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We propose a design of a quantum battery exploiting the non-Hermitian Hamiltonian as a charger. In partic-
ular, starting with the ground or the thermal state of the interacting (non-interacting) Hamiltonian as the battery,
the charging of the battery is performed via PT - (RT )-symmetric Hamiltonian to store or extract energy. We
report that such a quenching with a non-Hermitian Hamiltonian leads to an enhanced power output compared
to a battery with a Hermitian charger. We identify the region in the parameter space which provides the gain
in performance. We also demonstrate that the improvements persist with the increase of system size both in
the battery having PT - andRT -symmetric charger. In the PT -symmetric case, although the anisotropy of the
XY model does not help in the performance, we show that the XXZ model as a battery with a non-Hermitian
charger performs better than that of theXX model having certain interaction strengths. We also exhibit that the
advantage of non-Hermiticity remains valid even at finite temperatures in the initial states.

I. INTRODUCTION

Miniaturization of technology with the usage of quantum
mechanical principles has become an intensive field of re-
search in recent times. Notable achievements exhibiting quan-
tum advantage over their classical analogs, thereby revolu-
tionizing the arena of modern technologies include quantum
key distribution [1], quantum communication, [2, 3], quantum
computers [4], and devices for metrology [5] like quantum
sensors [6] to name a few. In this respect, designing quan-
tum thermal machines like quantum refrigerator [7, 8], quan-
tum battery [9, 10] and thermal transistor [11] have two-fold
motivations – in one hand, it is important to understand the
concepts of heat, work, and temperature in the microscopic
limit, thereby developing the laws of quantum thermodynam-
ics [12–14] and on the other hand, how to achieve the op-
timal performance from the machines even when there is a
competition between thermal and quantum fluctuations. It is
also an interdisciplinary field lying at the crossroads of quan-
tum optics, non-equilibrium statistical mechanics, and quan-
tum information theory. Moreover, with the increase of con-
trol on quantum systems, several experiments have been per-
formed to verify quantum thermodynamical laws like Jarzyn-
ski equality [15–17] and thermal machines like quantum bat-
teries [18, 19], quantum refrigerators [20] in several physi-
cal substrates like trapped ions, nuclear magnetic resonances,
cold atoms, etc.

The original proposal for the quantum battery (QB) con-
siders the initial battery-state as the ground state of a non-
interacting Hamiltonian which can then be charged by global
unitary operations [9, 10, 18, 21, 22]. The main goal of such
construction is to show that the work output or power stored
(extracted) in (from) the battery gets enhanced in presence of
quantum mechanical systems or quantum operations. Instead
of a non-interacting Hamiltonian, the ground or the thermal
state of an interacting Hamiltonian can also be used as the
battery [23, 24] while the local magnetic field in a suitable di-
rection is applied at each site to maximize the energy storage
of the battery. Such a design turns out to be appropriate even
in presence of decoherence and disorder [24–26] as well as in
higher dimension [27].

The evolution of a quantum system is described by a Hamil-

tonian which is typically a Hermitian operator. It was shown
that relaxing Hermiticity condition, if one considers non-
Hermitian systems with parity-time (PT ) symmetry [28, 29]
(with P being the reflection operator in space and T being
the time-reversal operator) or rotation-time (RT ) symmetry
(with R being the rotation operator along a fixed axis) [30],
the energy eigenvalues can be real depending on the system
parameters, thereby maintaining all the properties of standard
quantum mechanics and describing natural processes. How-
ever, such a system undergoes a transition from broken to an
unbroken phase where the energy spectrum becomes real from
imaginary values, known as exceptional points [28, 29]. Sev-
eral counter-intuitive results are also reported in this frame-
work – when a local PT -symmetric Hamiltonian acts on a
part of an entangled state, it was shown that there is a viola-
tion of no-signalling principle [31] which was later settled by
Naimark’s dilation [32]. On the other hand, interesting phases
in the ground state of theRT -symmetric Hamiltonian are also
reported [30, 33, 34] in which the broken-unbroken transition
is found to be connected with the factorization surface of the
corresponding Hermitian models [35]. Over the times, it has
been realized that such systems can have great influences in
different branches of physics ranging from optics [36, 37] to
electronics [38], Bose-Einstein condensates [39] and many-
body physics [30, 33, 34, 40–43]. In this respect, it has also
been realized that the performance of quantum sensors can be
improved with non-Hermiticity [44–49].

Motivated by the advantages provided by non-Hermitian
systems, we utilize non-Hermiticity to propose a set-up of a
quantum battery. In particular, when the initial state of the bat-
tery is the ground states of the interacting and non-interacting
Hamiltonian, we use PT - as well as RT -symmetric Hamil-
tonian to charge the battery. In both cases, we show that
the power of the battery gets enhanced with the help of non-
Hermitian charging Hamiltonian compared to their Hermitian
counterparts. In particular, we identify a parameter region
where such a beneficial role can be found. We demonstrate
that the maximum power decreases with the anisotropy pa-
rameter of the XY model as a battery in the PT -symmetric
case and as a charger in the RT -symmetric scenarios al-
though, for a fixed anisotropy, non-Hermiticity still provides
a benefit over the Hermitian set-up. We also observe that the
energy that can be extracted, measured via ergotropy [9], co-

ar
X

iv
:2

20
3.

09
49

7v
1 

 [
qu

an
t-

ph
] 

 1
7 

M
ar

 2
02

2



2

incides with the work output in the evolution and hence the
power computed here quantifies both the storage as well as
extractable power of the QB.

Moreover, the trends of the maximum power saturates to
a finite values for a moderate system size both for batteries
with the PT - and RT -symmetric chargers. When the initial
state is the thermal state of the system, the maximum power
decreases with the increase of temperature although some dis-
tinct behavior due to non-Hermitian evolution is observed in
the limit of infinite temperature.

The paper is organized in the following manner. In Sec. II,
we set the stage by introducing the quantities which quantify
the performance of the battery. The design of the battery and
its performance when it is charged with the PT -symmetric
Hamiltonian is presented in Sec. III. When the charger has
RT symmetry, the results obtained are discussed in Sec. IV.
The concluding remarks is given in the last section, Sec. V.

II. MODELLING QUANTUM BATTERY AND ITS
FIGURES OF MERITS

A design of a quantum battery has two components – 1. the
battery Hamiltonian, and 2. a charger. In this work, we choose
both ground and the thermal states of interacting as well as
non-interacting Hamiltonians, HB as the initial state of the
battery. The details of these Hamiltonians will be discussed in
succeeding sections.

Charging. In general, a charging Hamiltonian is used to
excite the particles to a higher energy state so that the high
amount of energy gets stored in the QB which can be ex-
tracted from the battery in a suitable time by a unitary op-
eration. In this work, instead of Hermitian Hamiltonian,
two non-Hermitian Hamiltonians having parity(rotation)-time
symmetry, HPT (RT )

charging are used independently as chargers of
the battery. Specifically, we use the well known quantumPT -
symmetric Hamiltonian [31] and RT -symmetric XY -model
[30] for the purpose of charging (for details, see Secs. III and
IV).

The performance of a quantum Battery is decided by the
amount of generated power. In order to describe that, we need
the thermodynamic definition of work.
Work and power. The work output at a given time instance
can be measured as [9, 10] W (t) = tr[HB(ρ(t)− ρ(0))],
where ρ(0) is the initial state of the battery Hamilto-
nian, which are taken to be the ground or the ther-
mal states of HB while ρ(t) is obtained after evolv-
ing the system with non-Hermitian Hamiltonian, given by
ρ(t) = (1/N ) exp

(
−iHPT (RT )

chargingt
)
ρ(0) exp

(
iH
PT (RT )
chargingt

)
with N = tr[exp

(
−iHPT (RT )

chargingt
)
ρ(0) exp

(
iH
PT (RT )
chargingt

)
].

Notice that unlike unitary dynamics governed by a Hermi-
tian Hamiltonian, we need to normalize the evolved state at
each time interval in the non-Hermitian domain. The maxi-
mal power can be computed by performing maximization over
time as

Pmax = max
t

W (t)

t
= max

t
P (t), (1)

where P (t) denotes the instantaneous power at some time,
t > 0. In our case, even in presence of non-Hermiticity, P (t)
is always found to be real.

In general, when the value of a parameter, e.g., the applied
magnetic field, increases, the amount of power generated triv-
ially increases. In order to maintain a fair comparison between
different situations, we normalize the battery Hamiltonian as

1

Emax − Emin
[2HB − (Emax + Emin)I]→ HB , (2)

where the minimum and maximum eigenenergies are de-
noted by Emin and Emax respectively. Thus, the spectrum
is bounded between [−1, 1] which ensures that the advantage
is not the artifact of the parameters.

As mentioned, the energy stored in the battery can be rep-
resented as W (t) although the entire energy may not be ex-
tractable. In other words, the energy that can be extracted
from the battery may not always coincide with the work out-
put in several scenarios including when the battery is in con-
tact with the environment [25, 26]. The extractable energy,
known as ergotropy, from the battery at some time instance t
can be quantified as [9, 25, 50]

E = EB(t)− min
U ′charging

tr(HBρ(t)), (3)

whereEB(t) = tr(HBρ(t)) is the energy at some time instant
and U ′charging = exp

(
−iHPT (RT )

chargingt
)

is the evolution opera-
tor due to the charging Hamiltonian which is taken either to be
PT - or RT -symmetric Hamiltonian. In our case, the stored
energy W (t) and ergotropy E coincides (see the behavior of
E in Fig. 1).
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FIG. 1. (Color online.) Ergotropy with PT - and RT -symmetric
chargers. Variation of ergotropy, E (vertical axis) with time t
(horizontal axis). In the PT -symmetric charger with α = 2pi/3
(solid line), the initial battery Hamiltonian is taken to be the ground
state of the XX model while in the RT -symmetric charger with
γ = 0.1, h = 1.5 (dashed-dot line), it is the ground state of the non-
interacting Hamiltonian. Here N = 6. It can be shown that the work
output, W (t) of the battery coincides with the ergotropy, thereby en-
suring the equality between the stored and extractable energy with
time. Both the axes are dimensionless.
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III. ENHANCEMENT OF POWER WITH PT
SYMMETRIC CHARGER

Let us describe briefly the set-up of a quantum battery and
the charger in the non-Hermitian framework. The ground or
the thermal state of the XY Z Hamiltonian in presence of
transverse magnetic field, given by

HB =
J

4

N∑
r=1

[
(1 + γ)σxrσ

x
r+1 + (1− γ)σyrσ

y
r+1

]
+

∆

4

N∑
r=1

σzrσ
z
r+1 +

h

2

N∑
r=1

σzr , (4)

act as the battery. Here σi-matrices represent the Pauli ma-
trices, γ corresponds to the anisotropy in the xy-plane, J and
∆ are the coupling constants in the xy-plane and z direction
respectively and h is the strength of the magnetic field in the
transverse direction. Notice that with available technologies,
the above Hamiltonian can be controlled and manipulated us-
ing physical systems like cold atoms, trapped ions, nuclear
magnetic resonances [51–54].
PT -symmetric Hamiltonian as a Charger. The quantum

battery is charged by using a local PT -symmetric Hamilto-
nian which can be simulated in the laboratory [32, 55] as a
dilation of higher dimensional Hilbert space [56–58]. It is ex-
pressed as

HPTcharging =

N∑
r=1

[σxr + i sinασzr ] , (5)

where the Hamiltonian possess parity symmetry, i.e., P acts
on the Hamiltonian, PHPTchargingP = H∗PTcharging while T is
a simple complex conjugation in finite dimension, T iT =
−i. Here α is the PT -symmetry (non-Hermiticity) parameter
of HPTcharging and α = π/2 represents the exceptional point
(EP) where eigenvectors and eigenvalues of the local charging
Hamiltonian coalesces. At α = 0, the Hamiltonian reduces to
the Hermitian one. Instead of taking α = 0 which changes
the magnetic field only in the z direction, we can consider
Hermitian charger as

Hherm
charging =

N∑
r=1

[σxr + sinασzr ] , (6)

and the corresponding instantaneous power of the QB is de-
noted by Pherm while PPT represents the same with PT -
symmetric charger. Notice that in this way, both of them are
functions of α.

Before considering the general battery Hamiltonian, let us
first illustrate the effects of non-Hermiticity on the perfor-
mance of the QB when the initial state is the ground state of
the XX model, i.e., HB with γ = 0 and ∆ = 0. Before
proceeding to compute the maximal power produced from the
battery, let us first manifest the behavior of ergotropy with
time and compare it with the work output for fixed values of
α. Unlike noisy scenarios, we find that the ergotropy, shown

in Fig. 1 and the work output match for different non-zero
values of α.

In this scenario, when there are two sites, we obtain the
following proposition on enhancement.

δ
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FIG. 2. Non-Hermitian vs. Hermitian. Map plot of δPTPmax
,

the difference in maximum power obtained from the PT -symmetric
charging given in Eq. (5) and the corresponding Hermitian charging
Hamiltonian, given in Eq. (6), with respect to J (vertical axis) and h
(horizontal axis) of the battery Hamiltonian, HB with γ = ∆ = 0,
the XX model. The initial state is prepared as the ground state in
the XX model of the QB when J ∈ [−2h, 2h− 0.1]. Here N = 2.

Proposition 1. The maximum power output of the battery
made out of two lattice sites in the presence of PT -symmetry
charger, PPT is higher than that of a QB which is charged
by the Hermitian Hamiltonian, when the initial state is the
ground state of the XX model with J ∈ [−2h, 2h− 0.1].

Proof. The ground state, |ψ(0)〉 as the initial state of the
XX model takes the form |0001〉 in the computational basis
when J ∈ {−2h, 2h − 0.1}. After evolution with local PT -
symmetric charging Hamiltonian, the evolved state at time t,
|ψ(t)〉 can be expressed (see Appendix) as a function of non-
Hermitian parameter, α, and system parameters, J , h and time
t. We can then straightforwardly compute the maximal power
both for Hermitian and non-Hermitian cases (see Appendix
for the expressions). To prove the enhancement due to non-
Hermitian charger, we consider the quantity, called as the dif-
ference in maximum power between non-Hermitian and Her-
mitian domains, given by

δPTPmax
= max

t
(PPT (t))−max

t
(Pherm(t)), (7)

which is also a function of α. As depicted in Fig. 2 for an
exemplary value of α = π/3, δPTPmax

> 0 ∀α with the battery
Hamiltonian having J ∈ {−2h, 2h− 0.1} . �

Let us now illustrate that the advantage persists even with
the increase of system sizes, in presence of anisotropy in the
battery Hamiltonian and exchange interaction in the z direc-
tion, i.e., with the XXZ model. The Proposition 1 shows that
for a given α, δPmax

is nonvanishing.
Effects of non-Hermiticity and interactions on QB. We

first examine the pattern of maximal extractable power Pmax
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FIG. 3. (Color online) Role of non-Hermiticity. Maximum power
output, Pmax vs. non-Hermiticity parameter α in the charger. The
effects of increase in system size is also depicted by taking different
N values. The initial state of the QB is taken as in Fig. 2. Here
N = 6, J/|h| = 1 and ∆ = 0 in the battery Hamiltonian, HB in
Eq. (4). All the axes are dimensionless.
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FIG. 4. (Color online) Interaction dependence. Pmax (ordinate)
against J/|h| (abscissa) for different non-Hermiticity parameters, α.
The XX model acts as the QB and the PT -symmetric local charger
in Eq. (5) is applied at each site of the battery. Solid lines represents
Hermitian models, generating low power output while the dashed
lines are for the non-Hermitian charger. Here N = 6. All the axes
are dimensionless.

from the QB with the variation of α and the interaction
strength in the xy-plane. A few observations immediately
emerge from Figs. 3 and 4.

• Since the charging Hamiltonian involves sinα, the
maximal power also shows the periodic nature with α
as depicted in Fig. 3.

• Let us compare the power generated by the charging
Hamiltonian possessing PT -symmetry in Eq. (5) with
α 6= 0 and by the Hermitian charger, given in Eq. (6).
We find that

Phermmax < PPTmax for (0 < α < π). (8)

Note that in the region, the charging PT -symmetric
Hamiltonian has real energy spectrum [31].
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FIG. 5. (Color online) Scaling. Pmax (ordinate) as a function of N
(abscissa). All other specifications are same as in Fig. 3. Fitting the
data shows that Pmax ∝

√
N . Both the axes are dimensionless.

• Pmax reaches its maximum value with the charging
Hamiltonian having α = π/2 which is the exceptional
point.

• The performance of the battery remains almost invariant
with the increase of system size, N of the QB Hamil-
tonian. However, the scaling analysis of QB requires
much more careful investigation which we will do next.

• It was shown that the QB can show quantum advan-
tage (i.e., a QB is said to give quantum advantage when
Pmax obtained with the battery Hamiltonian having non
vanishing interaction strength J/|h| 6= 0 is higher than
that of the battery having vanishing interaction strength,
i.e., J/|h| = 0 when the initial state of the battery
is the ground state of the XX model [24]. We ob-
serve in Fig. 4 that non-Hermitian charging Hamilto-
nian can also provide quantum gain for different values
of α. Moreover, unlike Hermitian situation, the quan-
tum advantage in the non-Hermitian framework is ob-
served both in the positive and negative regions of J/|h|
although the sharp continuous increase in the positive
domain is not visible in the negative domain. This is
possibly due to the fact that the charging battery Hamil-
tonian involves magnetic field both in the x and z di-
rections while the initial state of the QB with low J/|h|
is prepared in the paramagnetic phase and hence after
charging starts, there is competition between spins to
keep in the z and x direction, thereby producing more
power in this system.

Scaling analysis of QB. We now explore the quantum ad-
vantage in our model with the increase of sites in the lattice.
For a fixed α > 0, we find that Pmax increases monotonically
with N as depicted in Fig. 5. More careful analysis reveals
that Pmax scales not linearly with the system size. Specifi-
cally, we find

Pmax ∝
√
N,

when the initial state of the QB is the ground state of the XX
model with J/|h| ∈ [−2h, 2h− 0.1].
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FIG. 6. (Color online) Dependence on anisotropy. Pmax (vertical
axis) with γ (horizontal axis) of the QB Hamiltonian for different
values of α. α = 0 represents the battery with a Hermitian charger.
Other specifications are same as in Fig. 3. All the axes are dimen-
sionless.
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FIG. 7. (Color online) Importance of the XXZ model as battery.
Trends of maximum power output, Pmax with respect to the variation
of interaction strength in the z direction, ∆/|h| for different values
of α. Clearly, we observe that the XXZ model as a battery has
some beneficial role over the XX model with J/|h| = 1. All other
specifications are same as in Fig. 3. Both the axes are dimensionless.

Role of anisotropy and coupling in the z-direction. Upto
now, the entire analysis is carried out when the initial bat-
tery Hamiltonian is the XX model. As shown in the Her-
mitian case [24, 27], the presence of anisotropy in the QB
Hamiltonian typically suppresses the performance, i.e., Pmax

decreases with γ for a fixed α and J/|h| which are chosen
in the region where quantum advantage is seen (see Fig. 6).
However, for nonvanishing α, we find that the rate of decrease
in Pmax after a certain anisotropy parameter diminishes with
γ, i.e., after a sharp decrease with γ, Pmax almost saturates
for γ > 0.5 which was absent in the Hermitian counterpart as
shown with α = 0.

The introduction of interaction in the z direction also leads
to a non trivial effect on QB’s power extraction – for a fixed
J/|h|, we find that with the decrease of ∆/|h|(< 0), Pmax

increases for different values of α and the maximum Pmax is
again obtained with the symmetry breaking transition point,
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FIG. 8. (Color online) Temperature-dependence of the initial
state. Pmax (ordinate) vs. β = 1/KBT (abscissa) for different
value of α. The initial state of the QB is prepared as the canonical
equilibrium state of the XX model while the charger is the PT -
symmetric one with α 6= 0. Notice that the decreasing behavior of
the power with the increase of temperature is same as typically ob-
served in the Hermitian domain. However, close to high temperature,
in the framework of non-Hermitian systems, we find some different
behavior than the one in Hermitian paradigm. (Inset) W (t) with t
for a fixed β = 2.0. It shows that W (t) goes negative which is re-
sponsible for a nonmonotonic behavior of Pmax at high temperature.
All the axes are dimensionless.

i.e., α = π/2 (as shown in Fig. 7).

A. Thermal state as initial state

It is not possible to achieve exact ground state of any Hamil-
tonian in laboratories. In particular, noise due to thermal fluc-
tuation is unavoidable. To incorporate this imperfect situa-

tion, let us take the thermal state of the form,
exp(−β′HB)

tr{exp(−β′HB)}
where β′ = 1/KBT is inverse temperature (KB being the
Boltzmann constant and T is the temperature and we take
β = β′/|h|) as the initial state of the QB. First of all, as one
expects, we obtain the maximum power output from the bat-
tery even in the non-Hermitian framework, when the tempera-
ture of the thermal state is moderately low and Pmax monoton-
ically decreases with the increase of temperature (the decrease
of β).

At high temperature, the certain abnormality arises in the
non-Hermitian regime. In this respect, notice that with β → 0,
i.e., in presence of infinite temperature, the thermal state of a
Hermitian Hamiltonian, HB , reduces to the maximally mixed
state. When the charging Hamiltonian is Hermitian and when
the initial state is a thermal state with infinite temperature, the
state does not evolve and so trivially the power of the QB van-
ishes. However, with the charging being the PT -symmetric
Hamiltonian, the process is no more unitary and it is debat-
able whether we can extract power even at high temperature
as seen from Fig. 8.
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IV. CHARGING BATTERY WITHRT SYMMETRIC
HAMILTONIAN

Let us reverse the design of the QB and check whether the
benefit due to non-Hermiticity still persists or not. Instead of
an interacting Hamiltonian as the QB, let us take the initial
state as the ground state of the non-interacting Hamiltonian,
given by

Hn−int
B =

N∑
r=1

σxr . (9)

After normalizing the Hamiltonian, the eigenvector corre-
sponding to the eigenvalue −1 is the initial state of the QB.
A charging Hamiltonian in this case is taken to be the global
non-Hermitian Hamiltonian, an XY model with imaginary
anisotropy parameter, havingRT -symmetry, represented as

HRTcharging =
J

4

N∑
r=1

[
(1 + iγ)σxrσ

x
r+1 + (1− iγ)σyrσ

y
r+1

]
+
h′

2

N∑
r=1

σzr , (10)

where the operator R rotates the spin by π
2 , i.e., R ≡

e[−i(π/4)
∑N

j=1 σ
z
j ] and T is again the complex conjugation.

Note that the charging Hamiltonian does not individually
commute with either the operators, [HRTcharging,R] 6= 0 or
[HRTcharging, T ] 6= 0 although [HRTcharging,RT ] = 0, thereby
making it a pseudo-Hermitian Hamiltonian. It has been shown
that in the symmetry unbroken phase, the Hamiltonian has real
eigenvalues while it contains complex conjugated imaginary
eigenvalues in the broken phase [30] and the transition occurs
when h ≡ h′/|J | =

√
1 + γ2.

In this scenario, when the initial battery Hamiltonian is
non-interacting, the global operations are shown to be nec-
essary to obtain quantum gain (quadratic scaling of power)
which cannot be generated by the classical model [59]. We
will first demonstrate that non-Hermitian charging Hamilto-
nian can produce more power than its Hermitian counterparts
of a QB having two lattice sites.

Proposition 2. The maximum power generated of a two-
site quantum battery due to the RT -symmetric XY charger
with transverse magnetic field is greater than that of the Her-
mitian XY model provided the strength of the applied mag-
netic field is small and is strictly less than unity.

Proof. To prove it, we compare the cases when the charg-
ing is Hermitian, i.e., γ = −iγ′ and when it is non-Hermitian,
γ = γ′. We take the ground state of the normalized Hamil-

tonian, Hn−int
B , |ψ(0)〉 = 1

2

 1
−1
−1
1

 , with eigenvalue =

−1 as the initial state of the QB. After applying the evo-
lution due to the charging, the evolved state is, |ψ(t)〉 =

δ
RT
P

max
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FIG. 9. Non-Hermitian effects on QB. Map plot of δRTPmax
with the

variation of parameters in charging Hamiltonian, γ′ (vertical axis)
and h. The initial state is the ground state of the non-interacting
battery Hamiltonian, Hn−int

B given in Eq. (??). Note that in Fig.
2, the difference was plotted with respect to battery Hamiltonian.
However, both the plots manifest some advantage in presence of non-
Hermitian charger over Hermitian one. Here N = 2.

e
−iHRTchargingt|ψ(0)〉

tr[e−iHRT
charging

t|ψ(0)〉]
= |ψ(t)〉 = 1√

N

 A
B
B
C

, where the

expressions for A,B, C and N are given in Appendix. It is
possible to compute PRT (t) and the corresponding Pherm(t)
(see Appendix) and hence again we compute the difference

δRTPmax
= max

t
(PRT (t))−max

t
(Pherm(t)) (11)

for γ′ ∈ {0, 1} and h ∈ {0, 2}. As shown in Fig. 9, there
exists a region of h, i.e., when h < 0.8, δRTPmax

> 0. It implies
that the non-Hermitian charger clearly gives some benefit over
the Hermitian ones. �

Remark. The upper bound on h shown in Proposition 2
which is not unity is possibly due to the finite size effect. We
will show in the scaling analysis, that with a moderate sys-
tem size, the battery with a non-Hermitian charger provides a
higher maximal power than that of the Hermitian ones when
h < 1.0 irrespective of nonvanishing γ parameter which con-
trols its non-Hermiticity.

Effect of RT -symmetric charger on power. We com-
pare the maximum power generated via non-Hermitian model
corresponding to applied magnetic field, denoted with hi and
Pmax produced by the Hermitian model having applied field,
hr with the variation of γ′ in Fig. 10. It is evident that the
difference between generated power by non-Hermitian and
Hermitian charger, δRTPmax

is maximum when h is small, it de-
creases with the increase of h and finally becomes negative
for high value of h, i.e., when h > 1. More precisely, the
observations can be listed as follows.

1. When the hi(r) ∼ 0.5 < 1.0, the non-Hermitian charg-
ing admits higher Pmax compared to the Hermitain
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FIG. 10. Comparison between Hermitian and non-Hermitian
chargers. Pmax (ordinate) vs. γ′ (abscissa). Solid lines represent
non-Hermitian charger in Eq. (10) (γ = γ′) while dashed lines rep-
resent the Hermitian ones (γ = −iγ′), representing the XY model.
The ground state of non-interacting Battery Hamiltonian represents
the initial state of the QB as in Fig. 9. Different choices of hi(r) in
non-Hermitian and Hermitian cases are mentioned in legends. The
system size is taken to be six, i.e., N = 6. Both the axis are dimen-
sionless.

ones ∀ γ′. For high γ′, eg. for γ′ ≥ 0.6, the maximum
generated power, Pmax, is small for Hermitian case and
in this regime, non-Hermitian advantage is more pro-
nounced than that of low γ′.

2. Let us consider the case with hi(r) ∼ 1.005. In this
domain, both non-Hermitian and Hermitian charging
lead to a almost same Pmax value, thereby exhibiting
no adavantage. Interestingly, δRTPmax

vanishes with the
increase of N .

3. Going beyond hi(r) > 1, eg., 1.5, the performance of
the QB in terms of Pmax with Hermitian charger out-
performs the corresponding non-Hermitian QB.

Therefore, the close inspection reveals that like the PT -
symmetric charger, the RT -symmetric charging Hamiltonian
has potential to give benefit provided the charging Hamilto-
nian is tuned in a suitable way.

Effect of system size on Pmax. It is natural to ask whether
the improvements remain valid even when one wants to de-
sign a battery with a reasonable system size. Until now, it is
exhibited for N = 2 and 6. For a fixed γ′, we check whether
the advantage is just an numerical artifact or not by compar-
ing Pmax with N for different exemplary values of hi(r). As
depicted in Fig. 11, we observe that Pmax saturates to a fixed
value irrespective of γ′ values and the strength of the mag-
netic fields, hi and hr. Hence Pmax of a QB consisting of
a reasonable number of lattice sites continues to be advanta-
geous in the non-Hermitian case provided the magnetic field
in the charger is adjusted properly.

Temperature dependence of power. We have already ob-
served some non-trivial effects on the power output of the QB
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FIG. 11. Scaling of QB with RT -symmetric charger. Pmax (y-
axis) vs. N (x-axis) for γ′ = 0.8. Different choices of hi(r) in
non-Hermitian (solid) and Hermitian (dashed) cases are mentioned
in legends. All other specifications are same as in Fig. 10. Both the
axes are dimensionless.

with PT -symmetric charger when the initial state is the ther-
mal state, ρβ with β = β′/|J |. It increases with the decrease
of temperature (see Fig. 12), thereby showing detrimental ef-
fects on power in presence of thermal fluctuation. Like the
PT -symmetric case, Pmax is close to zero in the limiting case,
i.e., β → 0 although it does not vanish exactly like the unitary
dynamics. Interestingly, however, that δRTPmax

is small when
the temperature is moderately high. In other words, the supe-
riority of non-Hermitian (Hermitian) systems over Hermitian
(non-Hermitian) ones gets pronounced with a moderate tem-
perature of the initial state of the QB.
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FIG. 12. Effects of thermal fluctuations on non-Hermitian bat-
tery. The maximal power (ordinate) against β = β′/|J | (abscissa)
where the initial state is prepared as the thermal state of the bat-
tery. The charging is again by the RT -symmetric Hamiltonian with
γ′ = 0.8. All other specifications are same as in Fig. 10. Both the
axes are dimensionless.
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V. CONCLUSION

The dynamics of quantum systems governed by the non-
Hermitian Hamiltonian have attracted lots of attention in re-
cent times. On the other hand, the evolution of a quantum
system plays an important role to build quantum technologies,
like thermal machines. Among several quantum thermal de-
vices, a prominent one is the quantum battery which shows a
better storage capacity with the help of quantum mechanics
than the classical models.

We incorporated non-Hermitian evolution in constructing
quantum batteries (QB). Specifically, we use both PT - and
RT -symmetric charging Hamiltonian to charge the ground
state of an interacting and non-interacting Hamiltonians re-
spectively. When the battery consists of two sites, we ana-
lytically proved that the maximum power with non-Hermitian
chargers gets enhanced compared to their Hermitian counter-
parts provided the system parameters are tuned appropriately.
In the case of local PT -symmetric charger, when the initial
state of the QB is the ground state of XY model with the
transverse magnetic field having a moderate system size, we
demonstrate that it can produce extractable power which can-
not be obtained with the QB Hamiltonian without interactions,
thereby showing quantum advantage. Moreover, we find that
the power scales with

√
system size, thereby exhibiting the

persistence of non-Hermitian advantage even in the macro-
scopic limit.

Starting with the ground state of the non-interacting Hamil-
tonian, we demonstrated that the interacting RT -symmetric
charger have also potential to generate a higher amount of
power in the QB than that of the corresponding Hermitian
charger provided the magnetic field in the charging is adjusted

appropriately. We also observed that the power also saturates
to a nonvanishing finite value both in the Hermitian and non-
Hermitian scenarios with the increase of system size.

Beyond the zero-temperature scenario, if the initial state of
the battery is the thermal state and the charging Hamiltonian
is non-Hermitian, the interesting non-trivial results emerge –
as expected, the maximum power decreases with the increase
of temperature although unlike Hermitian systems, it does not
vanish at infinite temperature.

The construction of quantum battery proposed in the frame-
work of non-Hermitian quantum mechanics and the advan-
tages reported here opens up a possibility to design other
quantum technologies including quantum heat engines, refrig-
erators in this paradigm. It will be an interesting direction to
explore the possible implementations of these devices using
currently available technologies.
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VI. APPENDIX

Battery based on PT -symmetric charger. The evolved state of a system consisting of two lattice sites at later time t with
the evolution operator constructed via HPTcharging reads as

|ψ(t)〉 =


− cos2 α csc2(t cosα)

cos4(α+t cosα) csc4(t cosα)+cos2(α+t cosα) csc2(t cosα)+1

− i cos2(α) cos(α+t cos(α)) sin(t cos(α))
cos4(α+t cos(α))+2 sin2(t cos(α)) cos2(α+t cos(α))+sin4(t cos(α))

− i cos2(α) cos(α+t cos(α)) sin(t cos(α))
cos4(α+t cos(α))+2 sin2(t cos(α)) cos2(α+t cos(α))+sin4(t cos(α))

cos2(α)
sec2(α+t cos(α)) sin4(t cos(α))+sin2(t cos(α))+cos2(α+t cos(α))

,

 (12)

where the initial state |ψ(0)〉 = |0001〉 is the ground state of the Hamiltonian, HB when J ∈ [−2h, 2h − 0.1]. We can express
the form of the power which depends on the parameter of the system, given by

PPT (t, h, J, α) =
−h cos4(α+ t cos(α)) + h sin4(t cos(α)) + J cos2(α+ t cos(α)) sin2(t cos(α))

ht
(
cos4(α+ t cos(α)) + 2 cos2(α+ t cos(α)) sin2(t cos(α)) + sin4(t cos(α))

) +
1

t
. (13)

We now, calculate the power generated when the HPTcharging is replaced with its Hermitian counterpart as

Hherm
charging =

N∑
r=1

[σxr + sin(α)σzr ] . (14)

In the Hermitian domain, the instantaneous power takes the form as

P
herm

(t, h, J, α) =
−h cos(4α) + cos(2α)(8h− 2J) + cos

(
t
√

6− 2 cos(2α)
)
(cos(2α)(4h+ 2J)− 12h− 2J)− 7h− J cos

(
2t
√

6− 2 cos(2α)
)
+ 3J

ht(−6 cos(2α) + 0.5 cos(4α) + 9.5)
+

1

t
.

(15)

https://github.com/titaschanda/QIClib
https://titaschanda.github.io/QIClib
https://titaschanda.github.io/QIClib
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Comparing PPT (t, h, J, α) and Pherm(t, h, J, α), and optimizing over time, we can find that the difference is positive in J ∈
[−2h, 2h− 0.1], thereby establishing non-Hermitian enhancement.

QB with RT -symmetric charger. The ground state of the normalized Hamiltonian, Hn−int
B which is the initial state of the

QB reads as

|ψ(0)〉 =
1

2

 1
−1
−1
1

 ,

with eigenvalue = −1. The evolution operator based on HRTcharging acts on the initial state and produces the evolved state, given
by

|ψ(t)〉 =
1

tr(e−iH
RT
chargingt|ψ(0)〉)

e−iH
RT
chargingt|ψ(0)〉,

which reduces to

|ψ(t)〉 =
1√
N

 A
B
B
C

 .

Here

A =
γ sinh

(
1
2 t
√
γ2 − 4h2

)
2
√
γ2 − 4h2

+
1

2

cosh

(
1

2
t
√
γ2 − 4h2

)
−

2ih sinh
(

1
2 t
√
γ2 − 4h2

)
√
γ2 − 4h2

 ,

B = −cos(t/2)

2
+
i sin(t/2)

2
,

C =
γ sinh

(
1
2 t
√
γ2 − 4h2

)
2
√
γ2 − 4h2

+
1

2

cosh

(
1

2
t
√
γ2 − 4h2

)
+

2ih sinh
(

1
2 t
√
γ2 − 4h2

)
√
γ2 − 4h2

 ,

and N =
γ
√
γ2 − 4h2 sinh

(
t
√
γ2 − 4h2

)
+ γ2 cosh

(
t
√
γ2 − 4h2

)
+ γ2 − 8h2

2γ2 − 8h2
.

We now calculate the power in Eq. (1) when charging is performed by HRTcharging with γ = γ′, given by

PRT (t) =
2 cos

(
t
2

) ((
γ′

2 − 4h2
)

cos
(
t
2

√
4h2 − γ′2

)
− γ′

√
4h2 − γ′2 sin

(
t
2

√
4h2 − γ′2

))
t
∣∣∣cos

(√
4h2 − γ′2t

)
γ′2 + γ′2 −

√
4h2 − γ′2 sin

(√
4h2 − γ′2t

)
g − 8h2

∣∣∣ +
1

t
, when γ′2 < 4h2,

(16)
and

PRT (t) = 1−
2 cos

(
t
2

) (
γ′
√
γ′2 − 4h2 sinh

(
1
2 t
√
γ′2 − 4h2

)
+
(
γ′

2 − 4h2
)

cosh
(

1
2 t
√
γ′2 − 4h2

))
t
∣∣∣cosh

(√
γ′2 − 4h2t

)
γ′2 + γ′2 +

√
γ′2 − 4h2 sinh

(√
γ′2 − 4h2t

)
γ′ − 8h2

∣∣∣ , when γ′2 > 4h2.

(17)
When the charger is Hermitian, Hherm

charging with γ = −iγ′, the generated power can be computed as

Pherm(t) = 1−

γ′ sin( t
2 ) sin

(
1
2 t
√
γ′2+4h2

)
√
γ′2+4h2

+ cos
(
t
2

)
cos
(

1
2 t
√
γ′2 + 4h2

)
t

, when γ′2 + 4h2 6= 0. (18)

It can be shown that δPT (RT )
Pmax

given in Eqs. (7) and (11) are positive in some parameter regimes, thereby exhibiting the
response of non-Hermitian chargers on QB.
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