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Abstract

Complete measurements, while providing maximal information gain, results in destruction of the shared entanglement. In

the standard teleportation scheme, the sender’s measurement on the shared entangled state between the sender and the

receiver has that consequence. We propose here a teleportation scheme involving weak measurements which can sustain

entanglement upto a certain level so that the reusability of the shared resource state for reattempting teleportation is

possible. The measurements are chosen in such a way that it is weak enough to retain entanglement and hence can be

reused for quantum tasks, yet adequately strong to ensure quantum advantage in the protocol. In this scenario, we report

that at most six sender-receiver duos can reuse the state for reattempting teleportation, when the initial shared state

is entangled in a finite neighborhood of the maximally entangled state and for a suitable choice of weak measurements.

However, we observe that the reattempt number decreases with the decrease in the entanglement of the initial shared

state. Among the weakening strategies studied, Bell measurement admixed with white noise performs better than any

other low-rank weak measurements in this situation.

Keywords: Quantum information, Quantum measurements, Quantum teleportation

1. Introduction

Over the last decade, it has been established that next

generation communication technology can be revolutionised

by employing laws of quantum theory. In this regard, the

invention of quantum teleportation [1] has played a cru-

cial role in the advancement of quantum communication.

It is a protocol by which one can send the information in

a quantum state to a remote party without sending the

system itself physically. After the initial proposal, several

attempts have been made to generalize it, which include

construction of the optimal teleportation protocol for a

general resource state [2], characterization of its perfor-

mance via both fidelity and its deviation [3, 4], understand-

ing the relation between entanglement of the resource state

and the fidelity [2], extension to continuous variable sys-

tems [5, 6], teleportation in a multiparty setting [7, 8]. On

the other hand, based on the teleportation protocol, many

other quantum tasks like quantum repeaters [9], quan-

tum gate teleportation [10], measurement-based comput-

ing [11] have been designed which facilitate the progress

of quantum information and communication. Relaizations

of these tasks in various physical systems, like photonic

qubits [13, 12, 14, 15], nuclear magnetic resonance [16],

trapped ions [17, 18] play a key role in the developments

of quantum communication (cf. [19, 20, 21]). Recently,

long-distance teleportation using photons has also been

achieved between two cities which are at a distance of a

thousand kilometers [14].

Information cannot, in general, be gained through quan-
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tum measurement without disturbing the system [22]. Typ-

ically, in a teleportation protocol, a shared state acting as

a channel can be used only once if the task is performed

employing a complete projective measurement. This is

due to the fact that in this scenario, quantum correlations

present in the channel or in the resource state between the

sender and the receiver is completely destroyed after the

measurement. In this respect, one can ask the following

question: If the sender does not perform a (complete) pro-

jective measurement, can the resource state remain useful

by saving part of its entanglement content, for possible uti-

lization in the future round? To address it, non-projective

measurements or weak or unsharp measurements [23] can

be carried out, which disturb the state less at the cost of

a reduced information gain, thereby creating a trade-off

between measurement disturbance and information gain.

Note that although the joint measurement and the chan-

nel are both key elements in teleportation, the role of the

former is less studied than that of the latter on the per-

formance of the protocol [24].

In this work, we investigate different weak measure-

ment strategies, which are a class of positive operator-

valued measurements (POVMs) to achieve maximal num-

ber of recycles of a fixed teleportation channel, with the

maximal number being referred to as the maximal reat-

tempt number (MRN). Such number is computed by main-

taining the teleportation fidelity beyond the classical one

at each round. Specifically, when the standard Bell mea-

surement is weakened by admixing it with white noise and

for a shared maximally entangled state as a resource, we re-

port that the channel can be used at most six times, while

still attaining quantum advantage in the teleportation pro-

tocol. This kind of weakening is known to optimize infor-

mation gain-disturbance in case of two outcome measure-

ments [25]. It is interesting to note that in case of violation

of Bell inequalities by multiple observers on one side, at

most two observers can violate the inequality [26, 27], and

in case of witnessing entanglement in the same scenario,

at most twelve observers can detect bipartite entangle-

ment, with another observer situated at a distant location

[28]. Therefore, the results here indicate that the multiple-

round teleportation fidelity with weak measurements has

apparently an intermediate standing between Bell inequal-

ity violation and sharing of entanglement. This is in sharp

contrast to the situation while using complete projective

measurements, as then, entanglement and teleportation

fidelity vanish together for two-qubit states, while Bell

inequality violation is absent in a larger class. See [29]

in this respect. We also find that the number, six, re-

mains unaltered even for non-maximally entangled states

having entanglement beyond a certain critical value. For

a fixed measurement scheme, we observe that MRN de-

creases with the decrease of entanglement of the shared

state at each round although a plateau with respect to the

content of entanglement is found for a fixed value of MRN.

Moreover, we extend our study to other prototypical weak

measurements. For example, a specific Bell state smeared

by mixing states from its support or from orthogonal sup-

port leads to a lower value of MRN, thereby a weaker value

of the corresponding entanglement, compared to the case

of Bell measurement with white noise.

Let us now illustrate how our protocol can be useful in

a realistic scenario. Suppose a broker in a stock market

wants to send information to one of her/his clients about

some investment via one of her/his employees. Although

the stock prices are public, the employee is supposed to re-

main unaware of the investment strategy the broker wants

to send his client. We now generalize the situation to

the case where the strategy involves quantum information

(qubits) to be sent from the broker to her/his client. The

employee and the client share a quantum channel, possi-

bly a maximally entangled state, and the information is

sent to the client by employing a teleportation scheme.

The stock market is obviously fluctuating and the broker

wants to keep the flexibility of changing her/his informa-

tion (the qubit that has to be teleported) depending on
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the market status without any additional resources (en-

tangled channels) shared by the employee and the client.

In such a situation, our scheme of reattempting teleporta-

tion over multiple rounds via recycling the same resource

state becomes particularly useful. We want to stress here

that such an example is illustrative, and our scheme would

be useful in all such situations where temporal flexibility

in terms of when information needs to be sent has to be

taken care of via allowing the possibility of recycling the

resource.

To avoid any confusion, we want to mention here that

imperfect teleportation has been studied thoroughly both

from the point of view of noisy resource states and faulty

measurement schemes. Error sources are typically beyond

the control of the experimentalist and their effects are

studied from their detrimental effect on the performance

of the teleportation scheme. In this work, we adopt a

completely different motivation of recycling the resource

for implementing quantum teleportation over multiple at-

tempts. We achieve this aim by replacing the usual Bell

measurements by a suitable POVM (weak measurement).

Note that, here the apparently imperfect measurement is

a conscious choice in the protocol-design which enables re-

cycling of the resource. So, the POVMs in our case are not

some uncontrollable detrimental evil but rather a strategy

for recycling the resource.

This paper is organized in the following way. In Sec. 2,

we first describe the standard teleportation protocol with

projective measurements, and then introduce the concept

of teleportation via weak measurements which helps us to

answer the main question of recycling the resource state.

With different weak measurement strategies, we present

the analysis of reattempt when the resource state is max-

imally entangled in Sec. 3, while investigation for other

non-maximally entangled resource state is carried out in

Sec. 4. We summarize our results in Sec. 5.

2. Methodology: Reusing the Resource

Before introducing the protocol which enables reat-

tempting teleportation of the resource, let us first briefly

discuss the standard teleportation protocol, which in turn

guide us to the construction of the new one. Let us con-

sider a state, ρAB , shared between two parties, say, Alice

(A) and Bob (B). Alice wants to teleport an arbitrary

single qubit state,

|η〉A
′

= a|0〉+ b|1〉, (1)

with |a|2 + |b|2 = 1 to Bob. The initial state then reads as

ρA
′AB = |η〉A

′
〈η| ⊗ ρAB , (2)

In this scenario, A performs a joint (complete) projective

measurement on the A′A part of ρA
′AB and communicates

classically the measurement results to B who acts locally

according to A’s communication to reproduce the input.

The objective of the protocol is to maximize the fidelity,

f , where maximization is performed over all operations

allowed in the protocol by A and B, averaged over all

input states to be teleported to B and is given by

f =

∫
〈η|ρB |η〉 dη, (3)

where ρB is the reduced density matrix of B after all op-

erations performed by A and B. When the resource state

is a general two qubit mixed state, the optimal teleporta-

tion protocol and the corresponding fidelity are derived in

Refs. [3, 2]. Specifically, if the resource state is Bell diag-

onal [30], the teleportation protocol, involving Bell basis

measurements in A′A and Pauli rotations at B, yields the

optimal fidelity. It is also known that for an arbitrary

shared separable state, the fidelity is 2/3, which we refer

as the classical one. Note here that the attainment of the

maximal fidelity would result in the complete destruction

of the resource (entanglement) between A and B. There-

fore, in this communication scheme, there is no possibility

of reusing the resource in the teleportation channel, i.e.,

the shared state.
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Trace out A՛, average over input and
              over A՛A outcomes 
 

CC

Teleportation postponed

Effective resource state for the next round

Teleportation completed

BA

BAB

B

A

A

Trace out A՛A after averaging over A՛ and 
apply unitary Ui  depending on CC  

 B
Teleported state is with Bob

  A՛  A՛

  A՛

Figure 1: Schematic representation of the teleportation protocol

which allows reusability of the resource state. CC denotes the clas-

sical communication. Mi and Ui are respectively the set of positive

operator-valued measurements on A′A and the unitary operators at

B’s port.

2.1. Prescription for reusing resource state with weak mea-

surements

In this paper, we consider a shift in “paradigm” for

teleportation protocols, from ones which strive to maxi-

mize the fidelity, to those whose objective is to reattempt

teleportation for maximal number of rounds, while ensur-

ing the fidelity at each round to be nonclassical [31], i.e.,

f > 2/3. We demonstrate that Alice can achieve this by

shifting from the projective measurement strategy to one

that employs weak (unsharp) measurements [23]. Such

measurements can be described by a set of POVMs, {Mi},

such that ∑
i

Mi = I and Mi ≥ 0 ∀i. (4)

After the weak joint measurement by A, the measurement

results are classically communicated to B, who now has

two choices (see Fig. 1):

1. B can complete the teleportation process by apply-

ing appropriate unitary operators depending on the

measurement outcome.

2. B does nothing and leaves the protocol, allowing for

a new pair of A and B to reuse the remaining re-

source (if any) to teleport in the next round at some

later time.

If B declines to complete the teleportation in the first

round, the new B has exactly the same two options after

the measurement in the second round. Similar situation

occurs for all successive rounds. Note, however, that this

is not an indefinite process. The finiteness of the maximal

number of rounds is induced by the fact that the com-

pletion of the protocol at any given intermediate round

would have to yield a nonclassical teleportation fidelity,

thereby requiring an entangled state shared by A and B.

Therefore, finding the maximal number of reusability of a

given channel is one of the main goals of our work. We

call this number as the maximal reattempt number. It is a

function of the teleportation protocol employed, including

the shared state, the measurements at Alice’s lab and the

unitary operations at Bob’s lab.

Nevertheless, the post measurement state when the i-th

POVM element, Mi, clicks can be expressed as

ρA
′AB

i =
1

N

(√
MA′A

i ⊗IB2
)
ρA
′AB
(√

(MA′A
i )†⊗IB2

)
, (5)

where N is the normalization constant, which is simply

the probability, pi, of the i-th outcome, given by

pi = Tr
[(√

MA′A
i ⊗ IB2

)
ρA
′AB
(√

(MA′A
i )† ⊗ IB2

)]
. (6)

If B wants to finish the process, depending on the measure-

ment outcome (which A communicates to B), the state of

B, rotated by appropriate unitaries, {UBi }, as well as av-

eraged over all possible inputs and measurement outcomes

can be represented as

ρB =
∑
i

pi U
B
i

(
TrA′A ρA

′AB
i

)
(UBi )†, (7)

and the corresponding fidelity is given in Eq. (3). If B

refuses to complete the protocol, the effective state shared

between A and B for subsequent rounds is obtained by

tracing out A′ after averaging over the measurement out-

comes and the input state, |η〉 (see Eqs. (1) and (2)), which

reads as

ρABeffective = TrA′

∫ ∑
i

(√
MA′A

i ⊗ IB2
)
ρA
′AB

(√
(MA′A

i )† ⊗ IB2
)
dη. (8)
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For a given shared state, the above steps can be repeated

to obtain MRN for a fixed value of f provided the fidelity

in each round is beyond the classical limit.

3. Maximally entangled state as the initial resource

In this section, we focus on the maximally entangled

state shared between Alice and Bob, given by

|BAB1 〉 =
1√
2

(
|00〉+ |11〉

)
, (9)

as the initial resource to compute MRN for different choices

of weak measurement strategies. |B1〉 is one of the triplets

in the Bell basis [32] and the results obtained by using this

state will be same for any other shared maximally entan-

gled states.

3.1. Weakening Bell measurements via depolarization

Instead of performing Bell basis measurement, Alice

applies POVMs, {MA′A
i }4i=1, on the A′A part which is

formed by mixing Bell measurements with a completely

depolarizing (maximally mixed) state. The i-th element

of POVM can be represented as

MA′A
i = λ1|BA

′A
i 〉〈BA

′A
i |+ 1− λ1

4
IA
′A

4 , (10)

where λ1 ∈ (0, 1] is the sharpness parameter and |BA′Ai 〉

is one of the Bell states. Note that λ1 = 1 corresponds

to the projective measurement. The initial state on which

the measurement has to be performed is |ψA′AB〉 = |η〉A′⊗

|BAB1 〉. Now we present a sketch of the Stinespring dila-

tion to implement the POVM considered above. First we

consider a 4-dimensional auxiliary system, S, defined by

the basis {|iS〉}, i = 0, 1, 2, 3 with |ψA′AB〉. With the ini-

tial state of the ancillary system being |0S〉, we then have

the state |0S〉 ⊗ |ψA′AB〉. Now we couple the system and

the auxiliary using the unitary USA
′A ⊗ IB such that:

USA
′A ⊗ IB |0S〉 ⊗ |ψA

′AB〉 =
3∑
i=0

|iS〉 ⊗
(√
MA′A

i ⊗ I
)
|ψA

′AB〉. (11)

The existence of the unitary USA
′A is guaranteed by the

following conditions∑
i

MA′A
i = I, MA′A

i ≥ 0, and (MA′A
i )† =MA′A

i .

(12)

Now, a projective measurement in the {|iS〉} basis yields

the desired outputs.

Therefore following the strategy developed in Sec. 2, B

might wish to complete the teleportation process and acts

his qubit with Pauli operators just as in the standard tele-

portation scheme. The resulting post measurement state

with B is then given by

ρB =

|a|2λ1 + 1−λ1

2 ab∗λ1

ba∗λ1 |a|2λ1 + 1−λ1

2


= λ1|η〉〈η|+

1− λ1

2
I2. (13)

Hence the corresponding fidelity, following Eq. (3), reads

as

f(1, λ1) =

∫
〈η|ρB |η〉 dη =

1 + λ1

2
, (14)

where “1” and “λ1” in the arguments refer to the initial

maximally entangled state, which can be thought of as a

Werner state, p|BAB1 〉〈BAB1 | + 1−p
4 IAB4 , with p = 1, and

the sharpness parameter of the POVM respectively. Note

f1(1, λ) > 2
3 for λ > 1

3 .

On the other hand, B might not want to go on with the

teleportation protocol at this round and therefore, does

nothing. In this situation, the effective state shared be-

tween A and B is computed by performing averages over

all the post-measurement states after the POVMs and over

all possible input states, |η〉. If the initial shared state is

|BAB1 〉 and the POVMs are of the form {MA′A
i }, the re-

sulting state for the i-th outcome is the Werner state, given

by

ρAB(1, λ1) = p(λ1)|BAB1 〉〈BAB1 |+ 1− p(λ1)

4
IAB4 , (15)

with

p(λ1) =
1

2

(
1− λ1 +

√
(1− λ1)(1 + 3λ1)

)
. (16)
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Here in ρAB(1, λ1), arguments have the same meaning as

in f(1, λ1). It is known that the state is entangled for

p > 1
3 . Note that if A and B now use ρAB(1, λ1) as the

initial resource state and A decides to perform the projec-

tive measurement, the maximal teleportation fidelity af-

ter the second round turns out to be f(p(λ1), λ2 = 1) =

(1 + p(λ1))/2, where λ2 is the sharpness parameter of

the second round measurement. It is greater than 2/3

when λ1 < 1
3 (1 +

√
3) ≈ 0.9107. Therefore, we find a

range 1
3 < λ1 < 1

3 (1 +
√

3) for which both the fideli-

ties, f(1, λ1) and f(p(λ1), λ2 = 1), obtained in the first

round by weak measurement and second round by projec-

tive measurement respectively are greater than the clas-

sical bound of 2/3, thereby confirming the plausibility of

reusing the shared resource state for reattempting telepor-

tation in more than one round.
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Figure 2: MRNf vs fidelity (f). The initial resource state is a max-

imally entangled state. MRNf is computed for a fixed value of the

fidelity, f , at each round, and for a fixed shared channel. The dark

(red) lines indicate situations for which the effective state for the next

round is unentangled, while, the grey (green) lines denote entangled

effective states for the next round. Both the axes are dimensionless.

The calculation of the average fidelity and the effec-

tive states can be performed generally for any subsequent

rounds based on three lemmas which we state next.

Lemma 1: The teleportation fidelity of a Werner state

of probability p′, given in Eq. (15), when subjected to a

weak Bell measurements of the type in Eq. (10), having

the sharpness parameter λ′, at any round is given by

f(p′, λ′) =
1 + p′λ′

2
. (17)

Proof. The Werner state of probability p′, shared between

A and B reads as

ρAB(p′) = p′|BAB1 〉〈BAB1 |+ 1− p′

4
IAB4 . (18)

When a weak Bell measurement of sharpness λ′ is em-

ployed, the maximally entangled part of the above eq. i.e.,

|BAB1 〉〈BAB1 | of ρAB(p′), yields a fidelity of f(1, λ′) = 1+λ′

2 ,

while the maximally mixed part, 1
4 I
AB
4 = 1

2 I
A
2 ⊗ 1

2 I
B
2 of

ρAB(p′), gives a fidelity of 1/2, which is independent of

the values of λ′. The later simply follows from the fact

that the state with Bob, 1
2 I2, remains unaltered on any

measurements in Alice’s part. Finally, we obtain

f(p′, λ′) = p′f(1, λ′) + (1− p′)1

2

= p′
(1 + λ′

2

)
+

1− p′

2

=
1 + p′λ′

2
, (19)

and hence the proof.

Let us now consider the case when a fixed value of

fidelity, say f(p′, λ′) would have to be achieved with a

Werner state of probability p′ used as resource. In this

case, the sharpness parameter λ′ has to be chosen in such

a way so that

f(p′, λ′) =
1 + p′λ′

2
,

⇒ λ′ =
1

p′

(
2f(p′, λ′)− 1

)
. (20)

After evaluating the fidelity of a given Werner state, we

want to compute the effective state for the next round of

teleportation when we have a Werner state as resource and

is subjected to weak Bell measurements, which we do in

the following two lemmas.

Lemma 2: When a product state of the form

ρ̃AB =
1

2
IA2 ⊗ ΛB , (21)
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with ΛB being any arbitrary single qubit mixed state from

C2, is used as a resource for teleportation with weak Bell

measurements of the type in Eq. (10), the effective state

for the next round remains the same as the initial product

resource.

Proof. We begin the proof by noting down two important

facts:

1. The Haar uniform average of all possible inputs is

the maximally mixed state∫
|η〉〈η| dη =

1

2
I2. (22)

2. Using linearity, we have∑
i

(
EipρE

†
i + Ei(1− p)σE†i

)
=
∑
i

Ei

(
pρ+ (1− p)σ

)
E†i . (23)

Evolving various states via the same dynamical map

and summing them is same as summing the states

up with the given weight factors and then evolving

with the same dynamical map.

Let us consider an initial resource state as in Eq. (21),

which after operating {MA′A
i }, the effective state becomes

ρ̃ABeff = TrA′

∫ ∑
i

(√
MA′A

i ⊗ IB2
)
×

|η〉A
′
〈η| ⊗ ρ̃AB

(√
(MA′A

i )† ⊗ IB2
)
dηA

′
.

(24)

Using Eq. (23), we interchange the sum and the integra-

tion and then applying Eq. (22), we get

ρ̃ABeff = TrA′
∑
i

(√
MA′A

i ⊗ IB2
)
×

(∫
|η〉A

′
〈η|dη

)
⊗ ρ̃AB

(√
(MA′A

i )† ⊗ IB2
)

= TrA′
∑
i

(√
MA′A

i ⊗ IB2
)1

2
IA
′
⊗ 1

2
IA ⊗

ΛB
(√

(MA′A
i )† ⊗ IB2

)
. (25)

When we perform weak Bell measurements with sharpness

λ, ρ̃ABeff becomes

TrA′
∑
i

(x2 + 2xy

4
|BA

′A
i 〉〈BA

′A
i |+ y2

4
IA
′A

4

)
⊗ ΛB (26)

with x =
√

1+3λ
4 −

√
1−λ

4 , and y =
√

1−λ
4 . Now inter-

changing the sum and the trace, we obtain

ρ̃ABeff =
∑
i

(x+ y)2 + 3y2

4

(1

2
IA2 ⊗ ΛB

)
=

∑
i

1

4

(1

2
IA2 ⊗ ΛB

)
=

1

2
IA2 ⊗ ΛB = ρ̃AB . (27)

Therefore, the effective state for the next round is same as

the initial resource, and hence we obtain the proof.

Lemma 3: When a Werner state of probability p′ is

used as the resource and a weak Bell measurement (Eq.

(10)), of sharpness λ′ is performed, the effective state,

ρAB(p′, λ′), shared between A and B for the next round

turns out to be

ρAB(p′, λ′) = p′p(λ′)|BAB1 〉〈BAB1 |+ 1− p′p(λ′)
4

IAB4 , (28)

where p(λ′) is the mixing parameter of the Werner state

after the previous round.

Proof. When a weak Bell measurement of sharpness λ′

is employed, the effective state for a maximally entan-

gled resource, |BAB1 〉, is a Werner state with a probability,

p(λ′), as in Eq. (15). On the other hand, by substituting

ΛB = 1
2 I
B
2 in Eq. (21) of lemma 2, we realize the effective

state for the next round when 1
4 I
AB
4 is used as a resource is

1
4 I
AB
4 itself. Therefore, when a Werner state of probability

p′ is used as a resource and a weak Bell measurement of

sharpness λ′ is performed, the effective state for the next

round, by linearity is computed as

ρAB(p′, λ′) = p′
(
p(λ′)|BAB1 〉〈BAB1 |+

1− p(λ′)
4

IAB4

)
+

1− p′

4
IAB4

= p′p(λ′)|BAB1 〉〈BAB1 |+ 1− p′p(λ′)
4

IAB4 . (29)

7



Therefore, after this type of weak Bell measurement a

Werner state remains an Werner state with updatation of

mixing probability.

By recursion, we obtain that if the initial resource state

is |BAB1 〉 and n-rounds of POVMs are performed on A′A

with sharpness values λ1, λ2, . . . , λn−1, the resulting state

for the i-th outcome takes the form as

ρAB(pλ1,...,λn−1
n , λ1, λ2, . . . , λn−1) =

pλ1,λ2,...,λn−1
n |Bi〉〈Bi|+ (1− pλ1,λ2,...,λn−1

n )
I4
4

(30)

with p
λ1,λ2,...,λn−1
n = p(λ1)p(λ2) . . . p(λn−1). The corre-

sponding fidelity can be computed form lemma 1, given by

f(p
λ1,...,λn−1
n , λ1, λ2, . . . , λn−1) = 1

2 (1 + p
λ1,...,λn−1
n ). Ap-

plying these lemmas, we now state the following result.

Theorem: If a maximally entangled state is used as the

initial resource,

MRNf=2/3(|BAB1 〉) = 6, (31)

where MRNf=2/3 denotes the fact that MRN is computed

for a fixed value of fidelity to be 2/3. Naturally, any other

Bell state, |BABi 〉, would have the same MRN value.

If the fidelity for each round is fixed to a value f > 2
3 ,

the maximal number of times, MRNf , that one can con-

tinue the process, for an initial maximally entangled re-

source is given in Table 1 (see Fig. 2). Moreover, the

effective state between A and B in the (MRNf + 1) − th

round can still be entangled, i.e., can be used for tele-

portation with quantum fidelity lower than the prescribed

fidelity f . We compute these ranges and note them down

in Table 1.

Among the various ranges and critical values of f ob-

tained in Table 1, we want to highlight two points: Firstly,

for MRNf = 6, the effective state for the next round is al-

ways unentangled. This is expected since the highest value

of MRN is six (see Eq. (31)), and existence of any entan-

gled effective state in the seventh round would imply MRN

to be greater than six. Secondly, if the fidelity requirement

at the first round is greater than 1
6 (4 +

√
3) ≈ 0.9553, the

MRNf Range of f Range of fent

6 0.6666 - 0.6764 –

5 0.6765 - 0.6958 0.6765 - 0.6782

4 0.6959 - 0.7227 0.6959 - 0.7025

3 0.7228 - 0.7631 0.7228 - 0.7391

2 0.7632 - 0.8333 0.7632 - 0.8028

1 0.8334 - 1 0.8334 - 0.9553

Table 1: Maximal reattempt number (MRNf ) when fidelity at each

round is fixed to be f . fent denotes the fidelity for a given MRNf

such that the effective state for the next round, i.e., (MRNf + 1)th

round, is entangled but not enough to achieve the required fidelity

f .

state cannot be reused at all. This simply follows from the

fact that the effective state for the second round becomes

unentangled when the required f > 1
6 (4 +

√
3). To ob-

tain such fidelity one has to perform a measurement with

sharpness λ > 1
3 (1 +

√
3) ≈ 0.9107 resulting in a Werner

state with p ≤ 1
3 , an unentangled one (see Eq. (16)), as

the effective state for the next round.

In the next section we would discuss other possible

channels by which Bell measurements can be weakened.

We show that among these possible weakening paths, the

one considered in this section is the best for obtaining val-

ues of MRN.

3.2. Weakening Bell measurements via local strategies

Apart from the weakening strategies adopted in Eq.

(10), there can be other ways by which Bell measurements

can be weakened. We deal with some of these other weak-

ening schemes in this section. Firstly, we consider POVMs

by mixing Bell states with states from its “Schmidt sup-

port”, i.e., the span of the Schmidt vectors of the same.

We find that, under such a scheme recycling the resource

states for reattempting teleportation is not possible. Then

we consider cases which weakens the Bell measurements by

mixing states from beyond its Schmidt support. Although

in some cases, reattempts are possible, but among the con-
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sidered weakening scenarios, the POVMs in Eq. (10) gives

the best MRN when a maximally entangled state is used

as the initial resource state.

3.2.1. Mixing states from the same Schmidt support

When Bell states are weakened by mixing states from

the same Schmidt support, we effectively get POVMs in

the form {MA′A
i }4i=1 whose i-th element reads as

MA′A
i = µ|BA

′A
i 〉〈BA

′A
i |+

(1− µ) σA
′

z ⊗ IA2 |BA
′A

i 〉〈BA
′A

i |σA
′

z ⊗ IA2 , (32)

where µ = µ(λ) and |BA′Ai 〉 is one of the Bell states and

σA
′

i (i = x, y, z) is the Pauli operator. These POVMs can

be obtained by passing part of the Bell states through a

single qubit local phase-flip channel. Other examples of

POVMs in a similar spirit include

λ|BA
′A

1,2 〉〈BA
′A

1,2 |+
1− λ

2

(
|00A

′A〉〈00A
′A|+ |11A

′A〉〈11A
′A|
)
,

λ|BA
′A

3,4 〉〈BA
′A

3,4 |+
1− λ

2

(
|01A

′A〉〈01A
′A|+ |10A

′A〉〈10A
′A|
)
, (33)

which reduce to Eq. (32) with µ = 1+λ
2 . If we now use the

strategy developed in the previous sections to investigate

the fidelity and possibility of reusability of a maximally

entangled resource subjected to weak measurements given

in Eq. (32), we find the fidelity of the first round to be

fphase-flip(λ) =
1

3
(1 + 2λ), (34)

where fphase-flip(λ) > 2
3 for λ > 1

2 . However, the effec-

tive state shared between Alice and Bob after the first

round is diagonal and hence unentangled, which curbs the

possibility of reusability of the resource state. Thus, weak-

ening Bell measurements by mixing states from the same

Schmidt support does not provide reusability even for a

maximally entangled resource. In the next section, we con-

sider other weakening schemes which in some cases enable

reattempting teleportation for multiple rounds.

3.2.2. Mixing states from the entire space

Let us now consider two distinct strategies where the

Bell measurements are weakened by mixing states from

different Schmidt supports, i.e., {B1, B2} group elements

are weakened by mixing states from the {B3, B4} group

and vice-versa. Such POVM elements can be obtained

when a local bit-flip channel acts on A′. The resulting i-th

element of POVM takes the form

MA′A
i = λ|BA

′A
i 〉〈BA

′A
i |+

(1− λ) σA
′

x ⊗ IA2 |BA
′A

i 〉〈BA
′A

i |σA
′

x ⊗ IA2 , (35)

Using these POVMs, the fidelity obtained after the first

round with a maximally entangled resource (like the phase-

flip case (34)) is given by

fbit-flip(λ) =
1

3
(1 + 2λ), (36)

where fbit-flip(λ) > 2
3 for λ > 1

2 . The effective state shared

between A and B for the second round can be represented

as

ρABbit-flip(1, λ) =


1
4 0 0

√
λ(1−λ)

2

0 1
4

√
λ(1−λ)

2 0

0

√
λ(1−λ)

2
1
4 0√

λ(1−λ)

2 0 0 1
4

 .
(37)

Note that the entanglement of ρABbit-flip(1, λ) as measured

by concurrence [33] reads as

E
(
ρABbit-flip(1, λ)

)
= max

{
0,
√
λ(1− λ)− 1

2

}
, (38)

which is identically 0 for λ ∈ (0, 1]. Since the effective state

for the second round is unentangled, the POVMs given in

Eq. (35) is ineffective for the reusability of the maximally

entangled resource.

The second scheme involves weakening the Bell mea-

surements by mixing product states from orthogonal com-

pliment of the Schmidt support of the Bell state. For ex-

ample, |B1,2〉 and |B3,4〉 are mixed with (|01〉〈01|, |10〉〈10|)

and (|00〉〈00|, |11〉〈11|) respectively. The POVM elements

9



read as

λ|BA
′A

1,2 〉〈BA
′A

1,2 |+
1− λ

2

(
|01A

′A〉〈01A
′A|+ |10A

′A〉〈10A
′A|
)
,

λ|BA
′A

3,4 〉〈BA
′A

3,4 |+
1− λ

2

(
|00A

′A〉〈00A
′A|+ |11A

′A〉〈11A
′A|
)
.

(39)

Using a maximally entangled state as resource, and em-

ploying the above measurements, the fidelity in the first

round of teleportation is again computed to be

fortho-supp(λ) =
1

3
(1 + 2λ), (40)

where fortho-supp(λ) > 2
3 for λ > 1

2 . Although the expres-

sion of fidelity is same as the obtained for the POVM in

Eq. (35) the effective state after the first round in this

case is entangled for some values of λ and is computed to

be

ρABortho-supp(1, λ) =


1
4 (2− λ) 0 0

√
λ(1−λ)

2

0 λ
4 0 0

0 0 λ
4 0√

λ(1−λ)
2 0 0 1

4 (2− λ)

 . (41)

The entanglement of ρABortho-supp(1, λ) as measured by con-

currence is computed to be

E
(
ρABortho-supp(1, λ)

)
= 2 max

{
0,

√
λ(1− λ)

2
− λ

4

}
. (42)

In this case, the state now remains entangled for λ < 8
9 ≈

0.8889. Note that the effective state after the first round

for the measurements (see Eq. (10)), remains entangled

for λ < 1
3 (1 +

√
3) ≈ 0.9107.

For POVMs in Eq. (10), the region in the space of the

sharpness parameter where the first round fidelities are

nonclassical and the effective state for the second round

is entangled is 1
3 < λ < 1

3 (1 +
√

3), whereas the same for

POVMs in Eq. (39) is for 1
2 < λ < 8

9 . Therefore, the

former measurement scheme leads to a higher reattempt

number as well as a higher content of entanglement than

the one obtained by later procedure, as depicted in Fig. 3.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

C

λ

depolarized

orthogonal support

Figure 3: Entanglement as quantified by concurrence, of the effective

state after the first round, against the sharpness parameter of the

measurement, λ. Solid line corresponds to the measurement when

single qubit of a Bell state is sent through a depolarization channel

while the dashed one is when the Bell states are mixed with the

product states from the orthogonal Schmidt support of the Bell state.

In both the cases, maximally entangled state is the initial resource.

While the longitudinal axis is dimensionless, the vertical axis is in

ebits.

4. Non-Maximally entangled state as initial resource

In this section, instead of maximally entangled state

as resource, we consider arbitrary pure state shared be-

tween A and B under the same measurement strategies,

discussed in Sec. 3. We are now interested to investigate

the change in the reusability number with the variation

of entanglement content of the resource state. Any pure

bipartite state can always be written as

|χAB〉 =
√
α|00〉+

√
1− α|11〉, (43)

where α ∈ (0, 1). To teleport |η〉A′ , the POVMs for weak

Bell measurements described in Eq. (10) is performed on

the A′A party of the input state |ξ〉A′AB = |η〉A′ ⊗ |χAB〉.

According to the protocol described in SubSec. 2.1, if B

wishes to complete the teleportation process by applying

the proper unitaries based on the measurement outcomes,

then the corresponding fidelity in the first round by aver-

aging over all input states |η〉A′ is given by

fα(1, λ1) =
1

2
(1− λ1) +

2

3
λ1

[
1 +

√
α(1− α)

]
. (44)
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Clearly, fα(1, λ1) > 2/3 for λ1 >
1

1+4
√
α(1−α)

. However,

if B is indifferent and leaves the protocol, the effective

state shared between A and B as a resource for the next

(second) round computed according to Eq. (8) reads as

ρABα (1, λ1) = p(λ1)|χAB〉〈χAB |+
(
1− p(λ1)

)
×[1

2
IA2 ⊗

(
α|0B〉〈0B |+ (1− α)|1B〉〈1B |

)]
, (45)

where p(λ1) is same as in Eq. (16). Clearly, the effective

state, in Eq. (45), is an X state, which reduces to a Werner

state for α = 1/2, i.e. for maximally entangled state. The

teleportation fidelity of an X state of the form in Eq. (45)

after performing the weak Bell measurements is computed

in the lemma stated below.

Lemma 4: The teleportation fidelity of an X state with

probability p′,

ρABα (p′) = p′|χAB〉〈χAB | +(
1− p′

)[1

2
IA2 ⊗

(
α|0B〉〈0B | + (1− α)|1B〉〈1B |

)]
,

(46)

when subjected to a weak POVMs in Eq. (10) with sharp-

ness parameter λ′, is given by

fα(p′, λ′) = p′fα(1, λ′) +
1− p′

2
, (47)

where the expression of fα(1, λ′) is expressed in Eq. (44).

Proof. We proceed in a similar fashion as in lemma 1. The

|χ〉AB〈χ| part of ρABα (p′) yields a fidelity of fα(1, λ′) on

being subjected to weak Bell measurements with sharp-

ness λ′. On the other hand, the separable part, 1
2 I
A
2 ⊗(

α|0〉B〈0|+ (1− α)|1〉B〈1|
)
, provides the fidelity of∫

|a|2+|b|2=1

da db
(
|a|2α+ |b|2(1− α)

)
=

1

2
α+

1

2
(1− α) =

1

2
, (48)

where a and b are the coefficients of the arbitrary input

state, |η〉 (see Eq. (1)). Now, by using linearity, Eq. (47)

is obtained.

Like the Werner states, the X states of the form ob-

tained here, in our analysis, preserves its form when sub-

jected to weak Bell measurements. We encapsulate this

fact in the form of the following lemma.

Lemma 5: If an X state with probability p′,

ρABα (p′) = p′|χAB〉〈χAB | +(
1− p′

)[1

2
IA2 ⊗

(
α|0B〉〈0B | + (1− α)|1B〉〈1B |

)]
,

(49)

is used as the resource state shared between Alice and Bob

and a weak Bell measurement as in Eq. (10) of sharpness

λ′ is performed, the effective state for the next round turns

out to be an X state of the same form with modified mixing

parameter given by

ρABα (p′, λ′) = p′p(λ′)|χAB〉〈χAB |+(
1− p′p(λ′)

)[1

2
IA2 ⊗(

α|0B〉〈0B |+ (1− α)|1B〉〈1B |
)]
. (50)

Proof. By identifying 1
2 I
A
2 ⊗

(
α|0B〉〈0B |+(1−α)|1B〉〈1B |

)
as 1

2 I
A
2 ⊗ ΛB with ΛB = diag(α, 1− α), it is evident from

lemma 2 that an X state of the form in Eq. (45) will be

an X state of the same form after performing the weak

Bell measurements. However, the change in probability of

X state for the next round, p′p(λ′), follows from lemma

3.

Using the above two lemmas, we can compute the fi-

delity and the effective state for any subsequent round

when a pure non-maximally entangled bipartite state, Eq.

(43), is shared between A and B as an initial resource,

and POVMs in Eq. (10) is performed at each step. Now

we compute the MRNf for |χ〉AB with various values of

α by fixing the fidelity f at each round. See Table 2 for

the ranges of α which yield a given value of MRN. Ob-

viously for α = 1/2, |χAB〉 is maximally entangled, and

for that, we have already shown the MRNf=2/3 to be six.
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MRNf=2/3 Range of α Range of αent

6 0.5 - 0.3008 –

5 0.3007 - 0.1850 0.3007 - 0.2847

4 0.1849 - 0.1087 0.1849 - 0.1606

3 0.1086 - 0.0535 0.1086 - 0.0810

2 0.0534 - 0.0159 0.0534 - 0.0273

1 0.0158 - 0 0.0158 - 0.0007

Table 2: Maximal reattempt number (MRNf ) with respect to α

when fidelity at each round is fixed to f = 2/3. The second column

gives the range of α which gives MRNf=2/3, while the third one

mentions the range of α, denoted by αent for which the output state

is entangled.
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M
R

N
f

α

Figure 4: MRNf against α, the state parameter of a pure state. The

value of MRNf is computed by fixing the value of fidelity, f = 2
3

, at

every round. Both axes are dimensionless.

The sharpness parameters which provide f = 2/3 in each

round follows a recursion relation:

λi+1 =
2λi

(1− λi) +
√

(1− λi)(1 + 3λi)
=

λi
p(λi)

, (51)

with i = 1, 2, . . . , 5 and λ1 = 1

1+4
√
α(1−α)

= 1
1+2Cα , where

Cα = 2
√
α(1− α) is the concurrence of the initial resource

state. For a maximally entangled resource, the sharpness

required to extract a first round fidelity of 2/3 is given by

λ1 = 1
3 .

From our analysis with non-maximally entangled pure

states as the initial resource, we stress two important facts:

MRN = 6 with non-maximally pure entangled states:

The most interesting scenario is that this margin (MRNf=2/3 =

6) is preserved also in the range α ∈ (0.3008, 0.5] (see Ta-

ble 2 and Fig. 4), which implies that the non-maximally

entangled states (of course within a particular range) is

in the same footing with the maximally entangled one,

in terms of the maximal number of reattempts with the

shared state. The maximal reattempt number decreases

with the decreasing value of α. See Table 2 for MRNf

values with respect to α.

Unutilized entanglement of X states: In case of a non-

maximally entangled initial resource, the effective state for

the subsequent rounds are X states for which the projec-

tive Bell measurements as well as the Pauli unitary op-

erators are not optimal. Consequently, performing the

Werner-type POVM, i.e. the weak Bell measurements in

Eq. (10) over the X states only gives a bound to the max-

imal fidelity for a given sharpness parameter. An upshot

of the above analysis is reflected in the fact that for a

non-maximally entangled initial resource, some entangled

effective states in the next round, with MRNf ≤ 5, do not

yield quantum fidelities, i.e., cannot be used to increase

MRNf=2/3 following our strategy. However, some amount

of entanglement still exists which can be used to obtain

nonclassical fidelity in a teleportation scheme with other

choices of measurements and unitaries. In Fig. 4, the dark

(red) and grey (green) lines correspond to the separable

and entangled regions (measured by concurrence), respec-

tively, for a certain range of α. Interestingly, we find that

when MRN = 6, all the effective states for different values

of α become separable and hence are useless for teleporta-

tion.

5. Conclusion

Teleportation is one of the most fascinating inventions

in quantum theory. It has been experimentally verified

and now with the satellite-based technology in the field,

teleportation is marching fast in the direction of being re-

alized on an intercontinental scale.
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We addressed the issue of whether the resource state

for teleportation can further be used by another set of

sender-receiver pair by using suitable sets of weak mea-

surements, while maintaining nonclassical fidelities at ev-

ery round of the use. This recycling was achieved by not

employing complete projective measurements which fully

destroy the resource state after the very first use of the

channel. We observed that the sharpness of the measure-

ments must be tuned in an appropriate manner so that it

is weak enough to allow reattempts with the resource, yet

adequately strong to guarantee quantum fidelities during

every use.

We reported that if a maximally entangled state is the

initial resource, recycling the resource is possible at most

six times after applying the weak Bell measurements. Pre-

cisely, we compute the maximal reattempt number (MRN)

for pure maximally entangled initial resource when the fi-

delity at each round is just beyond the classically achiev-

able fidelity. Moreover, we found that among several weak

measurement strategies, the one constructed by mixing

Bell states with white noise led to a higher value of MRN

compared to other weakening measurement schemes. In-

terestingly, the MRN turned out to be six even for non-

maximally entangled state having entanglement as mea-

sured by concurrence, higher than 0.91 ebits. We also

studied the trends of MRN with the entanglement content

of the resource state and the sharpness parameter of the

measurement.

The performance of quantum teleportation protocol

was traditionally quantified via single-shot fidelity. Nat-

urally, when reattempts are demanded, the scheme has

to be redesigned to incorporate both MRN which involve

measurement as well as state parameters and the fidelity

at every round for characterization. In this paper, we pre-

scribe ‘a strategy’ to meet both the demand for recycling

the initial resource state and the same for nonclassical fi-

delities. Our work, therefore, opens up a new window

of plausibility where for a fixed channel, one can extract

quantum advantage in teleportation for several rounds and

can address the trade-off between information gain and

disturbance due to measurement, operationally.
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