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We explore the impact of non-Markovian channels on the quantum correlations of Haar uniformly
generated random two-qubit input states with different ranks – either one of the qubits (single-sided)
or both the qubits independently (double-sided) are passed through a noisy channel. Under dephas-
ing and depolarizing channels with varying non-Markovian strength, entanglement and quantum
discord of the output states collapse and revive with the increase of noise. By both analytical and
numerical means, we find that in the case of depolarizing double-sided channel, entanglement and
quantum discord for random states shows a higher number of revivals on average than that of the
single-sided ones with a fixed non-Markovianity strength, irrespective of the rank of the states – we
call such a counter-intuitive event as constructive feedback of non-Markovianity. On the other hand,
the mean value of critical noise at which quantum correlations (QCs) first collapse, decreases with
the increase of non-Markovianity, independent of the rank of the random initial states. However,
the average noise at which QCs of random states show the first revival decreases with the increase
of the strength of non-Markovian noise, thereby indicating the role of non-Markovian channels on
the regeneration of QCs even in presence of a high amount of noise. Moreover, we observe that the
tendency of a state to show regeneration increases with the increase of average QCs of the random
input states along with non-Markovianity.

I. INTRODUCTION

Composite systems in quantum mechanics, described
by a tensor product Hilbert space, can show one of
the striking nonclassical features called entanglement
[1]. In particular, complete information about an en-
tangled pure state can not be determined by the infor-
mation of its subsystems. Employing these quantum
states, various tasks like teleportation [2, 3], dense cod-
ing [4, 5], secure key distribution [6–8], one-way quan-
tum computing [9, 10] have been designed to achieve
higher efficiency than the protocols using unentangled
states. Therefore, in the current era, entangled states
constitute the basis of cutting edge quantum technolo-
gies. On the other hand, it has also been realized that
there are other forms of quantum correlations (QCs)
present in quantum states which can exhibit counter-
intuitive phenomena, completely inexplicable by clas-
sical theory. Motivated by classical information the-
ory [11], quantification of such correlations leads to a
measure called quantum discord (QD) [12–14], inde-
pendent of entanglement and has been identified as
a resource in tasks like deterministic quantum com-
putation with single qubit [15], remote state prepara-
tion [16, 17], distribution of entanglement [18], quan-
tum locking [19], identifying quantum phase transition
in many-body systems [13, 14].

Importantly, realizing all such quantum information
processing tasks in laboratories requires distributing re-
source states over space and time. During this pro-
cess, quantum correlations, in general, get destroyed
due to the interactions with the environment, thereby
creating obstacles in the successful implementation of
these protocols. It was found that under local dephas-
ing noise, entanglement disappears suddenly in a fi-

nite time, known as entanglement sudden death (ESD)
[20] (cf. [21]), while other resources like quantum dis-
cord vanish asymptotically [13, 14, 22–24]. In contrast
to ESD under Markovian noise, the revival of entan-
glement has also been observed under non-Markovian
evolution [25, 26]. Moreover, it was shown that there
exists a certain class of states for which QD remains in-
variant with the increase of noise even when the system
is affected via Markovian or non-Markovian channel–
a phenomenon called freezing of QD [27]. It turns out
to be universal for non-dissipative noise under a certain
class of states [28]. In all the previous works, interesting
features of the dynamics of entanglement or QD under
noisy environments have been studied for a particular
class of initial states [29].

Another interesting avenue of research is to find some
pattern in randomly generated states against the in-
tuition of observing random behaviour [30]. It was
reported that random states can have universal quan-
tum properties like increase of average QCs among ran-
domly generated states with the increase of a number
of parties [31–35, 51]. Moreover, random states appear
naturally in chaotic systems [36] and have also been
employed in disproving a long-standing conjecture in
quantum information science regarding additivity of
minimal output entropy [37].

In the present work, we investigate the effects of local
decoherence on QCs of Haar uniformly simulated two-
qubit initial states with different ranks and our aim is to
check whether the results obtained for a specific class of
states persist even for random states or not. Specifically,
when either one of the qubits or both the qubits of ran-
dom two-qubit states are independently sent through
dephasing and depolarizing non-Markovian channels,
we search for generic traits in QCs in the form of entan-
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glement and QD. Note that such an analysis depends
on several factors like rank and QC content of the ini-
tial states, properties of channels like strength of the
noise and non-Markovianity and it makes the analyti-
cal treatment to find the universal patterns of QCs un-
der decoherence for random states very difficult. Hence
numerical simulation is a good tool for such investiga-
tions although for low ranked states, we can address
the problem analytically as well. We find that both
the QC measures show revival after the collapse due
to the presence of non-Markovianity irrespective of the
ranks of the input quantum states. Interestingly, we
show that if a single qubit is sent through the depolar-
izing channel, no revival of entanglement is observed
while entanglement resurrects after the collapse for a
certain amount of non-Markovian noise affecting both
the qubits. In a similar spirit, we observe that the mean
number of regeneration in QD is more when both the
qubits are affected by noisy depolarizing channels com-
pared to the case when a single qubit is sent through
it. We call such a counter-intuitive observation as con-
structive effects of non-Markovianity. This phenomenon
is possibly observed due to a competition between the
damping and the non-Markovianity in the noisy chan-
nel where the former seems to be responsible for the
collapse of QCs while the latter is accountable for re-
generation. Note that such a feature is absent for out-
put states obtained via dephasing channel. Our analy-
sis also reveals that the double-sided dephasing channel
facilitates revival for both entanglement and discord in
case of pure states while for states with higher ranks,
this is true for both single- and double-sided dephasing
channels.

We also find that for a fixed non-Markovian noise,
average value of regeneration in case of entanglement
decreases with the increase of the rank of the states,
establishing pure states as good resource. Our anal-
ysis of mean regeneration and mean noise threshold
value for the revival of random states reveals that non-
Markovianity induces regeneration of QCs even in pres-
ence of a high amount of noise in dephasing as well
as depolarizing channels. In contrast, we also no-
tice that the noise-threshold at which entanglement
as well as QD initially collapses also decreases with
non-Markovianity and for QD alone, number of states
that collapses increases with non-Markovianity which
indicates a competition between the strength of non-
Markovianity and damping parameters in the channels.
This result is in a different spirit than the one which
showed that non-Markovianity leads to more number
of freezing in QD [14, 29]. Note that, rank-1 states are
maximally robust and QD of significant number of such
states does not collapse even at high non-Markovianity.
High ranked states also exist whose QDs do not col-
lapse under both dephasing and depolarizing noise but
percentage of such states is less than pure states.

The paper is organised in the following way. In Sec.
II, we recapitulate the Haar uniform generation of two-

qubit states of different ranks, and quantum channels.
In Sec. III, we provide motivation and preliminary ob-
servations to proceed further while Sec. IV introduces
the significant quantities required for investigations. In
Secs. V and VI, results for random states with non-
Markovian dephasing and depolarizing channels are re-
spectively presented. Finally, we conclude with a sum-
mary of results in Sec. VII.

II. PREREQUISITES: GENERATION OF STATES, AND
ACTION OF CHANNELS

Before presenting the results, in this section we will
first set the stage by briefly describing the process of
generating Haar uniformly two-qubit density matrices
which we employ here to obtain the input states, and
the action of quantum channels on input states.

1. Generation of Random States

We know that, given a basis, quantum states are
specified by complex coefficients. To generate 5× 104

states Haar uniformly in state space [30], we randomly
simulate real numbers involved in states from a Gaus-
sian distribution with mean 0 and standard deviation
unity, denoted G(0, 1). In particular, for a two-qubit
pure state, |ψ〉 = ∑i,j=0,1(aij + ibij)|i〉 ⊗ |j〉, aij and bij
are real numbers chosen G(0, 1). Here |i〉 ∈ {|0〉, |1〉}
form the computational basis of the first qubit and sim-
ilarly |j〉 for the second qubit. Similarly, the set of real
numbers, {aijk}, {bijk}, {aijkl}, and {bijkl} of |ψ3〉 =

∑i,j,k=0,1(aijk + ibijk)|i, j, k〉, |ψ′3〉 = ∑i,j=0,1 ∑k=0,1,2(aijk +

ibijk)|i, j, k〉 and |ψ4〉 = ∑i,j,k,l=0,1(aijkl + ibijkl)|i, j, k, l〉,
are chosen randomly from G(0, 1) to obtain rank-2 (R2),
rank-3 (R3) and rank-4 (R4) two-qubit density matrices
respectively. Notice that |i〉, |j〉|k〉, |l〉 ∈ {|0〉, |1〉} form
the computational basis of qubits 1, 2, 3 in |ψ3〉, first two
qubits of |ψ′3〉 and all the four qubits of |ψ4〉 while the
third party in |ψ′3〉 belongs to the computational basis
of qutrit, i.e., {|0〉, |1〉, |2〉}. Finally, tracing out a single
or two parties leads to the desired two-qubit density
matrices with different ranks.

A. Non-Markovian quantum channels

Let us consider two paradigmatic noisy channels,
namely dephasing and depolarizing channels whose
Kraus operators with the strength of non-Markovianity,
α [38, 39], are respectively given by

Kdph
I =

√
[1− αp](1− p)I, Kdph

z =
√
[1 + α(1− p)]pσz,

Kdp
I =

√
[1− 3αp](1− p)I, Kdp

i =

√
[1 + 3α(1− p)]p

3
σi.

(1)
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Here 0 ≤ α ≤ 1, and σi, i = x, y, z are the Pauli matri-
ces. In case of dephasing channel, 0 ≤ p ≤ 0.5 while in
depolarizing case, 0 ≤ p ≤ 1. Note that α = 0 repre-
sents the Markovian case [40, 46]. Our aim is to study
the trends of QCs of the output states when randomly
generated input states having different ranks are sub-
jected to the non-Markovian dephasing and depolariz-
ing channels. Towards this analysis, we consider fol-
lowing two scenarios:

Situation 1. Noise acts on one of the sites of the
two-qubit state, which we refer to as the single-
sided channel. Let ρ0 be the initial state. After sub-
jecting it to the single-sided channel, the resulting
state can be represented as

ρ0 → ρ f (p) = ∑
i
(Kn

i ⊗ I)ρ0(Kn
i ⊗ I)†, (2)

where Kn
i s are Kraus operators corresponding to

either dephasing or depolarizing channel.

Situation 2. When both the parties are sent
through two local channels, we call it as a doubled-
sided channel. The output state in this case reads
as

ρ0 → ρ f (p) = ∑
i,j
(Kn

i ⊗ Kn
j )ρ0(Kn

i ⊗ Kn
j )

†. (3)

III. MOTIVATION: PRELIMINARY OBSERVATIONS

Before moving to the study of quantum correlations
in random states under Markovian and non-Markovian
channels, let us discuss some of the counter-intuitive
results known in literature as well as some specific ex-
emplary cases. These results motivate us to look for
generic features in QC for random states under deco-
herence.

First of all, it was realized in different studies that
entanglement is, in general, fragile in a noisy scenario,
i.e. entanglement decays with the increase of noise.
Moreover, it was demonstrated that for a certain class of
states, entanglement suddenly vanishes at a fixed noise
parameter, referred as sudden death of entanglement
[20]. At the same time, in presence of non-Markovian
and common (Markovian) noise models, it was shown
that entanglement collapses as well as revives with the
increase of noise strength [21, 25, 26]. Let us now
prove that such a revival of entanglement cannot be
seen in case of Markovian dephasing channel when
the input state, ρBD

AB , shared between Alice and Bob, is
the class of Bell diagonal (BD) states, given by ρBD

AB =
1
4 (I4 + ∑i=x,y,z Ciiσi ⊗ σi), where Cii = tr(ρBD

ABσi ⊗ σi) are
the classical correlators. It reduces to the singlet when
Cxx = −Cyy = 1 and Czz = 1.

Proposition 1.: When the dephasing Markovian channel
acts on a single qubit or on both the qubits locally of a

two-qubit Bell diagonal state with Cxx = 1, Cyy = −Czz,
the entanglement of the resulting state always vanishes,
thereby showing no revival of entanglement with noise.

Proof. Suppose first that dephasing noise (Eq. (1) with
α = 0) acts on a single qubit, i.e., at Alice’s side and the
resulting state under the action of dephasing noise is
given by

ρ′AB =


1+Czz

4 0 0 A
0 1−Czz

4 B 0
0 B 1−Czz

4 0
A 0 0 1+Czz

4 ,

 (4)

where A = − 1
4 (Cxx − Cyy)(−1 + 2p) and B =

− 1
4 (Cxx + Cyy)(−1 + 2p). The eigenvalues of partially

transposed state ρ
′TA
AB for Cxx = 1 and Cyy = −Czz

are λA1 = 1
2 (1 + (−1 + Czz)p), λA2 = 1

2 (Czz(−1 + p) +
p), λA3 = 1

2 (1− (1 + Czz)p), λA4 = 1
2 (Czz + p − Czz p).

The two-qubit state is entangled only when one of the
eigenvalues is negative. Such a possibility occurs in fol-
lowing two cases: 1. For −1 ≤ Czz < 0, λA4 turns out to
be the minimum among four eigenvalues. λA4 goes to
zero from negative value when p→ Czz

−1+Czz
and beyond

this value, all eigenvalues remain positive. It, therefore,
implies that p has just a single value upto which en-
tanglement is nonvanishing for any values of Czz, and
hence no entanglement is present in the output state af-
ter the first collapse. 2. When 0 < Czz ≤ 1, λA2 can only
be negative and it goes to zero when p → Czz

1+Czz
which

again leads to the fact that entanglement survives only
when p < Czz

1+Czz
and the rest of the range of p, the state

is unentangled, thereby showing no revival of entangle-
ment.

Let us now move to the case when the local dephas-
ing noise acts on both the sides of the initial state, lead-
ing to the resulting state which is in the same form as
single-sided one except the off-diagonal element now
become X′ = X(1 − 2p), X = A, B. The eigenval-
ues of partially transposed state, ρ

′′TA
AB , in this case,

reads as λAB1,2 = (1− p)p±Czz

(
1
2 − p + p2

)
, λAB3,4 =

1
2 − (1±Czz)p + (1±Czz)p2. Like single-side case, sim-
ilarly two situations arise and can be shown that there
is no revival of entanglement.

�
Remark 1. Although we have given the proof for de-

phasing channel, similar results can be obtained for
Markovian depolarizing channel with the Bell diagonal
states as input.

Remark 2. When (Markovian) dephasing and depo-
larizing single- and double-sided channels act on ran-
domly generated two-qubit states with different ranks,
we find that the above Proposition for entanglement re-
mains valid.

Remark 3. The Proposition also holds for quantum
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FIG. 1. (Color online.) Behavior of QCs of two output states
(vertical axis) against noise, p (horizontal axis). The output
states are obtained when two random pure states [47] are sent
through a single-sided dephasing channel. Here we set non-
Markovianity parameter, α = 0.9. Dotted lines represent LN
while solid ones are for QD. Insets show that both LN and QD
do not collapse for these states. The horizontal axis is dimen-
sionless while LN and QD are in ebits and bits respectively.

discord, only in case of the (Markovian) dephasing
channel.

Remark 4. Interestingly, we observe that LN as well
as QD for randomly generated pure states after sending
through single-sided non-Markovian dephasing chan-
nel do not vanish (upto numerical accuracy 10−6), (see
illustration of two random pure states in Fig. 1). We
will address this issue in details in succeeding section.

FIG. 2. (Color online.) QCs of the resulting states after pass-
ing through the double-sided depolarizing channels vs. p.
Dotted dark (red) and light (orange) lines are for LN of rank-
1 [48] and rank-2 states respectively while solid dark (red) and
light (orange) are for QD of the initial R1 and R2 states. Here
α = 0.9. QCs show revivals after an initial collapse and again
collapse with the increase of the damping parameter, p. All
other specifications are same as Fig. 1. The two collapse for
QD has been better shown in the insets.

Contrary to the observation in Fig. 1, we note

that when non-Markovian depolarizing channel acts on
both the qubits of low rank randomly simulated states
(pure as well as rank-2 states), LN and QD show two
collapses, i.e., they collapse, revive and further collapse
(see Fig. 2). It implies that several collapses and re-
vivals can occur under non-Markovian channels. We
will carefully observe in the succeeding section whether
such exotic behavior of QC can have some connection
with initial amount of QC present in the state and other
characteristic of the state or the channel.

IV. SIGNIFICANT QUANTITIES INTRODUCED FOR
INVESTIGATIONS

As it was known and also seen from the preceding
section, QC of the output state can, in general, show
collapse as well as revival with the variation of noise pa-
rameter. Towards finding the universal feature of QCs
in the resulting state from random input states, we de-
fine here a few physical quantities which will help us
to perform the analysis.

As shown in Fig. 2, collapse and regeneration of en-
tanglement as well as QD can occur more than once
with noise, especially with Non-Markovian channels.
As it will be clear from the analysis in the succeeding
sections, there is a competition between noise and non-
Markovianity which affects the behavior of QC mea-
sures. Towards establishing a connection between non-
Markovianity on states and the content of QC of the
input state which is necessary for regeneration, we in-
troduce a quantity which we call normalized regenera-
tion.

Normalized regeneration. For a fixed value of non-
Markovianity, α, and a fixed rank of the input state, nor-
malised regeneration is defined as the ratio between the
number of regeneration shown by a state having a fixed
amount of QC i.e., a ≤ Q ≤ b, with Q being the mea-
sure of QC and the total number of generated states,
within that range of Q that shows collapses. Mathe-
matically,

RN
g =

Number of regeneration with inputs inQ ∈ (a, b)
NQ∈(a,b)

,

(5)
where NQ∈(a,b) is the total number of output states
obtained from the input states having Q ∈ (a, b)
that vanishes in this range. Q is either LN or QD.
Note that there are significant number of two-qubit
states of all ranks under both kind of noisy channels
whose QD does not collapse, so, there is no question
of regeneration arises for such states. Entanglement
collapses in every case except for rank-1 states under
the single-sided dephasing channel for all values of
non-Markovian parameter α.

Notice that apart from capturing the role of non-
Markovianity, the normalized regeneration is also
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introduced to capture the effect of initial correlation
content of the states which have a tendency to show
revival. We will illustrate in the following section that
the number of random states generated with high value
of non-classical correlation decreases with increasing
rank. Only with this result, it seems that on average
rank-1 states have more tendency to show revival
in comparison to rank-3 states although it is not the
complete picture, as will be evident from our results
throughout the discussion. Hence, the normalized
regeneration is introduced to study the number of
revivals in a range of initial correlation divided by the
number of states that are generated within that range
of initial QC and thus we are able to remove the effect
of rank from the study of regeneration.

Mean Regeneration. Based on the normalized regen-
eration and a fixed QC, Q, mean regeneration denoted
by RQg for a given α and for a fixed rank of the input
states is defined as

RQg =
∑i RN

gi

N , (6)

where RN
gi

is the normalized regeneration observed for
the input state possessing QC between ai and bi, sum-
mation is over all such quantities in the entire range
of Q, i.e., 0 ≤ Q ≤ 1, and N is the total number of
Haar uniformly generated state for a given rank that
collapse. In this paper, we always take bi − ai = 0.1 for
all i. This quantity has been introduced to study the ef-
fect of rank, initial correlation of states showing revival
and non-Markovianity on average for a fixed rank and
non-Markovianity strength.

Mean critical noise for collapse. We are interested in the
strength of noise at which quantum correlations van-
ish for the first time on average for random states, i.e.
mean noise threshold when the first collapses of Q oc-
cur. The critical value of noise quantifies the detrimen-
tal effects of noise on system although it can have some
connection with the rank of a state and the strength of
non-Markovianity. Towards answering these questions,
for a given QC measure, Q, we define a quantity called
mean critical value of noise for collapse, denoted by pQc ,
as

pQc =
∑i=states pi

c
Total number of generated states that collapsed

,

(7)
where pi

c denotes the threshold value of noise at
which a QC measure of a given state first collapses
and the summation is over all such generated states
for a fixed rank showing collapse for Q. For a given
non-Markovianity and for a fixed rank, pQ

c determines
a universal robustness of Q which the random states
possess against a specific noise. As we have argued
in Sec. III, QCs of pure states never collapse for
single-sided dephasing channel and so pQc does not

exist for randomly generated pure states for all values
of α in dephasing channel upto the numerical precision.

Mean critical noise for regeneration. There can be some
inherent characteristics of quantum input states as well
as quantum channels which induce QCs of the state
to revive after collapse. We are interested to obtain a
pattern of first revival or regeneration of QC among
random states. Since it captures the advantage of non-
Markovianity on states, it is a kind of complementary
measure than the mean critical noise for collapse. For a
given QC, Q, one can also expect an association of pQc
with the first revival. To seek such a relation, for a fixed
Q, we have

pQreg =
∑i=states pi

reg

Total no. of simuated states showing revival
,

(8)
where pi

reg denotes the inherent noise of the channel,
at which quantum correlation becomes nonvanishing
after the first collapse and summation is over all states
which show regeneration.

Mean initial QC. Let us finally identify a quantity
based on a QC measure which can answer whether
there is any lower bound on the content of QCs in the
initial states which can show revival after collapse in
presence of non-Markovian channel. Note that it has
a meaningful interpretation if for a fixed rank, QC of
all the states generated shows revival with a fixed non-
Markovianity strength. An average amount of QC of
the input states responsible for regeneration can be de-
fined as follows: For a given Q, we have

Qin =
∑ QC of states showing regeneration

N . (9)

Here the summation is over all Haar uniformly gen-
erated states which show regeneration. It has to be
computed for a fixed α and for a fixed rank of random
states.

Remark. The intuition behind introducing these
quantities is to separate out the constructive and de-
structive feedback of noise on states. For example, the
mean and the normalized regeneration as well as the
mean critical noise for regeneration capture the con-
structive effect of non-Markovianity while the mean
critical noise for collapse captures the destructive ef-
fect of noisy channels. All these quantities manifest
the competition between the damping effect and non-
Markovianity strength of the noisy channels.
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V. EFFECTS OF NON-MARKOVIAN DEPHASING
CHANNEL ON QUANTUM CORRELATIONS OF

RANDOM STATES

In this section, the non-Markovian dephasing chan-
nel acts on a single qubit or both the qubits of ran-
domly generated rank-1 to rank-4 two-qubit states. The
role of non-Markovianity on QCs of states having dif-
ferent ranks will be estimated by using the previously
introduced quantities. As we will show, we can make
a general inference about the behavior of QCs in pres-
ence of non-Markovian noise. Before stating the results,
let us first ask the following question: for a given rank,
what is the frequency distribution of LN and QD for
random states? The pattern of normalised frequency
distribution [49] for LN and QD of randomly generated
two-qubit states with different ranks is depicted in Fig.
3. Note that these states are used as the input states
before the action of decohering channels.
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FIG. 3. (Color online.) Normalized frequency distribution of random
two-qubit states (vertical axis) against LN (horizontal axis in left) and
QD (x-axis in right). We Haar uniformly generate these states with
different ranks as mentioned in Sec. II 1. These states are used as the
initial states before sending through the noisy channels in succeeding
sections. The hollow columns represent rank-1, the dashed columns
represent rank-2, the checkered columns represent rank-3 and the
solid columns represent rank-4 states. All the axes are dimensionless.

We see that average QCs in the Haar uniformly sim-
ulated random states decreases with the increase of the
rank which is in a good agreement with the previously
known results in Refs. [31–35]. It was shown that av-
erage multipartite QCs in random pure states increases
with the increase of number of parties, thereby showing
that almost all multiqubit pure states are highly quan-
tum correlated, independent of the choice of the quan-
tum correlation measure. Monogamy of quantum cor-
relations [50] along with the results on random multi-
partite states implies that average QCs in two-qubit ran-
dom density matrices should decrease with the increase
of the rank of states, thereby confirming the results in
Fig. 3.

Let us now analytically show some of the observa-

tions obtained numerically for entanglement and dis-
cord after action of non-Markovian dephasing channel.
Since any analytical calculations involve all the param-
eters in states as well as channels, obtaining QCs for
the resulting states become extremely difficult. We will
show below that for low ranked states and for a re-
strictive scenario, some analytical treatments are possi-
ble. In particular, instead of performing optimizations
over all single-party measurements in the computation
of QD, we restrict ourselves to the set of projective mea-
surements, namely, {|0〉, |1〉, 1√

2
(|0〉± |1〉, 1√

2
(|0〉± i|1〉}

and calculate QD which we refer as restricted QD. In
the next sections, we will show that the results obtained
via restricted QD match with the actual trends of QD
obtained numerically.

Proposition 2. Entanglement and restricted quantum
discord of a pure two-qubit state undergo collapse as
well as regeneration, when subjected to the double-sided
dephasing channel, for a significantly high value of the
non-Markovianity parameter.

Proof. Any two-qubit pure state may be written as
[46] |ψAB〉 = cos θ

2 |00〉 + sin θ
2 |11〉, where |0〉 and |1〉

represent orthonormal bases. After passing through the
non-Markovian dephasing channel, the final state ρ f =

∑i,j(K
dph
i ⊗ Kdph

j )ρ(Kdph
i ⊗ Kdph

j )† and its entanglement
as well as QD are functions of θ, α and p. Solving for
the zeros of the negativity in terms of the noise param-

eter, we find its expression as p0 = (1+α−
√

1+α2)
α f (θ, α),

which ensures the collapse of entanglement. To show
its regeneration, we calculate the negativity at p =
p0 ± h as h → 0. If the negativity can be shown to be
positive at both these limits for a fixed values of p and
θ, it means that entanglement is nonvanishing before
collapse and it again regenerates.

For p = p0 ± h, we find that the negativity varies
as 2h2 sin θ(1 + α2) upto O(h2). This is sufficient
to show the regeneration of entanglement, since the
entanglement remains positive both to the left and to
the right of p0. Furthermore, since the negativity is
proportional to α2 for p = p0 + h, it implies that with
the increase of the non-Markovianity, the regenerated
value of entanglement increases, thereby highlighting
the beneficial effects of non-Markovianity on regenera-
tion.

We perform the similar analysis in case of restricted
QD. Although the compact form of QD is cumbersome,
for a fixed values of θ and a high value of α, the
regeneration can be confirmed. For example, when
cos θ

2 = 0.4, α = 0.9, pD
c = 0.26 while pD

reg = 0.434. �

With detailed numerical analysis, we will show in the
following sections that both pD

c and pD
reg decreases with

an increase in the non-Markovianity parameter.
Proposition 3. Restricted discord of a two-qubit rank-2
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state collapses and regenerates, both for the double-sided and
single-sided dephasing channels.

Proof. Any rank-2 two-qubit state can be written as

ρ2
AB = p1|ψ1〉〈ψ1|+ (1− p1)|ψ2〉〈ψ2|, (10)

where 0 ≤ p1 ≤ 1, |ψ1〉 = |0η1〉 + |1η2〉 and |ψ2〉 =
|0η⊥1 〉+ |1η⊥2 〉 are two mutually orthogonal states [45]
with |η1〉 = cos θ1

2 |0〉+ sin θ1
2 |1〉 and |η2〉 = cos θ2

2 |0〉+
sin θ2

2 |1〉, and |η⊥i 〉 being states orthogonal to |ηi〉 (i =
1, 2). QD is again functions of state parameters,θis, p1,
and parameters involved in the channel which makes
the expression cumbersome. After careful analysis, one
can confirm the regeneration as shown in Fig. 4) for the
exemplary values of state and channel parameters.

Remark. When the non-Markovian dephasing channel
acts on rank-2 two-qubit states, the entanglement also
resurrects after collapse as we will also see in the next
subsection.
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FIG. 4. (Color online.) Behavior of restricted QD after the ac-
tions of single-sided (left) and double-sided (right) dephasing
channels for α = 0.6 (dark) and α = 0.9 (light). The state pa-
rameters are cos θ1 = 0.2, cos θ2 = 0.4 and p1 = 0.6. Both the
axes are dimensionless.

A. Constructive outcome of non-Markovian noise on
random states

Let us now analyse the similar and the comple-
mentary patterns that entanglement and quantum dis-
cord of random states show under decoherence. We
start with entanglement when a fixed amount of non-
Markovianty is present in the channel and the input
states are chosen from a fixed rank. The observations
can be divided in two categories, one for single- and
another for double-sided channels. We first address the
issue of regeneration of entanglement, with the increase
of noise and non-Markovianity.

1. Single-sided channel with pure states. When a sin-
gle qubit of random pure states passes through a

TABLE I. RE
g (Dephasing channel)–Mean regeneration of entanglement when two-qubit

states are passed through single- and double-sided dephasing channels is tabulated
for different non-Markovianity parameters. It increases with the increase of non-
Markovianity although for the double-sided channels, the effects of noise is so destructive
that most of the states do not show revival.

RE
g

Rank 1 Rank 2 Rank 3 Rank 4

α double single double single double single double

0 0 0 0 0 0 0 0

0.2 0 0.159 0 0.011 0 0.0004 0

0.3 0.015 0.26 0 0.032 0 0.003 0

0.5 0.046 0.458 0.001 0.115 0 0.028 0

0.6 0.088 0.545 0.002 0.18 0 0.053 0

0.7 0.166 0.615 0.007 0.241 0 0.089 0

0.8 0.305 0.682 0.02 0.312 0.002 0.136 0

0.9 0.545 0.738 0.051 0.384 0.005 0.192 0.0005

Markovian channel (i.e., α = 0), LN never van-
ishes with the increase of p except at the point
p = 0.5. With the increase of non-Markovianity,
we see that the trend of LN remains almost same.
Specifically, we find that for all values of α, LN
of all states decreases to a minimum value with
increasing p, then starts increasing with p. Note,
however, that the minimum of LN decreases with
the increase of α.
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FIG. 5. (Color online.) Distributions of normalised regen-
eration, RN

g , in Eq. (5), (ordinate) with respect to initial QCs
(abscissa). The input states are random rank-2 states which
are sent through the dephasing channels for different non-
Markovian parameters. Upper panels are for LN while lower
panels are for QD. Plots in the left and the right columns are
for single- and double-sided channels. The hollow columns
represent α = 0.3, the dashed columns represent α = 0.5, the
checkered columns are for α = 0.7 while the solid columns
represent α = 0.9. Quantities in ordinate is dimensionless
while E and D are in ebits and bits. Note that no state is
generated with QD ≥ 0.9.

2. Input states with high rank via single-sided channel.
LN of random states with rank-2, rank-3 and
rank-4 show qualitatively similar behavior. For
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FIG. 6. (Color online. ) Mean regeneration, (RQ
g ), vs. non-

Markovianity, α. The hollow and the solid symbols rep-
resent single- and double-sided dephasing channels respec-
tively while the left and the right ones are respectively for LN
and QD. Ranks-1, 2, 3 and 4 are shown with circles, triangles,
diamonds and pentagons respectively. All quantities plotted
are dimensionless. Inset in the right hand figure shows the
slight variation of mean regeneration with non-Markovianity
for discord.

low values of α, LN of almost all states does not
revive after collapse while entanglement of large
fraction of generated states show revival with
moderate presence of non-Markovian noise. Note,
however, that the regeneration of LN also depends
on the rank and the entanglement content of the
input states. Specifically, certain value of non-
Markovianity in the channel together with the en-
tanglement of the initial states leads to the revival
of entanglement as shown in Fig. 5 for rank-2
states. For example, we observe that in case of
rank-2 states, if LN of the initial state is higher
than 0.8, the resulting states with a moderate
value of non-Markovian strength like 0.3 always
revive after collapse, thereby showing normalized
regeneration to be unity as shown in the upper
left panel in Fig. 5. This observation also matches
with the pattern of mean regeneration given in
Table. I and Fig. 6. In particular, we find that
RE

g increases with the increase of α monotonically
for a fixed rank of the input state, implying that
percentage of randomly generated states showing
regeneration after collapse increases with the in-
crease of non-Markovianity. For example, we find
that with α = 0.9, LN of only 19.2% R4 states can
again revive while it is 73.8% and 38.4% respec-
tively for R2 and R3 states. These percentages
have to be considered along with the frequency
distribution of entanglement for input states with
ranks in Fig. 3, i.e., regeneration of entanglement
also depends on the entanglement content of the
initial states. These results indicate a complex

relation of collapse and revival of entanglement
with the critical values of non-Markovianity and
noise strength as well as the initial value of en-
tanglement of the input states. We will shed light
on these issues when we consider the mean criti-
cal noise for collapse and regeneration as well as
mean entanglement content of random states.

3. Action of double-sided dephasing channel on entan-
glement. When both the parties are effected
by local non-Markovian noise, collapse followed
by a revival of entanglement can be seen in ran-
dom states with all the ranks for moderate value
of α. In general, normalized regeneration starts
increasing with the increase of non-Markovian
strength although the input state must possess
moderate to high amount of entanglement. If we
fix the rank of states and non-Markovian param-
eter, we observe that double-sided channel has
detrimental effects on LN compared to a single-
sided channel (comparing left and right panels in
Fig. 5 ) – we can refer this as destructive effect of
noise on entanglement. Moreover, we find that
for a fixed α and rank of the states, mean regen-
eration in this case is also very low compared to a
single-sided channel. For a given α, we notice that
pure input states have maximum RE

g as depicted
in Fig. 6.

Let us now move to the behavior of quantum discord
in above situations and examine whether similar pic-
ture reported for LN emerges for QD or not.

1. QD under the action of single-sided channel. In case
of pure random states as inputs, we have already
shown that entanglement of the resulting states in
almost all cases does not collapse for any values
of non-Markovian strength of the dephasing
channel under single-sided action. From the
definition of QD, we know that QD is positive for
all entangled states [12] and hence it also does
not vanish. From our numerical simulations, we
find that although the trend of QD is similar to
that of LN, the minimum value attained by it is
one order of magnitude lower than LN.

In case of random states with R2, R3, and R4, we
observe a behaviour similar to LN i.e, for all val-
ues of non-Markovianity present in the channel,
QD shows at most one revival for all Haar uni-
formly generated states irrespective of the content
of initial discord and hence the normalised regen-
eration saturates to unity as shown in Fig. 5 for R2
states. Moreover, normalised and mean regenera-
tion of QD for higher value of non-Markovianity
(say, α ≥ 0.5), is unity for all random input states
having a fixed rank irrespective of initial QD (see
Table II). This means that every state revives after
collapse, if, α ≥ 0.5. Here for a given α(≥ 0.5),
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TABLE II. RD
g (Dephasing channel)–Mean regeneration of discord when two-qubit states

are passed through single- and double-sided dephasing channels is tabulated for different
non-Markovianity parameters. Unlike entanglement, QD of all the randomly generated
states becomes nonvanishing after a collapse.

RD
g

Rank 1 Rank 2 Rank 3 Rank 4

α double single double single double single double

0.2 0.988 1.000 0.979 1.000 0.949 1.000 0.898

0.3 0.996 1.000 0.998 1.000 0.999 1.000 0.997

0.5 0.999 1.000 1.000 1.000 1.000 1.000 1.000

0.6 0.999 1.000 1.000 1.000 1.000 1.000 1.000

0.7 0.999 1.000 1.000 1.000 1.000 1.000 1.000

0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000

RD
g remains same with the increase of the rank of

the states which is different than the case of en-
tanglement where RE

g decreases with the increase
of rank.

2. Discord under double-sided channel. Moderate pres-
ence of non-Markovianity is enough for QD to
revive after collapse for almost all the two-qubit
random initial states having initial QD ≥ 0.5
which indicates that the minimum amount of QC
together with non-Markovianity is able to defeat
the destructive effect of noise on states, thereby
showing regeneration. We find that, unlike
single-sided case, QD for low value of α, does not
always exhibit regeneration (since RD

g < 1.0). This
is possibly due to fact that the greater amount of
noise acts on the state through the double-sided
channel. However, with increase of α, mean
regeneration quickly increases to one – we refer
this fact as constructive effect of non-Markovian noise
(comparing left and right lower panels of Fig. 5

as well as Fig. 6). Hence, there is a competition
between the detrimental effect of noise and con-
structive response of non-Markovianity – at low
value of α(≤ 0.3), the former overpowers latter
and the resulting effect is destructive while for
α(≥ 0.5), non-Markovianity defeats the damping
effect of noise, thereby showing constructive
impact.

Mean regeneration value can reveal three distinct
features in case of QD which are absent for en-
tanglement (see Tables I and II and Fig. 6) – (1)
higher ranked states have same value of mean re-
generation than that of low-ranked random initial
states for a fixed α; (2) RD

g doesn’t change with
the increase of α; (3) double-sided non-Markovian
channel leads to a same amount of regeneration
as single-sided ones for high non-Markovianity,
even though it starts off with less regeneration for
low α.

TABLE III. pE
c (Dephasing channel)–Mean value of the noise parameter at which entangle-

ment collapses for the first time when two-qubit states are passed through non-Markovian
single- and double-sided dephasing channels. It measures the destructive effects of noise
on quantum states.

pE
c

Rank 1 Rank 2 Rank 3 Rank 4

α double single double single double single double

0 0.261 0.335 0.168 0.224 0.113 0.173 0.084

0.2 0.226 0.296 0.143 0.196 0.095 0.144 0.07

0.3 0.211 0.277 0.133 0.182 0.088 0.134 0.065

0.5 0.185 0.246 0.116 0.16 0.077 0.118 0.056

0.6 0.174 0.232 0.108 0.152 0.071 0.11 0.053

0.7 0.164 0.218 0.102 0.142 0.067 0.103 0.049

0.8 0.155 0.206 0.096 0.134 0.063 0.098 0.046

0.9 0.146 0.195 0.091 0.127 0.06 0.093 0.044

1. Robustness of random states under dephasing noise

To estimate whether QCs of random initial states
are robust against noise, we can examine the noise
strength that a state can sustain just after passing
through the channel. It leads to the value of thresh-
old noise, pc of that state. Since we are dealing with
non-Markovian channel, pc should also depend on the
non-Markovianity parameter as well as the strength of
the noise of the channels acted on a single qubit or both
the qubits. Notice that the value of pc quantifies the
fragile nature of QCs against noise, thereby depicting
the harmful consequence of noisy quantum channels.
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FIG. 7. (Color online.) Mean critical noise for collapse, pQc
(Q = E, D), (vertical axis) against α (horizontal axis). Other
specifications are same as in Fig. 6.

As observed before, for a single-sided channel, LN as
well as QD of all pure states do not collapse, thereby
having no existence of pc. For a given QC measure, Q,
high values of pQ

c obtained with random input states
imply more robustness of Q on average against noise.
We find that the pattern of pE

c for LN is qualitatively
similar when noise acts on a single side or both the
sides of the randomly generated states – it posses high
value in case of single-sided channel than that of the
double-sided ones as clearly shown in Table III and Fig.
7. Interestingly, it decreases with α for all random states
having a fixed rank (see Fig. 7). On the other hand, if
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TABLE IV. pD
c (Dephasing channel)–Mean value of the noise parameter at which discord

collapses for the first time when two-qubit states are passed through non-Markovian
single- and double-sided dephasing channels.

pD
c

Rank 1 Rank 2 Rank 3 Rank 4

α double single double single double single double

0 0.487 0.489 0.485 0.490 0.481 0.490 0.478

0.2 0.445 0.450 0.438 0.450 0.433 0.450 0.429

0.3 0.421 0.429 0.414 0.429 0.410 0.428 0.406

0.5 0.377 0.380 0.371 0.380 0.367 0.380 0.363

0.6 0.357 0.360 0.351 0.360 0.347 0.360 0.344

0.7 0.338 0.340 0.333 0.340 0.329 0.340 0.326

0.8 0.319 0.320 0.315 0.320 0.312 0.320 0.309

0.9 0.312 0.311 0.308 0.311 0.304 0.311 0.301

we fix α, pc for LN decreases with the rank of the states,
thereby indicating robustness of pure states under de-
coherence.

The trends of mean critical noise for collapse of QD
behave similarly as in entanglement (see right panel of
Fig. 7 and Table IV). In general, for a fixed value of
α and fixed rank, it shows high amount of robustness
against noise than entanglement which one can expect
from the nature of QD itself. Comparing pE

c with pD
c

for a fixed α and for a fixed rank, we observe that their
difference is on average of the order of ≈ 0.18 for low
rank states while it becomes ≈ 0.25 for random states
with R3 and R4.

2. Mean noise threshold required for quantum correlations to
regenerate by random states

Behavior of mean critical noise required for regener-
ation of QCs demonstrates that non-Markovian noise is
responsible for rebirth of QCs to happen. Specifically
pE

reg decreases with the increase of non-Markovianity
strength, α (see Table V). When noise acts on a single
qubit, LN revives at most once with the increase of α
and the trends of preg reveals that LN becomes nonva-
nishing even when the noise strength is very high, like
p ≥ 0.45 and the lowest noise level in which entangle-
ment revival can be seen is when the presence of non-
Markovianity in the channel is high. When both the
qubits are effected by local non-Markovian dephasing
channels, LN also shows revival but the value of pE

reg
for random states under double-sided channel is higher
than that of the single-sided ones. Both the results pos-
sibly pinpoint that the presence of non-Markovianity
in channels induces entanglement to resurrect and we
note that its impact is more on initial pure states than
the input states with high rank.

Similar role of non-Markovianity can also be found
from the behaviour of quantum discord which also
shows at most one revival after collapse. Like LN,
pD

reg decreases with α if one fixes the rank of the states.

Moreover, in this case, we find that unlike pE
reg, the dif-

ference between pD
c and pD

reg is very low, and maximum

TABLE V. pE
reg (Dephasing channel)—-Mean value of the noise parameter at which

entanglement revives for the first time when two-qubit states are passed through non-
Markovian single- and double-sided dephasing channels. This is a complementary quan-
tity of pE

c and can capture the effect of non-Markovianity on states.

pE
reg

Rank 1 Rank 2 Rank 3 Rank 4

α double single double single double single double

0.2 0.495 0.484 - 0.493 - 0.494 -
0.3 0.489 0.474 - 0.485 - 0.491 -
0.5 0.478 0.449 0.49 0.47 0.5 0.48 -
0.6 0.474 0.437 0.487 0.462 0.493 0.475 -
0.7 0.47 0.424 0.485 0.454 0.495 0.467 -
0.8 0.469 0.412 0.482 0.446 0.489 0.462 0.498

0.9 0.466 0.399 0.48 0.437 0.486 0.454 0.489

TABLE VI. pD
reg (Dephasing channel)—-Mean value of the noise parameter at which QD

revives for the non-Markovian single- and double-sided dephasing channels. It decreases
with α, thereby showing that the non-Markovianity can induce regeneration of QCs.

pD
reg

Rank 1 Rank 2 Rank 3 Rank 4

α double single double single double single double

0.2 0.466 0.460 0.473 0.460 0.477 0.460 0.480

0.3 0.443 0.440 0.449 0.440 0.454 0.440 0.457

0.5 0.397 0.390 0.403 0.390 0.408 0.390 0.411

0.6 0.376 0.370 0.382 0.370 0.386 0.370 0.390

0.7 0.356 0.350 0.362 0.350 0.366 0.350 0.370

0.8 0.340 0.336 0.344 0.335 0.348 0.336 0.351

0.9 0.331 0.322 0.335 0.322 0.339 0.323 0.342

difference can be of the order of ≈ 0.02− 0.03 (see Ta-
bles IV and VI). It implies that QD revives almost im-
mediately after the first collapse and hence it can be
safely said that the consequence of non-Markovianity
on QD is more drastic than that of entanglement. As
already mentioned, QD of all states does not collapse.
For the states that collapse, we find that the number
of states that revive increases significantly with increas-
ing α, especially when the noise acts on both the qubits
comprising the state (see table VII). It further strength-
ens our claim – since the strengths of non-Markovianity
is higher when both the sides are passed through the
channels compared to the single-sided one, the con-
structive effects of non-Markovianity on QCs in terms
of regeneration is more prominent for the former than
that of the latter.

Role of QCs in regeneration. Apart from non-
Markovianity in channels, QCs possessed by input
states also play an important role in rebirth of QCs.
Entire analysis suggests that there exists a minimum
value of entanglement, depending on the rank, above
which a state has a high possibility to revive if
the channel also posses a moderate amount of non-
Markovianity. Specifically, average entanglement re-
quired to show regeneration decreases with the increase
of non-Markovianity. On the other hand, a certain
amount of non-Markovianity in the dephasing channel
ensures almost always QD to revive and hence the av-
erage initial QD required for regeneration in random
states is almost constant with the variation of the rank
of the initial state. Such an observation for entangle-
ment and QD is true for both the non-Markovian chan-
nels.
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VI. RANDOM STATES PASSED THROUGH
DEPOLARIZING CHANNEL

Let us move to a scenario where a single qubit or
both the qubits of the input states with different ranks
are sent through depolarizing non-Markovian channels
having different strengths of non-Markovianity. We will
show that although non-Markovian effect on QCs ob-
tained for dephasing and depolarizing channels are of
similar kind, certain differences in the behaviour of QCs
are also present. Let us begin our discussion with some
analytical derivations.

Proposition 4. A pure two-qubit state, when passed
through the single-sided depolarising channel, shows no
regeneration of entanglement while the constructive response
of non-Markovianity ensures revival in case of the double-
sided channel.

Proof. After the action of the non-Markovian depo-
larising channel on |ψAB〉 = cos θ/2|00〉 + sin θ/2|11〉,
the negativity of the final state ρ f = ∑i,j(K

dp
i ⊗

Kdp
j )|ψAB〉〈ψAB|(K

dp
i ⊗ Kdp

j )† reads as

| 2p(3αp(p− 1)− 1)
6(−1 + 3α(−1 + p)2 p)

+

√
p2(1− 3αp(p− 1))2(3 + cos 2θ)− f (α, p) sin2 θ

6(−1 + 3α(−1 + p)2 p)
|

(11)

where f (α, p) = −9 + p(24− 14p + 3α(−1 + p)(−18 +
p(18+ 4p+ 3α(−1+ p)(−9+(−6+ p)p)))). Analyzing
Eq. (11) for the entire range of p and for fixed values
of α and θ, we find no revival of entanglement, i.e., we
find that the above equation has only one zero in terms
of p. E.g., setting α = 0.9 and θ = 0.6, the only time the
function vanishes is at p = 0.219 and thereafter, entan-
glement remains zero.
On the other hand, in the case of double-sided depolar-
ising channel, we can again obtain a cumbersome ex-
pression for negativity. In this situation, ignoring terms
of O(p3), the entanglement goes to zero at the damping
parameters (in terms of the other parameters),

p±0 =
6 + 3(4 + 9α) sin θ

(8 + (16 + 27α(4 + 3α)) sin θ)

±3
√

2
√

2− 9α + 9α cos 2θ + 2(2 + 9α) sin θ

(8 + (16 + 27α(4 + 3α)) sin θ)
, (12)

which we plot in Fig. 8 by varying θ for different
values of α. In this case, we find that p−0 is always
a valid damping parameter while p+0 <= 1 only for
α ≥ αc where αc can be found for a given θ. Notice first
that for α = 0, which denotes the Markovian regime,
entanglement does not show any regeneration. For
α < αc, we get a valid noise parameter as p−0 , which
implies that the entanglement undergoes collapse only.

TABLE VII. Regeneration % (Dephasing channel)–Percentage of states which undergo re-
generation when two-qubit states of different ranks are passed through singe- and double-
sided non-Markovian dephasing channel

Regeneration %
Rank 1 Rank 2 Rank 3 Rank 4

α double single double single double single double

0.2 98.820 99.996 97.942 100.000 94.906 100.000 89.808

0.3 99.614 100.000 99.878 100.000 99.882 100.000 99.978

0.5 99.916 100.000 99.996 100.000 99.996 100.000 99.999

0.6 91.944 100.000 100.000 100.000 100.000 100.000 100.000

0.7 99.955 100.000 100.000 100.000 100.000 100.000 100.000

0.8 99.977 100.000 100.000 100.000 100.000 100.000 100.000

0.9 99.984 100.000 100.000 100.000 100.000 100.000 100.000

For α ≥ αc, both p−0 and p+0 are valid which definitely
conclude that entanglement collapses twice, thereby
exhibiting regeneration in between these two collapses.
Another confirmation for the same is that,
both the left hand and right hand limits
around p−0 are positive, having the value
6h
√

2
√

2− 9α + 9α cos 2θ + 2(2 + 9α) sin θ at both
p−0 + h and p−0 − h as h → 0 ignoring O(p3). It
also demonstrates the constructive effect of non-
Markovianity, since the higher amount of noise in the
double-sided channel helps in the regeneration. E.g.,
α = 0.9 and θ = 0.6, we find pc = 0.131, and 0.355. �
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FIG. 8. (Color online. ) Plot of p±0 (ordinate) against θ (ab-
scissa) for different values of α. We show p+0 in the three
upper lines for α = 0.2 (topmost), α = 0.6 (second from the
top) and α = 0.9 (third from the top). The bottom three lines
represent p−0 for α = 0.2 (fourth from the top), α = 0.6 (fifth
from the top) and α = 0.9 (bottom-most).

The above results clearly establish the constructive re-
action of non-Markovianity on QCs, thereby overcom-
ing the destructive effects of noise on systems. As men-
tioned before, when double-sided channels is active on
states, noise as well as non-Markovianity both increase
and hence for a high value of α, non-Markovianity wins
which is responsible for revival of QCs. Let us now
concentrate on the numerically obtained observations
which confirm the above results, irrespective of the rank
of the two-qubit states.
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FIG. 9. (Color online. ) Plot of the distribution of normalised
regeneration, RN

g , against initial LN (left) and QD (right).
Both the qubits of random rank-2 states are sent through
the depolarizing non-Markovian channel with different non-
Markovian parameters, α. Other specifications are same as in
Fig. 5.

TABLE VIII. RE
g (Depolarizing channel)–Mean regeneration of entanglement when two-

qubit states are passed through single- and double-sided depolarising channel is tab-
ulated for different non-Markovianity parameters. Notice that after the action of single-
sided channel, there is no regeneration of entanglement. Constructive feedback from non-
Markovianity is visible here. Since for the double-sided case, noise and non-Markovianity
both increase, non-Markovianity can sometimes suppress the damping nature of noise.

RE
g

Rank 1 Rank 2 Rank 3 Rank 4

α double double double double

0.3 0 0 0 0

0.7 0 0 0 0

0.8 0.128 0.001 0 0

0.9 0.579 0.118 0.016 0.002

1 0.843 0.484 0.198 0.081

1. Single- vs. double-sided non-Markovian channels

We first describe how non-Markovianity activates
rebirth of entanglement in presence of high amount
of noise and then we move to quantum discord in a
similar situation.

TABLE IX. RD
g (Depolarizing channel)–Mean regeneration of discord when two-qubit

states are passed through single- and double-sided depolarising channel is tabulated for
different non-Markovianity parameters. Again it increases with non-Markovianity, espe-
cially for the double-sided channels, thereby highlighting the fact that non-Markovianity
is responsible for resurrections.

RD
g

Rank 1 Rank 2 Rank 3 Rank 4

α single double single double single double single double

0 1.000 0.998 1.000 0.999 1.000 0.999 1.000 0.999

0.2 1.000 0.998 1.000 0.999 1.000 0.999 1.000 0.999

0.3 1.000 0.998 1.000 0.999 1.000 0.999 1.000 0.999

0.5 1.000 0.999 1.000 1.001 1.000 1.000 1.000 1.000

0.6 1.000 1.003 1.000 1.010 1.000 1.004 1.000 1.004

0.7 1.000 1.015 1.000 1.041 0.999 1.028 0.999 1.028

0.8 1.000 1.048 1.000 1.124 1.000 1.135 1.000 1.161

0.9 1.000 1.173 1.000 1.385 1.000 1.518 1.000 1.630

TABLE X. Regeneration % (Depolarizing channel)–Percentage of states which undergo re-
generation when two-qubit states of different ranks are passed through singe- and double-
sided non-Markovian depolarising channel

Regeneration%
Rank 1 Rank 2 Rank 3 Rank 4

α single double single double single double single double

0 100.000 99.820 100.000 99.914 100.000 99.992 100.000 99.986

0.2 100.000 9.822 100.000 99.948 100.000 99.998 100.000 99.996

0.3 100.000 99.810 100.000 99.966 100.000 99.986 100.000 99.994

0.5 100.000 99.822 100.000 99.956 100.000 99.994 100.000 99.992

0.6 99.980 99.834 100.000 99.950 100.000 99.986 100.000 99.994

0.7 100.000 99.848 100.000 99.940 100.000 99.992 100.000 99.994

0.8 100.000 99.866 100.000 99.940 100.000 99.992 100.000 99.996

0.9 100.000 99.842 100.000 99.940 100.000 99.998 100.000 99.994

1. Entanglement under depolarizing non-Markovian
channel. Let us first consider the scenario when
noise only acts on a single side. Interestingly, we
find that LN of the resulting states from random
input states does not show any revival after
collapse for any rank and for any non-Markovian
strength of the channel. As we discussed before,
although the presence of non-Markovianity
causes entanglement to revive, in this scenario,
strength of non-Markovianity is possibly not
enough to overcome the power of noise, thereby
showing destructive effects of depolarizing chan-
nel on entanglement.

On the contrary, when both the qubits are passed
through a local depolarizing channel, entangle-
ment resurrects for high value of α, say 0.8 and
above, as depicted in left panel of Fig. 9 for ran-
dom rank-2 input states. As we have seen for
QD with dephasing channel, we here also report
a constructive effect of noise on entanglement –
more noise on the state shows possibility of re-
vival while less noisy states do not. It possi-
bly shows that the effect of damping parameter p
which, in general, destroys QCs can be overcome
by the non-Markovianity, α, that tends to shield
QCs from noise. Hence when non-Markovian ef-
fect exceeds the damping effect, QCs, either in
the form of entanglement or QD, revives. We
also notice that to show revival, random initial
states also should posses high amount of entan-
glement on average. We find that RE

g shows sim-
ilar trend like dephasing channel, i.e. it increases
with the non-Markovianity for a given rank of
random states, thereby confirming importance of
non-Markovianity for revival of entanglement.

2. QD under depolarizing channel. Like dephasing
channel, after passing through a noisy channel
(either a single qubit or both the qubits) having
moderate value of non-Markovianity, QD of the
output states always revives with the increase of
p irrespective of the rank of the initial states, and
the amount of QD in the initial state. Unlike de-
phasing channel, for a fixed non-Markovianity,
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TABLE XI. pE
c (Depolarizing channel)–Mean value of the noise parameter at which entan-

glement collapses for the first time with single- and double-sided depolarising channels.

pE
c

Rank 1 Rank 2 Rank 3 Rank 4

α single double single double single double single double

0 0.491 0.227 0.306 0.156 0.21 0.108 0.159 0.082

0.2 0.36 0.15 0.209 0.101 0.139 0.068 0.104 0.051

0.3 0.3 0.126 0.177 0.084 0.117 0.057 0.088 0.042

0.5 0.23 0.094 0.132 0.063 0.087 0.042 0.065 0.031

0.6 0.2 0.083 0.117 0.055 0.077 0.037 0.057 0.027

0.7 0.18 0.074 0.104 0.049 0.069 0.032 0.051 0.024

0.8 0.16 0.071 0.095 0.044 0.062 0.029 0.046 0.021

0.9 0.14 0.068 0.086 0.040 0.057 0.026 0.042 0.019

TABLE XII. pD
c (Depolarizing channel)–Mean value of the noise parameter at which dis-

cord collapses for the first time for the depolarising channel.

pD
c

Rank 1 Rank 2 Rank 3 Rank 4

α single double single double single double single double

0 0.750 0.693 0.747 0.678 0.747 0.674 0.746 0.669

0.2 0.608 0.545 0.603 0.529 0.602 0.524 0.600 0.520

0.3 0.523 0.470 0.520 0.456 0.520 0.452 0.519 0.448

0.5 0.390 0.353 0.389 0.343 0.389 0.340 0.389 0.337

0.6 0.339 0.311 0.338 0.302 0.339 0.300 0.339 0.297

0.7 0.299 0.278 0.298 0.270 0.299 0.267 0.299 0.265

0.8 0.269 0.250 0.269 0.243 0.270 0.241 0.270 0.239

0.9 0.258 0.239 0.258 0.232 0.259 0.230 0.259 0.229

the number of regeneration seen for depolariz-
ing channel is higher than that of dephasing one.
(see right part of Fig. 9 for random rank-2 states).
For single- as well as double-sided cases, RD

g in-
creases with non-Markovianity for all the ranks
of the random states (see Table IX). Furthermore,
we find that even though RD

g is less for double-
sided channel action than the single-sided case
for low values of α (≤ 0.4), it surpasses the lat-
ter significantly, as we move on to stronger non-
Markovian regimes. The constructive feedback of
non-Markovianity is apparent in this case (see Ta-
ble X).

3. Mean critical noise for collapse. As defined in Sec.
IV, higher value of mean critical noise for col-
lapse indicates states to be more robust against
noise. Like dephasing channel, the trends of pE

c is
the same for both single - and double-sided chan-
nels i.e. pE

c for LN decreases with increasing α for
all random states having different ranks (see Ta-
ble XI). However, for a fixed rank and fixed non-
Markovian strength, pE

c obtained for LN is always
greater when a single qubit of the state is noisy
than the case for double-sided channel, while it
decreases with rank for a given value of α. As
depicted in Fig. 10, random pure states whose
single qubit is affected by noise have a special sta-
tus – they are maximally robust against noise – in
worst case, the difference of pE

c with other rank
states is of the order of ≈ 0.05 among all other
randomly simulated states with different ranks,
irrespective of the strength of non-Markovianity.
The behavior of pD

c is exactly similar to that of en-

TABLE XIII. pE
reg (Depolarizing channel)–Mean value of the noise parameter at which

entanglement regenerates for random states sent through the non-Markovian single- and
double-sided depolarising channels. It decreases with non-Markovianity which possibly
shows that the non-Markovianity in the channel does not increase robustness.

pE
reg

Rank 1 Rank 2 Rank 3 Rank 4

α double double double double

0.8 0.656 0.673 0 0

0.85 0609 0.641 0.651 0

0.9 0.571 0.61 0.626 0.635

0.95 0.538 0.583 0.601 0.611

1 0.509 0.557 0.579 0.594

TABLE XIV. pD
reg (Depolarizing channel)–Mean value of the noise parameter at which

discord revives for the first time for the depolarizing channel.

pD
reg

Rank 1 Rank 2 Rank 3 Rank 4

α single double single double single double single double

0 0.760 0.816 0.763 0.832 0.763 0.836 0.764 0.841

0.2 0.621 0.686 0.623 0.707 0.623 0.713 0.623 0.719

0.3 0.541 0.600 0.543 0.620 0.542 0.625 0.542 0.631

0.5 0.401 0.447 0.403 0.461 0.403 0.465 0.404 0.469

0.6 0.354 0.391 0.356 0.402 0.355 0.405 0.356 0.408

0.7 0.320 0.345 0.321 0.355 0.320 0.357 0.320 0.360

0.8 0.282 0.309 0.284 0.317 0.282 0.319 0.283 0.322

0.9 0.270 0.293 0.271 0.301 0.270 0.304 0.271 0.306

tanglement (see Table XII). In particular, for ran-
dom states with a fixed rank, it decreases with the
increase of α (see Fig. 10). Clearly, it supports the
fact that non-Markovianity can induce regenera-
tion or nonmonotonicity in QC but can decrease
sustainability of initial QCs.
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FIG. 10. (Color online.) Upper Panel: Mean critical noise for
collapse, pQc , vs. α for depolarizing channel. Lower panel:
Behavior of pQreg with α. Other specifications are same as in
Fig. 6.

4. Mean critical noise for revival. In case of entangle-
ment, since there is no regeneration when a single
qubit is sent via noisy channel, there does not ex-
ist any non-trivial value of mean critical noise for
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revival. If both the qubits are passed through the
channel, there is regeneration for higher values of
non-Markovianity, and pE

reg decreases with non-
Markovianity (see Table XIII). On the other hand,
the behaviour of pD

reg is identical with the dephas-
ing channel (see Fig. 10 and Table XIV).

Activation of rebirth of QCs. Let us check how non-
Markovianity can activate rebirth of QCs after the
first collapse. To estimate this, we consider the
difference between pQc and pQreg for a fixed rank of
the input state and for a fixed α, i.e we evaluate
δQrb = pQreg− pQc by comparing Tables III, V, XI and
XIII for LN and Tables IV, VI, XII and XIV) for
QD.

• In case of a single-sided dephasing channel,
0.188 . δE

rb . 0.365, while for the double-
sided case, it lies between 0.269 and 0.452.
On the other hand, for depolarizing double-
sided channel, it lies between 0.585 and
0.616. The high gap between collapse and
revival again establishes that resurrection of
entanglement after collapse is possibly diffi-
cult even in presence of non-Markovianity.

• In case of QD, for a single- and double-
sided dephasing channels, we respectively
get 0.01 . δD

rb . 0.016 and 0.018 . δD
rb . 0.05.

For a double-sided depolarizing channel, the
maximum is 0.19 and the minimum is 0.055
while 0.011 . δD

rb . 0.023 for a single-sided
depolarizing one. The small gap shown by
QD illustrates that non-Markovianity possi-
bly helps QD to overcome the barrier of noise
in the channel more strongly compared to
entanglement.

Remark. The form of the depolarizing map ensures
that the damping effects are present from all the direc-
tions and hence it destroys quantum correlations very
fast, thereby showing a very low critical noise for col-
lapse. When a single qubit of a two-qubit state is ef-
fected by the non-Markovian depolarizing channel, the
maximum allowed value of non-Markovianity which
is typically responsible for resurrection is possibly not
enough to overcome the damping effects, thereby show-
ing absence of revival while when both the qubits are
sent through the depolarizing channel, both the damp-
ing and non-Markovian effects are strong and for high
values of non-Markovianity, it dominates over the detri-
mental effects of noise. On the other hand, in case of
dephasing channels, since the noise acts only in the z-
direction and hence its destructive effect on states is not
so pronounced, the competition between damping and
non-Markovianity is comparatively weaker than that of
the depolarizing channel.

VII. CONCLUSION

The distribution of a certain property seen in random
quantum states can, in general, be different than the one
observed for a specific class of states although these
random states can also possess an underlying generic
characteristic. In this paper, we searched for universal
feedback of non-Markovian noise on quantum correla-
tions (QC) of random two-qubit states. In particular, a
single qubit (single-sided) or both the qubits (double-
sided) of Haar uniformly simulated states with differ-
ent ranks are subjected to two different non-Markovian
channels, dephasing and depolarizing channels with
varying non-Markovian strength. And we choose log-
arithmic negativity and quantum discord as QC mea-
sures for investigations. We found that broad com-
mon features regarding the response of noise and non-
Markovianity on QCs of random states emerge al-
though there are some differences in the observations of
two different channels as well as in single- and double-
sided channels. To capture these aspects, we introduced
certain quantities which can help us to visualize the re-
sponse to noise and non-Markovianity of QCs of ran-
dom states.

In the case of dephasing channel, we observed that if
a single qubit is affected by noise, entanglement is, in
general, reviving more number of times than the situa-
tion when both the qubits are subjected to noisy chan-
nels. Similar behaviour has been observed for QD. In
a similar spirit, when both the qubits are sent through
depolarizing channels, entanglement regenerates after
collapses while no revival is observed for a single-sided
case. In both situations, we observe that more noisy
scenario leads to more revival of QCs – this is possibly
due to the presence of non-Markovianity in the chan-
nels, which we call as constructive feedback of non-
Markovian noise. The results are supported both by
analytical and numerical means. The fact that the mean
increases with the increase of non-Markovian power
justifies the constructive effect. Moreover, we noticed
that depolarizing channel leads to a more revival of
quantum discord than that of the dephasing ones, in
double-sided channels. It does not hold for entangle-
ment – especially, for a single-sided depolarizing chan-
nel, entanglement of random states does not become
nonvanishing after collapse which can be argued intu-
itively. In near future, it will be interesting to derive
a complementary relation between the noise parame-
ter and the strength of non-Markovianity for a given
channel and for a fixed QCs of the initial state. Such a
study can help us to compare different channels quan-
titatively.

On the other hand, we found that both for entangle-
ment and quantum discord, the average value of thresh-
old noise at which QCs of the output states collapse
for the first time decreases with the increase of non-
Markovian parameter of the channels. This observation
is independent of the channels considered and the rank
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of the random input states. We noticed that similar pic-
ture emerges also for the mean critical noise strength
at which QCs revive after the first collapse. It implies
that although non-Markovianity does not give any ad-
vantage to preserve QCs initially, it surely induces the
first regeneration of QCs, on average. In case of QD, the
difference between mean critical noise for collapse and
regeneration is very less in comparison to that for en-
tanglement. It implies that QD revives easily after col-
lapse whereas it is hard for entanglement to revive even
through non-Markovianity which can be intuitively un-
derstood from the natures of QC measures. Moreover,
we reported that a certain amount of average initial
QCs in random states along with a moderate values of
non-Markovian noise is responsible for regeneration of
quantum correlations. We believe that our investiga-
tions shed light on how the resources are affected due
to the competition between the damping parameter and
the non-Markovianity in the noisy channels.
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APPENDIX: QUANTUM CORRELATION MEASURES

We here work with two kinds of quantum correla-
tion measures, namely logarithmic negativity, an entan-
glement measure and quantum discord, a QC measure
which has its origin different from entanglement.

Logarithmic Negativity. Based on partial transpo-
sition criteria [42], logarithmic negativity (LN) [43], a
computable entanglement measure, of a given bipartite
state ρAB is defined as

E(ρAB) = log2 ||ρ
TA
AB|| = log2(2N(ρAB) + 1) (13)

where ρ
TA
AB is the state after partial transposition with re-

spect to subsystem A, ||.|| denotes the trace norm, while

N(ρAB) is called the negativity which is the sum of ab-
solute value of negative eigenvalues of ρ

TA
AB. Notice that

N(ρAB) can also be a valid of measure of entanglement
which we will use to derive analytical results.

Quantum discord. It quantifies quantum correlation
present in ρAB which is independent from entangle-
ment [12–14] and has originated from the concept of
classical information theory [44]. Classically, mutual in-
formation is defined as

I(X : Y) = H(X) + H(Y)− H(X, Y) = H(X)− H(X|Y)
(14)

where X is the random variable having probability dis-
tribution, {px}, H(X) = −∑x px log2(px) is the Shan-
non entropy and similarly H(Y). H(X, Y) is the Shan-
non entropy of the joint probability distribution of X
and Y and H(X|Y) = H(X, Y)−H(Y) is the conditional
entropy. Switching to the quantum realm, mutual infor-
mation of ρAB reads as

I(ρAB) = S(ρA) + S(ρB)− S(ρAB) (15)

where S(ρ) = −tr(ρ log2 ρ) is the Von-Neumann en-
tropy, and ρi, i = A, B are the reduced density matrices
of ρAB. If the second definition of mutual information,
that involving conditional entropy, is recast in terms of
the Von-Neumann entropy, we get

J(ρAB) = S(ρA)− S(ρA|B) (16)

which can both be positive as well as negative. There-
fore, the second term in the above equation can be mod-
ified as

S(ρA|B) = min
{ΠB

k }
∑
k

pkS(ρA|k) (17)

where the minimization is taken over all projective
rank-1 measurements, {ΠB

k }, on the subsystem B. The
post-measurement state is ρA|k, which is obtained with
probability pk, both of which, can be expressed as

ρA|k = trB(ΠB
k ρABΠB

k )/pk, pk = tr(ΠB
k ρABΠB

k ). (18)

The difference between quantum mutual information
and J(ρAB) leads to the definition of quantum correla-
tion measure called quantum discord, given by

D(ρAB) = I(ρAB)−max
{ΠB

k }
J(ρAB), (19)

where the first and the second terms respectively can
be interpreted as total and classical correlations.
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