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We present a framework of a multimode dense coding network with multiple senders and a single receiver
using continuous variable systems. The protocol is scalable to arbitrary numbers of modes with the encoding
being displacements while the decoding involves homodyne measurements of the modes after they are com-
bined in a pairwise manner by a sequence of beam splitters, thereby exhibiting its potentiality to implement in
laboratories with currently available resources. We compute the closed form expression of the dense coding
capacity for the cases of two and three senders that involve sharing of three- and four-mode states respectively.
The dense coding capacity is computed with the constraint of fixed average energy transmission when the modes
of the sender are transferred to the receiver after the encoding operation. In both the cases, we demonstrate the
quantum advantage of the protocol using paradigmatic classes of three- and four-mode states. The quantum
advantage increases with the increase in the amount of energy that is allowed to be transmitted from the senders

to the receiver.

I. INTRODUCTION

Nonclassical correlations play a crucial role to build quan-
tum information technologies like quantum cryptography [1—
7], dense coding (DC) [8-12], teleportation [13—15], one-
way quantum computation [16-22], random number gener-
ation [23, 24] to name a few. Among them, the dense cod-
ing protocol is essential for transmitting classical information
without security from one place to another with the help of
a shared entangled state, which exhibits improvements in ca-
pacity over its classical counterparts. The original DC pro-
posal with point-to-point communication was later extended
to multiparty networks involving multiple senders and a sin-
gle as well as two receivers [25-29] although such design of
networks is mostly limited to the finite dimensional systems
(cf. [30, 31]). Interestingly, it was shown that even in case
of quantum key distribution, it is beneficial to apply the se-
cure dense coding protocol, as it doubles the rate of secure
key per transmitted qubit between the honest parties, and also
increases the chance of detecting the presence of malicious
eavesdropper, up to two senders in the single receiver scenario
[32-34].

Continuous variable (CV) systems provide an important
platform for realizing quantum protocols. It can overcome
several limitations arising in the finite dimensional case,
a prominent one being the distinction of four orthogonal
Bell states with linear optical elements required in the stage
of decoding of classical information [35-39]. However,
these drawbacks can be overcome when one considers the
continuous variable (CV) systems, in particular the mode-
entanglement of multiphoton quantum optical systems, where
the average number of photons in a mode is taken to be arbi-
trary. The pioneering work on dense coding in the field of CV
system (which we refer to as CVDC) has first been proposed
by Braunstein and Kimble [40] where the Einstein Podolsky
Rosen (EPR) state [41] is shared between a single sender and
a single receiver to transfer classical information. The en-
coding operation is performed by applying the displacement

operator, which is distributed according to a Gaussian distri-
bution of vanishing mean and variance, o. In recent years,
lots of developments have been made for the successful real-
ization of classical information transmission, in CV systems
[42, 43], particularly with shared Gaussian entangled states
between the sender and the receiver [44—48].

In this paper, we design a framework for the dense coding
protocol involving an arbitrary number of senders and a sin-
gle receiver with quantum optical fields. Each of the senders
performs local unitary encoding with the help of the displace-
ment operator, drawn uniformly from a Gaussian distribution
with variance o. Thereafter, the modes are transmitted to the
receiver, who combines the modes pairwise with the help of
the beam splitters for decoding the message sent by the sender.
The transmission coefficients of the beam splitters have been
kept arbitrary, so as to determine the decoding configuration
which can overcome the classical bound. The proposed pro-
cedure works with an arbitrary number of senders and a single
receiver.

When two and three senders share three- and four-mode
genuinely entangled Gaussian states with a single receiver re-
spectively, we exhibit quantum advantage, i.e., when the ca-
pacity of the quantum protocol beats the classical threshold
value for a given energy which can be obtained between the
arbitrary number of senders and a receiver without any shared
entanglement. Specifically, we identify the region charac-
terised by the state parameters which lead to a quantum advan-
tage. The DC protocol in the CV systems is typically imple-
mented with a fixed average number of photons of the sender
modes, which bounds the energy of the system, required to
obtain a valid classical capacity. We report here the thresh-
old photon number necessary for outperforming the classical
routine. Moreover, the initial squeezing strength leading to
a quantum benefit is determined for some classes of paradig-
matic three- and four-mode states which manifest that the cur-
rent states of the art experiments can achieve the quantum ad-
vantage in a DC network.

The paper is organized in the following way. The multi-
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FIG. 1. Schematic diagram for the CVDC protocol involving two
senders and a single receiver. The schematic has two components in
DC - encoding at the senders’ ends which involve the displacement
operators, denoted by D(ay,) (k = 1, 2), and the decoding part in the
receiver’s side after obtaining modes from the sender upon encoding.
The latter one requires a combination of beam splitters, B.S12, and
BS23 and homodyne measurements of quadratures, Ra, Rb, and RC
at the receiver’s end.

mode dense coding scenario is introduced in Sec. II which
includes encoding and decoding of classical information, the
capacity of DC via quantum protocol and the corresponding
classical scheme without the shared entangled state. We then
illustrate the DC capacities when the senders and a receiver
share three- and four-mode channels in Secs. III and IV re-
spectively. The comparisons of DC capacities with classical
protocols are also discussed in these sections while conclud-
ing remarks are in Sec. V.

II. FRAMEWORK FOR MULTIMODE DENSE CODING
NETWORK

We now introduce the formalism of the multimode dense
coding network involving multiple senders and a single re-
ceiver necessary for our investigation (see Fig. 1 for the case
of two senders and a single receiver). We start by briefly re-
capitulating the basic properties of Gaussian states, and de-
scribe how they can be characterised by their first two mo-
ments in the phase space formalism. We also elucidate on the
Wigner function formalism, which turns out to be useful in
the study of DC in continuous variable systems and present
the dense coding routine for classical information transfer be-
tween multiple senders and a single receiver. We focus on the
multimode entangled states which are necessary for success-
ful implementation of the process and move on to construct
the encoding and decoding schemes to arrive at an expres-
sion for the multimode dense coding capacity. Finally, we de-
rive the classical capacity for multi-sender dense coding using
continuous variable states without entanglement, which sets a
benchmark of a classical bound for accessing the quantum ad-
vantage of the protocol.

A. Multimode Gaussian states as resources

Gaussian states are completely characterized by their dis-
placement vector d and covariance matrix o, given by

d; = (R;), (1)
and
1 ~ - ~ N
0ij = 5(Rilty) — (Ri)(Ry), 2)

where R;s are the phase space quadrature operators, R =
(G1,P1s s Gn, Par) T, satisfying the canonical commutation
relations (CCR), [R;, R;] = iJy,;. Here J is the N'-mode sym-

N
plectic form, J = € , where

i=1
01
Q:{_l 0]_

Therefore, the transformations which preserve the CCR are
symplectic, i.e., SJST = J.

In the phase space formalism of CV systems, the states
can equivalently be characterized by the characteristic func-
tion [49] which reads, for an A-mode state p, as

Xp(cr) = Tr[pD(a)], 3)

where o = (a1, g, ... an) and ﬁ(a) = ®fi1 ﬁ(ai) with
D(au.) = exp(agdy’ — ady) being the displacement oper-
ator for mode k. The Fourier transform of the characteristic
function is the well known Wigner function [50], which for a
N -mode Gaussian state, turns out to be an 2\ -variable Gaus-

sian function, given by

exp[(R—d)To" (R —d)]
wNy/det (o) '
Operationally, the reduced Wigner function obtained by inte-

grating over the quadrature variables of m-modes gives the
marginal probability distribution of the rest of the modes.

W(R) = “)

B. Elements of CV Dense Coding with multiple senders

Let us present here important constituents of the DC net-
work with CV systems. One of the main ingredients of the
prescribed protocol involving multiple senders and a single
receiver is the class of (A — 1)-parameter family of A/-mode
Gaussian states shared between (N — 1) senders and a single
receiver. To implement successful DC, we require suitable
encoding of classical information by the senders and the cor-
responding decoding procedure by the receiver after all the
modes are transferred to the receiver. The success of the pro-
tocol can be measured by computing the multimode dense
coding capacity. The quantum advantage of the protocol can
only be guaranteed when the DC capacity crosses the classical
threshold on the capacity for a multimode channel.



1. Shared states between multiple senders and a receiver

We consider an (N — 1)-parameter family of A/-mode en-
tangled states for the DC network between (A — 1) senders,
denoted as Sy, Ss,...Sa—1, and a single receiver, R. We
now briefly mention a preparation procedure of such states
starting from a single mode squeezed states and linear optical
elements, namely, the beam splitters. In particular, we start
from N single-mode squeezed states of identical squeezing
strengths r but with alternately squeezed quadratures. These
modes are entangled by a pairwise action of (A/ — 1) beam
splitters with transmission coefficients, 7, 72, ..., and Tar—1
which leads to a family of (N — 1)-parameter genuinely mul-
timode entangled states as resources for distributed dense cod-
ing between (N — 1) senders and a single receiver. The
entanglement between the senders and the receiver (in the
(N — 1) : 1 bipartition) depends upon the values of the pa-
rameters 7; and we will show that the dense coding capacity
does so too.

2. Encoding and Decoding

The aim of DC scheme is to transmit classical messages
via an N-mode entangled state which is distributed between
(N — 1) senders and the lone receiver. In particular, the pro-
tocol allows us to transmit A real numbers (which constitutes
the classical message) through this state. Suppose the sender,
i, encodes the classical message «; in his/her mode with the
help of a suitable displacement operator, ﬁ(ai). Note that
the «;s are, in general, complex. Since we attempt to send
only N real numbers, all but one chooses the {«;} to be real.
Without loss of generality, we assume that the first sender en-
codes messages in both his/her input quadratures, i.e., o is
chosen to be complex while the remaining senders encode
a single message, i.e., a real number which is in either the
position or the momentum quadrature of the available mode.
Thus, we have N encoded messages. Each sender encodes o
from a Gaussian distribution of zero mean and standard devi-
ation o. Since LOCC is allowed between the senders, so we
can assume that the standard deviation is fixed among all the
senders. The probability distribution of the input messages
reads as

qw ‘ @Qm

p(a):Wexp[—Z . )

=1

Upon encoding, the senders’ modes are transmitted to
the receiver along a noiseless quantum channel. The re-
ceiver then applies (A — 1) beam splitters to combine the
modes in a pairwise manner to start the decoding process.
Therefore, the decoding essentially comprises the action of

A . . T
|:B(N_1)N(TN_1)...BQg(Tg)Blg (m1)| on all the modes with

B;; being the action of the beam splitters combining the
modes, ¢ and j, followed by the homodyne measurements of
suitable quadratures performed to estimate the messages en-
coded by the senders. The decoding process yields the condi-

tional probability distribution p(5|«) where /3 stands for the
messages interpreted by the receiver upon decoding. The un-
conditional probability distribution of the decoded messages
is then computed as

MB%=/ﬁNaMﬁmm@% ®)

and the mutual information quantifying the information
achievable from the A/-mode states at the receiver’s side is
given by

Iy = /dNa ava p(Bla)p(a) In [p(moz)] @)
p(B)
The receiver’s task is to maximise Eq. (7) under the constraint
that the total number of photons at the modes of (N — 1)
senders is fixed to N. We observe that for an A/-mode state,
the total photon number of the senders’ modes after encoding
is given by

N = (./\/'fl)sinh27’+'%/02, (8)
and the mutual information is optimised when
N = (N —1)e"sinhr. 9)

Choosing o by substituting Eq. (9) in Eq. (8) for a given
N-mode state with sender signal strength N, we can find the
classical capacity of the quantum channel.

3. Classical threshold

The advantage of a quantum protocol in dense coding is as-
sured if its capacity surpasses the corresponding classically
available scheme. Therefore, we need to set a benchmark
with which the classical capacity of a quantum channel can
be compared. According to Holevo’s theorem, if a classical
message, say «, taken from a probability distribution p(«) is
to be transmitted via a quantum state p,, the mutual informa-
tion Z(S : R) between the sender, S and the receiver, R is
bounded above by the Holevo quantity [51],

I(S: R) < S(5) — / Pap(a) S(pa) < S(7),  (10)

where S(p) = —tr(p1n p), is the von Neumann entropy of the
density operator p = [ d*a p(a) pa-

Considering a legitimate constraint of having a fixed mean
number of photons N (which can be modulated), the required
task is to find the configuration of a single mode bosonic field
in order to maximize the mutual information, Z(S : R). It was
shown [52, 53] that the optimal channel capacity via the clas-
sical protocol is achieved by photon counting measurement
from a ensemble of number states having maximum entropy,
ie, > P(n)|n) (n| with P(n) = N™(1 4+ N)~("+1),

With this optimal configuration of a single mode bosonic
channel, the channel capacity for a single sender and a single
receiver without entanglement is found to be [53]

CGR(N)=(1+N)ln1+N)-NInN. (11
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In a similar spirit, the capacity with A'— 1 senders and a single
receiver yields

N-1

OSSN RUNY) = T [(1+N;) In(1+ Ny) — Ny In Ny,

Z (12)
where N; is the mean photon number of the sender’s mode,
1. Imposing the constraint of having a fixed mean photon
number N at the senders’ mode, where N = ZENfl) N;
the capacity in the classical scenario where entanglement be-
tween senders and a receiver is absent can be obtained by max-
imizing C5' SN =HR({N;}) over {N;} with the constraint
N = ZEN_D N;. The condition for achieving the maximum
capacity tuns out to be N; = N /(N — 1) with equal distribu-
tion of photons being taken at all senders’ modes. Substituting
N; = N/(N — 1) in Eq. (12), we obtain the expression for
capacity in the classical case with arbitrary number of senders
and a single receiver as

S1...58v-1:R __ _ N N -
cs —(N 1){(1—%]\/7_1)111(14—/\/7_1)
N N
e (1

Comparing C5' V=R yith the capacity obtained via
shared entangled state, we can confirm the quantum advantage
which we will demonstrate explicitly for the shared three- and
four-mode states in the succeeding sections.

III. CLASSICAL CAPACITY FOR THREE-MODE
CHANNEL INVOLVING TWO SENDERS AND A SINGLE
RECEIVER

To derive the expression for the classical capacity between
two senders, and a single receiver, S, So and R respectively,
the three-mode squeezed state is initially distributed among
them. A three-mode genuinely multimode entangled state is,
in general, prepared with the help of a tritter. The class of
such states constitute a two parameter family, characterized
by the transmittivities, 7; and 7o of two beam splitters which
comprise the tritter. The three-mode entangled state identi-
fied by its displacement vector and covariance matrix can be
represented as

dy = (0,0,0,0,0,0) (14)
A0 R 0 T 0
0 B 0 -R 0 —-T
R 0 C 0 -85 0

=9 _R 0o D 0 & as)
T 0 =S 0 & 0
0o -7 0 § 0 F

where

1

A= iefzr[(e‘lr —1) 7 + 1],
1 —ar T

=3 (e +e”(1-m7)),

1

C= 3 (sinh 2r(1 — 27y 72) 4 cosh 2r) ,
1 X ,

D= 56_27 [(64’ - 1) 172 + 1],
1

&= 3 (sinh 2r(1 — 271 (1 — 72)) + cosh 2r) ,

F=se 14 m (e — 1)(1—m)),

2
R = \/TlTQ(l — Tl) SinhZ’I‘,
S = T1 Tg(l —7'2) sinh2r,

T =+/n(1—7)(1 — ) sinh2r. (16)

All the initial single mode squeezed states are considered to
have equal squeezing strength, . For 71 = 1/3 and 7 = 1/2,
we obtain the well-known basset-hound state [54-56].

Encoding by the senders. Since the state comprises three
modes, two senders can send at most three real numbers ac-
curately. Without loss of generality, we assume that S; sends
two real numbers a1, and a1, encoded through a suitable dis-
placement operation, Dy (o) where oi; = 15 +ia1, while Sy
chooses to send a single real number «2,, with the help of the
displacement, D, (a2) having cvg = icvg,. Both the senders re-
sort to a Gaussian distribution of their respective real numbers,
having the same standard deviation o. The input probability
distribution is then given by

7L€X 7‘061|2 ! ex
(o) = g exp(~ )

The encoding process gives rise to the displacement vector
and covariance matrices, given by

egf?

p(—5)- (D

o2

de = (V2a14,V201,,0,v202,,0,0)",  (18)

Oen = 0. 19)

Decoding by the receiver. After the encoding process,
senders send their respective modes to the receiver, and
hence the receiver possess the three-mode state. Towards

rcovering the classical information, two beam splitters are
used to combine modes 1 and 2 as well as modes 2 and

3, [323(7'2)312(71)} . Such a decoding routine results in a

three-mode state with the displacement vector and covariance
matrix, respectively as

dyec = (V2ma1e, V272(1 — T)agy + V271104,
\/2(1 — Tl)alz, \/2(1 — Tl)Oély —V 27’17’2a2y,
0,/2(1 — Ta)aay) 7, (20)

1,01 01 1,01, 1
Odec :dlag(762 )5 € 2 )5 € 2 a562 7562 756 2 )

27 72 2
21




The receiver requires to undertake a homodyne detection to
measure p1, x2 and ps, since these quantities have the lowest
variance in oge.. It results in the probability distribution of
the output variables (conditioned on the input) as

p(Bla) = /dxldPdeBWp5152R(xl7ﬁlu527]92 1 23, (3)

_ i o 2r o _ 2

= =7 exp{3r — e*" (B2 — a12/2(1 — 11))"}| X

™

[exp{—e¥ (81 = V(a7 + a2y Va1 = 12)))*}]

[exp{=e2" (85 — a2, /2(1 — 12))*}] @2
where W, o is the Wigner function of the state after the
modes are combined by the receiver using the beam splitter
setup described above [30]. §; (i = 1,2, 3) represent the ho-
modyne outcomes obtained by the receiver upon measuring

on the mode, ¢ . The unconditioned probability of the homo-
dyne variables from Eq. (6) in this case reads

Using Eqs. (17) - (23), the mutual information corresponding
to this channel can be computed as

7(5:852 R) = [ & saPardasp(lalpta) n [P01)]
= %hl (2¢*" 0% +1) (2€2TO'2(1 —7)+1)+
% In (2¢* 0% (1 — 72) + 1) (24)

To obtain the classical capacity of a quantum channel, Eq.
(24) needs to be maximised subject to the condition that the
total photon number of the two input modes is fixed. This
condition can be represented as

3 _
1 4 7o = 2sinh?r + 502 = N. (25)

For a fixed N, the mutual informa_tion is maximized when
0? = Zsinh2r and 7 = In(V1 4+ N), leading to the expres-

p(B) = / d*aydosp(Bla)p(a). (23) sion for the dense coding capacity,
J
OSSR (11, 7) = S n [ QN (N +2) + 3NN +2)(1 - n) + )NV +2n(1-m) +3)].  @26)

Substituting various values of 7; and 7o, we obtain the CVDC
capacity for different states belonging to the two parameter
family. Notice that although the basset-hound state obtained
with 71 = 1/3 and 7o = 1/2, possesses the maximum genuine
multimode entanglement in this set of states, we find that there

J

L

1
S182:R _
C (1/2,1/2) = 2ln [54

which increases monotonically with the increase of N.
and for a given N, we notice that CS152:%(1/2,1/2) >
CS192R(1/3,1/2).

A. Quantum advantage in DC

To guarantee the quantum advantage, it is important to com-
pare the classical capacity of a quantum channel with the ca-
pacity in a classical protocol. From Eq. (13), the optimum
capacity in the classical case for a channel with mean pho-
ton number NN shared between two senders and one receiver
reduces to

C92 R = 2(1+ N/2)In(1 + N/2) — 2(N/2) In(N/2).
(28)

(

exist states (obtained with other values of 7y and ) which
furnish a greater CV dense coding capacity than that obtained
via basset-hound state (cf. [28]). For example, with 71 =
79 = 1/2, the DC capacity takes the form as

(N(N +2) +3)(N(N +2) +6)(2N(N +2) + 3)} : 27)

(

Let us define the quantum advantage in the DC network in-
volving arbitrary number of senders and a single receiver as

Aslsg'--S/\/‘fliR —

081823_,\/’71:7?,( CSlSQ"'SN_ltR’(Zg)

T1,T2, 7TN—1) — Uy
for a fixed photon number. The positivity of the above ensures
quantum advantage in the shared channels.

Let us identify the range of 7 and 75 for which the three-
mode state provides quantum advantage, i.e., AS192R > (
for a fixed N as illustrated in Fig. 2. We find that, with
increasing N, the region bounded in the (71, 72)-plane pro-
viding quantum advantage also grows in size. Furthemore,
with 71 = 0.5, we find the largest range of 7o which provides
quantum advantage for a given N. This indicates that states
prepared with 7 = 0.5 are more suitable for multimode DC
between two senders and a lone receiver.

Threshold energy for quantum advantage. For any given
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FIG. 2. Region plot of the state space bounded by 7, and 72 which
provide quantum advantage of DC having two senders and a sin-
gle receiver with states belonging to the two parameter family of the
three-mode states defined in the main text. The abscissa and ordinate
represent 71 and T2 respectively. The blue, orange, green and red
curves (from below) correspond to N = 7, N = 10, N = 15 and
N = 20. Note that all the states bounded by each curve can provide
quantum advantage in DC. All the axes are dimensionless.

values of 7 and 7o, there exists a threshold energy, say,
N S152:R (7, 7,), above which the quantum advantage can be
achleved Althou gh it is very hard to find such analytical ex-
pression of Ng; R(71,73), we can find the threshold en-
ergy numerically for a ‘§1Vel‘1 71 and 72 by solving the equation
CS152R (1) 7)) = C552R for a fixed N. For example, we
find the value of Ng;& (1/2,1/2) = 8.15, i.e., the three-
mode entangled state having the state parameters 71 = 7o =
1/2 can offer a quantum advantage in the DC protocol at the
minimum expense of energy N5 2% (1/2,1/2) = 8.15. For
a given energy N, we find that
71 |max= 0.5 £

min

VIB(N(N +2) + 3)2 — 2N F 22T

IN(N+2)+3
EN(N +2) : (30)
and for a given 7 and N,
3
T2 hax— 1+ m -
QTN 2N-1(N 4 2)2N+
3271 (2N (N +2) + 3)(2N(N + 2)(1 —71)+3)
(31)

where T7; | min Trepresent the region bounded by 7; which pro-
max

vides quantum advantage. Moreover, the minimum number

of photons at senders’ mode required to avail the quantum ad-
vantage is then given by
NS182:R

th min
{r1,72}

= 5.38,

where minimization is performed over all possible values of
T1 and T: 2.

Quantum advantage with large squeezing strength. Let us
now investigate the ratio of classical capacity of a quantum
channel and the capacity in the classical protocol for large re-
source squeezing r after optimizing over state parameters 7
and 75. Substituting N = 2e"sinhr (see Eq. (9)) into Eq.
(26), we obtain CS152R o, 6y, whereas the same substitution
in Eq. (28) yields 0291152:72 ~ 4r for large r. Hence the ratio
becomes

CslsztR

—=—< = = (at large 7).
CfllSz.R 2
Knowing that the quantum protocol for 77 = 7 = 1/2
can overcome the classical threshold value, when the total
photon number of the senders’ modes is N > 8.15, we can
find that the minimum squeezing required for quantum ad-
vantage in the two sender-one receiver scenario, denoted by
S18%R (7 =1/2,75 = 1/2) is 1.10685. Note, however,

7Abreak even

that r;}sﬁizkfevm(l/l 1/2) is higher than that for the single
sender-single receiver regime [40]. It is due to the fact that
03152 is much higher than the classical bound for the DC

protocol with a single sender-receiver duo.

IV. MULTIMODE DENSE CODING NETWORK WITH
FOUR-MODE STATES

AKkin to the case for three-mode channels, let us consider
a general class of four-mode genuinely entangled Gaussian
states, characterised by three parameters, 71, 75 and 73, shared
between three senders, S;, (i = 1, 2, 3) and a receiver, R.

Encoding. Three senders, S1,S, and S3, perform dis-
placement operators on their respective modes as a part of
the encoding process. The displacement amplitude for each
sender is proportional to the message they wish to send. Like
in the previous three-mode situation, we assume, without
loss of generality, that S; incorporates displacement in both
the quadratures of his/her available mode with an amplitude
o1 = aqgz + tagy. Sz chooses to displace only the momen-
tum quadrature by s, while the position displacement a3, is
performed by Ss. The input messages belong to a Gaussian
ensemble characterized by the probability distribution,

1
p(Oé) = m exp |:—
The senders then transfer their modes, post-encoding, to the
receiver R via noiseless quantum channels.
Decoding. In order to decode the messages, the receiver
combines all the four modes at his disposal, with the help of
the beam splitter setup, represented as

1

[334(73)323(T2)B12(71)} T-



The homodyne detection by the receiver on modes pi, T2, p3 message (here, the subscript on the numbers indicate the
and z4 leads to the conditional probability on the decoded quadrature on which the homodyne detection is performed),
given by

p(Bla) = /dxldp2d$3dP4Wp515233R(531751,ﬁ27P27$37ﬁ3 : Ba,pa)

lexp {47" —é? ((ﬁg — V201,V =711 — asp/im3(1 — 7'2)))2 + <51 — V2(1yy/T1 + agy/ (1 — 7'1)7'2))2> } X

m
1 2 2
—exp {— e?r ((33 — V202, VT — 72) + (34 — V2031 — Tg) ) } (33)
(
Here, W5 5,5, again represents the Wigner function of the  calculate the unconditioned decoding probability distribution

state after the beam splitter operation by the receiver and j3; p(p) using Eq. (6), whereafter, the mutual information can be
are the homodyne outcomes for the mode, ¢. Following the estimated as
same steps as in the case of the three-mode states, one can

J

I(815:83 : R) = / d*Bda dondasp(Bla)p(a) In [P;fgm

() (- 2) (70 (2 )

1 N [46‘” (1 —7)(1 —73) + 270 (ri(1 — )3 + 71 + 73 — 2) + 1}
02/2 422t ((1 — )13+ 73— 1)

(34)

Optimisation of Eq. (34) subject to a fixed photon number N ;2 _ 3 Ginh9r and r = In /1 + 2N ' we obtain the capacity
at the senders’ ends, i.e., N = iy +no+n3 = 3 sinh? r 4202 4 3

lead to the DC capacity of a network involving three sender-
one receiver duo. With the aid of optimal conditions given by

J

in terms of the photon strength of the senders and the state
parameters as

OSSR (11, 7) = 1 (VY +3) + VN + 31 = ) + VN + (VW +3) +3)(r = 1) = 3mra)ra).

(35)

J

Classification of mutimode states according to their DC capacities. Motivated from the three-mode results, let us first consider
a symmetric situation, i.e., when 73 = 79 = 73 = 1/2, the DC capacity becomes

CS15255R(1/2.1/2,1/2) = % In [(N(N +3)+3)(N(N +3) +12)(N(N + 3)(2N(N + 3) 4 27) + 72)} —In[36v/2]. (36)

(

Instead of equal 7;s, let us choose 71 = 1/3, 72 = 1/4, 73 = 4/5, in which case the DC capacity reads as
|

OS18255R (1 /3 1/4,4/5) = % In [(N(N +3) + 3)(N(N +3) + 12)2N(N + 3)(N(N +3) + 24) + 135)} — In[18V/15] (37)

(

Comparing Egs. (36) and (37), we find To demonstrate it more explicitly, we vary 7;s and find the
C515255R(1/2.1/2,1/2) > C515255R(1/3,1/4,4/5).
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FIG. 3. Quantum advantage in the DC scheme involving three
senders and a single receiver in the state space characterised by 71
(x-axis), T2 (y-axis) and 73 (z-axis). The orange, blue and green
planes represent N = 15, N = 20 and the green plane depicts
N = 25 respectively. Note that the volume enclosed by the sur-
faces also represents states which can provide quantum advantage,

i.e., AS15253R ~ () All the axes are dimensionless.

hierarchies among states which are beneficial for classical in-
formation transmission by using Eq. (35) with a fixed photon
number N (see Fig. 3).

A. Outperforming quantum network with four-mode classical
scheme

For the classical information transmission involving three
senders and a single receiver without having any shared en-
tangled state, the classical threshold reduces to

0519255 R — 3(1 4 N/3)In(1 + N/3) — 3(N/3) In(N/3).

(38)
Analyzing AS15253R in the 1, 75, T3 hyperplane, we observe
that the quantum protocol can outperform the classical one for
a given N as depicted in Fig. 3. The volume of states having
quantum benefit increases with the increase of N as also seen
in case of shared three-mode states and it is bounded by the
surface in the figure. Moreover, we notice that all such favor-
able states are centered around 7, = 1/2, which indicates that
such a configuration is well suited for proposed CVDC proto-
col between three senders and a single receiver. Furthermore,
for small signal strength at the senders’ end, states with small
values of 75 and 73 are more helpful over the classical scheme
compared to the states with high values of transmission coef-
ficients of the beam splitters.

Like the three-mode entangled case, the solution of the
equation, 515255 R (7 1y 13) = C519255 R for N can give
the threshold energy, NngSst:R(Tl,TQ,Tg,) for the shared
state comprising state parameters 71, 7o and 73, above which
ASIS285R 5 () Bg. NJ9%R(1/2,1/2,1/2) = 24.87
and

NiSeSe R = 1145,

{r1,72,73}

for the shared four-mode genuinely multimode entangled
states. In this situation, let us identify the range of state pa-
rameters, i.e., 71, 7o and 73 for a given energy N so that the
quantum advantage can be prevailed. They turn out to be

O(N(N +3) + 6)2 — AN NIV +8)2010

(N(N+3)+3)2

max — 05 Zl: = = 5 39
n m?n 36N2(N+3)2 ( )
while for given N and 71,
(N+3)2N+6N—2N _ _
(N(N+3)+3)2(N(N+3)(T171)73) + 9(N + 3)N’7—1 + 27
| = — (40)
mazw IN(N + 3)7y
When N, 74 and 75 are fixed, the third transmission coefficient takes the form as
I(N(N +3)+3)2 (NN +3) (11 — 1) = 3) (N(N +3)71 (12 — 1) — 3) — N2V (N 4 3)2N+6 @
T3 -

Substituting N = 3e" sinhr into Egs. (35) and (38), we ob-

maz — QN(N +3)(N(N +3) +3) (N(N +3)71 (12 — 1) = 3) (N(N +3) +3) (11 — 1) — 31172)

(

tain C515253 R 8 and O5'52%% R ~ 67 respectively for



large r. Therefore, the ratio between quantum and classical
protocols for three senders and a single receiver becomes

081325327?,

———e—— = — (at large r).
0315253% 3 g

In this case, the break-even squeezing strength of the quan-
tum protocol, given in Eq. (36), required to defeat the classi-
cal threshold with the DC capacity for a given senders’ photon
number N reads rfﬁiff;ﬁn(ﬁ =1 =13 =1/2) =1.433
which is 1.107 for the three-mode case with 7y = 75 = 73 =
1/2. Tt implies that the squeezing strength required to obtain
improvement in the mentioned quantum protocol increases
with the increase of number of modes. Thus for the three
senders-one receiver scenario, there is a quantum advantage

5182835R
beyond Tbreakfeven(’rh T2, T3)'

V. CONCLUSION

In quantum communication which include both classical
information transmission as well as quantum state transfer,
shared entangled states are necessary to exhibit any quantum
advantage. To transfer classical information, say two bits, the
classical protocol where no shared entangled state is available
requires 4 dimensional objects for encoding while it reduces
to two dimensional system with the help of shared entangled
states and hence the scheme is called dense coding (DC). In fi-
nite dimensional systems, the capacity of dense coding for an
arbitrary shared state is known when there are arbitrary num-
ber of senders and a single or two receivers.

For continuous variable (CV) systems, since the dimension
of the systems involved is infinite, the DC capacity can only be
meaningful when it is obtained by fixing the amount of energy
that can be sent from the sender to the receiver. Without this
constraint, the capacity would simply diverge. Using this en-
ergy constrained capacity, quantum advantages in CVDC was

demonstrated for a single sender and a single receiver sce-
nario. [40].

In this work, we go beyond the single sender-receiver
scenario, and proposed a design of continuous variable DC
(CVDC) network with multiple senders and a single receiver.
In particular, we presented a possible blueprint of the encod-
ing as well as decoding strategies, computed the correspond-
ing classical energy constrained capacities of a quantum chan-
nel and optimum classical threshold which can be achieved in
absence of shared entangled state. We fix the encoding strate-
gies to be local displacement operations in the senders’ side,
while the decoding involves the use of beam splitters and the
homodyne measurement of quadratures.

We demonstrated the efficacy of the CVDC network involv-
ing two as well as three senders and a single receiver when the
shared states are the three- and four-mode states. In both the
cases, we showed that the quantum protocol can give benefit
over the classical one, thereby establishing the usefulness of
multimode entangled states as resources. With the increase
of energy, we found that the quantum advantage also got en-
hanced. Moreover, we computed the critical energy which is
required for the successful implementation of CVDC with en-
tangled resource.

A practical communication technology demands transfer of
data among various nodes in a network. Hence the construc-
tion of the protocol presented here may shed light to estab-
lish a network for transmitting classical information involving
multiple nodes using squeezed states of light which can be
implementable in laboratories.
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