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Performance evaluation of satellite-based approaches for the estimation of
daily air temperature and reference evapotranspiration
H. R. Shwethaa and D. Nagesh Kumar a,b

aDepartment of Civil Engineering, Indian Institute of Science, Bengaluru, India; bCentre for Earth Sciences, Indian Institute of Science,
Bengaluru, India

ABSTRACT
Different satellite-based radiation (Makkink) and temperature (Hargreaves-Samani, Penman-
Monteith temperature, PMT) reference evapotranspiration (ETo) models were compared with
the FAO56-PM method over the Cauvery basin, India. Maximum air temperature (Tmax) required
in the ETo models was estimated using the temperature–vegetation index (TVX) and an advanced
statistical approach (ASA), and evaluated with observed Tmax obtained from automatic weather
stations. Minimum air temperature (Tmin) was estimated using ASA. Land surface temperature was
employed in the ETo models in place of air temperature (Ta) to check the potency of its
applicability. The results suggest that the PMT model with Ta as input performed better than
the other ETo models, with correlation coefficient (r), averaged root mean square error (RMSE) and
mean bias error (MBE) of 0.77, 0.80 mm d−1 and −0.69 for all land cover classes. The ASA yielded
better Tmax and Tmin values (r and RMSE of 0.87 and 2.17°C, and 0.87 and 2.27°C, respectively).
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1 Introduction

It is essential to assess the key components of the
hydrological cycle and also to manage water
resources efficiently at the basin scale. Thus, it is
crucial to have an accurate estimation of reference
evapotranspiration (ETo) over the Cauvery basin,
which is one of the important river basins of penin-
sular India. ETo is a climatic factor, estimated from
climatic variables such as air temperature (Ta), solar
radiation (Rs), relative humidity and wind speed.
Owing to the difficulty in direct measurement of
ETo, indirect methods have been proposed, classified
on the basis of their requirements of climatic vari-
ables, such as combination-type, radiation-type, tem-
perature-type and mass-transfer-type methods. The
Penman-Monteith (PM) method of the Food and
Agriculture Organization (FAO) (FAO56-PM) is a
combination method, and has a record of deriving
accurate ETo in most climatic regions, since it con-
siders all the above-mentioned climatic variables. It
is also recommended as a standardized method by
the FAO. Most of the climatic variables required for
the FAO56-PM method are hard to obtain because of
the difficulty in maintaining the prescribed hypothe-
tical conditions required for the estimation of ETo at
weather stations. Hence, alternative methods have

been proposed by various researchers (Blaney and
Criddle 1962, Hargreaves and Samani 1985, De
Bruin 1987), as these require fewer climatic variables
and are readily available for most of the climatic
conditions and regions. But many of these alternative
methods are site-specific and require calibration
before application to another region. Consequently,
many researchers have compared various methods
and validated them with the FAO56-PM method at
point scale for their particular study region (Gavilan
et al. 2006, Douglas et al. 2009, Aguilar and Polo
2011, Fotios and Andreas 2011, Valipour 2012,
2014, 2015a, 2015b, 2017, Todorovic and Pereira
2013, Raziei and Pereira 2013a, Kisi 2014, Senatore
et al. 2015, Almorox et al. 2015, Valipour et al. 2017).
In India, Nandagiri and Kovoor (2006) evaluated
seven models for different ranges of Indian climate
at the point scale.

Climatic variables obtained from meteorological sta-
tions are at the point scale. Using these, it is difficult to
obtain spatial variations of ETo. Even though spatial
interpolation techniques have been developed to obtain
spatial variations of climatic variables, these require a
dense network of high-quality meteorological stations
(Raziei and Pereira 2013b). Such networks are costly to
install and maintain in developing countries. In contrast,
remote sensing techniques can provide the required data
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for estimation of ETo at high spatial and temporal
resolution in a feasible way. Hence, some authors have
proposed a simplified methodology for the estimation of
ETo using remotely sensed data, employing available
ETo models. Rivas and Caselles (2004) examined the
utility of land surface temperature (LST) over
Argentina to estimate spatial ETo using an equation
based on the PM model. Temperature-based semi-
empirical ETo models were examined over Kenya by
Maeda et al. (2011) using only Moderate Resolution
Imaging Spectroradiometer (MODIS) LST. A few
researchers have used Ta and geostationary satellite Rs
data in radiation-based models to estimate ETo for dif-
ferent study regions (e.g. Bois et al. 2008, De Bruin et al.
2010, Cammalleri and Ciraolo 2013, Cruz-Blanco et al.
2014a, 2014b). In some studies, numerical weather fore-
cast data were successfully used in temperature- and
radiation-based ETo models (Silva et al. 2010, Cruz-
Blanco et al. 2014a, 2015, 2014b). However, numerical
weather forecast data are available at a coarse spatial
resolution. In the above-mentioned studies, either satel-
lite-based radiation or temperature-based ETo models
were employed for the particular study region, but
none of the studies compared the performance of these
models. Thus, there is an imperative need to study ETo

models, because many earlier studies were site-specific
and performance varies depending on the prevailing
weather variables. Moreover, these studies utilized
meteorological station Ta at the point scale, or very
coarse resolution forecast Ta data.

The Ta measured at 2 m above the ground surface is
one of the important influencing parameters for ETo.
Zaksek and Schroedter-Homscheidt (2009) broadly
classified the satellite-based derivation of Ta into three
groups: (a) statistical approaches (simple and
advanced); (b) temperature–vegetation index (TVX)
approaches; and (c) energy balance approaches.
Statistical approaches are site-specific and need local
parameterization. The TVX approach is applicable dur-
ing daytime (Prihodko and Goward 1997). Energy bal-
ance approaches are complex, time-consuming and
require a large amount of data. Several authors have
studied these approaches individually for different cli-
matic regions (Mostovoy et al. 2006, Stisen et al. 2007,
Vancutsem et al. 2010, Nieto et al. 2011, Benali et al.
2012, Lin et al. 2012, Shah et al. 2013, Wenbin et al.
2013, Rhee and Jungho 2014, Zeng et al. 2015).
However, to date, no study has compared the perfor-
mance of these approaches. Hence, there is a need to
examine the usage of satellite-based Ta methods, since
Ta is an indispensable parameter for ETo estimation
and is available at fine spatial and temporal resolutions.
Generally, LST is used for Ta estimation in the above-

mentioned approaches, due to its regional–global avail-
ability from satellites and its close relationship to Ta

(Gallo et al. 2011).
The main objective of this study is to obtain ETo at

high spatio-temporal resolution using limited weather
variables. Therefore, performance evaluation of radia-
tion-based (Makkink and Makkink-Advection), tem-
perature-based (Hargreaves-Samani, HS), simple LST-
based equation (SLBE), and Penman-Monteith tem-
perature (PMT) models was carried out with the
FAO56-PM method. For these ETo models, minimum
Ta (Tmin) and maximum Ta (Tmax) are crucial para-
meters. The quality of Ta data influences the ETo

values. Hence, comparison of the advanced statistical
(ASA) and TVX approaches for estimation of Tmax and
Tmin was conducted. Furthermore, LST was replaced by
Ta in the ETo models to check its pertinence.
Comparison between ETo values estimated by employ-
ing the above-mentioned ETo models using LST and Ta

(obtained from the best approach among TVX and
ASA) as inputs was carried out. A schematic represen-
tation of these procedures is provided in Figure 1.

2 Study area

The Cauvery River is one of the major rivers of peninsular
India and the river basin extends between 10°05′–13°30′N
and 75°30′–79°45′E. The River basin covers an area of 81
155 km2 and lies in the states of Karnataka, Kerala, Tamil
Nadu and Pondicherry. It is one of the largest rivers of
southern India and depends heavily on monsoon rains;
hence it is prone to droughts when the monsoon fails.
There is a serious conflict between Karnataka and Tamil
Nadu states on the issue of sharing the river water. Due to
this, accurate water management has become essential. In
terms of physiography, the basin can be divided into three
parts: the Western Ghats area, the Plateau of Mysore and
the Delta area (CWC and NRSC (Central Water
Commission and National Remote Sensing Centre)
2014). The Delta forms the lower part of the Cauvery
basin and is the most fertile tract, while the Western
Ghats consists of a mountainous region and runs parallel
to the western coast (Fig. 2(a)). The mean Tmax and Tmin

are 34.31 and 17.15°C, respectively, for the period
1969–2004 (http://www.india-wris.nrsc.gov.in).
Precipitation varies substantially over the basin; while the
western part of the basin receives the southwest monsoon
(June–September), the northeast monsoon (October–
December) serves the eastern part. The rainfall during
other periods is insignificant. The basin receives mean
annual precipitation of about 1075 mm/year. Annual rain-
fall (1970–2004) varies from 1700 to 3800 mm/year in the
Western Ghats and 600 to 800 mm/year in the Plateau of
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Mysore, while the Delta area receives 500–1000 mm/year
(www.india-wris.nrsc.gov.in). Land use/land cover of the
basin is broadly classified as agricultural, non-agricultural,
forest and habitation land. Data for the year 2012 show
more than 60% of the land in the Cauvery basin is culti-
vable, 1.15% is urban/built-up, 17.91% is forest regions and
the remainder is non-cultivable. Finger millet and paddy
are the principal crops of the Mysore Plateau and Delta
regions, respectively.

3 Methodology

3.1 Data used and pre-processing

Data on Tmax, Tmin, relative humidity, wind speed and
sunshine hours required for the estimation of ETo

using the FAO56-PM method were acquired from the

automatic weather stations (AWS) installed by the
Indian Space Research Organization (ISRO). A total
of 35 AWSs located within the basin were considered
in this study (Table 1). According to the Indian
Council of Agricultural Research (ICAR), Cauvery
basin comprises three agro-climatic zones, namely the
southern plateau and hill region, the east coast plains
and hill region, and the west coast plain and ghats
region (Ghosh 1991). This categorization is based on
soil type, climate, temperature and its variations, rain-
fall and other agro-meteorological characteristics, as
well as water demand and supply characteristics,
including quality of water and aquifer conditions.
Available stations within the Cauvery basin were
grouped into three climatic regions according to
ICAR, namely semi-arid, semi-arid to humid, and
humid. In addition, observed Rs data obtained from a
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Figure 1. Schematic representation of methodology.
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pyranometer for the years 2013 and 2014 were col-
lected for the Berambadi site, which is located in the
Gundalpet taluk of Karnataka State (11.76°N; 76.58°E)
at an altitude of 870 m a.s.l. (Fig. 2(a)). The LST
(MYD11A1) and reflectance (MYD09GA) values of
near-infrared (NIR), Red, Blue and SWIR2 data were
obtained from the MODIS sensor of the Aqua satellite.
Since 2002, MODIS has been carried on the NASA (US
National Aeronautics and Space Administration)
polar-orbiting Aqua satellite, which passes from south
to north at about 01:30/13:30 h local solar time each

day in sun-synchronous orbit. The MODIS sensor,
with 36 bands, provides near-daily global coverage
with high spatial resolution. Since the passing time of
the satellite over the study region is in the afternoon,
maximum LST can be seen during this time. Minimum
LST occurs in the early morning. The difference
between minimum LST and observed LST at around
02:00 h is the least. In this study, night-time LST refers
to minimum LST and daytime LST refers to maximum
LST; Tmax and Tmin measurements were selected corre-
sponding to these. The Rs data were taken from the

Figure 2. (a) Location of the study area with the automatic weather stations and land cover types indicated by numbers. (Stations 1–5
belong to land cover class F, 6–14 – class C, 15–18 – class U/BP and 19–35 – class C/NV. (b) MODIS land use/land cover map of the
study area showing location of the Berambadi site, details of land cover classes, and elevation of the study area. F: forest, C: croplands
and U/B: urban/built-up, C/NV: croplands/natural vegetation.

1350 H. R. SHWETHA AND D. NAGESH KUMAR



Kalpana-1 satellite, a geostationary satellite that was
launched in 2002. It carries a Very High Resolution
Radiometer (VHRR)/2 sensor and receives information
from visible, infrared and thermal infrared bands at
spatial resolutions of 2 km and 8 km. The MODIS
LULC (MCD12Q1) product was used for segregating
the LST pixels according to the International
Geosphere Biosphere Programme (IGBP) classification
(Friedl et al. 2010). Digital elevation data were obtained
from the Shuttle Radar Topography Mission (SRTM).
All the datasets considered are from the period
2012–2014. Details of the datasets used are provided
in Table 2.

The MODIS LST (day/night) projections were changed
from sinusoidal to geographical projection by employing a
nearest-neighbour method using the MODIS reprojection
tool developedbyNASA (Dwyer and Schmidt 2006). These
were aggregated from1km to theKalpana-1/VHRRdata at
a spatial resolution of 2 km by spatial averaging.
Reflectance values of NIR, Red, Blue and SWIR2 spatial
resolutions were aggregated from 500 m to 2 km using
spatial averaging, and these were used to derive vegetation
indices. TheMODIS LULCdatawere upscaled from500m
to 2 km, and later used to segregate the pixels based on the
IGBP classification. The SRTM elevations used in the

Table 1. Description of land cover types and climatic characteristics of automatic weather stations in Cauvery basin. Lat.: latitude;
Lon.: longitude; LULC: land use/land cover, F: forest, C: croplands, U/B: urban/built-up area, C/NV: croplands/natural vegetation; H:
humid, SA: semi-arid, SA-SH: semi-arid/sub-humid.
No. Station ID (Location) Lat. Lon. LULC Climate

1 ISRO607_15F25F (Kover Colly Tea Estate, Somwaripet) 12.57 75.85 F H
2 ISRO608_15F260 (Elk Hill Estates, TBBTCL, Sodapur) 12.48 75.79 F H
3 ISRO611_15F263 (Kottoli Village, K. Boikeri, Virajpet) 12.46 75.80 F SA-SH
4 ISRO323_15F143 (ICRI, RS, Donigal, Sakleshpur) 12.92 75.75 F H
5 ISRO434_15F1B2 (RARS Ambalavayal Wayanad) 11.61 76.21 F H
6 ISRO169_15F0A9 (VC&RI, Namakkal) 11.10 78.16 C SA
7 ISRO177_15F0B1 (TNRRI, Aduthurai, Thanjavur Dist.) 11.10 79.5 C SA-SH
8 ISRO181_15F0B5 (SWMRI, Kattuthottam, Thanjavur) 10.78 79.18 C SA-SH
9 ISRO182_15F0B6 (KVK, Nidamangalam, Thiruvarur Dist.) 10.76 79.41 C SA
10 ISRO183_15F0B7 (KVK, Sikkal Nagapattinam Dist.) 10.75 79.80 C SA-SH
11 ISRO186_15F0BA (ARS, Nadimuthu Nagar, Pattukottai) 10.41 79.33 C SA-SH
12 ISRO387_15F183 (HLBC Subdivision, Nagamangala) 12.71 76.81 C SA
13 3 ISRO834_15F342 (Scientist silk farm breeding, KSSRDI Bidadi, Ramanagara) 12.80 77.38 C SA
14 ISRO844_15F34C (Dy. Director Sericulture, Govt. silk farm (m) Magadi) 12.96 77.23 C SA
15 ISRO178_15F0B2 (TNAU, Main Campus, Coimbatore) 11.00 77.00 U/B SA-SH
16 ISRO222_15F0DE (LPSC ISRO, Banglore) 12.96 77.58 U/B SA
17 ISRO223_15F0DF (ISRO HQ, Banglore) 13.03 77.57 U/B SA
18 ISRO315_15F13B (HQ, TC, IAF, JC Nagar, Hebbal, Banglore) 13.01 77.57 U/B SA
19 ISRO123_15F07B (RV College of Engineering, Bangalore) 12.92 77.50 C/NV SA
20 ISRO124_15F07C (AICRP AGR, UAS GKVK, Bangalore) 13.08 77.57 C/NV SA
21 ISRO170_15F0AA (HRS, Yercaud, Salem Dist.) 11.70 78.21 C/NV SA-SH
22 ISRO172_15F0AC (KVK, Sandhiyur, Salem Dist.) 11.56 78.13 C/NV SA-SH
23 ISRO179_15F0B3 (AEC&RI, Kumulur, Lalgudi, Trichy) 10.93 78.83 C/NV SA
24 ISRO216_15F0D8 (AF Station, Yelahanka, Bangalore) 13.13 77.61 C/NV SA
25 ISRO322_15F142 (CSRTI, Sorampura, Mysore) 12.25 76.62 C/NV SA
26 ISRO325_15F145 (IIHR, Hessaraghatta lake post, Banglore) 12.75 77.66 C/NV SA
27 ISRO435_15F1B3 (CVAS Pookot Lakkidi Wayanad) 11.53 76.02 C/NV H
28 ISRO443_15F1BB (President MGO Marayoor Idukki) 10.27 77.16 C/NV H
29 ISRO444_15F1BC (KDHPCPL Munnar Idukki) 10.14 77.17 C/NV H
30 ISRO621_15F26D (Codagu Planters Association, GT Road, Madikeri) 12.42 75.75 C/NV H
31 ISRO837_15F345 (Maddur) 12.59 77.04 C/NV SA
32 ISRO838_15F346 (Sri Ranga Patnam) 12.42 76.69 C/NV SA
33 ISRO839_15F347 (DD of Sericulture) 12.54 76.92 C/NV SA
34 ISRO841_15F349 (Kollegala Mandal Sericulture) 12.15 77.09 C/NV SA
35 ISRO995_15F3E3 (Anthoniar Colony Munnar) 10.08 77.05 C/NV H

Table 2. Details of the datasets used. LST: land surface temperature (°C); Rs: solar radiation (MJ m−2 d−1).
Source Parameter Product name Spatial resolution Purpose

MODIS/Aqua LST (day/night) MYD11A1 1 km Estimation of ETo and Ta (max/min)
VHRR(2)/Kalpana-1 Rs - 2 km Estimation of ETo
MODIS/Aqua Reflectance values of NIR, Red, Blue and

SWIR2 bands
MYD09GA 500 m Estimation of vegetation indices

MODIS/Aqua LULC MCD12Q1 500 m Segregation of ETo
SRTM Elevation - 90 m Prediction of Ta (max/min) and ETo
AWS RH (max/min),

Ta (max/min), wind speed and sunshine hours
- Point scale Validation

HYDROLOGICAL SCIENCES JOURNAL 1351



estimation of Ta (max/min) were aggregated from 90 m
to 2 km.

3.2 Estimation of satellite-based air temperature

In this study ASA and TVX approaches were employed
for Ta (max/min) estimation and the results were
validated with Ta (max/min) obtained from the AWS.

3.2.1 Statistical approaches
Most of the statistics-based approaches developed are
based on relating satellite-based LST (max/min) and
auxiliary data as predictors, with Ta (max/min)
obtained from meteorological stations as the predic-
tand (Mostovoy et al. 2006, Cristobal et al. 2008, Fu
et al. 2011, Benali. et al. 2012, Rhee and Jungho 2014,
Xu et al. 2014, Zeng et al. 2015). In this study, different
statistical approaches from simple (one predictor vari-
able, LST) to multiple (more than one predictor) were
tested. In addition to LST (day/night), other auxiliary
variables such as elevation, latitude, longitude and
Julian day were selected as predictors for the estimation
of Ta (max/min). Out of 14 models developed by
Benali. et al. (2012), eight were selected for analysis of
their performance for the study region (Table 3).
Benali. et al. (2012) used a mixed bootstrap method
with jack-knife resampling; however, in this study, only
the bootstrap technique was employed to generate
samples, since sufficient observed Ta values obtained
from the AWSs were available over the study region
(Bai and Wei. 2008). The eight models were selected
depending on the availability of data for the study
region: 70% of the available data (for 2012 and 2013)
was used for calibration and the remaining 30% for
validation of the models, and these datasets were
employed in the generation of respective calibration

and validation of 1000 bootstrap samples. The
Levenberg-Marquardt algorithm was employed to
minimize the square of the absolute differences
between predictions and observations. The obtained
coefficients were later applied to estimate Tmax and
Tmin from the validation datasets. The statistical rela-
tionship between estimated Tmax/Tmin and observed
Tmax/Tmin was quantitatively evaluated by computing
statistical error indices. Information about the statisti-
cal error indices employed is given in Section 3.4.

3.2.2 Temperature–vegetation index (TVX) approach
Prihodko and Goward (1997) proposed a contextual
method by fitting a linear relationship between spectral
vegetation index (VI) and LST. Estimation of Tmax is
based on the assumption that the bulk temperature of
an infinitely thick vegetation canopy is close to the
ambient air temperature. Several authors have applied
the TVX method to check the potential of the method
for various climatic regions using data from different
sensors (Stisen et al. 2007, Vancutsem et al. 2010, Nieto
et al. 2011, Shah et al. 2013, Wenbin et al. 2013).
Nevertheless, the mandatory negative linear relation-
ship between the normalized difference vegetation
index (NDVI) and LST is difficult to attain in several
conditions due to the influence of seasonality, ecosys-
tem type and soil moisture variability (Benali. et al.
2012). Thus, Tmax was calculated by applying maxi-
mum VI (VImax) from a simple linear equation,
which was obtained by ascertaining the linear relation-
ship between LST and VI. In the past, only NDVI has
been considered for Tmax estimation (Prihodko and
Goward 1997, Stisen et al. 2007, Vancutsem et al.
2010, Nieto et al. 2011). Conventional NDVI is satu-
rated when leaf area index > 3.5 and this can be
avoided by employing the enhanced VI (EVI) and

Table 3. Goodness-of-fit indicators computed between Ta values obtained from eight models and from AWSs. r: Pearson correlation
coefficient; RMSE: root mean square error; NSE: Nash-Sutcliffe efficiency; a to e: model coefficients (see Appendix 3 for values used in ASA);
LSTday: daytime land surface temperature, LSTnight: night-time land surface temperature; peak and phase are coefficients of the cosine
function; JD: Julian day; ele: elevation.
Model no. Model equation Tmax Tmin

r RMSE NSE r RMSE NSE

1 aLSTday + b 0.75 2.71 0.55 0.57 3.44 0.32
2 aLSTnight + b 0.74 2.75 0.53 0.84 2.29 0.69
3 aLSTday + bLSTnight + c 0.82 2.32 0.67 0.84 2.25 0.71
4 aLSTday þ b cos � JD þ peak

phase

� �h in o
þ c 0.74 2.74 0.54 0.58 3.43 0.32

5 aLSTday þ b
� �

cos � JD þ peak
phase

� �h i
þ cLSTnight þ d 0.74 2.75 0.54 0.84 2.30 0.69

6 aLSTday þ b LSTnight þ c cos � JD þ peak
phase

� �h in o
0.82 3.22 0.36 0.84 2.33 0.68

7 aLSTday þ b cos � JD þ peak
phase

� �h in o
þ c� ele 0.73 2.79 0.52 0.62 3.31 0.37

8 aLSTday þ b LSTnight þ c cos � JD þ peak
phase

� �h in o
þ d � eleþ e 0.83 2.29 0.68 0.83 2.34 0.68
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global vegetation moisture index (GVMI) (Le Naire
et al. 2006, Guerschman et al. 2009). The GVMI is
asymptotically linked to equivalent water thickness
(Guerschman et al. 2009) and the presence of vegeta-
tion moisture influences the variations in Ta. Here, an
attempt is made to examine the potential of two other
vegetation indices, namely EVI and GVMI, in estimat-
ing Tmax. The accuracy of this approach depends on
two important points. Firstly, there should be a strict
negative relationship between LST and VI and, sec-
ondly, the value of VImax, since the assumption of
this approach is that LST is of thick vegetation, is
close to Ta. Many researchers have considered different
values of maximum NDVI depending on their study
region, and this varied from 0.65 to 0.90 (Prihodko and
Goward 1997, Stisen et al. 2007, Vancutsem et al. 2010,
Wenbin et al. 2013). In this study, maximum values of
NDVI (NDVImax), EVI (EVImax) and GVMI
(GVMImax) varied between 0.40 and 0.90 for the var-
ious land cover classes individually in the estimation of
Tmax for the study region.

NDVI ¼ NIR� RED
NIRþ RED

(1)

EVI ¼ G � NIR � RED
NIR þ C1RED� C2BLUEþ L

(2)

GVMI ¼ NIR þ 0:1ð Þ � SWIR2þ 0:02ð Þ
NIR þ 0:1ð Þ þ SWIR2þ 0:02ð Þ (3)

where NIR, RED, BLUE, SWIR2 are the reflectances
of their respective bands. In this study, the values of
G, C1, C2 and L in the EVI equation (Equation (2)),
which account for aerosol scattering and absorption
(Guerschman et al. 2009), are 2.5, 6.0, 7.5 and 1.0,
respectively.

3.3 Reference evapotranspiration models

Reference evapotranspiration (ETo) is “the rate of eva-
potranspiration from a hypothetical reference crop with
an assumed crop height of 0.12 m, a fixed surface
resistance of 70 sec m−1 and albedo of 0.23, closely
resembling the evapotranspiration from an extensive
surface of green grass of uniform height, actively grow-
ing, well watered and completely shading the ground”
(Allen et al. 1998, McMahon et al. 2013, Pereira et al.
2015). The standardized reference evapotranspiration
equation can be expressed as (McMahon et al. 2013):

ETo ¼
0:408Δ Rn � Gð Þ þ γ 900

Tmeanþ273 u2 es � eað Þ
Δþ γ 1þ 0:34u2ð Þ (4)

where ETo is the daily reference crop evapotranspiration
(mm d−1), Tmean is the mean daily Ta (°C) at 2 m, u2 is
the average daily wind speed (m s−1) at 2 m, Rn is the
net daily radiation (MJ m−2 d−1), G is the soil heat flux
(MJ m−2 d−1), es − ea is the vapour pressure deficit (kPa),
γ is the psychometric constant (kPa °C−1) and Δ is the
slope of the saturation vapour pressure curve (kPa °C−1).
In this study, the FAO56-PM equation was applied to
estimate ETo at the point scale by applying data of
AWSs as inputs. These results were then used for vali-
dation of ETo obtained using satellite-based approaches
(details are given in the following sections).

3.3.1 Radiation-based models
In 1957, Makkink proposed a radiation-based formula
by modifying the Penman equation which requires
only Rs and Ta data (Arellano and Irmak 2016). De
Bruin (1987) further simplified the Makkink equation
to estimate ETo accurately under non-water stress con-
ditions (Cruz-Blanco et al. 2014b), which can be
expressed as:

ETo ¼ CMak
1
λ

Δ
Δþ γ

Rs (5)

where CMak is a simplification parameter, which varies
from 0.63 to 0.90 for different climatic conditions (De
Bruin 1987, De Bruin et al. 2010, Stewart et al. 1999,
Schuttemeyer et al. 2007, Bois et al. 2008, Cammalleri
and Ciraolo 2013), Rs is solar radiation. and the other
parameters are as explained in Section 3.3. De Bruin
et al. (2012b) introduced the advection-based revised
Makkink equation by accounting for advection effects
under semi-arid conditions, which can be expressed as:

ETo ¼ 1
λ
0:38þ 0:015 Ta � 12ð Þ½ �Rs (6)

3.3.2 Temperature-based models
In the absence of radiation measurements, the simplified
temperature models work better in semi-arid and arid
climates, as reported by Verhoef and Feddes (cited from
Di Stefano and Ferro 1997). These models require only Ta
or LST data for the estimation of ETo. Many temperature-
based models are available and they have been successfully
applied worldwide (e.g. Thornthwaite 1945, McCloud
1955, Hamon 1961, Blaney and Criddle 1962, Hargreaves
and Samani 1985). In most cases, the Hargreaves-Samani
(HS) equation performed better than other models (Di
Stefano and Ferro 1997, Gavilan et al. 2006, Aguilar and
Polo 2011, Maeda et al. 2011, Todorovic. and Pereira 2013,
Kisi 2014,Almorox et al. 2015).Hence, in this study, theHS
modelwas selected among the available empirical tempera-
ture-based equations.
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3.3.2.1 The Hargreaves-Samani (HS) equation. The
HS equation is an empirical equation and requires only
Tmean, Tmax, Tmin and extraterrestrial radiation (Ra) for
derivation of ETo. This equation tends to overestimate in
humid climates, since it requires only Ta data and varies
with it, therefore requiring regional calibration for better
performance. The HS equation can be written as:

ETo ¼ 0:408CHRa Tmean þ 17:8ð Þ
� Tmax � Tminð Þ (7)

where Ra is extraterrestrial solar radiation (MJ m−2 d−1)
and CH is the Hargreaves empirical coefficient, set to
0.0023 for arid and semi-arid regions.

3.3.2.2 The Penman-Monteith temperature (PMT)
model. The inputs required in the FAO56-PM equa-
tion for ETo estimation are Rn, es − ea and u2, and these
may be estimated by employing alternative methods,
which use only Tmax and Tmin, in the case of non-
availability of other climatic variables over the study
region. This approach is known as the Penman-
Monteith temperature (PMT) model (Todorovic. and
Pereira 2013, Raziei and Pereira 2013a). In this study,
the procedures evolved by Todorovic and Pereira
(2013) and Raziei and Pereira (2013a) were followed
to estimate the parameters Rn, es − ea and u2, and these
were then employed in the FAO56-PM equation
(Equation (4)) to derive ETo for the Cauvery basin.
The method is elaborated in Appendix 1.

3.3.2.3 The simple LST-based equation (SLBE). Rivas
and Caselles (2004) proposed a new simplified equation
for estimation of ETo with LST and local standard
meteorological data.

ETo ¼ aLSTþ b (8)

where LST is land surface temperature obtained from
satellite data. The parameters a and b depend on the
local meteorological data, obtained by segregating the
PM equation into a radiation term and an aerodynamic
term, and these can be expressed as:

a ¼ Δ

Δþ γ 1þ rc
ra

� �
2
4

3
5 �cεsσ

λ

� �
(9)

b ¼ 1

Δþ γ 1þ rc
ra

� �
2
4

3
5 1
λ

�
Δ

�
1� αð ÞRs

þ εsσ εaT
4
a � d

� �� G

�
þ ρCp

es � ea
ra

	 
�
(10)

where εs is the emissivity of the surface, σ is the Stefan-
Boltzmann constant (4.9 × 10−9 MJ m−2 K−4 d−1), rc is
the crop canopy resistance (s m−1), ra is the aerody-
namic resistance (s m−1), α is the albedo of the surface,
and the other parameters are as elaborated previously.

In this study, in place of Ta data, LST values were
employed in the HS (HS_LST), PMT (PMT_LST) and
Makkink (Makk_LST) models. As mentioned in
Section 3.2, the best Ta values obtained between the
two approaches were employed in the HS (HS_Ta),
PMT (PMT_Ta), simple Makkink (Makk_Ta) and
advection-revised Makkink (Makk_adv_Ta) equations.

3.4 Performance evaluation indices

Estimated Tmax and Tmin were validated with observed
Tmax and Tmin values obtained from the AWSs.
Furthermore, ETo estimated using temperature- and radia-
tion-based methods was evaluated with ETo calculated
using the FAO56-PM model at the AWSs (referred to
herein as observed values). The Pearson correlation coeffi-
cient (r) was used to measure the correlation between the
estimated and observed values. The value of r varies from
−1 to +1, where 0 indicates no correlation and ±1 high
correlation. The Nash-Sutcliffe efficiency criterion (NSE;
Nash and Sutcliffe 1970) varies from −∞ to 1. An efficiency
of 1 represents a perfect match between estimated and
observed values and 0 indicates that the estimated values
are equal to themean of the observed values. Negative NSE
indicates that the observed mean is better than the esti-
mated values. This is sensitive to means and variances of
the differences found between the observed and estimated
values. Root mean square error (RMSE) is one of the
commonly used error indices. Lower RMSE indicates bet-
ter performance of the model (Moriasi et al. 2007). Mean
absolute percentage error (MAPE) is a measure of predic-
tion accuracy. Mean bias error (MBE) is the average differ-
ence between the estimated and observed values. The
equations for calculating these goodness-of-fit indicators
are given in Appendix 2.

4 Results and discussion

4.1 Estimation of satellite-based air temperature

The values of Tmax and Tmin were estimated using ASA
and TVX approaches (as described in Section 3.2).
These estimated Tmax and Tmin were validated with the
corresponding AWS Ta data. The performance of the
selected methodologies was analysed by considering data
of all the stations using the statistical error indices r,
RMSE and NSE. The better Tmax results obtained among
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the mentioned approaches and Tmin were utilized in the
estimation of ETo.

The error indices of both Tmax and Tmin obtained by
the eight models are given in Table 3. The results
indicate that, of these, Models 3 and 8 performed
best, with high r values of 0.84 and 0.83, NSE of 0.71
and 0.68, and low RMSE of 2.25 and 2.29°C, respec-
tively. Together, LSTday and LSTnight could explain 82
and 84% of variability in Tmax and Tmin, respectively.
This indicates a strong relationship between LST and
Ta. The addition of Julian day and elevation into the
model increased the accuracy in Tmax estimation, but
did not improve accuracy in Tmin estimation.
Coefficients of the considered models (for the estima-
tion of Tmax and Tmin) are provided in Appendix 3.
Scatterplots between predicted Tmax, Tmin (obtained
from the best models) and observed Tmax, Tmin for
the year 2014 are shown in Figure 3. The results in
Figure 3 indicate that Model 3 and Model 8 (Table 3)
estimated Tmin and Tmax more accurately (r, RMSE and
NSE of 0.87, 2.27°C and 0.76, and 0.87, 2.17°C and
0.75, respectively) .

Spatial variations of Tmax and Tmin for the year
2014 representing different seasons are shown in
Figure 4(c) and (d). The Western Ghats have low
Tmax and Tmin compared to other regions. This is
due to higher elevation and forest cover. Summer
season (DOY 89) has higher Tmax and Tmin than
other seasons. One of the disadvantages of using
satellite data is the presence of cloud cover causing
gaps in the datasets, represented by white, as may be
seen in Figure 4(c) and (d). The accuracy of Tmax

and Tmin estimation depends on the quality of the
LST product and the satellite passing time. In this
study, the Aqua satellite LST product was used,
which improves the Tmin estimation compared to

other satellites, as its passing time is closer to the
time of Tmin.

The Tmax was estimated using the TVX approach by
varying the maximum values of the three vegetation
indices NDVI, EVI and GVMI (Equations (1)–(3)).
Statistical analysis was performed between these esti-
mated Tmax values and the observed Tmax, and the
results are depicted in Figure 5. Scatter plots between
estimated Tmax using the best maximum vegetation
index and observed Tmax for forest (F), croplands (C)
and croplands/natural vegetation (C/NV) land cover
classes are shown in Figure 5(1). Maximum vegetation
index values for the considered land cover classes were
selected individually depending on the accuracy of
Tmax estimation. Accuracy was adjudicated based on
RMSE and r, and these were computed for the F, C and
C/NV land cover classes by varying the maximum
vegetation index values from 0.9 to 0.4, with an interval
of 0.05 (Fig. 5(2)).

As the NDVImax was reduced for the forest class, RMSE
decreased from 3.84 to 3.01°C at NDVImax = 0.8 and, after
this, began to increase from 3.12 to 5.10°C. However, r
gradually decayed from 0.66 to 0.12 as NDVImax was
reduced (Fig. 5(2,a)). In the case of the croplands class,
RMSE showed less variation for different NDVImax values
and RMSE was lowest at NDVImax = 0.75, and r values
gradually increased from 0.70 to 0.78 as NDVImax was
decreased (Fig. 5(2,b)). For the C/NV class, RMSE and r
gradually increased from 5.25 to 6.84°C and 0.58 to 0.68,
respectively, and an optimal value of NDVImax = 0.75 was
selected (Fig. 5(2,c)). Thus,NDVImax values of 0.8, 0.75 and
0.75 were selected for F, C and C/NV classes, respectively.
At these NDVImax values, r and RMSE between estimated
Tmax and observed Tmax were found to be 0.63 and 3.19°C,
0.72 and 8.15°C, and 0.60 and 5.44°C for F, C, C/NV
classes, respectively (Fig. 5(1,a–c)).

(a) (b)

Figure 3. Scatter plots between predicted and observed (a) Tmax and (b) Tmin.
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Figure 4. Spatial distributions of (a) LSTday (K), (b) LSTnight (K), (c) Tmax (°C), (d) Tmin (°C), and (e) Rs (MJ m
−2 d−1) on days 36, 89, 175

and 274 of the year 2014, representing different seasons.

(a) (a)

(b) (b)

(c) (c)

Figure 5. (1) Scatter plots between predicted Tmax and AWS Tmax; and (2) variations of RMSE and r values obtained between
predicted Tmax and AWS Tmax for varying VImax for (a) forest, (b) croplands, and (c) croplands/natural vegetation land cover classes.
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For the EVI, as the EVImax was reduced from 0.9 to
0.4 for the forest class, RMSE decreased from 10.84 to
3.01°C and r increased from 0.47 to 0.64 (Fig. 5(2,a)).
However, for the croplands class, RMSE abruptly
decreased from 16.63 to 7.13°C and r increased from
0.14 to 0.63 (Fig. 5(2,b)). In the case of croplands/nat-
ural vegetation, RMSE reduced from 9.81 to 6.22°C and
r increased from 0.34 to 0.60 (Fig. 5(2,c)). Therefore,
optimal EVImax values of 0.4, 0.4 and 0.45 were selected
for F, C and C/NV classes, respectively. At these values
of EVImax, r and RMSE between estimated Tmax and
observed Tmax were calculated as 0.63 and 3.47°C, 0.55
and 7.30°C, and 0.57 and 6.14°C for F, C and C/NV
classes, respectively (Fig. 5(1,a,b,c)).

As the value of GVMImax was reduced from 0.9 to 0.4,
for the forest land cover class, RMSE gradually decreased
from 7.60 to 2.85°C and r increased from 0.62 to 0.67 to a
level of GVMImax = 0.55, and eventually decreased to 0.60
(Fig. 5(2,a)). For the croplands class, RMSE and r gradually
increased from 6.98 to 8.03°C and from 0.74 to 0.78,
respectively (Fig. 5(2,b)). In the case of croplands/natural
vegetation, the improvement in RMSE values, even after
gradual reduction in GVMImax, was small, whereas r
showed a gradual increase from 0.43 to 0.61 (Fig. 5(2,c)).
Therefore, the optimal values of GVMImax of 0.5, 0.8 and
0.65 were selected for F, C and C/NV classes, respectively.
At these values of GVMImax, r and RMSE between esti-
mated Tmax and observed Tmax were calculated as 0.67 and
3.39°C, 0.77 and 7.67°C, and 0.56 and 6.64°C, for F, C and
C/NV classes, respectively (Fig. 5(1,a–c)). Among the vege-
tation indices considered, GVMI predicted better Tmax for
the F and C land cover classes compared to EVI and

traditional NDVI vegetation indices for the study region,
but no notable improvement was seen. This indicates that
moisture content of vegetation influences Tmax more than
the density of vegetation. The GVMI represents vegetation
moisture content, whereas EVI and NDVI represent den-
sity of vegetation; therefore, GVMI performed better than
EVI and NDVI. However, the TVXmethod yielded poor r
with high RMSE values for the considered optical vegeta-
tion indices, compared to the ASA. Hence Tmax and Tmin

values obtained using the ASA approach were used for the
estimation of ETo.

4.2 Validation of satellite-based solar radiation

Solar radiation (Rs) values obtained from the Kalpana-1
satellite were evaluated with the observed data, to
assess the potential of their application for the estima-
tion of ETo. Observed Rs data were available only for
Berambadi station, located in the croplands land cover
class, for the years 2013 and 2014. Therefore, analysis
was only performed for the croplands class. Linear
regression between the AWS and satellite Rs values
generated a slope of 0.68 (RMSE = 2.76 MJ m−2 d−1,
r = 0.86) (Fig. 6(a)). Temporal patterns of the satellite
Rs (Sat-Rs) data for both years were analysed; the sta-
tistical analysis indicated that Sat-Rs corresponded well
with the observed Rs, with RMSE = 2.87 MJ m−2 d−1,
r = 0.88 for 2013 and RMSE = 2.63 MJ m−2 d−1,
r = 0.79 for 2014, as shown in Figure 6(b). This
shows that Sat-Rs can be applied in radiation-based
models over the Cauvery basin, as it is mostly covered
by croplands. However, underestimation of Sat-Rs was

(a) (b)

Figure 6. (a) Scatter plot between satellite and observed Rs values and (b) temporal variations of satellite and observed Rs for the
years 2013 and 2014.
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found for the years 2013 and 2014, with relative RMSE
values of 18.66 and 15.84, respectively.

Spatial variation in Sat-Rs for 2014, representing differ-
ent seasons, is shown in Figure 4(e), illustrating that Rs
values are smaller for the winter season (DOY 36), with
very small spatial variation, whereas for the summer (DOY
89) they are greater than in other seasons, with less spatial
variation for all land cover classes. In the case of the
monsoon (DOY 175) and post-monsoon (DOY 274) sea-
sons, Rs values are smaller for the Western Ghats region
than for the other regions. During themonsoon season, the
upper part of the basin has smaller Rs than the lower part
because of the southwest monsoon. In contrast, during the
post-monsoon season, the upper part of the basin has
higher Rs than the lower part of the basin due to the
northeast monsoon (Fig. 4(e)). During the monsoon and
post-monsoon seasons, estimation of Rs is difficult because
of the presence of dense clouds.

4.3 Evaluation of ETo models

The considered LST- andTa-based temperature (SLBE,HS,
PMT) and radiation (Makk, Makk_adv) ETo models were
compared with the FAO56-PM ETo estimated using AWS
data at the point scale. Analysis of the estimated ETo using
satellite data was carried out separately by considering
different land cover classes of the study region with various
climatic conditions.

4.3.1 Statistical evaluation of ETo for different land
cover classes
The data for the years 2012, 2013 and 2014 were used to
estimate ETo by the temperature- and radiation-based
models at 2 km spatial resolution. TheETo values estimated
using different datasets were segregated based on MODIS
LULC data to assess the ETo for various land cover classes.
Based on the availability of satellite and AWS data, the
analysis was performed for three land cover classes, namely
forest, croplands and croplands/natural vegetation. Scatter
plots between LST-based and AWS ETo and between Ta-
based and AWS ETo for different land cover classes are
presented in Figures 7 and 8, respectively. Initially, LSTwas
employed in temperature- and radiation-based ETomodels
instead of Ta, to examine the adoptability of LST data.
Thereafter, Tmax and Tmin estimated using the ASA from
LSTday and LSTnight with auxiliary variables were applied in
the ETo models. The performance of these LST- and Ta-
based temperature- and radiation-based ETo models was
assessed through the goodness-of-fit indicators RMSE
(mm d−1), r, MAPE (%) and MBE (mm d−1) for the
considered land cover classes. The statistical results imply
that the LST-based SLBE model underestimated ETo for
forest, croplands and croplands/natural vegetation classes

(F: RMSE = 1.06, r = 0.53, MAPE = 23.98 andMBE = 0.92;
C: RMSE = 0.42, r = 0.77, MAPE = 8.42 and MBE = 0.25;
and C/NV: RMSE = 1.06, r = 0.73, MAPE = 18.38 and
MBE = 0.64) (Fig. 7(a)). The HS_LST, PMT_LST and
Makk_LST models predominantly overestimated ETo for
F, C and C/NV land cover classes (Fig. 7(b)–(d)). Among
the considered LST-based ETo models, SLBE satisfactorily
predicted ETo with smaller RMSE and MAPE for the
considered land cover classes because (a) aerodynamic
and (b) radiation terms in this equation were obtained
using local weather station data, and these were applied
for the entire basin. The HS_LST and PMT_LST methods
depend solely on LST data; hence the ETo values were
found to be higher than the FAO56-PM ETo, and this is
due to higher LST than Ta over the study region.
Nevertheless HS_LST and PMT_LST yielded high r values
for the forest class. Statistical error indices showed that the
Makk_LST model yielded better ETo values than the
HS_LST and PMT_LST models because Rs data were uti-
lized along with LST.

Figure 8 illustrates the goodness-of-fit indicators com-
puted by evaluating Ta-based radiation- and temperature-
based ETo models with PM ETo. Compared to LST-based
ETo models, Ta-based models, such as HS_Ta, PMT_Ta,
Makk_Ta and Makk-adv_Ta models, gave satisfactory ETo

values for all the land cover classes with smaller RMSE,
MAPE and MBE (Fig. 8). High r values were observed for
all land cover classes for all Ta-based ETomodels except for
the Makk_Ta and Makk-adv_Ta equations for the forest
class. This may be due to insufficient weather variables
required to estimate ETo. And also Sat_Rs data used in
these two equations needed evaluation for the forest class.
Tmax and Tmin were estimated using the ASA approach by
minimizing errors between LSTday/LSTnight andTmax/Tmin,
which resulted in better performance of the Ta-based ETo

models. For the HS_Ta model, RMSE,MAPE and r ranged
from, respectively, 0.77, 19.86 and 0.71 for forest to 1.14,
31.83 and 0.86 for croplands, with a mean bias of −0.87
(Fig. 8(a)). The PMT_Ta model yielded RMSE, MAPE and
r values ranging, respectively, from 0.61, 14.93 and 0.71 for
forest to 0.98, 27.24 and 0.84 for croplands, with a mean
bias of −0.69 (Fig. 8(b)). In contrast, the Makk_Ta (Makk-
adv_Ta) models gave RMSE values ranging from 0.95
(1.77) for C/NV to 1.08 (2.06) for croplands, with r in the
range 0.49 (0.54) for forest to 0.85 (0.87) for croplands, and
MAPE in the range 24.92 (47.85) for forest to 30.42 (57.72)
for croplands, with a mean bias of −1.15 (−1.78) (Fig. 8(c)
and (d)). Overall, the statistical error indices imply that the
PMT_Ta model performed slightly better than other ETo

models for all considered land cover classes. However, for
the croplands class, the SLBE ranked first and the PMT_Ta
model ranked second by more accurately predicting ETo

values than other LST- andTa-based ETomodels (Table 4).
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Considering the overall results, the PMT_Ta ETo model
performed better, followed by the SLBE, HS_Ta and
Makk_Ta, in that order.

4.3.2 Statistical evaluation of ETo for different
climatic regions
In order to examine the performance of LST- and Ta-
based ETo models, the data for all available stations
were grouped into three climatic regions according to
ICAR, namely semi-arid, semi-arid to sub-humid, and
humid. The climatic characteristic of each station are
given in Table 1. According to the statistical analysis,
for the semi-arid climate the SLBE performed slightly
better than the other ETo models (Table 5). This is
because more of the meteorological stations considered

for parameterization of aerodynamic and radiation
terms have semi-arid climates, hence better ETo values
were estimated. The value of r was higher for the
PMT_Ta model than the SLBE, implying that
PMT_Ta can also perform better in semi-arid regions,
as indicated in Table 5. Apart from the SLBE model,
the other LST-based ETo models provided poor esti-
mates of ETo, with higher RMSE values. In semi-arid to
sub-humid climates, PMT_Ta ranked first, while HS_Ta

and Makk_Ta ranked second and third, respectively,
and the performance indices indicate satisfactory
results of ETo models under semi-arid to sub-humid
climate (Table 5). Similar results were obtained for
humid climates, with smaller RMSE, MAPE and MBE
values for the PMT_Ta model, but slightly higher r

(a)

(b)

(c)

(d)

Figure 7. Scatter plots between estimated ETo using different LST-based ETo models from satellite data (Sat-LST-ETo) and ETo values
obtained from the FAO56-PM model using observed AWS data (AWS-ETo) for forest, croplands and croplands/natural vegetation.
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values for the HS_Ta model than PMT_Ta and other
ETo models. In both the semi-arid to sub-humid and
humid climates, considering the effect of air humidity,
using Tdew instead of Ta and considering the effect of
wind speed in PMT_Ta yielded better ETo values.
Overall, statistical analysis considering climatic charac-
teristics suggested that the PMT_Ta model would more
often estimate ETo better than the other ETo models in
comparison with the FAO56-PM ETo estimates, as
indicated consistently with smaller RMSE, MAPE and
MBE relative to those of the HS_Ta and Makk_Ta

models, which ranked second and third, respectively.
It is noteworthy that, in all climates, r values for the

(a)

(b)

(c)

(d)

Figure 8. Scatterplots between estimated ETo using different Ta-based ETo models from satellite data (Sat-Ta-ETo) and ETo values
obtained from FAO56-PM using observed AWS data (AWS-ETo) for forest, croplands and croplands/natural vegetation.

Table 4. Ranking of ETo models depending on the selected
goodness-of-fit indicators obtained between ETo_LST, and
ETo_Ta model-based estimates and FAO56 PM ETo. SLBE: simple
LST-based equation; PMT: Penman-Monteith temperature; HS:
Hargreaves-Samani; Makk-adv: Makkink-Advection.
Model Land use/land cover

Forest Croplands Croplands/natural
vegetation

SLBE 3 1 2
HS_LST 7 7 7
PMT_LST 6 8 8
Makkink_LST 5 5 5
HS_Ta 2 4 2
PMT_Ta 1 2 1
Makkink_Ta 4 3 3
Makk-adv_Ta 8 6 6
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PMT_Ta model were slightly low compared to the
HS_Ta model. Among the LST-based ETo models, the
SLBE performed better than the other models. The
LST-based HS and PMT models consistently overesti-
mated ETo across all climatic regions relative to the
other Ta- and LST-based ETo models.

4.3.3 Spatial and temporal analysis of ETo models
Figure 9 illustrates the spatial distribution of estimated
ETo using LST- and Ta-based ETo models for various
days of the year (DOY: 36, 89, 175 and 274), represent-
ing winter, summer, rainy season and post-monsoon
season, respectively. All ETo models yielded low ETo

over the Western Ghats and high ETo in the croplands
and croplands/natural vegetation land cover classes, as
shown in Figure 9. The Western Ghats area is covered
with forest, has higher elevation and humid climates and
this resulted in lower ETo estimates from the considered
ETo models. Most of the C and C/NV land classes are at
lower elevations with semi-arid climates and therefore
higher ETo was observed for all the ETo models. The
LST-based ETo models – HS_LST and PMT_LST –
predominantly overestimated ETo for all land cover
classes and for all climatic regions, as shown by the
statistical analysis. The next two models – Makk_LST
and Makk_adv_Ta – consistently overestimated ETo

over the study region. The SLBE model slightly under-
estimated ETo for all land cover classes compared to the
other ETo models.

For the summer season, larger ETo estimates were
obtained and smaller ETo values were observed for the
rainy season for all ETo models. Due to the presence of
clouds, thermal sensors failed to provide LST data and
hence Tmax, Tmin and ETo values could not be esti-
mated for cloudy pixels, as indicated by white in
Figures 4 and 9. Therefore, for the monsoon and
post-monsoon seasons, it was hard to evaluate the
spatial distribution of ETo. The ETo obtained for the
lower part of the Cauvery basin was higher than that
for the upper part and this was observed for all ETo

estimates from the considered models (Fig. 9). The ETo

values ranged from 0.5 to 5.0 mm d−1 for the SLBE
model, being a slight underestimation of observed ETo,
whereas, for the Ta-based HS and PMT models, ETo

values ranged from 0.5 to 8.0 mm d−1, showing slightly
better spatial patterns than the other ETo models.
Similarly, estimates by Ta- and LST-based Makkink
models ranged from 2.5 to 6.0 mm d−1, showing less
spatial variation across the study region.

Furthermore, ETo values estimated using LST- and
Ta-based ETo models were temporally evaluated with
the FAO56-PM ETo computed using AWS data.
Temporal variations in ETo obtained from the ETo

models considered are shown in Figure 10 for stations
15F07B and 15F34C, which belong to the C/NV and C
land classes, respectively. According to Figure 10, the
PMT_LST and HS_LST models overestimated ETo

compared to the Makk_LST and SLBE models for
both C and C/NV land cover classes. Among the ETo

models considered, PMT_Ta, HS_Ta and Makk_Ta per-
formed better than the other ETo models for croplands
(croplands/natural vegetation) land cover classes, with
r, RMSE (mm d−1), MAPE and MBE (mm d−1) of 0.89
(0.91), 0.37 (1.03), 8.01 (29.47) and −0.19 (−1.01), and
0.90 (0.92), 0.46 (1.18), 10.25 (33.97) and −0.35 (−1.17),
and 0.71 (0.87), 0.60 (1.06), 12.28 (30.12) and −0.32
(−1.03), respectively, as shown in Figure 10.

The accuracy of ETo estimation depends on the
quality of the input data. Hence, it is necessary to
check the quality of input data before application in
ETo models. Satellite-based ETo models depend on the
quality of LST data. In this study, LST data were used
for both Ta and ETo estimation. The use of Ta esti-
mated from satellite data, rather than direct LST data,
in the ETo estimations could increase the accuracy of
ETo calculation and this has been amply proven in this
study. Overall, statistical and spatial analysis showed
that the PMT_Ta model gave slightly better accuracy of
ETo estimates relative to the HS_Ta, Makk_Ta and

Table 5. Statistical analysis of LST- and Ta-based ETo models for
semi-arid, semi-arid to sub-humid, and humid climates. RMSE
(mm d−1): root mean square error; r: Pearson correlation coeffi-
cient; MAPE: mean absolute percentage error; MBE: mean bias
error. See Table 4 for model abbreviations. Bold indicates best
performing models.
ETo model RMSE r MAPE MBE Rank

Semi-arid
SLBE_LST 0.64 0.59 12.18 0.42 1
HS_LST 3.81 0.54 99.93 –3.62 5
PMT_LST 3.89 0.50 101.71 –3.68 6
Makk_LST 1.21 0.62 32.25 –1.10 3
HS_Ta 1.06 0.68 27.85 –0.96 2
PMT_Ta 0.90 0.67 23.44 –0.78 1
Makk_Ta 1.02 0.62 26.89 –0.89 2
Makk-adv_Ta 1.98 0.65 53.40 –1.89 4
Semi-arid to sub-humid
SLBE_LST 0.84 0.60 17.89 0.70 4
HS_LST 2.86 0.66 64.85 –2.57 8
PMT_LST 2.84 0.64 63.43 –2.50 7
Makk_LST 0.95 0.75 23.28 –0.85 5
HS_Ta 0.76 0.77 18.47 –0.70 2
PMT_Ta 0.58 0.75 13.14 –0.48 1
Makk_Ta 0.84 0.71 20.73 –0.74 3
Makk-adv_Ta 1.91 0.75 47.45 –1.84 6
Humid
SLBE_LST 1.14 0.71 33.49 1.04 3
HS_LST 2.12 0.48 62.49 –1.85 7
PMT_LST 2.19 0.40 64.38 –1.88 8
Makk_LST 1.17 0.56 35.74 –0.77 5
HS_Ta 0.94 0.76 29.84 –0.84 2
PMT_Ta 0.88 0.74 27.91 –0.76 1
Makk_Ta 1.12 0.56 34.66 –0.74 4
Makk-adv_Ta 1.58 0.62 46.95 –1.21 6
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Figure 9. Spatial variation of ETo obtained from the LST- and Ta-based models for days 36, 89, 175 and 274 of the year 2014,
representing different seasons.
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SLBE models, and each of these four ETo models per-
formed better than other ETo models considered in this
study.

5 Summary and conclusions

In this study, air temperature (Ta) was estimated using
remote sensing-based temperature–vegetation index
(TVX) and the advanced statistical approach (ASA)
and the results were validated with automatic weather
station (AWS) Ta data. In the TVX approach, the
relationship between different vegetation indices
(NDVI, EVI and GVMI) and land surface temperature
(LST) was examined by varying the maximum vegeta-
tion index values to estimate the maximum Ta (Tmax)
for the study region. The GVMI-based TVX approach
performed better than the other vegetation index meth-
ods for the estimation of Tmax. The ASA was used to
estimate both Tmax and Tmin. In this approach, a boot-
strap technique was employed to generate calibration
and validation samples. The validation samples were
used to validate the predicted Tmax and Tmin. This
approach showed improvement in the estimation of
Tmax compared to the TVX approach, with r, RMSE
and NSE values of 0.87, 2.17°C and 0.75, respectively.
Further, the ASA estimated Tmin efficiently, with r,
RMSE and NSE of 0.87, 2.27°C and 0.76, respectively.
The Tmax and Tmin estimates from this approach were
then used in the estimation of ETo. Temperature-based
models, namely HS, PMT and SLBE, and radiation-

based Makkink models were considered for estimation
of ETo over the Cauvery basin. The Ta and Rs, being
the inputs required for these models, were obtained
from satellite data. Initially, LSTday and LSTnight were
used in the temperature- and radiation-based models.
Thereafter, Tmax and Tmin estimated from LSTday and
LSTnight with auxiliary variables were used in the tem-
perature- and radiation-based models for the estima-
tion of ETo. These LST- and Ta-based ETo models were
evaluated with reference to the FAO56-PM ETo

obtained using observed climatic variables. Statistical
analysis implied that the Ta-based PMT model per-
formed better than the other ETo models for various
land cover classes and for different climatic conditions
with smaller RMSE, MAPE and MBE values. The SLBE
and HS_Ta models ranked second and third, respec-
tively. The LST-based HS and PMT models consis-
tently overestimated for all the land cover classes,
with higher RMSE, MAPE and MBE values. However,
the r values were more or less similar to those of the
Ta-based models.

This study has demonstrated the applicability of
satellite-based Ta and ETo estimation over an Indian
river basin that had not been examined previously.
Further comparison of various satellite-based Ta and
ETo models was performed in this study. In the TVX
approach only NDVI and EVI had been reported in the
literature, whereas here the GVMI has been used in the
estimation of Tmax, in the absence of weather station
data. Therefore, this study will be useful for selecting
proper satellite-based ETo and Ta models for water

Figure 10. Temporal variation of ETo obtained from satellite data and ETo obtained from the FAO56-PM method for stations
belonging to croplands/natural vegetation and croplands land cover classes. Gaps in the ETo values are due to non-availability of
LST, Rs and AWS data.
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resource management, irrigation scheduling and cli-
mate change studies. However, it is very difficult to
obtain ETo and Ta values under cloudy conditions,
since these depend on LST, because thermal sensors
fail to provide LST data under cloudy conditions. This
creates gaps in the ETo and Ta values. Future work will
include estimation of ETo under cloudy conditions, in
order to eliminate the gaps in the satellite-based ETo

models.
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Appendix 1

Estimation of ETo using the Penman-Monteith
temperature (PMT) model

The procedure given by Todorovic and Pereira (2013)
was followed to estimate ETo using the PMT model. The
variables required in FAO56-PM equation were calcu-
lated using only temperature (LST/Ta) as input, as
detailed below.

Calculation of net radiation, actual and saturation
vapour pressure using satellite data

Rn ¼ Rns � Rnl (A1:1)

where Rns is the net shortwave radiation (MJ m−2 d−1),
Rnl is the net longwave radiation (MJ m−2 d−1), and Rn

is the net radiation (MJ m−2 d−1).
The Rns results from the balance between incoming

and reflected solar radiation and is given by:

Rns ¼ 1� αð ÞRs (A1:2)

where α is the albedo or canopy reflection coefficient,
assumed as 0.23 for grass canopy cover, and Rs is solar
radiation, which can be expressed as:

Rs ¼ kRs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTmax � TminÞ

p
Ra (A1:3)

where kRs is the empirical radiation adjustment coeffi-
cient (°C−0.5), considered as 0.16 for the interior and as
0.19 for coastal regions (Allen et al. 1998); Tmax is the
maximum air temperature, and Tmin is the minimum
air temperature.

The Rnl results from the balance between the down-
welling longwave radiation from the atmosphere and
outgoing longwave radiation from the vegetation and
the soil, and is given by:

Rnl ¼ �f �ε σ
T4
max þ T4

min

2
(A1:4)

where �ε is the net emissivity of the surface, and f is a
cloudiness factor, which represents the ratio between
actual net longwave radiation and the net longwave
radiation for a clear sky day, and is expressed as:

f ¼ ac
Rs

Rso
þ bc (A1:5)
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where Rso is the shortwave radiation for a clear sky day
(MJ m−2 d−1). The coefficients ac ≈ 1.35 and bc ≈ −0.35
are recommended for average climatic conditions. Rso
can be expressed as:

Rso ¼ 0:75þ 2� 10�5Z
� �

Ra (A1:6)

where Z is the elevation (m a.s.l.), and Ra is extrater-
restrial radiation (MJ m−2 d−1). The net emissivity of
the surface, �ε(Equation (A4)), is given by:

�ε ¼ 0:34� 0:14
ffiffiffiffi
ea

p
(A1:7)

where ea is the actual vapour pressure (kPa):

ea ¼ e
�
Tminð Þ ¼ 0:6108 exp

17:27Tmin

Tmin þ 237:3

� �
(A1:8)

es ¼ e
�
Tmaxð Þ þ e

�
Tminð Þ

2
(A1:9)

where es is the saturation vapour pressure (kPa);
e
�
Tmaxð Þis saturation vapour pressure at the mean

daily maximum air temperature (Tmax) or maximum
land surface temperature (LSTmax) (kPa), and e

�
Tminð Þ

is saturation vapour pressure at the mean daily mini-
mum air temperature (Tmin) or minimum land surface
temperature (LSTmin) (kPa).

Appendix 2

The performance indices used to measure goodness-of-fit of
the models are calculated as follows:

r ¼
Pn

i¼1ðxi � �xÞ � ðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxi � �xÞ2 �Pn

i¼1 ðyi � �yÞ2
q (A2:1)

NSE ¼ 1�
Pn

i¼1 ðxi � yiÞ2Pn
i¼1 ðxi � �xÞ2 (A2:2)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðxi � yiÞ2
n

s
(A2:3)

MBE ¼ 1
n
�
Xn
i¼1

ðxi � yiÞ (A2:4)

MAPE ¼ 100
n

�
Xn
i¼1

xi � yið Þ
xi


 (A2:5)

where xi is the observed value, �x is the mean of the observed
value, yi is the estimated value, and n is the number of
observations.

Appendix 3

The coefficients of the fitted models (1–8, Table 3) using the
advanced statistical approach (ASA) to estimate Tmax and
Tmin are given in Tables A1 and A2 below.

Table A1. Coefficients of the fitted models to estimate Tmax.

Model no. Coefficients

a b c d e

1 0.410 14.467
2 0.693 17.859
3 0.211 0.499 13.195
4 0.418 1.015 14.350
5 0.021 0.056 0.696 17.762
6 0.481 0.623 1.235
7 0.367 –1.842 0.016
8 0.214 0.487 –0.875 –0.005 18.504

Table A2. Coefficients of the fitted models to estimate Tmin.

Model no. Coefficients

a b c d e

1 0.383 5.279
2 0.856 4.627
3 0.062 0.796 3.327
4 0.364 1.126 5.987
5 0.065 –2.450 0.861 4.510
6 0.140 0.810 3.400
7 0.388 2.700 0.005
8 0.066 0.785 –0.624 –0.005 8.751
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