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Performance of quantum teleportation is typically measured by the average fidelity, an overlap between the
input and output states. Along with the first moment, we introduce the second moment of fidelity in CV tele-
portation, i.e., the fidelity deviation as the figures of merit to assess the protocol’s efficiency. We show that CV
states, both Gaussian and non Gaussian, can be better characterized by considering both average fidelity and
fidelity deviation, which is not possible with only average fidelity. Moreover, we shed light on the performance
of the teleportation protocol in two different input scenarios - one is when input states are sampled from con-
strained uniform distribution while the other one is Gaussian suppression of the input states which again lead
to a different classification of CV states according to their performance. The entire analysis is carried out in
noiseless and noisy scenarios with noise being incorporated in the measurement and the shared channels. We
also report that one type of noise can make the protocol robust against the other one which leads to a ‘construc-
tive effect’ and identify the noise models which are responsible for decreasing average fidelity and increment in

fidelity deviation.

I. INTRODUCTION

Quantum teleportation (QT), discovered in 1993 [1] is un-
mistakably one of the remarkable pieces of sorcery that quan-
tum mechanics makes possible. After its proposal, it has
tasted unprecedented levels of success both theoretically [2—7]
and experimentally [8—17] in its mere two decade long exis-
tence. The latest feather in the cap of experimental QT is un-
doubtedly the satellite-based setups that give rise to a possibil-
ity of realizing quantum information transmission at intercon-
tinental distances [16, 18, 19]. Interestingly, this tremendous
progress and success in this field does not limit the research
directions, but on the contrary, widens it. In the theoretical
frontier, in the last couple of years alone, several new and in-
teresting facets have emerged in this field which include port
based quantum teleportation [20-23], fidelity enhancement of
noisy QT using quantum switch [24-27], teleportation involv-
ing multiple parties [28—31], multiround quantum teleporta-
tion using weak measurements [32], fidelity deviation in QT
[33].

Among these various avenues, let us briefly discuss and
elaborate on the importance of the idea of fidelity deviation in
QT. Typically, the performance of QT is measured by the aver-
age fidelity. However, such a mean-based characterization has
some limitations since it cannot capture the fluctuations in fi-
delity with the various choices of inputs from the ensemble of
states that are supplied for teleportation. For example, fluctua-
tions become very important in situations where teleportation
is used as an intermediate step in a quantum information pro-
cessing task involving quantum gates. Since the performance
of quantum gates depends on the fluctuations of its input (that
reaches the gate via QT) [34, 35], the fidelity deviation must
be taken into account on top of average fidelity for character-
izing the quality of QT. Noting its importance, several works
have been carried out in investigating the role of fidelity devi-
ation in QT [36-39]. However, all of these studies is limited
to discrete variable systems.

Continuous variable (CV) systems offer some distinct ad-

vantages over their discrete counterparts whereby they can
overcome certain difficulties, like Bell-basis indistinguishabil-
ity via linear optics [40]. Furthermore, they can be prepared
with near perfect efficiency by using nonlinear interaction of
a crystal with laser, and the only imperfection can arise due to
the varying intensity of laser light, resulting in a low squeez-
ing parameter [41], thereby making them potential systems for
implementing quantum information processing tasks. Among
the set of CV systems, Gaussian states hold a privileged posi-
tion owing to their mathematical simplicity and experimental
realizability [42-45].

Notably, it was in the Gaussian domain that the idea of
CV teleportation was first conceptualized by Vaidman, Braun-
stein and Kimble (referred to as the VBK protocol) [46, 47].
From its inception, several directions have been explored in
CV QT by varying the one-shot fidelity [48, 49] and the av-
erage fidelity [50]. It includes the extension of the protocol
to non-Gaussian regimes, exhibiting that photon subtracted
(PS) states can outperform the two mode squeezed vacuum
(TMSV) state according to the average fidelity [48, 51-56],
incorporating noise [49, 50, 57, 58], constructing CV QT net-
works [59—61], understanding the relationship between mea-
sures of quantum correlations and the fidelity [62—-69] (a prob-
lem which is considerably well understood in the discrete case
[2, 3]) and many more. To show quantum advantage, the clas-
sical threshold for the coherent state is shown to be at most
half and quantum resources are known to beat the optimum
measure-prepare strategy for moderate to high values of the
squeezing parameter (see Fig. 1). For a more detailed review
of the literature, see [70].

In this work, we focus on two independent aspects of CV
quantum teleportation. On one hand, our work focuses on
assessing the quality of the protocol with respect to the vari-
ation in input energy. Specifically, we consider input states
coming from different energy distributions - uniform distribu-
tion having a finite threshold in the maximum permissible en-
ergy to avoid divergence and Gaussian distributions character-
ized by a specific standard deviation. For example, we study



how the average fidelity scales with different input distribu-
tions and examine the regimes at which quantum advantage is
apparent, since the classical bound also varies for different en-
ergy constraints. In this new paradigm, we also compute the
entanglement-free (measure-prepare) bound on QT to show
where quantum advantage is manifested. On the other hand,
we introduce the concept of the second moment of the fidelity
statistics, the fidelity deviation, in CV systems which quan-
tifies how well a given resource aids in the teleportation of
different states coming form a given ensemble. A lower value
of the fidelity deviation indicates that the resource is capable
of transferring various input states with fidelitites very close
to the average fidelity. This is essential, since even if the av-
erage fidelity is high, a large deviation means that some states
might still be teleported with suboptimal fidelity.

Our aim here is to determine the performance of QT by ex-
amining both the average fidelity and fidelity deviation and
classify the CV resource states, both Gaussian TMSV as well
as photon added and subtracted states according to their per-
formances. Specifically, we report that contrary to the known
results, TMSV states turn out to be better suited for CV QT
than the PS states in many situations in presence or absence
of noise. The investigations are carried out for different input
states, coherent, squeezed, and squeezed coherent states when
entangled channels are shared. In a noisy regime, we show
that noise in measurement can be circumvented by a moder-
ate amount of noise in channels, which we refer to as a con-
structive effect irrespective of the input energies . Moreover,
we observe that noise in measurement at the sender’s end has
adverse effects on the quality of CV QT in terms of the av-
erage fidelity and its deviation compared to the noise in the
channels. However, both the noise models have more detri-
mental effects on non-Gaussian states than the Gaussian ones,
thereby establishing the TMSV state as a suitable channel for
teleportation in presence of high input energy.

The paper is organized as follows. Before presenting the re-
sults, we introduce the monitors which can assess the perfor-
mance of QT, the role of input energy in the performance and
describe briefly the classical limit in each situation (Sec. II).
The trends of average fidelity and fidelity deviation for noise-
less CV teleportation with respect to different inputs and re-
source states are presented in Sec. III. The hierarchies among
states according to the fidelity deviation are studied in Sec.
IV for the noiseless case. In Sec. V, we investigate the ef-
fects of noise on the performance of CV QT by considering
the average fidelity while the behavior of fidelity deviation in
presence of noise is discussed in Sec, VI. Finally, we make
the concluding remarks in Sec. VII.

II. REGULARIZED FIGURES OF MERIT

Continuous variable systems are characterized by canoni-
cally conjugate observables, say X and P, possessing a con-
tinuous spectrum. The system Hamiltonian for IV such pairs,

each of which corresponds to a different mode, reads as
T
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where k denotes the mode, while aj and a;rf represent the pho-
ton annihilation and creation operator respectively with
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where i = /—1. When a single mode state, |t;,), has
to be teleported through a CV channel, the overlap between
the output state after implementing the protocol, p,.:, and
the input state |¢;,), referred to as the fidelity f(|w,)) =
(Vin|pout|Vin) measures the efficacy of the protocol. When
the standard CV teleportation scheme is followed [47], the fi-
delity can be expressed as

1
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where x,(a) = tr(pD(«)), D(«a) being the displacement op-
erator, and X, («) is the characteristic function of the single-
mode state p.

In our work, we primarily choose |1, ) to be a single mode
pure Gaussian state [71]. Recall, the most general single mode
pure Gaussian states are the squeezed-coherent states [43],
and therefore, most generally,

[Yin) € {S(E)D(B)[0)} V€, 8 € C, 4)

where S(¢) = ee' represents the single mode squeezing op-
erator with || = ¢ being the squeezing strength while 6 de-
notes the squeezing angle. Here 8 = be? is the displacement
parameter. Choosing |¢;,,) uniformly from the above ensem-
ble is unphysical since it leads to divergent energies, which
can be noted from the average energy of |, ),

B,y = Qin|H|thin) = b* + sinh®e. (5)

This divergence can be prevented by imposing a distribution

p(B, &) with ﬁ [ p(B,€)d*B d*¢ = 1 on the choice of [t;,)
such that the average energy for the distribution of input states
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Endowed with this prescription for taming the divergences, we
classify the performance of CV quantum teleportation using
the first two moments of fidelity, referred to as the average
fidelity [57], given by

1

with V' = [ p(B,€)d|1;,) while the corresponding fidelity
deviation [33] reads as
AF = <fﬁ/,,m)> - F2 ®)

where (f2, 1) = 5 [p(8,€) £}, d|vin). Notice that in the
discrete case, the measure “d|v;,,)” implies the entire space of



inputs chosen uniformly from the Hilbert space of the relevant
dimension, i.e., p(3, £) is an uniform distribution. Here in CV
systems, we choose the measure d|;,,) with reasonable cut-
offs as mentioned before, making the average energy of the
input ensemble finite. This allows us to construct regularized
versions of average fidelity and fidelity deviation that are free
from typical divergences arising due to infinite dimensional
systems.

In our analysis, we consider two different realizations of
(B, ), one with a finite cut-off in energy which we call the
constrained uniform distribution, and the other with a Gaus-
sian suppression, respectively given by
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Both of these distributions rectify the divergent issues. From
Eq. (5), the condition in Eq. (9) can be rewritten as b? +
sinh? e < £. In this case, the average fidelity can be modified

as
smh?L sinh? e 2
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where d|i);,) = b e de df db d¢ and the integral over the
displacement parameter b runs from zero to the part of the
total energy not carried by the squeezing. We assume that
the total energy is given by sinh? L = &, where L is the
maximum value that the squeezing parameter of the state, e,
can possess. The integration measure in Eq. (11) becomes
d|[tin) = d*¢ = 2mede for the squeezed state, whereas for
the coherent state, it is d |1;,) = d?8 = b db d¢. Since it is
hard by state of the art experiments to achieve squeezing be-
yond r = 1.6 [72], we accordingly fix the energy threshold for
the squeezed state as L¢ = 1.6 such that sinh? e < sinh? Le.
In order to facilitate comparison, we also consider the energy
cut-off for the coherent state to be the same, due to which
|Lg|? = sinh? L¢ even though technically, it can possess rel-
atively high energy.

For the Gaussian distribution of squeezed-coherent states,
the integrals for computing average fidelity and fidelity devia-
tion get simplified forms since p (3, £) acts independently on
the coherent and squeezed sectors owing to its product struc-
ture. Note that such simplification is not possible with uni-
form distribution having energy thresholds. Using Eq. (7)
with the condition in Eq. (10), the average fidelity for tele-
porting squeezed-coherent states can be computed as

SE S
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where N' = (7o) (mo.), with o and o, being the standard
deviations corresponding to the input squeezing and the
displacement parameters respectively.

Using Eq. (6), the average input energy is computed to be
(0c+ 5 Leos VTosErf(y/05)), where the first term represents
the average energy for input coherent state and the second
term corresponds to the average energy for input squeezed
state individually. Here Erf is the error function given by
Erf(z) = % Iy e~t* dt. Since the average energy depends
both on 0, and o, and increases with them, we take the range
of os and o, up to 5.0 and 10.0 respectively in order to capture
all possible prime features that the figures of merit can exhibit,
with respect to the average input energy. Before presenting all
results, both in the noiseless and noisy scenarios, let us briefly
discuss the classical limit for CV quantum teleportation which
is essential to estimate any quantum advantage.

A. The classical limit

In any quantum information protocol, it is necessary to de-
fine a classical threshold which quantifies the performance of
the optimal classical routine for the task. If the figure of merit
for the quantum protocol exceeds the classical limit, we can
claim with certainty that quantum benefit is obtained. In quan-
tum teleportation with the discrete qubit formalism, an aver-
age fidelity beyond F = 2/3 indicates the presence of entan-
glement, thereby obtaining quantum advantage [2, 7, 73].

In CV teleportation, when the input states, say coherent
states are sampled from a Gaussian distribution with standard
deviation A\~1 [74], the optimal fidelity achievable through
classical measure-prepare strategy is known to be Ffl‘fl’zé <
(14+X)/(24 A) [75]. If the distribution becomes completely
flat, i.e. A = 0, it reduces to F°" < 0.5. Therefore, for
states sampled from an infinitely flat distribution of energies,
any fidelity above 0.5 guarantees quantum advantage. How-
ever, if the standard deviation of a Gaussian distribution is
finite (A > 0), or there exists a uniform distribution which
contains states up to a particular energy only (as in Eq. (9)),
the classical threshold increases beyond the aforementioned
value. It can be intuitively understood since it is easier for
the concerned parties to replicate the input state through a
measure-prepare strategy when the states are drawn form a
limited energy distribution [75]. Hence, the classical bound
on the average fidelity depends on average input energy and
decreases with the decrease in the spread of input energy.
Specifically, for a given distribution with a finite energy, we
need to determine the corresponding fidelity which is achiev-
able in absence of entanglement.

Similarly, the optimal classical bound on the teleportation
of squeezed states is not uniquely determined and is no longer
bounded by 0.5 [76]. In Ref. [77], it was demonstrated that the
classical protocol for sending squeezed states with a flatly dis-
tributed energy up to a maximum value can go higher than 0.9.
Similarly, for pure input squeezed states, a fidelity higher than
81.5% is necessary to obtain quantum advantage, when the
states belong to an infinite ensemble of uniformly distributed
energy [78].
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FIG. 1. The average teleportation fidelity, F (ordinate) of coher-
ent states drawn from a Gaussian ensemble of standard deviation,
o = 5.0 against the squeezing of the entangled resource states, r (ab-
scissa). Squares, circles, and triangles represent the TMSV, photon
added (PA) and photon subtracted (PS) states as channels. The classi-
cal bound on the average fidelity is shown in dashed lines. It is inter-
esting to observe whether such hierarchies among CV states change
with different input distributions like uniform distribution with en-
ergy threshold. Both the axes are dimensionless.

III. CHARACTERIZING NOISELESS CV
TELEPORTATION VIA AVERAGE FIDELITY AND
FIDELITY DEVIATION

Before presenting the results in the absence of any kind of
noise, let us specify the resource and input states considered
here.

Resources. In our analysis, the shared resource state used
are squeezed Bell-like states which read as

|®) = 512(¢)(cos 8]00) + ¢ sind[11)),  (13)

where 915(¢) = e~¢elab+¢"a1az jg the two-mode squeezing
unitary operator with ¢ = re’’. It can be reduced to dif-
ferent well-known Gaussian and non-Gaussian states — for
0 = 0, it represents the two-mode squeezed vacuum state;
§ = arccos|(cosh2r)~'/2sinhr] and n = v — 7 gives the
two mode photon added squeezed vacuum state (PA); and by
choosing § = arccos[(cosh 2r)~1/2 coshr] and n = y—, we
obtain the two mode photon subtracted (PS) state, where the
last two are the non-Gaussian states. Note that a single pho-
ton is added (subtracted) in both the modes to create photon
added (subtracted) states. In this work, comparative analy-
sis of utility in using all three quantum channels between the
sender and the receiver is performed.

Inputs. Three paradigmatic input states, namely the
coherent state having displacement parameter 3 = be'®
given by |1). = D(3)|0), the squeezed state with squeezing
parameter ¢ i.e. |1/)> = 5(£)|0) and the squeezed-coherent
state, |7,/1>sc = S5(€)D(B)|0) are considered for investigation.
Here, D(53) = exp(Bal — *a) is the displacement operator
and ¢ = ee?. Notice that by examining the behavior of

squeezed coherent states as inputs in QT, the role of other
input states on QT can be derived. The analytical expression
of the fidelity f for teleporting a squeezed-coherent state
using squeezed Bell state as a resource is given by [79]
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where the parameters Ay, Ao, A1, Ao, w? and w3 take the
form as

A= (1+e*)+2(1—e*)g+ (1 +e*)g?,

Ao = (12e*) +2(1 + e*)g + (1 — e*")g?,

A =e A + 2626(1 +g )

Ay =e 2"A; + 26_26(1 +g )

Wf =(1-g)(B-p"),

wh = (1- 2)(5 +8%)%. (15)

Here g € (0, 1) is the gain factor involved in the measurement
performed by the receiver [74]. Equipped with this fidelity ex-
pression, we compute the maximal average fidelity (F) by op-
timizing over g and its corresponding fidelity deviation (AF)
both for the constrained uniform and Gaussian distributions of
input states using Eqs. (7) - (10).

A. Trends of average fidelity and fidelity deviation with
resource squeezing

Let us first investigate the response of the quality factors
for teleportation with respect to the squeezing parameter, r
of the shared resource state. For all the three shared states
considered here, namely the TMSV, PA and the PS states, the
average fidelity increases monotonically with r for both con-
strained uniform and Gaussian distribution of input states (see
Fig. 1). This is intuitively satisfactory since the EPR corre-
lation increases with an increase of r and the VBK protocol
of teleportation uses EPR correlations as resource. We will
repeatedly return to these enhancement of features on increas-
ing 7 in situations where the average fidelity fails to beat the
classical limit. Instead of discussing the behavior of average
fidelity which is studied and known with r, let us concentrate
on the fidelity deviation with respect to r for different types of
input states as well as resources and for a fixed average energy
of the input distribution (see Fig. 2). We categorize the trends
according to the input states in the following manner.
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FIG. 2. The variation of fidelity deviation, AF (vertical axis) vs. squeezing of the shared channels, r (horizontal axis) for uniform distribution
(lower panel) and Gaussian distribution (upper panel) of different input states in the case of both Gaussian and non-Gaussian resource states.
Symbols used for shared channels are same as in Fig. 1. (Lower panel) Plot of AF for (a) coherent input states with energy cut-off L = 1.0
(dark (red)) and L = 2.5 (gray (yellow)), (b) squeezed input states with L = 0.5 (dark (red)) and L = 1.0 (gray (yellow)) and (c) squeezed-
coherent input states with the same energy threshold specifications as in (b). (Upper panel) AF for different inputs, (d) coherent states with
0. = 1.0 (dark (red)) and 0. = 5.0 (gray (yellow)), (e) squeezed states with o5 = 0.5 (dark (red)) and o5, = 3.0 (gray (yellow)) and (f)
squeezed-coherent states having s = 0.5, 0. = 1.0 (dark (red)) and os = 3.0, 0. = 5.0 (gray (yellow)). All the axes are dimensionless.

Squeezed states: Unlike the average fidelity, a low values of
fidelity deviation ensures good performance of the re-
source states. For input squeezed states, we observe
that the photon added states provide the least deviation
from the average fidelity for small resource squeezing,
while the PS state accomplishes the task with minimum
AF for higher values of r. This is true when states
are sampled both from the uniform (Fig. 2 (b)) as well
as the Gaussian distribution (Fig. 2 (e)). On the other
hand, AF increases with the increase in input energy,
i.e., with the increase of L and o,.

Coherent states: We observe the decreasing trends of AF
with the increase of r in the resource, irrespective of the
resource state. Like in the previous case, PA states still
provide the least deviation compared to PS or TMSV
states although the PS states overtake it at a very high
squeezing. Moreover, we find that unlike the squeezed
states, there seems to be a complex relation between the
squeezing in resource and energy threshold in inputs. In
particular, AF is low for ensembles with high energy
up to a moderate value of r both for the shared TMSV
and PS states although the magnitude of the squeezing
required is more for the TMSV states than the PS states.
For example, AFp,—25 < AFr,—1.0 upto rps < 0.4
while the similar hierarchy exists for the shared TMSV

with a higher r, i.e., AFp,—05 < AFp,—1.0 When
rrvsy < 0.7. Similar behavior is also observed for
the Gaussian distribution (as shown in Figs. 2 (a) and

(d)).

Squeezed-coherent states: The behavior of fidelity deviation

with variation in resource squeezing for input squeezed-
coherent states is similar to the other two inputs. The
only significant difference is the disparity in AF for
uniform and Gaussian distribution at higher energies.
For states chosen from a Gaussian assemblage, the PS
state constitutes the protocol with the highest value of
AF for low squeezing strengths at high input ener-
gies. As r increases, its deviation falls below that of
the Gaussian TMSV state (for » 2 1.0) but still can-
not overcome the one that is furnished by the PA states
as resource. However, for constrained uniform distribu-
tion, the PS states teleport with minimum AF at mod-
erate to high r in the resource.

B. Role of input energies in teleportation

As mentioned before, one of the main focus of this work is

to find the effects of the energy threshold in the input ensem-
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FIG. 3. Average fidelity ((a) and (c)) and fidelity deviation ((b) and
(d)) (ordinate) with respect to energy threshold, Lg in uniform distri-
bution (lower panel) and o for Gaussian distribution (upper panel)
(abscissa). Symbols for channels are same as in Fig. 1. In (a)-(d),
inputs are taken to be coherent states having » = 0.5 (dark (red)) and
1.0 (gray (yellow)). All the axes are dimensionless.

ble on the average fidelity and its deviation. Specifically, we
examine F and AJF with the variation of L in the constrained
uniform distribution and o, as well as o of the Gaussian dis-
tribution.

Average fidelity: Let us illustrate the dependence of L, o
and 0. on F for a fixed resource squeezing r which is
chosen to be moderate (for demonstration, we choose
e.g. r = 0.5, and 1.0). We observe that the average
fidelity decreases monotonically with an increase in the
input cut-off L and with an increase in the standard de-
viation o for a fixed value of r in the channel, irrespec-
tive of shared states and inputs as depicted in Figs. 3
and 4. It is possibly due to the fact that the performance
of QT decreases with the increase of energy to be tele-
porated, indicated by the greater value of L(o). Note,
however, that a more involved picture emerges when
inputs are drawn from the Gaussian distribution — the
rate of decrements in F with respect to o is faster than
that with o, (see Fig. 4). We observe that to transfer
states with a high degree of squeezing or displacement,
we require a highly squeezed resource state (containing
high entanglement) to ensure that the protocol is suc-
cessful. We also find that the TMSV states can furnish
a higher value of F for low energy Gaussian ensem-
bles, with o ~ 0.1 which depends also on the squeezing
strength of the channel although PS states outperform
over TMSYV states in other ranges of input energies.

Fidelity deviation: As seen in case of the average fidelity, the
increase of energy threshold in terms of increasing L
(o) creates an obstacle in the success of the QT process,
du to increase of the fidelity deviation with energy, irre-
spective of the resource states and inputs, except for the
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FIG. 4. Average fidelity (lower panel) and fidelity deviation (up-
per panel) (ordinate) against the standard deviations of squeezed-
coherent input states, o5 ((a) and (c)) and o ((b) and (d)). Symbols
are same as in Fig. 1 with resource squeezing » = 1.0. In (a) and
(¢), o = 1.0 (dark (red)) and 0. = 5.0 (gray (yellow)), while in (b)
and (d), s = 0.5 (in dark (red)) and os = 3.0 (in gray (yellow)).
The classical bounds on the average fidelity are shown in dashed line
with respective colours. All the axes are dimensionless.

coherent states. In case of coherent states, AF exhibits
a nonmonotonic behavior with input-energy, i.e., there
is a threshold value of L and o up to which it increases
and subsequently decreases after the criticality. Such
nonmonotonicity can be eliminated by increasing r of
the channel (see Figs. 3 (b) and (d)). E.g. considering
the TMSV state as resource, the criticality shifts from
0.~ 08 (L ~ 1.2)to o, ~ 2.0 (L ~ 2.0) when the
resource squeezing is increased from 0.5 to 1.0.

From the patterns of F and AF, we can safely conclude
that for a teleportation protocol to succeed with a high average
fidelity such that states are transferred with small variance in
the desired fidelity, resource states with a moderate to high de-
gree of squeezing are preferred, thereby demonstrating inverse
proportionality between F and AF. In particular, by consid-
ering input squeezed states from Gaussian distribution, the re-
source squeezing required to teleport states increases with the
corresponding standard deviation when the average fidelity is
our major concern. On the other hand, in case of high average
input energy, we need to make a compromise between the de-
mand of high average fidelity and the low fidelity deviation in
order to justify the quality of a resource state.

Quantum vs. Entanglement-free protocol. Let us make
a comparison between quantum protocols, which uses entan-
gled channels, and entanglement-free (setting » = 0.0) ones
in terms of the average fidelity. In this study, the squeezed
or coherent states as inputs behave similarly compared to the
squeezed coherent states. For very low values of the standard
deviations, e.g. o5 ~ 0.20r o, ~ 0.1, or low input energy
upper bound, L < 0.1, with squeezed or coherent states as
inputs, the entanglement-free protocol performs equally well



as the entangled one. This may be due to the fact that for such
low input energies, the unentangled protocol itself can furnish
a very high average fidelity. As the energy of the input ensem-
ble increases, the entanglement-based protocols win even with
low values of the resource squeezing. However, such energy
thresholds are not present in case of squeezed-coherent states
as input, i.e., quantum routine outperforms the classical one in
the entire range of both standard deviations as shown in Fig. 4.
Comparing resource states, we notice that for a uniform dis-
tribution in inputs, the TMSV and PS states always manage to
beat the measure-prepare strategy while PA state can furnish
quantum advantage only when the input energy is very high
and the resource squeezing is substantial, say, » > 1.0.

IV. RESOURCES HIERARCHIES VIA FIDELITY
DEVIATION

In this section, we highlight situations where the average
fidelity alone cannot completely characterize the performance
in teleportation by various resources. Specifically, we point
out instances where resource states can be classified from the
non-trivial variations obtained in fidelity deviation. Moreover,
our analysis reveals that several parameters like the squeezing
of the resource, distribution of input states, and energy content
play an important role in the performance of QT.

1. Varying resource squeezing: Advantages of non-Gaussianity

With respect to average fidelity alone, there is clear hier-
archy of resource states with the PS being the best, closely
followed by TMSYV, while the photon-added states turn out to
be the worst, failing to beat the classical limit in some cases.
Let us now show that the ranking gets more involved if we
take into account both the moments of the fidelity statistics.

When the input states are chosen to be squeezed or coher-
ent states, for both constrained uniform and Gaussian distri-
butions, we get qualitatively similar behavior of fidelity devi-
ation. The TMSV state shows the largest deviation among the
three shared states. Therefore, for low r, PS is the best re-
source for quantum teleportation, since it not only possesses
the highest average fidelity but also very low deviation, see
Fig. 3. For high values of r, the average fidelity for all the
resource states grows, and become almost identical and there-
fore, the classification of resource states is entirely dictated
by the fidelity deviation. In this high r limit, the deviation for
PA and PS also become nearly equal while TMSV possesses
a visibly larger deviation compared to these two. Therefore,
here PA and PS become the better resource for quantum tele-
portation while TMSV turn out to be the worst. This feature
also points out the role of non-Gaussianity in QT over Gaus-
sian resources, especially for large squeezing.

For squeezed coherent inputs, things become more involved
and we sometime get different responses for constrained uni-
form and Gaussian distributions. However, note that for low
average energies of the input, it mimics a pattern similar to
the previous cases. Things become interesting when relatively

large values of input energies are considered. For example, for
the Gaussian distribution, the PS has a larger deviation com-
pared to the TMSYV state for a range of relatively low r val-
ues. This implies that for that range of r values, we have to
compare between two resources for which F; > F5 and also
AF; > AF; are satisfied, see Fig. 2. Such a comparison of
resources is not straight forward and depends on the sensitiv-
ity requirements in deviation in a given context, see [38].

2. Varying input energies

TMSYV and PS as channels. First of all, TMSV and PS
states can always beat the entanglement-free protocol pro-
vided that the squeezing is not too low and the input en-
ergy is moderately high. We observe that at a fixed squeez-
ing strength of the resource states, the photon subtracted state
accounts for a higher average fidelity than that of the TMSV
state, when the input ensemble has a squeezing cut-off or stan-
dard deviation over a certain value, viz. L 2 0.8 while the op-
posite hierarchy occurs in other situations. For example, for
squeezed and coherent states as inputs belonging to a Gaus-
sian ensemble up to a certain value of standard deviation, e.g.
s < 0.2 and o, < 1.2 (for r = 1.0), the shared TMSV
state between the sender and the receiver performs better than
the others in terms of the average fidelity. Notice that such a
ranking among states is not possible unless both fidelity and
its deviation are taken in to account.

Photon added states. The fidelity deviation for the pho-
ton added state is very low, especially when we consider its
variation with respect to L, and for a high value of r. The
PA state, however, is not a suitable resource for QT, since it
can only outperform the entanglement-free protocol once the
squeezing is substantial.

The fidelity deviation helps removing the degeneracy
among resource states in terms of being the optimal one in
the teleportation protocol. We observe that at high resource
squeezing, according to F, the non-Gaussian resources are al-
ways favorable over the TMSV one. However, introducing the
fidelity deviation in picture, we find that only for high energy
ensembles, the PS state offers the lower AF along with high
F, thereby making it suitable for the QT purpose. Further-
more, at very low input energies, the average fidelity of the
TMSYV state is the highest among all states and the fidelity de-
viation, although higher than the non-Gaussian resources, is
still very low (O(1072)), thereby making it a reasonable re-
source as well. In the intermediate regimes, there is a compe-
tition between the high average fidelity offered by the PS state
and low fidelity deviation by the PA state although again the
PS state is favourable due to high average fidelity leading to
quantum advantage. The above discussion also manifests that
although non-Gaussian resources can help to improve the tele-
portation protocol, the resource state must be chosen wisely,
and also according to the input energy.



V. NOISY CV TELEPORTATION

Upto now, the investigations are carried out with the as-
sumption that there is no noise in the preparation of resources
or in the measurement process. Typically, imperfections are
inevitable during the realization of these protocols in labo-
ratories. In our analysis, we consider two main sources of
noise - one occurring in the state itself, due to losses in the
fiber through which the modes of the entangled resource are
transmitted to the concerned parties, while the other one arises
due to imperfect Bell measurements performed at the sender’s
node.

The noisy channel quantified by 7 = ~¢ is proportional
to the fiber propagation length, where ~y is the mode damp-
ing rate [57, 79], and the fibre loss factor is also associated
with the interaction with a Gaussian bath of mean photon
number n;, which is taken to be zero in our work [79]. On
the other hand, the imperfection in Bell measurement is con-
sidered by incorporating photon losses during the procedure
which is modelled with the help of a beam splitter of transmit-
tivity 7 and reflectivity R. A non-zero value of R indicates
finite losses in measurement [57]. In the presence of the im-
perfections mentioned above, the expression of the one-shot
fidelity for squeezed-coherent states can be written as
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withg = ¢7T andT" = %(1 —e~T)+¢*R?[79]. In presence of
both the noises, the average fidelity and the fidelity deviation
are calculated after optimizing over g. To study the effects of
noise on QT, the moments of fidelity are studied with respect
to a single noise parameter, while maintaining the other at a
fixed value, for different regimes of resource squeezing and
input energy. Moreover, to discuss the results systematically,
our findings for the constrained uniform and Gaussian distri-
bution of inputs are presented separately.

A. Average fidelity with constrained uniform input
distribution: Gaussian resources are better

Let us first consider the variation of the average fidelity F
with the measurement noise R, for fixed values of the noise
in channels, 7. As expected, the average fidelity decreases
with an increase in the magnitude of R, which is illustrated
in the lower panels of Fig. 5. However, it can be increased
if the resource squeezing is high or the input energy is low.
Contrary to the noiseless scenario, the PS state provides the
highest F only for high energy input ensembles (L = 1.0)
with low resource squeezing strengths and low noise limits up
to R, T = 0.1. Otherwise, when the states to be teleported are
of high energy and the resource squeezing is also sufficient, F
for the Gaussian TMSYV state is slightly higher than that of the
PS state, thereby indicating its robustness against noise and
also proving its appropriateness for noisy CV teleportation.

1. Counteracting one noise with the other - a constructive effect

Let us report here an interesting feature when different val-
ues of the resource squeezing are considered. By varying R,
one would expect the average fidelity to be low for higher val-
ues of 7, i.e., in presence of both the noises. This is indeed
the case but not over the entire range of R. We observe that
there exists a region in R where F is higher in presence of
resource noise, say 7 = 0.3 than that of the scenario without
noise in resources, i.e. with 7 = (. This can be interpreted as
if the effect of one kind of noise is countered by the other one,
thereby exhibiting a constructive phenomenon which is more
pronounced in case of coherent inputs (see Fig. 5). It may also
indicate that when the resource is affected by ineffective prop-
agation, the protocol may not be the optimal even with a prop-
erly tuned gain parameter g. The point of crossover depends
on the resource squeezing as well as on the energy of the input
state. Comparing Fig. 5 (a) with (b) and (c), we realize that
the constructive effect is more visible for non-Gaussian states
compared to the Gaussian ones. Notice that the advantage is
counted only when F obtained in a noisy scenario is higher
than the entanglement-free protocol without noise which we
will discuss later.

The effects of noise on the average fidelity is also distinctive
for different classes of input states. In particular, F for the
squeezed-coherent states (F > (0.4) is much lower than that
of the squeezed and coherent inputs (F > 0.7), especially for
high ensemble energies, which is not the case in the noiseless
scenario. Moreover, the average fidelity decreases at a much
faster rate for the PS and PA states, which indicates that the
impact of noise is more on non Gaussian states in comparison
with TMSV state having moderate squeezing. Furthermore,
the difference between F at higher and lower values of 7 is
least for the PA state, ~ 0.005, but significantly more for the
TMSYV and PS states, ~ 0.01.
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FIG. 5. Average fidelity (along ordinate) vs. noise parameters, R (lower panel) and 7 (upper panel) (along abscissa) for TMSV (a) and (d), PA
(b) and (e), PS (c) and (f) resource states with coherent states as input. (Lower panel) R is varied for fixed L = 2.0, = 1.0 (hollow squares),
L = 0.5,7 = 1.0 (hollow triangles) and L = 2.0, = 0.5 (hollow circles) at resource noise values 7 = 0.0 (dark (red)) and 7 = 0.3 (gray
(green)). The classical bounds obtained by measure-prepare strategy are shown corresponding to L = 0.5 (dashed gray (pink)) and L = 1.0
(dashed dark (blue)). (Upper panel) When noise, 7 in the channel varies, the measurement noise are fixed to R = 0.0 (dark(red)) R = 0.2
(gray (green)). All other specifications are same as the lower panel. All the axes are dimensionless.

2. Robustness against resource noise

Let us now fix a moderate amount of noise in measurement
(e.g. we choose R = 0.0, and 0.2) and study the dynam-
ics of average fidelity by varying noise in the shared channel.
First of all, no constructive effects with 7 is seen by compar-
ing R = 0 and R = 0.2 (see Fig. 5). However, the decrease
in F with increase of 7 is much slower than the one observed
by varying R especially when the squeezing strength in re-
source is high, irrespective of Gaussian or non Gaussian re-
source states and inputs (comparing upper and lower panel of
Fig. 5). It demonstrates the adverse effects of inefficient mea-
surement on the protocol compared to noise in resource states.
However, such detrimental impact can again be wiped out in
presence of high squeezing in the shared channel.

3. Comparison with the unentangled protocol

The teleportation protocol with unentangled states (classi-
cal protocol) involves a measure-prepare routine, which evi-
dently does not suffer from the noise models considered here.
Therefore, it is justified to examine whether the noisy telepor-
tation process can beat the noiseless classical one.

All the different scenarios have so far been compared keep-
ing in mind the quantum advantage, i.e., the shared TMSV

states with coherent inputs to be teleported exhibits maxi-
mum robustness against both the noise models considered
here. Moreover, as the input energy increases, the TMSV state
can retain quantum advantage in presence of large amount
of noise. For example, for L. = 0.5, the TMSV state with
r = 1.0 can outperform the unentangled protocol up to
R ~ 0.16, while the same resource can retain quantum ad-
vantage for R < 0.28 with L = 1.0 in case of squeezed input
states . The situation changes in case of the squeezed-coherent
ensembles when the TMSV state can outperform the classical
scheme only for low input energies and for higher values of L
only up to small magnitudes of noise.

In case of photon added state, the regimes of quantum ad-
vantage are very limited especially for squeezed input states
and for low input energy. Quantum advantage can only be
found for low R and 7. The PS state performs better than the
its photon added counterpart irrespective of inputs. Again, it
performs best for coherent input states, always outperforming
the classical measure-prepare routine for high input energy.
For low Lg, it can furnish quantum advantage with sufficient
squeezing (r > 1) unless R and 7 are too high while both for
squeezed and squeezed-coherent input states, the entangled
states win over the classical protocol with high squeezing and
energy cut-offs when noise in the channel and measurements
is low.
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FIG. 6. Average fidelity (ordinate) with noise parameters, R (lower
panel) and 7 (upper panel) (abscissa). Input states are chosen to
be again coherent states drawn from a Gaussian distribution with
TMSYV (left panel) and PS (right panel) as resources. In all the pan-
els, the standard deviation and resource squeezing are depicted as
o. = 1.0,r = 1.0 (hollow squares), c. = 5.0, = 1.0 (hollow tri-
angles) and 0. = 1.0, = 1.5 (hollow circles). The classical thresh-
old corresponding to 0. = 5.0 is shown with dashed gray (pink)
lines while dotted-dashed dark (blue) line represents o. = 1.0. All
other specifications are same as in Fig. 5. All axes are dimensionless.

B. Effects of Gaussian input distribution on noisy teleportation

A similar examination is carried out when the input states
are sampled from a Gaussian distribution. Unlike the con-
strained uniform distribution, all input states, squeezed, co-
herent and squeezed-coherent share more or less similar prop-
erties of average fidelity with respect to both noise parameters.
So, we mainly discuss the behavior of average fidelity for in-
put squeezed states and explicitly mention the corresponding
situations for other input states whenever we come across any
individual feature.

As already emphasized, we will only present those situa-
tions in which the performance of QT protocol is better than
the prepare-measure strategy even in the presence of noise.
Like in the uniform case, the quantum process always out-
performs the classical one in case of teleporting input coher-
ent states irrespective of all resources and noise models that
are considered here. However, with different choices of aver-
age input energy and resource squeezing, the average fidelity
may get affected differently. Nevertheless, as in the noiseless
scenario, we can get a quantum advantage over the classical
one when the input energy or resource squeezing is reasonably
high.

Impact of measurement noise on average fidelity. We
observe that the average fidelity decreases monotonically with
R, for all types of resources and as well as inputs. This is quite
expected since in general noise causes some hindrance in any
protocol. However, three interesting features emerge which
are discussed as follows (see Fig. 6).

* Considering only JF, Gaussian shared channels are
again more robust against measurement noise in ab-
sence of resource noise, i.e., 7 = 0 as compared to
non-Gaussian ones. More precisely, for coherent states
as inputs, the difference between F at low and high
values of measurement noise is prominent for low in-
put average energy and high resource squeezing while
for squeezed-coherent state, this feature is noticeable at
high average energy of the input. E.g. when o, = 1.0
and r = 1.5, we define §F = FR=00 _ FR=40
which for TMSV is §Frysy = 0.133, for PA is
0Fpa = 0.165 and for PS, 6 Fps = 0.163.

Typically, we expect that to obtain a better average fi-
delity with a fixed average energy, we require a resource
with high squeezing. However, we observe an opposite
behavior with coherent states as inputs and PS states as
quantum channel in presence of a noise only in mea-
surements (i.e., taking 7 = 0.0). For example, with
0. = 1.0, beyond R ~ 0.35, the low resource squeez-
ing helps to manage better average fidelity than the
states with high squeezing. A similar trend is also ob-
served in case of teleporting squeezed input states with
TMSV and PS resource although the quantum advan-
tage is unattainable there.

Another point of interest is the ‘constructive effect’ of
noise that we have already noted in case of uniform dis-
tribution of the input states. Moreover, as in the con-
strained uniform distribution, it is noted that the con-
structive effect starts at relatively lower values of R for
non-Gaussian resources compared to the Gaussian ones
irrespective of squeezed or coherent states as inputs.
E.g. considering » = 1.5 and 0. = 1.0, constructive ef-
fect emerges with the measurement noise values for dif-
ferent shared states as Rrarsv ~ 0.40, Rpa ~ 0.26,
Rps ~ 0.28.

Resources with lower squeezing strength corresponding
to a fixed input distribution are less sensitive against
measurement noise. This feature can easily be noted
from Fig. 6 when we compare » = 1.0 and 1.5 for
a fixed standard deviation. Moreover, noisy channels
help to retain the robustness against the noise in mea-
surement.

Response against resource noise. As seen in case of con-
strained uniform distribution, F exhibits some distinct fea-
tures in this noise model which are either not observed or not
pronounced in presence of noise in measurements.

» Greater average energy of the input states makes the
performance of the protocol less robust against resource
noise. The measurement noise slightly improves the ro-
bustness of the performance against the resource noise.

* We can see that with small values of o, (~ 1.0) for co-
herent states as input, non-Gaussian resources are more
robust than the Gaussian one against resource noise (see
Fig. 6) while Gaussian states are the best for input



L=20,r=10 —5—
L=20,r=05 —v—

L=05r=1.0 ——

AFoql o2 1 AFoal 1
0.05} 0.05} ]
05-0.07 0;1:4 021 028 00—0.07 0%4 <021 0.28
02— 025 —
0.155585

A o1

0.05 R 0.05 R

0 0.07 0.14 3{‘21 0.28 0.35

o

0 0.07 0.14 0.21 0.28 0.35
R

FIG. 7. Fidelity deviation, AF (vertical axis) against noise param-
eters, R (lower panel), and 7 (upper panel) (horizontal axis) for
squeezed-coherent input states. The energy cut-off and resource
squeezing are depicted as L = 2.0 = 1.0, r = 1.0 (hollow squares),
L = 2.0,7 = 0.5 (hollow triangles) and L = 0.5, = 1.0 (hollow
circles). All other specifications are the same as in Fig. 6. All the
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squeezed and squeezed-coherent states in the high in-
put energy regime.

Summarizing, we find that in a noisy scenario, both TMSV
and PS states are good quantum channels for QT according to
the average fidelity regardless of energy distribution of inputs
and input states. It will now be interesting to enquire whether
the patterns of fidelity deviation can help us to identify the
suitable resource for QT.

VI. ROLE OF FIDELITY DEVIATION FOR NOISY
TELEPORTATION

We now shift our attention to the behavior of fidelity devia-
tion against two noise parameters, R, and 7. In particular, we
illustrate the behaviour of AF with respect to resource noise
(measurement noise) at a fixed measurement noise (resource
noise) for coherent, squeezed and squeezed coherent states re-
spectively as input.

Constrained uniform input distribution. Let us enumer-
ate some of the interesting observations below as depicted in
Fig. 7.

1. Constancy of fidelity deviation. The first interesting ob-
servation is that AF remains almost constant with the
increase of noise, especially when the variation of R for
a fixed value of 7 is studied. A slight increase is seen
with the change of .

2. Dependence of input energy on deviation. AJF pos-
sesses a high value for all resource states, across mod-
erate values of R and 7 when the input energy is high
and the squeezing is moderate.
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3. Measurement noise vs. resource noise. Focusing on the
variation of AF against the measurement inefficiency,
we find that at moderate values of the resource noise,
e.g. 7 = 0.3, the deviation is higher than that of the case
with 7 = 0 across the entire range of R except some sit-
uations with squeezed coherent input states. Thus there
is no counteracting effect of one noise on the other, as
in the case of average fidelity. In contrast, if we con-
sider AF with a nonvanishing moderate value of R,
say 0.2, it is less for all values of 7 for Gaussian as well
as non-Gaussian states compared to the situation with
vanishing R (as depicted in Fig. 7), thereby exhibiting
constructive effects also in fidelity deviation.

4. Optimal channels.  Scrutinizing the behavior of fi-
delity deviation, we observe that even in presence of the
noise models considered here, non-Gaussian states give
low fidelity deviation compared to that obtained from
the Gaussian ones. Among non-Gaussian states, pho-
ton added states give low fidelity deviation than that of
the photon subtracted ones like the noiseless situation.
However, it is important to note that PA states rarely
give any quantum advantage according to the average
fidelity and hence such a low fidelity deviation does not
lead to any benefit in QT.

Role of Gaussian input distribution. Let us compare the
trends of AF obtained for inputs chosen from the Gaussian
distribution with the uniform distribution discussed above by
varying R and 7.

First of all, the variation of AF observed with R and 7 hav-
ing low input energy is more than that obtained in constrained
uniform case for different inputs.

Secondly, except TMSYV states in which high energy some-

times gives low AF, the relation between input energy and
the deviation observed in the uniform distribution remains
same for the Gaussian distribution.
Thirdly, like the uniform distribution, with the increase
of 7 from a vanishing value to a moderate one, deviation
always increases for coherent input states while for squeezed
coherent state, there are some exceptional regions where the
opposite picture emerges for all three quantum channels.
However, unlike uniform distribution, the increase of R does
not lead to low fidelity deviation in this case with the variation
of 7 — it remains almost constant with 7 after the increase of
‘R which can be justified by inspecting Fig. 8.

Finally, analysing both the fidelity and its deviation along
with input energy distributions, one cannot identify a sin-
gle channel which are more suitable for QT than the oth-
ers. Specifically, our study reveals that in presence of noise
in measurements as well as channels, there is a competition
between non-Gaussian photon subtracted and the Gaussian
TMSV states which give the quantum advantage in QT de-
pending on the energy of the input ensembles.



12

6,=3.0,6,=50 —o—

0.3 08—
0.25 foscescsssssses 025 e
Ago2f o2l
05T 1 AF0.15} i
e 1 01 FnanEs &
0.05 | R=00 — | 0_05EM |
0 . R=02 o
0 0.06 0.12,0.18 024 03 0 0.06 0.12,0.18 024 03
0.3 — 03—
0.25 {1 oa2s) . |
AFO2 [288888888828Resasse; 0.2 b 29888s
018, 1 AF0.15
0.1 EEEEE A ??7:'\ 0.1
0.05 | =00 —— | 005} |
0 1=0.3

0 0.08 0-16K0-24 0.32 0.4 00 0.08 0.1698.24 0.32 0.4

FIG. 8. AF (ordinate) by varying R (lower panel) and 7 (upper
panel) (abscissa) for squeezed-coherent states as inputs drawn from
a Gaussian distribution using TMSV (left panel) and PS (right panel)
as shared channels. We depict the standard deviation parameters as
os = 0.5,0. = 1.0 (hollow squares), s = 0.5,0. = 5.0 (hollow
triangles), s = 3.0, 0. = 5.0 (hollow circles). Here we consider
the resource squeezing = 1.0. All other specifications are the same
as in Fig. 6. All axes are dimensionless.

VII. CONCLUSION

Quantum teleportation is one of the most researched in-
formation theoretic protocols, both in terms of its theoretical
foundations, as well as experimental implementations. Tradi-
tionally, the performance of quantum teleportation is assessed
using the average fidelity. Recently in discrete variable quan-
tum teleportation, it was shown that the standard deviation of
fidelity, namely the fidelity deviation, can non-trivially alter
the calibration of the performance in teleportation.

In this work, we have introduced the concept of fidelity
deviation in continuous variable (CV) quantum teleportation
(QT) both for the ideal and noisy cases. In CV teleportation,
the concept of average fidelity and fidelity deviation, when
considered as a direct continuation from the case of discrete
variables, suffer from energetic divergences. We presented
regularized versions of these quantities, free from such diver-
gences, by considering that the set of states to be teleported
are constrained to have a finite energy cut-off or by introduc-
ing Gaussian suppression of the input energy. In particular,
for the constrained uniform distribution with a fixed energy
threshold, states are drawn with equal probability over all en-
ergy values under the threshold, and for the Gaussian ensem-
ble a fixed standard deviation determines the average energy
range of the input set.

In ideal CV teleportation, we first reported the general
trends of average fidelity and fidelity deviation for both the
considered constrained uniform and Gaussian distributions of
inputs for both Gaussian and non-Gaussian shared states be-
tween the sender and the receiver. In the noiseless scenario,
we observed that the average fidelity decreases with the en-

ergy of the input state at a fixed value of the resource squeez-
ing. The fidelity deviation too suffers from the rise in ensem-
ble energy, such that it is more for input states of higher energy
compared to the inputs having low energy cut-offs. However,
the effect of ensemble energy is different on different resource
states. We found that the photon added (PA) state is the least
useful resource since it can overcome the classical bound only
at large values of the input energy. The situation improves for
increased resource squeezing, but the photon subtracted (PS)
state as well as the Gaussian TMSV state perform far better
than the PA state. The PS state is the most efficient resource
since it provides the highest average fidelity for highly en-
ergetic input sets with reasonably low fidelity deviation, al-
though the PA state furnishes the minimum value in this re-
gard. Overall, advantage is offered by non-Gaussian states
for both the figures of merit and the PS state establishes itself
as the go-to resource. We also showed how fidelity deviation
can non-trivially alter the hierarchy among resource states for
which the average fidelities behave almost identically.

Noise is inevitable in any experiment, and many develop-
ments have been made to study the effect of noise on the pri-
mary figure of merit - the average fidelity. We further the in-
vestigation into the noisy teleportation process by including
the second moment of the fidelity statistics. Our work fo-
cuses on the behavior of the aforementioned figures of merit
with respect to the input ensembles which are characterised
by their energy distribution. We also considered the impact
of noise present in the channels as well as measurements on
fidelity statistics. Interestingly, we found that both kinds of
noise are seen to affect the non-Gaussian states to a greater ex-
tent, in a sense that their average fidelity falls at a much faster
rate, thereby making the TMSV state the best resource, espe-
cially at higher input energies. The difference in the sources
of noise leads to a constructive effect - the resource noise is
able to counter the effects of imperfection in measurements,
due to which the average fidelity for a higher value of the re-
source noise is better than that at a lower value of the same,
when studied against the variation of the noise. The resource
noise also affects the teleportation protocol to a lesser ex-
tent, since the figures of merit change very slowly with re-
spect to its variations. Moreover, the effects of noise are less
pronounced in case of low energy input ensembles and high
squeezing strength of the available resources. In case of the
input states, we report that the coherent state suffers much
less due to noise, as compared to the squeezed and squeezed-
coherent ensembles.

Our work analyses the performance of CV teleportation
protocol in the new light of the regularized version of both
average fidelity and fidelity deviation. We demonstrate how
incorporating this additional quantifier (fidelity deviation) can
provide fundamental insights into the classification of shared
channels for QT that the average fidelity alone cannot cap-
ture both in noiseless and noisy scenarios. We believe that the
present work opens new avenues into research on CV telepor-
tation.
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