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In the traditional quantum theory, one-dimensional quantum spin models possess a factorization
surface where the ground states are fully separable having vanishing bipartite as well as multipartite
entanglement. We report that in the non-Hermitian counterpart of these models, these factorization
surfaces either can predict the exceptional points where the unbroken-to-broken transition occurs
or can guarantee the reality of the spectrum, thereby proposing a procedure to reveal the unbroken
phase. We first analytically demonstrate it for the nearest-neighbor rotation-time (RT )-symmetric
XY model with uniform and alternating transverse magnetic fields, referred to as the iATXY model.
Exact diagonalization techniques are then employed to establish this fact for the RT -symmetric
XYZ model with short- and long-range interactions as well as for the long-ranged iATXY model.
Moreover, we show that although the factorization surface prescribes the unbroken phase of the
non-Hermitian model, the bipartite nearest-neighbor entanglement at the exceptional point is non-
vanishing.

I. INTRODUCTION

Over the years, studying the phenomena and prop-
erties of one-dimensional short-ranged quantum spin
models in the presence of magnetic fields has devel-
oped lots of interest [1, 2] since several such Hamil-
tonians can be mapped to spinless fermions [3] and
hard-core bosons [4], thereby ensuring the analytical
study of single-, two- and multi-site features. More-
over, they can be simulated in laboratories with physi-
cal substrates like ultracold atoms [5], nuclear magnetic
resonances [6–8] and ion traps [9]. Apart from inves-
tigating phenomena like quantum phase transitions at
zero-temperature and the quantum dynamical transi-
tion in evolution, these systems have been shown to be
potential candidates for designing quantum technolo-
gies [10–13]. Moreover, these models also possess a
factorization surface or volume in the parameter space,
[14–20] at which the ground state is doubly degener-
ate and is fully separable, having vanishing bipartite as
well as multipartite entanglement [21].

On the other hand, in the seminal paper by Bender
and Boettcher [22], it was shown that non-Hermitian
Hamiltonian with both parity and time reversal sym-
metry, (together called PT -symmetry), can have real
energy spectrum while the breaking of symmetry leads
to the complex eigenenergy. The phase transition from
symmetry broken to an unbroken phase occurs at the
exceptional point. These results simulate a signifi-
cant amount of research to characterize non-Hermitian
quantum theory, both theoretically and experimen-
tally, especially in optics [23], cold atoms [24], cav-
ities [25, 26]. In this respect, discrete systems like
tight binding model, quantum spin systems, specifi-
cally, one-dimensional quantum XY models turn out
to be important platforms to verify the properties in
non-Hermitian Hamiltonian [27–35]. It was also no-
ticed that instead of PT -symmetry, linear rotation op-
erator, R, which rotates each spin by a certain amount

around a fixed axis, along with time reversal operator
T can together prompt non-Hermiticity in the quan-
tum spin models [36]. Specifically, it was shown that
the nearest-neighbor transverse XY model with imagi-
nary anisotropy parameter has RT -symmetry and un-
dergoes a transition from the unbroken phase to a bro-
ken one which can again be detected via the existence
of change in the spectrum from real to imaginary ones.
In both non-Hermitian fermionic and bosonic systems
[37], Berry curvature, [38] and multipartite entangle-
ment [39] are used to describe the broken-to-unbroken
transitions.

In the current work, we first investigate the one-
dimensional (1D) RT -symmetric nearest-neighbor XY
model in presence of uniform as well as alternating
magnetic fields [40] which we call as the iATXY model.
The Hermitian version of this model possesses a richer
phase diagram than that of the transverse XY model.
In particular, it has paramagnetic-II (PM-II) phase with
a large amount of bipartite entanglement along with
antiferromagnetic (ferromagnetic), and paramagnetic-I
phases [41, 42]. Moreover, like the XY model, it can
also be diagonalized by Jordan-Wigner, Fourier, and
Bogoliubov transformations [1, 36, 43–45]. By employ-
ing similar transformations in the non-Hermitian case,
we report that the exceptional points which divide the
real and imaginary spectrum can be inferred from the
factorization surface of the corresponding Hermitian
Hamiltonian. The finite-size exact diagonalization cal-
culations also confirm this result, thereby motivating
us to consider quantum spin models which cannot be
solved analytically.

To establish the relation between the broken to the
unbroken transition of the non-Hermitian model and
the factorization surface of the Hermitian counterpart,
we study both nearest-neighbor and long-ranged RT -
symmetric XYZ model as well as iATXY model with
long-range interactions. In all these systems, numerical
simulations strongly suggest that the unbroken phase
of the RT -symmetric models can be identified by the
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corresponding Hermitian factorization surface. Specif-
ically, we find that the energy spectrum is real at and
above the surface predicted via the factorization sur-
face of the Hermitian Hamiltonian, thereby providing
a sufficient condition for the reality of the spectrum.
Interestingly, we observe that at the surface, the bi-
partite nearest neighbor entanglement of the iATXY
model is nonvanishing. At this point, we are tempted to
conjecture that tuning parameter of the RT -symmetric
Hamiltonian which leads to a real spectrum can be de-
termined from the factorization surface of the corre-
sponding Hermitian models. It is important for the
following three reasons. (1) In both the Hermitian
and non-Hermitian domains, there are quantum spin
models, for which the spectrum can only be found nu-
merically although the factorization surfaces are known
from different symmetry properties of the system [16].
(2) Finding where the spectrum is real is not an easy
task, owing to the computational problems of diagonal-
izing non-Hermitian Hamiltonians although we know
that any physics that is observable and measurable
needs to be done when the spectrum is real. Our
method directly prescribes either an exceptional point
for the nearest-neighbor model or suggests parameters
that correspond to the real spectrum, thereby simpli-
fying the situation enormously. (3) Lastly, our results
possibly show that the properties of the Hermitian sys-
tem have the potential to diagnose the exceptional point
of the non-Hermitian systems without computation.

The paper is organized as follows. In Sec. II, we
discuss the way to diagonalize the pseudo-Hermitian
ATXY model while the broken to unbroken transi-
tion identified via factorization surface of the corre-
sponding Hermitian model is presented in Sec. III. In
the Sec. IV. we confirm that the exceptional point is
predicted by the factorization surface by considering
nearest-neighbor RT -symmetric XYZ model. In Sub-
Sec. IV B, the procedure for detecting the unbroken
phase in both the models with long-range interactions
having RT symmetry is provided.The behavior of bipar-
tite entanglement and parity in the transition surface of
the iATXY model are described in Sec. V and we con-
clude in Sec. VI.

II. PSEUDO-HERMITIAN iATXY MODEL

Let us first consider the pesudo-Hermitian one-
dimensional nearest-neighbor XY model with imagi-
nary anisotropy factor in the presence of uniform and
alternating transverse magnetic field. The Hamiltonian
reads as,

ĤiATXY =
N

∑
i=1

J
[1 + iγ

4
σx

i σx
i+1 +

1− iγ
4

σ
y
i σ

y
i+1

]
+

h1 + (−1)ih2

2
σz

i , (1)

where J 6= 0 is the coupling constant, σx,y,z are Pauli
matrices, and iγ is the imaginary anisotropy parameter
while h1 − h2 and h1 + h2 are the strengths of magnetic
fields on odd and even spins respectively. We also as-
sume periodic boundary condition throughout the pa-
per, i.e., σN+1 = σ1. Like the XY model with uniform
field [36], we will show that the non-Hermitian ĤiATXY
with RT symmetry has real spectrum in the unbroken
phase, while the complex eigenenergy is found in the
broken phase. Here R is the application of π

2 rotation

about the z axis, given by R ≡ e
[
−i(π/4)∑N

j=1 σz
j

]
, and

the time reversal, T , is the complex conjugation in case
of finite dimensional systems. The Hamiltonian is not
individually invariant under either R or T operators
but when combined, the Hamiltonian is invariant un-
der RT , i.e., [H,RT ] = 0. As shown in Ref. [36], the
effects of RT symmetry are similar to that of PT sym-
metry. In particular, the Hamiltonian always commutes
with RT, although H and RT do not always share the
same eigenvectors due to the anti-linearity of T , which
leads to the parametric dependence having a real spec-
trum.

A. Energy spectrum of iATXY model

By performing Jordan-Wigner transformation fol-
lowed by a Fourier transform of the fermionic opera-
tors, the iATXY model in Eq. (1) can be diagonalized by
employing the similar procedure as Hermitian ATXY
model [40–42, 46–48]. First, let us convert HiATXY in
terms of σ+ and σ− operators where σx = σ++σ−

2 ,
σy = σx−σy

2i and σz = σ+σ− − 1
2 . The Jordan-Wigner

transformation

σ̂2j
+ = ê†

2j exp
(

iπ ∑i−1
l=1 ê†

2l ê2l + iπ ∑i
l=1 ô†

2l−1ô2l−1

)
σ̂+

2j+1 = ô†
2j+1 exp

(
iπ ∑i

l=1 ê†
2l ê2l + iπ ∑i−1

l=0 ô†
2l+1ô2l+1

)
maps the system into a 1D two-component Fermi gas,
where the even and odd sites correspond to fermions,
following the fermionic commutation rules, governed
by ê and ô respectively.

The parity operator defined as, ξ = ∏N
i=1
(
σz

i
)

=

(−1)N f , where N f = ∑
N
2

i=1 ô†
2i−1ô2i−1 + ê†

2i ê2i commutes
with the Hamiltonian, i.e., [H, ξ] = 0 which is the sum
of the number of fermions. Considering the parity and
the Jordan-Wigner transformation, the Hamiltonian can
be written as

ĤiATXY =

N
2 −1

∑
i=1

[{
X̂i + Ŷi + iγ

(
V̂i + Ŵi

)}
+hoM̂o

i + heM̂e
i
]
− µ(Ŷ N

2
+ iγŴ N

2
),

(2)

where X̂i = ô†
2i−1 ê2i+ H.c, Ŷi = ê2i ô†

2i+1+ H.c, V̂i =

ô†
2i−1 ê†

2i+ H.c., Ŵi = ê†
2i ô

†
2i+1+ H.c and the last term
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is for the boundary condition with µ being the eigen-
values of ξ with distinct values ±1. Here the num-
ber of odd and even fermions are given by the M̂o

i =

ô†
2i−1ô2i−1 with the field λo = 2(h1 − h2)/J and M̂e

i =

ê†
2i ê2i with the field λe = 2(h1 + h2)/J. We set hi/J = λi,

i = 1, 2. Using Fourier transformations, given by

ô†
2j+1 =

√
2
N

N/4

∑
p=−N/4

exp
[
i(2j + 1)φp

]
ô†

p,

ê†
2j =

√
2
N

N/4

∑
p=−N/4

exp
[
i(2j)φp

]
ê†

p,

(3)

we write the Hamiltonian including the boundary

terms, i.e., the summation of ∑
N
2

i=1 which can be done by
considering suitable Fourier momenta: odd parity (µ =

−1) is given by k− = 2πp
N and even parity (µ = +1) is

given by k+ = 2π(p+1/2)
N . The Hamiltonian can now be

written in the Fourier basis, Sk = {okµ , o†
−kµ , e†

kµ , e−kµ},
as

HiATXY = ∑
k∈kµ

Hk
iATXY = ∑

k∈kµ

(Ŝk)† Ĥk
iATXY Ŝk. (4)

Since the Hamiltonian is invariant under parity, the cor-
responding k± do not mix, and hence we can consider,
k as a general momentum running through both even
and odd momenta. Thus, the Hamiltonian Hk

iATXY re-
duces to λ1 + cos k −γ sin k 0 −λ2

γ sin k −λ1 − cos k λ2 0
0 λ2 cos k− λ1 −γ sin k
−λ2 0 γ sin k − cos k + λ1

 .

(5)
Diagonalizing Hk

iATXY gives the single-particle energy
spectrum of the model in each k subspace in terms of
λi, (i = 1, 2) and γ as

Ek
± =

[
λ2

1 + λ2
2 + cos2 k

−γ2 sin2 k± 2
√

λ2
1λ2

2 + h2
1 cos2 k + λ2

2γ2 sin2 k
]1/2

,

(6)
which finally leads to the energy spectrum of the model
and hence can be used to obtain the exceptional points,
dividing the regions of broken and unbroken phases in
the iATXY model.

III. BROKEN-UNBROKEN TRANSITION OF THE
QUANTUM iATXY MODEL AT THE FACTORIZATION

SURFACE OF THE HERMITIAN MODEL

Having obtained the energy for each momentum
space, k, let us concentrate on the transition from the
broken to unbroken phase. In other words, in the un-
broken phase, the spectrum becomes real if the same set

of eigenvectors spans both H and RT , while in the bro-
ken phase, complex conjugate pairs are the eigenvalues
of ĤiATXY. Let us identify the parameter space where
the spectrum is real. To identify it, we will be looking
for the value of k at which Ek

± has an extremum and
(Ek
±)

2 ≥ 0. It turns out that the value of k for which Ek
±

reaches its extremum, i.e., dEk
±

dk = 0, is given by

k = cos−1

(√
1

λ2
1 + λ2

2γ2

[λ2
1 + λ2

2γ2

1 + γ2

]
+ λ2

2γ2 − λ2
1λ2

2

)
.

(7)
Plugging it into Ek

− and checking when it is real, which
is equivalent to find out when (Ek

−)
2 ≥ 0, we find that

the parameter space is split in order to have real spec-
trum when

λ1 ≥
√

1 + λ2
2 + γ2 ≡ λs

1, λ1 > λ2,

λ1 ≤
√

1 + λ2
2 + γ2, λ1 < λ2.

(8)

Let us first note that the second case is not possible. The
reason is that when λ1 < λ2, i.e., when λ2

1 − λ2
2 < 0,

the real eigenvalues occur for λ2
1 − λ2

2 > 1 + γ2 which
is not possible since γ is real. Hence the transition
from the broken to unbroken phase happens when

λ1 ≥
√

1 + λ2
2 + γ2. Notice that for the uniform XY

model, i.e., with λ2 = 0, the eigenvalues go from real
to complex pairs when λ1 ≥

√
1 + γ2 as found in Ref.

[36]. Notice also that Ek+ does not lead to any useful
condition in terms of λ1, λ2 and γ.

Apart from quantum critical points, the Hermitian
ATXY model possesses a special point (surface) known
as the factorization surface [14, 40, 42], denoted by
λ

f
1(H)

, which can be represented as

λ
f
1(H)

=
√

1 + λ2
2 − γ2 (9)

in the parameter space. At this surface, the ground state
is doubly degenerate and fully separable, having van-
ishing bipartite as well as multipartite entanglement.

If we now replace γ by iγ in Eq. (9), we recover the
first condition of having real spectrum of the iATXY
model given in (8). We denote the right hand side of
(8) as λs

1. This suggests that the transiton from the
symmetry-broken phase to the unbroken phase of the
RT -symmetric Hamiltonian can be identified by the
factorization surface of the corresponding Hermitian
Hamiltonian.

Therefore, we propose the following: if the Hermitian
Hamiltonian has a factorization surface, Λ f

(H)
(η, η′, . . .),

which is specified by the parameters of the Hamil-
tonian, η, η′, . . ., the corresponding RT -symmetric
Hamiltonian possess real eigenvalues when Λ ≥
Λs(iη, iη′, . . .) where some parameters can be complex
to preserve the symmetry of the Hamiltonian.
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FIG. 1. Detected numerical value vs. prediction of the iATXY model. The difference between the detected value, λd
1 found

numerically (the value of λ1 at which the spectrum becomes real) and the predicted value, λs
1 (according to (8)) (vertical axis)

against λ2 (horizontal axis). The anisotropy of ĤiATXY , γ, are fixed in each plot as mentioned at the top. The difference decreases
with the increase of system-sizes (N = 6, 8 and 10 are chosen to show convergence). Both the axes are dimensionless.

Since the iATXY model can be solved analytically,
we are able to derive the transition surface analyt-
ically. The above interesting observation can give
us an important tool for detecting the phases of the
non-Hermitian models, especially those models which
cannot be solved analytically.

Remark. It is important to notice that the property
obtained above is exclusive to the RT -symmetric non-
hermitian system as opposed to the PT symmetric
ones. For example, it was reported that a dimerized
spin system with added imaginary local magnetic field
with strength η conforms to PT -symmetriy, having
a real spectrum only when η < ηc where the ηc =
min[sum of the interaction strength in x and y directions,
difference of interaction strength in x and y directions]
[31], which is not dictated by the factorization point
[49].

In the rest of the paper, we demonstrate that the
known factorization surface of the Hermitian model
can indeed give the sufficient condition for the non-
Hermitian nearest-neighbor iXYZ model with imag-
inary γ, as well as for the fully connected iATXY
and the iXYZ models. Before addressing these mod-
els which cannot be solved analytically, we will now
check whether the condition for real eigenvalues of the
iATXY model in (8) match the numerically obtained
condition for real energies. Specifically, for a fixed N,
λ2 and γ, we search numerically for λ1, which gives
the entire spectrum as real and we match the detected
value, λd

1 with λs
1 obtained from the condition (8).

We use exact diagonalization technique which uti-
lizes Krylov subspace method, known as Lanczos
method [50]. Although it was noted [51] that Arnoldi
method may give better results for PT -symmetric sys-
tems, we observe that there is no qualitative difference
between Lanczos and Arnoldi [52] methods. Both of
these numerical mechanisms are part of ARMADILLO

package [53, 54] which we use to analyze our systems.
For a fixed anisotropy, γ, Fig. 1 depicts the behavior

of the difference, λd
1− λs

1 against λ2 from iATXY model
for different system-sizes. Note that the numerical er-
ror is of the order of ±0.05, which is the same as the
step size of λ2. Figure shows that our inferrence is in
accordance with the numerical data under the specified
numerical accuracy which increases with the increase
in the system-size.

IV. CONNECTING THE FACTORIZATION POINT OF
THE HERMITIAN MODEL WITH THE UNBROKEN
PHASE OF RT -SYMMETRIC MODELS: SHORT- TO

LONG-RANGE INTERACTIONS

In this section, we consider nearest-neighbor as well
as long-ranged XYZ models with magnetic field having
imaginary anisotropy parameter and also long-ranged
iATXY models. All these models have RT symmetry
although they cannot be solved analytically. We apply
exact diagonalization tool, as mentioned in the previous
section to diagonalize the pseudo-Hermitian Hamilto-
nian and find the parameter space in which the eigen-
values are real.

A. iXYZ model: Numerical vs. prediction

Let us first consider the non-Hermitian nearest-
neighbor XYZ Hamiltonian with RT -symmetry, which
we call as iXYZ model, given by

ĤiXYZ =
N

∑
i=1

J
[1 + iγ

4
σx

i σx
i+1 +

1− iγ
4

σ
y
i σ

y
i+1 +

∆̃
4

σz
i σz

i+1

]
+

h
2

σz
i ,

(10)
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FIG. 2. Plot of λd − λs (vertical axis) vs. ∆ (horizontal axis) of the iXYZ Hamiltonian, HiXYZ. The similar analysis as in Fig. 1 is
performed for the iXYZ model. Notice that for low system-size, N, the numerical values substantially divert from the inferred
values for large ∆. All other specifications are same as in Fig. 1.

where ∆̃ is the strength of the interaction in the z-
plane and other parameters are same as in ĤiATXY.
Here we set ∆ = ∆̃/J and λ = h/J. It can be easy to
find that [ĤiXYZ,RT ] = 0. Since we cannot diagonalize
this Hamiltonian analytically, let us follow the prescrip-
tion mentioned above to find the parametric condition
for which the Hamiltonian has real eigenvalues. In this
case, the factorization surface of the Hermitian XYZ
model [15] is known to be

λ
f
(H)

=
√
(1 + ∆)2 − γ2. (11)

We propose that the spectrum becomes real when the
magnetic field satisfies the condition given by

λ ≥ λs ≡
√
(1 + ∆)2 + γ2. (12)

For a given γ and ∆, we numerically find the actual
λd for which all eigenvalues are real. In Fig. 2, for
three different values of γ, the difference between the
detected magnetic value λd and the predicted value,
λs, according to (12) is plotted. We observe that with
the increase of N, (λd − λs) are of the order of ±0.05
where the step size of ∆ is also considered to be 0.05.
As shown in the case of the iATXY model, we can also
report here that the prediction and the numerical values
are in a good agreement, thereby verifying the prescrip-
tion proposed to find the reality of the spectrum.

B. Pseudo-Hermitian model with long-range interactions

Up to now, all the spin models that we discussed have
the nearest-neighbor interactions and we show that the
unbroken to broken transition can faithfully be detected
via the factorization surface of the respective Hermi-
tian model. Let us now move to iATXY as well as
iXYZ models having long-range interactions and ex-
hibit whether the sufficient condition of identifying re-
ality of the spectrum still remains valid or not. It is

important to note here that the long ranged models are
more natural to occur in experiments [55–61] and re-
stricting interactions to just nearest neighbors is a te-
dious task in laboratories. Hence a more experimental-
friendly model is the one where the strength of the in-
teractions decreases as the distance between the neigh-
bors increases. We now carry out our analysis with this
kind of models having RT symmetry. In order to build
the long ranged model with RT symmetry, we realize
that other than the anisotropy strength involved in the
interactions of the xy-plane, we should not add imagi-
nary terms in ∆ or λ2 since they fail to keep the sym-
metry.

1. iATXY model with long-range interactions

Consider the iATXY model with long-range interac-
tions, given by

ĤL
iATXY =

N

∑
i=1

i+ N
2

∑
j=i+1

Jij

[1 + iγ
4

σx
i σx

j +
1− iγ

4
σ

y
i σ

y
j

]
+

h1 + (−1)ih2

2
σz

i ,

(13)

where the parameters except Jij have the same features
as in HiATXY in Eq. (1). Here we consider power-law
interactions, i.e., Jij =

J
|i−j|α , where α dictates how fast

the interaction falls off with distance. For example, a
very high α value essentially imitates a nearest neighbor
model while a low value corresponds to the situation
when all of the spins are interacting with every other
spin.

In this case, the factorization surface [17, 18, 64] is
given to be

λ
f
1(H)

(α) =
√

1 + λ2
2 − γ2

i+ N
2

∑
j=i+1

1
|i− j|α , (14)



6

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  1  2  3  4  5

γ = 1
E

1
2

h
2

N = 12

N = 10

N = 8

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  1  2  3  4  5

γ = 0.8

E
1
2

h
2

N = 12

N = 10

N = 8

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  1  2  3  4  5

γ = 0.5

E
1
2

h
2

N = 12

N = 10

N = 8
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and hence according to our recipe, the spectrum of
ĤL

iATXY is real when

λα
1 ≥ λs

1(α) ≡
√

1 + λ2
2 + γ2

i+ N
2

∑
j=i+1

1
|i− j|α . (15)

By performing exact diagonalization of ĤL
iATXY for dif-

ferent system sizes, we uncover that for a fixed λα
2 , the

difference between our prediction and the value of λα
1

at which the entire spectrum becomes real is not ex-
actly zero. The reason behind such an observation is
that the spectrum starts becoming real for some range
of λα

1 and then again becomes imaginary, thereby creat-
ing a difficult situation for finding the exact transition
point. However, when we start looking at and above
λs

1(α = 1), we find that the eigenvalues always remain
real. To ensure that this is true, in steps of 0.05, we
check from the predicted λs

1(α = 1) to λs
1(α = 1) + 5.0

and confirm that at all of 100 points, the spectrum is
real for a given λα

2 . Thus, as prescribed, λ
f
1(H)

(α) of
the Hermitian model can suitably predict λs

1 which pro-
vides a sufficient condition for the unbroken phase of
the pseudo-Hermitian model.

2. Long-range iXYZ model: Sufficient condition for the unbroken
phase

Let us now analyze the RT -symmetric iXYZ model
when it is fully connected according to the power-law

decay, represented as

ĤL
iXYZ =

N

∑
i=1

i+ N
2

∑
j=i+1

Jij

[1 + iγ
4

σx
i σx

j +
1− iγ

4
σ

y
i σ

y
j +

∆
4

σz
i σz

j

]
+

h
2

σz
i ,

(16)
where Jij behave similarly as in Eq. (13). The factor-
ization surface of the corresponding Hermitian model
reads as

λ
f
(H)

(α) =
√
(1 + ∆)2 − γ2

i+ N
2

∑
j=i+1

1
|i− j|α , (17)

which suggests that the point at which the eigenvalues
of ĤL

iXYZ become real is

λ(α) ≥ λs(α) =
√
(1 + ∆)2 + γ2

i+ N
2

∑
j=i+1

1
|i− j|α . (18)

Like in the long-range iATXY model, for a given ∆,
finding λ(α) at which the spectrum becomes com-
pletely real, is hard to find numerically. However, we
apply the same method as before, i.e., with ∆ and vary-
ing (λ(α) with α = 1 in the range [λs(α), λs(α) + 5.0],
we observe that the eigenenergies are always real in that
range, thereby confirming the sufficient condition for
the detecting unbroken phase.

V. BIPARTITE ENTANGLEMENT AND PARITY OF THE
ZERO-TEMPERATURE STATE: NON-HERMITIAN AND

HERMITIAN SYSTEMS

In this section, we compare the properties of the
ground state for the RT -symmetric and the corre-
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sponding Hermitian systems. We calculate the par-
ity and nearest-neighbor bipartite entanglement. Al-
though the former feature exhibits the similarities be-
tween these two systems, the entanglement shows the
opposite nature.

A. Bipartite entanglement

We know that the factorisation point in the Hermitian
systems corresponds to a completely factorised ground
state of the form |ψ1〉 ⊗ |ψ2〉 . . .⊗ |ψN〉 with vanishing
entanglement in all bipartitions. Let us examine the
trends of entanglement at the surface where the broken-
to-unbroken transition occurs in the iATXY model. In
particular, we find that when we replace γ by iγ, the
exceptional point, λs

1 is, indeed not a factorisation sur-
face.

We observe that the nearest-neighbor entanglement,
E12, of the reduced bipartite state obtained from the
zero-temperature state is nonvanishing at the excep-
tional surface given in (8) as depicted in Fig. 3. Notice
that due to the translational symmetry of the model,
all two-party nearest-neighbor state is same, and hence,
we calculate the logarithmic negativity [62, 63] of ρ12
which is obtained after tracing out all the parties ex-
cept the first and the second parties. We also find that
the ground state is degenerate and hence we compute
the bipartite entanglement of the canonical equilibrium
state, ρβ = e−βHiATXY /Tr(e−βHiATXY ), with a very high
β = 1/KBT = 200, T being the temperature and kB
being the Boltzmann constant. We call it the zero-
temperature state.

It can be explained by considering a general two-site
density matrix between spins a and b which can be de-
scribed in Pauli basis, σi=x,y,z, as

ρab
(
mi, m′i, Cij

)
=

1
4

(
I4 + ∑

i=x,y,z

[
mi

(
σi ⊗ I2

)
+ m′i

(
I2 ⊗ σi

)
+ Cii

(
σi ⊗ σi

)
+ ∑

i 6=j=x,y,z
Cij

(
σi ⊗ σj

)])
,

where mi = Tr(ρijσ
i) and Cij = Tr(ρijσ

i ⊗ σj). The matrix form of ρab can be written as

ρab =
1
4


1 + Czz + mz + m′z Czx + mx − imy m′x − im′y − iCyz Cxx − iCxy− Cyy
Czx + mx + imy 1− Czz −mz + m′z Cxx + iCxy + Cyy m′x − im′y + iCyz
m′x + im′y + iCyz Cxx − iCxy + Cyy 1− Czz + mz −m′z −Czx + mx − imy
Cxx + iCxy− Cyy m′x + im′y − iCyz −Czx + mx + imy 1 + Czz −mz −m′z

 (19)

After taking the partial transposition over the party a, the matrix looks like

ρ
Tb
ab =

1
4


1 + Czz + mz + m′z Czx + mx + imy m′x − im′y − iCyz Cxx + iCxy + Cyy
Czx + mx − imy 1− Czz −mz + m′z Cxx − iCxy− Cyy m′x − im′y + iCyz
m′x + im′y + iCyz Cxx + iCxy− Cyy 1− Czz + mz −m′z −Czx + mx + imy
Cxx − iCxy + Cyy m′x + im′y − iCyz −Czx + mx − imy 1 + Czz −mz −m′z

 (20)

.

From the above form, it is clear that ρab = ρ
Tb
ab when

{my, Cxy, Cyy} = 0 and hence, entanglement is vanish-
ing. In the case of the Hermitian system, since the
Hamiltonian is real, the ground state should contain
only real numbers which leads to {my ,Cxy} being van-
ishing. Moreover, at the factorization point, Cyy also
vanishes for the ground state. On the other hand, in
case of RT -symmetric Hamiltonian, containing imagi-
nary terms, {my, Cxy, Cyy} 6= 0 for the ground state at
the exceptional point. This leads to a nonvanishing en-
tanglement even at the exceptional point. The results
possibly indicate that introducing RT symmetry in the
system is another way to generate entanglement in the
factorization surfaces (cf. [14]).

B. Parity

As defined above, the parity operator ξ commutes
with both the Hermitian and non-Hermitian Hamilto-
nians, i.e., [ξ, H] = 0. It leads to their eigenstates hav-
ing a definite parity, µ = ±1. In the case of the Her-
mitian system, the parity of the ground state changes
from negative to positive at the factorization point. The
similar change of parity occurs for the RT -Symmetric
Hamiltonian at the exceptional point.

VI. CONCLUSION

We found that the factorization points of Hermitian
quantum spin models dictate the exceptional points for
the corresponding rotation-time (RT )-symmetric non-
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Hermitian Hamiltonians. As a demonstration, we ana-
lytically proved that the exceptional points of the non-
Hermitian XY model with uniform and alternating
transverse magnetic fields ( the iATXY model) match
the expression for the factorization surface of the near-
est neighbor ATXY model when the anisotropy param-
eter of the ATXY model is replaced by the imaginary
one. Following this prescription, we were able to pre-
dict and numerically verify the exceptional points of
the nearest-neighbor iXYZ model. The other possible
RT -symmetric models considered here are long-range
models, whose exceptional points are hard to find nu-
merically. Hence we provided a sufficient condition
for obtaining the real energy spectrum using the factor-
ization surface of the corresponding Hermitian model.
Specifically, we observed that as long as the parame-
ters of the non-Hermitian long-range iATXY and iXYZ
models are above the factorization-like surfaces, the en-
ergy spectrum are always real. Moreover, at the excep-
tional points, we computed the bipartite entanglement
of the nearest-neighbor two-site reduced state obtained
from the ground state and showed that it is nonvanish-
ing although entanglement vanishes at the factorization
surface of the Hermitian counterpart.

Quantum spin models with higher dimensional lat-
tices as well as with long-range interactions can be stud-
ied only by using approximate methods or by numeri-
cal techniques. On the other hand, finding real or com-
plex eigenvalues of the non-Hermitian spin models re-
quires careful analysis of the entire energy spectrum
which is a difficult numerical task as also mentioned in
Ref. [51]. Therefore, the method proposed here to un-
cover the unbroken phase of the non-Hermitian models
could be a useful mechanism to bypass the extensive
numerical search.
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