which can
be clearly seen from Eq. (15). Both the axes are dimensionless.

Let us start with the situation where the input state is chosen
from a polar cap of the Bloch sphere which is obtained by
uniformly varying the polar angle of the sphere. In this case,
p(θ, φ) assumes the following form:

pθ0(θ, φ) =

{
1

2π(1−cos θ0) , for θ ≤ θ0
0, for θ > θ0

. (10)

Note that the above probability density is normalized∫ θ0
θ=0

∫ 2π

φ=0
pθ0 sin θdθdφ = 1. It directly follows from the

fact that
∫ θ0
θ=0

∫ 2π

φ=0
sin θdθdφ = 2π(1 − cos θ0) and pθ0 =

1
2π(1−cos θ0) . Furthermore, notice that θ0 controls the size of
the polar cap. Mathematically, it limits the range of the inte-
gration for obtaining the average fidelity and deviation in Eqs.
(4) and (6).

The average fidelity for a given polar cap distribution from
Eq. (4) for an arbitrary two-qubit state can be computed and

is given by

F (θ0) =
1

2

[
1− (2 + cos θ0)(1− cos θ0)

6
(t1 + t2)

− t3
3

(1 + cos θ0 + cos2 θ0)
]
. (11)

In a similar fashion, we can obtain the fidelity deviation which
we are not presenting here since it looks quite cumbersome.

Let us consider here three classes of shared states, arbitrary
pure states where enhancement of fidelity, its deviation due to
prior information is possible and the Bell diagonal (BD) states
with different ranks and a mixture of nonmaximally entangled
states with product ones. We show that for the second case,
such increment in fidelity by a standard teleportation proto-
col is not always possible while the third one yields enhanced
fidelity.

Pure states. An arbitrary two-qubit pure shared state in
Schmidt decomposition can be written as

|ψα〉 =
√
α|01〉 −

√
1− α|10〉. (12)

Note that |ψα〉 possesses the following correlation matrix,
Tα = −diag(Cα, Cα, 1), where Cα = 2

√
α(1− α) is the con-

currence [51] of the same. In this context, the expression of
fidelity as in Eq. (2) is computed to be

f(θ, φ) = 1− 1

2
sin2 θ(1− Cα), (13)

and consequently, we get

f2(θ, φ) = 1 +
1

4
sin4 θ(1− Cα)2 − sin2 θ(1− Cα).(14)

The average fidelity with the Bloch sphere weight as given in
Eq. (10) turns out to be

F (θ0) = 1− 1

6

[
(1− Cα)(2 + cos θ0)(1− cos θ0)

]
,

(15)

while the corresponding fidelity deviation is given by

D(θ0) =
1− Cα
6
√

5
(1− cos θ0)

√
4 cos2 θ0 + 7 cos θ0 + 4.

(16)

Note that the uniform case can be recovered with F (π) =
2+Cα

3 andD(π) = 1−Cα
3
√
5

= 1−F (π)

3
√
5

[39]. With the increase of
θ0, the fidelity decreases for a fixed amount of entanglement
while the opposite picture emerges for deviations as depicted
in Fig. 3. Speciifically, high entangled shared state leads to
less decrease in fidelity with the prior information of polar
angle compared to that of the shared state having low entan-
glement. Furthermore, note that for a given polar cap extent
θ0, the fidelity yields in the classical scheme [12] as

Fcl(θ0) = 1− 1

6

[
(2 + cos θ0)(1− cos θ0)

]
. (17)

Therefore, for a given θ0, any fidelity, F can be called non-
classical if and only if F > Fcl(θ0). Interestingly, for θ0 → 0,
the states at or near the pole always get teleported with almost
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unit fidelity for any values of C which can be clearly seen from
Eq. (15). This can be physically understood by noting that for
θ0 → 0, we essentially want to teleport either |0〉 or |1〉 for
which only 1-bit of CC is sufficient and no entanglement is
required. It is reflected in the fact Fcl(θ0 → 0) → 1 in this
limit as well.

Werner states [52]. Next we repeat the analysis for Werner
states, which is given by

ρW = p|ψ−〉〈ψ−|+ 1− p
4

I4, (18)

where |ψ−〉 = 1√
2
(|01〉−|10〉), and 0 ≤ p ≤ 1. Note that ρW

is entangled and consequently yield nonclassical teleportation
fidelity for p > 1/3 in the uniform case. The correlation ma-
trix, of ρW can be expressed as Tp = −p diag(1, 1, 1). The
expression of fidelity as in Eq. (2) is independent of the input
state and is computed to be

f(θ, φ) =
1 + p

2
. (19)

Therefore, from Eq. (4), it is clear that f(θ, φ) comes out of
the integral as a constant and the normalized p(θ, φ) integrates
to unity. Consequently, the average fidelity turns out to be
independent of the probability density function, given by

F (ρW ) =
1 + p

2
. (20)

Therefore, one cannot enhance the teleportation fidelity with
the prior knowledge about the input. It is a direct consequence
of the fact that the fidelity deviation for ρW also vanishes iden-
tically. It follows straightforwardly from Eqs. (5), (19), and
(20).

Although in the case of uniformly distributed inputs,
Werner states turn out to be the one which yield the max-
imal fidelity for a given concurrence, the case is different
when one considers the input states chosen from the polar cap.
Since the fidelity enhancement is not possible, Werner states
fall behind from their optimal status. In particular, despite
being entangled, it yields a non-classical fidelity only when
F (ρW ) > Fcl(θ0), i.e.,

p > 1− 1

3

[
(2 + cos θ0)(1− cos θ0)

]
= p∗(θ0). (21)

Therefore, when p ∈ (1/3, p∗(θ0)], the Werner states are en-
tangled but does not provide a nonclassical teleportation fi-
delity. For example, p∗(θ0 = π/3) = 7/12 = 1/3 + 1/4.
Equivalently, in terms of entanglement, the Werner states pro-
vide quantum advantage when their entanglement is greater
than 3p∗(θ0)−1

2 , which for θ0 = π/3 turns out to be 3/8.
Bell diagonal states. To better understand the situation, let

us now move to the example of Bell diagonal (BD) states,
ρ =

∑
i pi|ψi〉〈ψi|, where |ψi〉s are Bell states [53]. We seg-

regate the BD states into two ways, namely via rank, and pres-
ence (or absence) of axial symmetry. Mathematically, in our
convention, axial symmetry is reflected in the first two en-
tries of the correlation matrix, i.e., when t1 and t2 are iden-
tical. Our earlier examples of the non-maximally entangled
pure states and the Werner states possess the axial symmetry.

Moreover, we note that rank-2 BD states are always axially
symmetric and their teleportation properties are same as the
non-maximally entangled pure states in Eq. (12) for a fixed
value of the entanglement content. It can be easily deciphered
from the fact that both of their correlation matrices are iden-
tical, and of the form −diag {C, C, 1}, where C is the entan-
glement (concurrence) of the shared state. Note that the con-
currence of any BD state can be expressed in terms of the
maximal mixing probability p as C = 2p− 1.

On the other hand, BD states having rank-3 do not possess
any axial symmetry. If the mixing probabilities are p, q, and
1−p−q, with p being the maximal weight, the corresponding
correlation matrix is−diag{2p−1, 1−2q, 2(p+ q)−1}. Al-
though one can use the correlation matrix elements to straight-
forwardly compute the average fidelity using Eq. (11), for
purposes of illustration, we choose q = 1−p

2 which provides
some mathematical simplifications without compromising on
the physical insights. For a given, θ0, the critical value of p
for this class of BD states reads as

p > p∗(θ0) =
4 + cos θ0 + cos θ20
8− cos θ0 − cos θ20

. (22)

For θ0 = π/3, we get p∗(θ0 = π/3) = 19/29 and the corre-
sponding critical entanglement is 2p∗(θ0 = π/3)−1 = 9/29,
thereby providing a range of p for which the entangled BD
states are not useful for standard teleportation when inputs
are chosen from the polar cap distribution. Recall the cor-
responding critical entanglement value for the Werner states
was 3/8 > 9/29. Similar examples can also be found from
the sector of BD states with rank-4 which houses both axially
symmetric states and ones which do not possess such sym-
metry. Unlike arbitrary rank-1 states and rank-2 BD states,
these examples show that prior information contained in the
polar cap distribution does not enhance the standard telepor-
tation fidelity in case of higher rank BD states since a finite
gap opens up where a critical value of non-zero entanglement
is required to extract a non-classical value of average fidelity.

We now present an explanation why prior information (in
terms of polar cap distribution of inputs) in the case for BD
states of rank > 2 is not enough for obtaining quantum ad-
vantage. In particular, we take up an example of a rank-4
axially symmetric BD state for our purpose of demonstration.
To understand this, let us briefly recall the reason behind the
quantum advantage for certain other examples considered be-
fore, when the inputs come from a polar cap. It simply fol-
lows from Eq. (11) that for those shared resource states, input
states chosen near the poles are teleported with higher fideli-
ties compared to inputs near the equator of the Bloch sphere.
The enhancement relies precisely on this fact of symmetry
matching where the input distribution coincides with the re-
gion of the Bloch sphere for which the shared resource state
teleports states with better than average fidelities.

Consider the following rank-4 axially symmetric BD states
with mixing probabilities (pis) being {p, q, q, r} and having
the following diagonal correlators t1 = t2 = −(p − r), and
t3 = −(p−2q+r). Now, from Eq. (3), we can clearly see that
the chosen class of BD states teleports states near the equa-
tor with higher than average fidelity while the states near the
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poles are teleported with fidelity that falls below the average
value. Now, when we contemplate this feature in the context
of the polar cap distribution, it reveals a clear mismatch of re-
gions from where the input states are chosen for teleportation
and for which the shared state teleports with above average
fidelity. However, this does not mean that these BD states
are not useful. If the inputs to be teleported come from a re-
gion that coincides with the high fidelity region of the shared
state, these states can show quantum advantage. An example
of such a distribution takes the form of an annular strip around
the equator, and can be defined via the following probability
density function:

p̄θ0(θ, φ) =

{
1

4π sin θ0
, for π2 − θ0 ≤ θ ≤

π
2 + θ0

0, otherwise
,(23)

for θ0 ≤ π
2 . For such a distribution, one can always fetch

a non-zero quantum advantage with prior information for the
considered class of rank-4 BD states provided p > 1

2 and θ0 <
π
2 .

We now present an example of a mixed state that yields
nonclassical fidelities in presence of prior information in the
form of the polar cap distribution. It reads as

ρp = p|ψα〉〈ψα|+
1− p

2
(|01〉〈01|+ |10〉〈10|). (24)

Note that ρp is entangled for pCα > 0 with its entanglement
as measured by concurrence is given by C(ρp) = pCα. The
corresponding diagonal correlation matrix elements of ρp are

t1 = t2 = −pCα, and t3 = −1. (25)

Note that for Cα = 1, ρp reduces to a rank-2 BD state. For a
polar cap with a cap extent of θ0, the average fidelity Fp(θ0) is
calculated using Eq. (11), and for p = 0, we get Fp=0(θ0) =
Fcl(θ0). For any p > 0, we get nonclassical fidelities when the
states to be teleported come from the polar cap distribution,
with Fp>0(θ0) > Fcl(θ0).

1. Adaptive LOCC protocol for non-maximally entangled states

Let us illustrate the LOCC strategy mentioned in SubSec.
II B when the shared entangled state is |ψα〉 =

√
α|01〉 −√

1− α|10〉, and the input states to be teleported come from
a polar cap distribution. Now the pole of the polar cap might
be in a different direction compared to the basis in which the
shared state is prepared, and without any loss of generality,
we assume to be the same as the basis in which the Bell mea-
surements are performed. The basis alignment is achieved by
applying an unitary Uθ as depicted in Fig. 1. Since the fidelity
distribution of |ψα〉 =

√
α|01〉 −

√
1− α|10〉 is axially sym-

metric, and the angular difference between the basis for |ψα〉

and the polar cap is θ, the receiver, in addition, in implement-
ing the standard Pauli unitaries depending on the outcomes of
the initial Bell measurements, must also act with U†θ , which
will rotate the teleported states appropriately. So in this case,
the input knowledge updates the final unitaries as Ui = U†θσi,
see Fig. 1.

We now present a more general example where the require-
ment for an adaptive LOCC protocol becomes more involved
from a basis orientation. Suppose instead of a single cap, the
state to be teleported comes from either of the two caps as
depicted in Fig. 2. At the time when the state to be tele-
ported is handed over to Alice, the information about the two
caps is also provided. Depending on this information, Alice
first applies Uθ(Vθ) which aligns the cap(s) with the pole, and
then proceeds with the standard teleportation scheme. Ad-
ditionally, Alice sends Bob one additional bit of information
informing the particular cap from which the teleported state
came from. After completing the STS, Bob, depending on
that additional 1-bit of CC by Alice, applies U†θ (V †θ ), thereby
correctly recovering the initial location (cap 1 or cap 2) from
which the state for teleportation came from. It constitutes the
adaptive LOCC protocol for maximizing the teleportation fi-
delity in presence of prior information. Notably, if more than
two, say d non-overlapping caps are present, we can simply
generalize our strategy using d encoding and decoding uni-
taries and an additional log2 d-bits of CC from Alice to Bob.
See Fig. 2 for a schematic representation.

B. The von Mises-Fisher distribution for inputs

We now move on to the situation when the probability of
the input state follows a von Mises-Fisher distribution [35]
over the Bloch sphere which can be expressed as

pκ(θ, φ) =
κ

4π sinhκ
exp (κ cos θ), (26)

where κ ≥ 0 is the concentration parameter. For κ = 0, we
have p(θ, φ) ∼ constant corresponding to an uniform distribu-
tion over the Bloch sphere. When κ is large, the distribution is
concentrated near the pole with θ = 0. Note that the distribu-
tion is symmetric or can be called uniform with respect to the
azimuthal angle φ. It shares some statistical similarities with
the Gaussian distribution, which can be obtained for large κ,
see [54].

Using Eq. (4), the average fidelity of an arbitrary two-qubit
state for this distribution in terms of correlators turns out to be

F (κ) =
1

2

[
1− (t1 + t2)

κ2
(κ cothκ− 1)

− t3
κ2
{

(2 + κ2)− 2κ cothκ
}]
. (27)

The corresponding fidelity deviation can be obtained from Eq.
(5) with



7

〈f2〉 =
1

4κ4
[κ4(t3 − 1)2 + 3(3t21 + 2t1t2 + 3t22 − 8(t1 + t2)t3 + 8t23)

+ κ2(3t21 + t2(2 + 3t2) + 2t1(1 + t2 − 5t3)− 2(2 + 5t2)t3 + 12t23)

+ κ(2κ2(t1 + t2 − 2t3)(t3 − 1)− 3(3t21 + 2t1t2 + 3t22 − 8(t1 + t2)t3 + 8t23)) cothκ],

while F (κ) being computed via Eq. (27).
To demonstrate the effects of prior information of inputs via

von Mises-Fisher distribution, we investigate the behavior of
fidelity and its deviation by fixing entanglement of the shared
state.
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FIG. 4. (a) Average fidelities (vertical axis) for the von Mises-Fisher
distribution with different concentration parameters, κ ∈ (0, 10] (in
the horizontal axis). (b) Trends of fidelity deviations with respect to
κ. Different curves are for various chosen fixed values of concur-
rence, Cα of an arbitrary pure states. Note that a high value of κ
indicates a more concentrated distribution around the north-pole of
the Bloch sphere, while κ = 0 corresponds to an uniform average.
Therefore, we get a higher value of average fidelity and lower devi-
ation for large κ compared to the case with low κ. Again, as seen
in Fig. 3, when states to be teleported are chosen at or very near the
pole, which in this case is the large κ limit, the output states produced
are close to the input ones, thereby giving close to the unit fidelity.
Both the axes are dimensionless.

Example 1: Pure states. The average fidelity for an arbi-
trary pure state, |ψα〉 in Eq. (12) in this case simplifies as

F (κ) = 1 +
1− Cα
κ2

(1− κ cothκ), (28)

while its deviation reads as

D(κ) =
1− Cα
κ2

√
2κ2 + 6(1− κ cothκ)− (1− κ cothκ)2.

(29)

Note that the classical protocol with the shared unentangled
states yields a fidelity of

Fcl(κ) = 1 +
1

κ2
(1− κ cothκ). (30)

In this case also, the pattern for average fidelity and deviation
with the increase of prior information content shows similar
behavior as seen for the polar cap. Note that the apparently
opposite trend observed between Figs. 3 and 4 is due to the
fact that the information content is high when κ is high and
when θ0 is low for the polar cap distribution.

Example 2: Werner states. An entangled Werner
state yields average fidelity above the classical limit when

F (ρW ) > Fcl(κ). Applications of Eqs. (20) and (30) lead
to the bound on the mixing parameter, given by

p > 1 +
2(1− κ cothκ)

κ2
= p∗(κ). (31)

Although, the Werner states are entangled with p ∈
(1/3, p∗(κ)], states do not give any quantum advantage by us-
ing the standard teleportation protocol. For example, p∗(κ =
10) = 0.679 = 1/3 + 0.346. In terms of entanglement, the
Werner states gives quantum fidelities when their entangle-
ment is greater than 3p∗(κ)−1

2 , which for κ = 10 is computed
to be 0.518. Similar analysis can be carried out for the BD
states as well, and expectedly, the results turn out to be qual-
itatively similar with those obtained for the polar cap distri-
bution, i.e., with the increase of rank, or with the violation of
axial symmetry, the BD states develop a gap between entan-
glement and teleportability, thereby illustrating a requirement
for designing a teleportation scheme beyond the standard one.

The enhancing features based on presence of prior knowl-
edge about the input state of teleportation can be summarized
in two requirements:

1. The shared state needs to be asymmetric in the sense
that different states of the Bloch sphere are teleported
with non-identical fidelities, i.e., it possesses non-zero
fidelity deviation.

2. The shape of the non-uniform distribution should be
such that it can pick out the states to be teleported with
higher than average fidelity.

. These two conditions must be met to obtain any fidelity
enhancement depending on the prior knowledge. Therefore,
apart from the resource state and distribution combinations
we have stated as examples, there can be many other combi-
nations that provide prior information induced quantum ad-
vantage.

C. Utility of prior information in resource reduction

Let us ask a simple question: Can knowledge about the
input state be considered as a resource? To address this
question, we take a step back and ask why entanglement is
considered as a resource in quantum teleportation. The an-
swer is simple. Without entanglement, one cannot obtain a
nonclassical fidelity, and the maximal fidelity obtained for a
given entanglement value grows monotonically as entangle-
ment increases, with perfect teleportation being achieved for
the maximally entangled one. In the previous section, we
have already shown that information about the distribution of
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the input state can enhance the performance of the teleporta-
tion protocol, thereby establishing prior information about the
choice of distribution of the input as resource. Let us now
compare the trade-off between different resources involved in
this scheme. Specifically, we study the way, prior informa-
tion about the input state can alter the consumption of other
resources like shared entanglement and classical communica-
tion cost (2-bits) during the standard protocol.

1. Prior information vs. entanglement

To establish a connection between the shared entanglement
required for an uniform distribution and for the distributions
considered in this work, let us take an arbitrary pure state,
|ψα〉 in Eq. (12). For a given α, for a completely unknown
input chosen from the uniform distribution, we obtain an av-
erage fidelity of 2+Cα

3 . When one knows that the input states
come from a polar cap, with maximal latitude θ0, the above
fidelity can be achieved through a lower entangled state Cα′

which from Eq. (15) is computed to be

Cα′ = max
{

0, 1− 2(1− Cα)

(2 + cos θ0)(1− cos θ0)

}
. (32)

For low enough θ0 values, we can, in principle, get 2+Cα
3 ≤

Fcl(θ0) by using Eq. (17). It implies that in presence of
sufficient information about the inputs, the entanglement-free
(classical) protocol is sufficient to reproduce the desired fi-
delity, as shown in Fig. 5. The maximization in Eq. (32)
emerges for this reason. Similar analysis for the von Mises-
Fisher density yields

Cα′ = max
{

0, 1− 2(1− Cα)κ2

(1− κ cothκ)

}
, (33)

which also produces the similar advantage with 1/κ.

2. Reduction in classical communication with prior information

We now investigate how prior knowledge can alter the re-
quirement of classical communication in the protocol. For a
given shared state, |ψα〉 with non-maximal entanglement con-
tent, i.e., with (α < 1/2), the probabilities of obtaining each
Bell states after measurement for a particular input state with
Bloch angles θ and φ are given by

p(φ±) =
1

2
(α cos2 θ/2 + (1− α) sin2 θ/2),

p(ψ±) =
1

2
(α sin2 θ/2 + (1− α) cos2 θ/2). (34)

As expected, the azimuthal symmetry (φ-independence) is re-
flected in the probabilities and pis also depend on the inputs.
However, such biasedness does not allow one to reduce the re-
quired amount of classical communication since the average
clicking probabilities when states are sampled uniformly from
the Bloch sphere becomes identical, i.e.,

1

2

∫ π

0

dθ sin θ p(φ±) =
1

2

∫ π

0

dθ sin θ p(ψ±) =
1

4
. (35)

Therefore, 2-bits of CC is essential in the uniform scenario
irrespective of the entanglement of the shared state.

In contrast to uniformly distributed inputs, if the state to be
teleported is chosen from a non-uniform distribution, like the
polar cap, we will now show that the biased clicking probabili-
ties imply a reduced CC requirement provided classical infor-
mation transmission about the measurement outcomes from
the sender to the receiver occurs via the noiseless channel.
For a polar cap of latitude extent θ0, the outcomes of Bell
measurement on an average obtain with probabilities

p(φ±) =
1

8
{α(3 + cos θ0) + (1− α)(1− cos θ0)},

p(ψ±) =
1

2
(1− 2p(φ±)), (36)

while for the von Mises-Fisher density with a concentration
parameter κ, the corresponding average probabilities read as

p(φ±) =
1

4κ
{κ− (1− 2α)(κ cothκ− 1)},

p(ψ±) =
1

2
(1− 2p(φ±)). (37)
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FIG. 7. Plot of classical communication (CC’) in bits, specifically
CC′ − 1 (lower panel) and entanglement in ebits (Cα′ ) (ordinate)
(upper panel) required to reproduce the same fidelity when a pure
nonmaximally entangled with entanglement Cα = 0.8 with respect
to the latitudinal extent of the polar cap θ0 (abscissa). The horizontal
axis is dimensionless.

The amount of classical information transmission from Al-
ice to Bob can then be quantified by evaluating Shan-
non entropy of the probability distribution for obtain-
ing the outcomes in Bell measurement, i.e., H(X), with
X = {p(φ+), p(φ−), p(ψ+), p(ψ−)}, where H({pi}) =
−
∑
i pi log2 pi. For consistency, when α = 1/2, all the out-

comes in the Bell measurement become equiprobable for any
distribution of the input, thereby requiring 2 bits of CC. How-
ever, for α < 1/2, the average probabilities of obtaining out-
comes differ from the uniform case and, therefore, one can
faithfully transmit classical information of the measurement
outcomes using less than 2 bits of CC. In the limit of α → 0
and θ0 → 0, we get the most asymmetric case where two of
the Bell states click with probability = 1/2 while the other
two does not click at all. It corresponds to a 1-bit of CC. The
important feature here is that the biases of Bell clickings de-
crease as Cα increases, and when the shared state is the max-
imally entangled state, we arrive at the completely symmetric
case of equal probability for obtaining any Bell measurement
outcomes with all states of the Bloch sphere, thereby requir-
ing the full 2-bits of CC. Specifically, as shown in Fig. 6, we
observe that for a fixed amount of entanglement in the shared
state, the amount of CC decreases with the increase of infor-
mation available for inputs, i.e., with θ0 and 1/κ. Interest-
ingly, unlike the uniform case, the requirement of CC also
depends on the shared entanglement.

3. Prior information vs. entanglement vs. classical
communication

Let us now analyze the most general scenario where all the
three players, namely prior information about the input, the
entanglement content of the resource and the classical com-

munication required for faithful communication of Bell mea-
surement results are considered. In particular, for a given av-
erage fidelity, we analyze how the requirements of entangle-
ment and CC cost decrease when some prior information of
the input is available.

Let us first examine the situation when the inputs come
from a polar cap distribution and |ψα〉 is the resource state.
For a given fidelity requirement, say F , when inputs come
from an uniform distribution, one needs an entanglement
Cα = 3F − 2 and 2-bits of CC. When prior information via
θ0 < π/2 is provided, the entanglement required to attain a
fidelity F is Cα′ and is given in Eq. (32) while the CC re-
quirement is CC ′ = H(X), where X is set of probabilities
in obtaining Bell measurement outcomes given in Eq. (36)
computed for the state parameter α′ and the latitudinal extent
of the polar cap θ0. Therefore, for a fixed fidelity, F , one can
write

{θ0 = π, Cα, CC = 2} ≡ {θ0 < π/2, C′α < Cα, CC ′ < 2}.
(38)

We now plot C′α and CC ′ with respect to θ0 to visualize the
effect of decreasing resource consumption on increasing the
prior information for both polar cap distributions, see Fig.
7. We notice that once θ0 is increased, the CC requirement
(CC’) strictly increases while the required entanglement re-
mains zero upto a critical value of θ0 = θ̄0 before increasing
monotonically with θ0. This implies that when the amount of
prior information is high θ0 < θ̄0, the classical (entanglement
free) protocol can match the fidelity obtained in the case for
uniform inputs using an entangled shared state. One can con-
struct a similar relation for the von Mises-Fisher distribution
also using Eqs. (33) and (37) which naturally show similar
trends.

IV. COMPARATIVE STUDY BETWEEN POLAR CAP AND
FISHER DENSITY

When prior information about the input is available in the
form of the two considered distributions, it is natural to com-
pare their performance in terms of their average fidelity yield
and the corresponding fidelity deviation. To make a fair com-
parison, we adopt two methods.

Based on average polar angle. Let us choose inputs ac-
cording to polar cap and von Mises-Fisher distributions with
a fixed average polar angle. We achieve this by choosing
θ0 = θ∗0 and κ = κ∗ in such a way that

〈θ〉 =

∫
θ sin θ pθ∗0 (θ, φ) dθdφ =

∫
θ sin θ pκ∗(θ, φ) dθdφ.

(39)

For a fixed average polar angle, 〈θ〉, θ∗0 and κ∗ values are ob-
tained by inverting Eq. (39). Now we compute and contrast
both the fidelity and deviation for the polar cap and von Mises-
Fisher distributions with θ0 = θ∗0 and κ = κ∗.

Using Eqs. (11) and (27), for a general shared state with
t1, t2, and t3 being the elements of the diagonal correlation



10

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

π/16 π/6 π/3 π/2

∆F

〈 θ 〉

C = 0.0

C = 0.2

C = 0.4

C = 0.8

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

π/16 π/6 π/3 π/2

∆D

〈 θ 〉

C = 0.0

C = 0.2

C = 0.4

C = 0.8
(a) (b)

FIG. 8. (a): Difference between average fidelities obtained by using polar cap and von Mises-Fisher distribution, ∆F (t1, t2, t3) for arbitrary
two-qubit pure states (ordinate) against fixed average polar angle, 〈θ〉 (abscissae) obtained via Eq. (39). (b) Similar plot for fidelity deviation
∆D(t1, t2, t3). Both the axes are dimensionless.

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0  0.05  0.1  0.15  0.2  0.25  0.3

∆ D

I

C
α

 = 0.1

C
α

 = 0.4

C
α

 = 0.8

FIG. 9. Difference between the fidelity deviation for the polar cap
and von Mises-Fisher distributions, ∆D(t1, t2, t3) (in y-axis) with
respect to the classical information content as measured by I (in x-
axis) as in Eq. (8). Different curves correspond to different values
of entanglement in the shared pure states. The deviation for the von
Mises-Fisher density is universally greater than that of the polar cap
value, thereby indicating advantage in choosing polar cap distribu-
tion for inputs. Both the axes are dimensionless.

matrix, we compute the difference between fidelity and devi-
ation obtained via two distributions, i.e.,

∆F (t1, t2, t3) = F (κ∗)− F (θ∗0),

∆D(t1, t2, t3) = D(κ∗)−D(θ∗0). (40)

For the case of non-maximally entangled pure states, we ex-
plicitly plot ∆F (t1, t2, t3) and ∆D(t1, t2, t3) in Fig. 8. Be-
tween the two distributions with the same average polar an-
gle, there is no ubiquitous one which yields a better perfor-
mance in quantum teleportation. In particular, we observe
that for small values of 〈θ〉, polar cap performs better than
von Mises-Fisher distribution for average fidelity while the
opposite picture emerges for deviation as one expects from
the definition. Interestingly, however, the value of 〈θ〉 where

von Mises-Fisher ditribution performs better in case of aver-
age fidelity and worse for deviations occurs at different point,
thereby displaying their nontrivial nature.

Based on prior information content. Instead of the aver-
age polar angle, let us now consider the amount of informa-
tion that one can extract in the classical protocol as the com-
mon platform to compare the two chosen distributions on the
Bloch sphere. In this case, for arbitrary pure two-qubit state
in Eq. (12) considered before, a qualitatively different feature
emerges. As discussed before, the maximal information that
can be extracted classically is given by Fcl. Let us choose the
values of θ∗0 and κ∗ which yields the same value of Fcl, i.e.,
Fcl(θ) = Fcl(κ). From Eqs. (17) and (30), it leads to the
criterion,

(2 + cos θ∗0)(1− cos θ∗0)

6
=
κ∗ cothκ∗ − 1

(κ∗)2
. (41)

For polar cap and von Mises-fisher distributions with these
choices of θ0 and κ values, the average fidelity for arbitrary
two-qubit pure state having a fixed value of entanglement
turns out to be identical which can be seen by comparing Eqs.
(15), (28), and (41). However, we find that the fidelity de-
viation for the polar cap distribution is always smaller than
that obtained via von Mises-Fisher density, as is clearly visi-
ble from the quantity ∆D(t1, t2, t3) plotted in Fig. 9. There-
fore, although both the distributions offer the same average
fidelity, the polar cap distribution, on virtue of a smaller devi-
ation count, can be considered as better in comparison to the
von Mises-Fisher distribution for choosing inputs in quantum
teleportation.

Like in the preceding sections, comparative teleportation
performances can also be studied for the family of BD states.
For both the measures used for comparison, average value of
θ, and Fcl, the gap between the fidelity and deviation between
the polar cap and von Mises-Fisher densities vanish for the
Werner states. As a matter of fact, the gap is vanishing for any
moments of fidelity, which follows directly from Eq. (19).
For other BD states, we get a varying value for this gap that
varies from zero (the Werner state case) to that obtained for
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the nonmaximally entangled pure states which are identical to
the BD states with rank-2.
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FIG. 10. Map plot of ∆F (π/4) = F (π/4)−F (π) in the plane of the
Schmidt coefficients a (horizontal axis) and b (vertical axis) of a non-
maximally entangled pure qutrit state in Eq. (42). ∆F (π/4) ≥ 0 in
the entire a − b plane conforms the fact that prior knowledge of the
inputs leads to the enhancement in fidelity. All axes are dimension-
less.

V. ROLE OF NON-UNIFORM DISTRIBUTION IN INPUTS
IN HIGHER DIMENSIONAL TELEPORTATION

In this section, we go beyond two-qubits [48–50] and in-
vestigate the role of distributions for the choices of inputs in
the performance of teleportation. Let us consider an arbitrary
two-qutrit shared pure state, given by

|ψ〉 =
√
a|00〉+

√
b|11〉+

√
1− a− b|22〉. (42)

Following the standard protocol [50], the fidelity yield for an
arbitrary input qutrit state |Φ〉 = x|0〉 + y|1〉 + z|1〉, where
|x|2 + |y|2 + |z|2 = 1, is computed as

f(x, y, z) = |x|4 + |y|4 + |z|4 + 2
(√
a(
√
b+
√

1− a− b) +√
b(1− a− b)

)(
|x|2|y|2 + |z|2(|x|2 + |y|2)

)
. (43)

To compute the average fidelity, we parameterize x = x1 +
ix2, y = y1 + iy2, and z = z1 + iz2, where i =

√
−1 in the

following way:

x1 = cosφ sin θ1 sin θ2 sin θ3 sin θ4

x2 = sinφ sin θ1 sin θ2 sin θ3 sin θ4

y1 = cos θ1 sin θ2 sin θ3 sin θ4

y2 = cos θ2 sin θ3 sin θ4

z1 = cos θ3 sin θ4

z2 = cos θ4. (44)

To extract a Haar uniform average of f(x, y, z) in Eq. (43)
via the parameterization in Eq. (44), we integrate it using the
measure dΩ = dφdθ1dθ2dθ3dθ4 sin θ1 sin2 θ2 sin3 θ3 sin4 θ4
with a normalization constant of π3, which turns out to be the
volume of S5. It is obtained by integrating the measure dΩ,
where 0 ≤ θi ≤ π, and 0 ≤ φ ≤ 2π.

We impose the prior information about the inputs by re-
stricting the latitudinal extent, i.e., by constraining one of the
polar angles in Eq. (44), say θ4 upto θ0 < π. The updated
normalization constant, V (θ0) is computed by integrating dΩ
where all the angles are integrated over their usual domain,
excepting θ4, which runs from 0 to θ0. Under the same limits,
we compute

F (θ0) =
1

V (θ0)

∫
dΩ f(x, y, z). (45)

Like in earlier sections, we find that prior information about
the distribution leads to fidelity enhancement, i.e., F (θ0) ≥
F (π). For a representative example, we choose θ0 = π/4
and plot ∆F (π/4) = F (π/4)− F (π) in Fig. 10. In general,
∆F (θ0 < π) ≥ 0 demonstrates how prior information about
the input state to be teleported leads to the enhancement of
teleportation fidelity. Furthermore, when CC, entanglement
and prior information are compared simultaneously, we get
qualitatively similar features as obtained in the case of qubits
in Fig. 7.

A. Dimensional advantage in qutrit teleportation

For qutrit teleportation, the classical fidelity for the uniform
distribution, 2

d+1 , reduces to 1/2. In presence of prior infor-
mation of the inputs, the classical protocol, as in the case qubit
teleportation, gives a higher fidelity than that of the uniform
case. For the representative example of θ4 ≤ π/4 in the qutrit
scenario, the prior information content about the input states,
from Eq. (9), turns out to be If ∼ 0.16. If we now consider
the case of the polar cap distribution for qubit teleportation
with the same value of If , we require an approximate θ0 value
of 1.112.

In this configuration of a fixed If values in both the cases of
qubit and qutrit teleportation schemes, we compute the mean
of the average teleportation fidelity 〈F 〉d for Haar uniformly
generated pure shared states. We find the percentage of en-
hancement of the obtained mean fidelity as computed by

ηd =
( 〈F 〉d − Fcl

Fcl

)
× 100.

We find that in the qubit case, η2 ∼ 23%, while for the qutrits,
η3 ∼ 57%. The larger enhancement for the qutrit case is ob-
served for other values of If as well. This feature is a strong
signature of a dimensional improvement in teleportation pro-
tocol when the information about the distribution of the input
states is available.
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VI. CONCLUSION

Successful implementation of quantum teleportation pro-
tocol of unknown quantum states requires resources that in-
clude shared entangled states, Bell measurement, and classical
communication from the sender to the receiver via a noiseless
channel. In our paper, we altered the distribution of inputs
from uniform to non-uniform ones and investigated the con-
sequences of the performance of teleportation in terms of av-
erage fidelity and the second moment of fidelity, fidelity devi-
ation. Specifically, we considered that the inputs are chosen
either from the polar cap or from the von Mises-Fisher distri-
butions.

In both the scenarios, we found analytical forms of aver-
age fidelities and their deviations in terms of correlators for
arbitrary two-qubit states by following the standard telepor-
tation scheme. Exploiting these formulae, we showed that
these non-uniform distributions always give advantages for
pure two-qubit states over the uniform ones. Similar advan-
tages are also obtained for a class of Bell diagonal (BD) states
and a mixture of nonmaxiamlly entangled states with product
ones, although there exists a set of BD states which do not
lead to any increments in fidelities for these choices of distri-
butions, thereby indicating standard teleportation protocol to
be sub-optimal for these classes of states.

The effect of distributions for inputs on other resources nec-
essary for quantum teleportation are also studied. In partic-
ular, we established a connection between the entanglement
required between the sender and the receiver for the polar
cap as well as von Mises-Fisher distributions and the one
with uniform distributions. Importantly, we found that the
amount of required classical information communicated from
the sender to the receiver decreases with the increase of infor-
mation about the inputs. Such resource reduction in terms of
classical information transfer following the standard telepor-

tation scheme does not occur when the inputs are chosen from
the uniform distribution.

We also compared the performance for both the non-
uniform distributions with respect to average teleportation fi-
delities and deviations by using two kinds of figures of merits.
In the case of pure states, we found that for a given prior infor-
mation, both the distributions yield the same average fidelity
although the von Mises-Fisher distribution leads to a higher
deviation compared to the polar cap ones, which demonstrates
the superiority of choosing polar cap distribution for inputs
over the other one. We finally showed that a similar advan-
tage can also be obtained if the shared state and inputs are
taken from the higher dimensional systems. Moreover, we
observed that the enhancement of average fidelity on average
is higher for qutrits than that of qubits, thereby showing the di-
mensional improvements even when prior information about
inputs is available. Additionally, we showed that local op-
erations and classical communication may sometimes be re-
quired based on the prior information about the inputs and
shared states to increase the fidelity.

Our analysis revealed that prior information content has an
important role to play in teleportation protocols. Our work
suggests that identifying resources to enhance the efficiencies
of communication devices can be an interesting direction of
further investigations.
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