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The quantum long-range extended Ising model possesses several striking features which cannot be observed
in the corresponding short-range model. We report that the pattern obtained from the entanglement between any
two arbitrary sites of the long-range model can be mimicked by the model having a finite range of interactions
provided the interaction strength is moderate. On the other hand, we illustrate that when the interactions are
strong, entanglement distribution in the long-range model does not match with the class of a few-range interact-
ing model. We also show that the monogamy score of entanglement is in a good agreement with the behavior of
pairwise entanglement. Specifically, it saturates when the entanglement in the finite-range Hamiltonian behaves
similarly with the long-range model while it decays algebraically otherwise.

I. INTRODUCTION

Quantum systems with long-range (LR) interactions, natu-
rally emerged in numerous experiments in atomic, molecular
and optical physics [1–18], have attracted a lot of interests in
the last decade. Moreover, these systems are often known to
possess rich and striking properties which are not typically
observed in the models having short-range (SR) interactions.
Examples of features include fast spreading of correlations
[13, 19–22], breakdown of Mermin-Wagner-Hohenberg the-
orem [23–25], violation of area law [26–29] and fast state
transfer [30] to name a few. Tremendous advancements in set-
ups like cold atoms in optical lattices, ion-traps and supercon-
ducting circuits facilitate quantum control at an unprecedented
level, thereby making the simulation of such long-range sys-
tem a reality with reasonable system size [18, 31–33] and
opening up the possibility of practical verification of these in-
teresting characteristics.

Despite the overwhelming progress in different experimen-
tal techniques, the current generation of quantum hardwares
is not yet scalable. They are far-from-perfect due to the
limited number of controllable qubits and lack of quantum
error correction, which are collectively referred to as noisy
intermediate-scale quantum (NISQ) hardware [34]. There-
fore, it is of utmost importance to the current generation of
NISQ hardware to use the least possible number of gates
so that the noise can be minimal. Quantum variational al-
gorithms like quantum approximate optimization algorithm
(QAOA) [35] have been proven to be an efficient tool to sim-
ulate many-body system [15, 17, 36–39] which are also suit-
able for NISQ hardware [40]. However, to simulate a end-to-
end connected LR system, if we use only a single two-qubit
gate per interaction, we require at leastO(N !) two-qubit gates
for an N -site system which again needs to be optimized over
multiple iterations. In gate-based quantum hardware, the two-
qubit gates, in general, introduce more noise in the system
than the single qubit ones and have an overall low fidelity [41].
Therefore, an exponential use of two-qubit gates can make the
overall simulation too noisy to obtain any meaningful result.
In this work, we try to circumvent this problem by approxi-
mating a LR Hamiltonian with a finite number of pairing in-
teractions, keeping the overall behavior of two-qubit entangle-

ment behavior intact which, in turn, results to an exponential-
to-polynomial reduction of the usage of two-qubit gates.

In a LR model, the two-body interaction potential decays
algebraically with their relative distance, typically like 1/rα

where r is the relative distance between the two-bodies and
the exponent α controls the strength of the interaction. For
such a system of spatial dimension D, the interactions are
“strong” when 0 ≤ α ≤ D while those with α > D + 1
are called “weak”. The weak LR interactions effectively be-
have like the SR ones where the correlations have an ex-
ponential tail except at the critical point while at the criti-
cal point, the correlations are algebraic. On the other hand,
when α < D + 1, the correlations always have an alge-
braic tail regardless of the critical points. This is clearly
a very distinctive feature of a ‘true’ LR Hamiltonian, hav-
ing counter-intuitive characteristics. From the point of view
of quantum correlations, although information theoretic mea-
sures [42, 43] may show long-range order [44–47], measures
from entanglement-separability paradigm are typically short-
ranged when α > D + 1. In this work, we concentrate on the
regime when α < D + 1 where classical correlations always
have an algebraic tail irrespective of the critical point.

Typically, in a SR model, entanglement follows the area
law when the ground state is gapped and has a finite range in-
teractions [28]. Indeed, entanglement entropy in the ground
state of a one-dimensional gapped system saturates to a con-
stant value in the thermodynamic limit as an implication of
the area law [48] while the same grows logarithmically if the
system is a gapless one [49, 50]. On the other hand, in the
presence of long-range interactions, these results are not valid
anymore and entanglement can grow logarithimically even
away from the critical point [22, 51]. In fact, under certain
special circumstances, LR interactions allow sub-logarithmic
growth of entanglement entropy [21, 52–54] or even as a vol-
ume law [55] which is a clear violation of the area law. LR
systems, where area law is not valid, should, in principle,
not be efficiently simulable with numerical tools like tensor
networks [56]. However, it has been shown that existing nu-
merical tools such as matrix product states [29, 57–65] can
produce a good match with the exact results. It may be at-
tributed to the analysis of the distribution of entanglement
which can be mimicked with long but not infinite range inter-
actions. We show that this is indeed true in the intermediate
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regime, 1 < α < 2, as far as the two-qubit entanglement is
concerned.

Besides entanglement entropy, the two-site entanglement
between arbitrary pairs of spins is directly related to applica-
tions such as secure quantum communication, quantum inter-
net, etc, involving multiple parties. Since many-body quan-
tum systems are often considered to be promising premises
to generate multipartite entangled states, a long-range Hamil-
tonian can be more useful than the SR ones. In this article,
we, therefore, investigate the two-qubit entanglement between
different lattice sites over the entire spin chain. Notice that
unlike classical correlations, an algebraic decay of two-site
entanglement with distance is restricted by the monogamy of
entanglement [66–68]. In this work, we address the following
questions:

Can a ground state of an end-to-end fully connected LR
Hamiltonian be efficiently simulated by a finite number of
pairing interactions?

If so, how many number of neighbors are required to mimic
the same behavior of entanglement in the ground-state and
how does that number vary with the exponent α i.e., the
strength of interaction?

These questions are especially relevant when we wish to
create a link between different hardware platforms which are
presently available. For example, in an ion-trap simulator,
simulation of SR spin models is challenging while the mod-
els realized are typically long-ranged with a high enough ex-
ponent, thereby possessing vanishing long-range behaviors
[11, 12]. On the other hand, in a gate-based simulator with
superconducting qubits, e.g. in IBM, Google, Rigetti, etc,
simulation of a LR model is problematic since the simula-
tion becomes extremely noisy due to the exponential use of
two-qubit gates. Therefore, it would be tremendously helpful
if we can simulate the entanglement content of an end-to-end
LR model with a system having fewer neighbor interactions so
that the corresponding Hamiltonian can act as a representative
between the two simulators.

In this paper, choosing a family of LR models in one di-
mension which can be solved analytically, we show that at
the quasi-local regime having moderate interaction strength,
we can reproduce nearly the same pattern for two-qubit en-
tanglement of the ground state with a model possessing a few
finite-neighbor interactions. In particular, when 1 < α < 2,
where classical correlations are known to have an algebraic
decay, pairwise entanglement is mostly short-ranged and can
be mimicked by a finite-neighbor Hamiltonian. We also il-
lustrate that the number of neighboring interactions can be
further reduced if we allow stronger interaction strength in
the few-neighbor Hamiltonian compared to the target Hamil-
tonian with end-to-end connection. However, in the non-local
regime, α < 1, we observe that entanglement can also have
an algebraic tail, Er ≈ 1/rα and, therefore, one requires pair-
ing interaction of the order of the size of the system (≈ N )
to reproduce nearly the same entanglement pattern of the
true LR model. We supplement our results by analyzing the
monogamy of entanglement in the ground state and argue that
in the regime, where the monogamy score tends to a saturation
with the increase in range of interactions, a finite neighboring

interaction can be a good representative of the true LR model
for mimicking the trends of pairwise entanglement.

The paper is organised as follows. In Sec. II, we introduce
a family of Hamiltonian that we deal with and include a brief
summary of the diagonalization procedure to make the paper
self-contained. The critical points are discussed in Sec. III.
The subsequent section (Sec. IV) includes a short summary
of the evaluation process for correlations which are required
to compute entanglement. In Sec. V, we manifest scenarios
where a finite range of interactions are enough to produce the
pattern of two-qubit entanglement in the fully connected LR
models. Sec. VI reports the change in the behavior of entan-
glement depending on the phases. In Sec. VI B, we investigate
the monogamy score of entanglement in these systems and ar-
gue that the trends of monogamy can also indicate whether
few interactions can mimic entanglement patterns of the LR
models or not. Finally, we conclude in Sec. VII.

II. THE FAMILY OF LONG-RANGE MODELS

We introduce the model Hamiltonian under consideration
and briefly describe the diagonalization procedure.

We consider Ising-type model with long-range interacting
terms. Variations of these models have already been studied
in recent literature [69–71] and was shown to have contrasting
properties as compared to the SR models. The LR Hamilto-
nian of N sites reads as

H =

N∑
n=1

[
h′

2
σzn +

Z∑
r=1

Jrσ
x
n

n+r−1∏
i=n+1

σzi σ
x
n+r

]
, (1)

with open boundary conditions where σα (α = x, y, x) are
the Pauli matrices. Here h is the transverse magnetic field and
Jr = J

A
1
rα is the interaction strength depending on distance

r between the sites where the exponent α is the tuning pa-
rameter, which dictates the interaction strengths between dif-
ferent spins and A is a constant. We set h′/J = h. When
α ∼ 0, the model behaves like the LR Ising model, simi-
lar to Lipkin-Meshkov-Glick (LMG) model [72, 73] while
for α > 2, the model increasingly resembles to the nearest-
neighbor Ising model [74–76] with increasing α values, and,
therefore, falls within the universality class of the quantum
transverse Ising model. The value of Z sets the number of
pairwise interaction per site in the lattice which is also called
the coordination number. For example, with Z = 1, we get
the nearest-neighbor (NN) Ising model while Z = 2 rep-
resents next-nearest neighbor extended Ising model, and the
true LR extended Ising model occur with Z = N − 1. Any
intermediate values ofZ , corresponds to the few-neighbor ex-
tended Ising models. We expect to reveal contrasting entan-
glement patterns in two distinct regions – (i) α < 1, which
we call as non-local regime, (ii) 1 < α < 2 referred to as
quasi-local regime and compare it with the SR models having
α > 2.

In this model, we notice that pairwise interaction terms be-
tween i and j have the form σxi σ

z
i+1 . . . σ

z
j−1σ

x
j instead of
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σxi σ
x
j which allows the Hamiltonian to be treated analytically.

However, within the truncated Jordan-Wigner (JW) approxi-
mation [77], both the models are the same. The constant in Jr
which can be considered as normalization, A =

∑Z
r=1 r

−α,
that fixes the ferromagnetic critical point at h = 2. For a finite
LR system of size N , A evaluates to be H(α)

N−1, the gener-
alized Harmonic number, which in the thermodynamic limit
becomes the Riemann zeta function (ζ(α)). For any of the
few-neighbor extended Ising model, A = H

(α)
Z .

A. Few-neighbor extended Ising model

We investigate the behavior of entanglement in models with
several few-neighbor pairwise interactions instead of studying
entanglement properties of the LR model. Specifically, ex-
cept Z = 1 (NN Ising) or Z = N − 1 (true LR), we study
all other Z values, thereby dealing with Z-neighbor extended
Ising models. As we will show, after a certain Z values, quan-
tum correlations (QC) can mimic the behavior obtained for the
LR model.

B. Long-range extended Ising model

For any finite size system, end-to-end connection is consid-
ered when Z = N − 1 and, therefore, we call the same as the
true long-range extended Ising model or simply LR extended
Ising model. In the thermodynamic limit, i.e., N → ∞ the
LR Hamiltonian can only be normalized when α > 1 so that∑
r Jr = 1. In this case, the Hamiltonian takes the form as

H =

∞∑
n=1

[
h

2
σzn +

1

ζ(α)

∞∑
r=1

1

rα
σxn

n+r−1∏
i=n+1

σzi σ
x
n+r

]
, (2)

where the normalization is given by A = ζ(α), the Riemann
zeta function. For 0 < α ≤ 1, the normalization does not
exist in the thermodynamic limit, and hence, we must restrict
ourselves to a finite size systems in order to maintain the nor-
malization. In this Z limit, isotopes/derivatives of this Hamil-
tonian have already been studied [69–71, 76–80] in literature.
Note that the presence of σz-string operators in the pairwise
interaction term makes the model different from the LR Ising
model. Within the truncated Jordan-Wignar approach [77],
where after the Jordan-Wigner transformation, we truncate
the fermionic operator up to quadratic order, the LR Ising
model reduces to the LR extended Ising model and can be
treated analytically. In general, the truncation approximation
becomes better deep in the disordered phase where they sat-
isfy 〈σzi 〉 = 1− 2c†i ci ≈ 1.

C. Diagonalization

Let us now illustrate the procedure by which a Z-neighbor
extended Ising model can be diagonalized analytically. Due to
the specific nature of the pairwise interaction in the long-range

interaction terms of the Hamiltonian, these families of Hamil-
tonian can be mapped to quadratic free-fermion models which
can be solved analytically. Here we limit ourselves to the plus-
one-parity subspace of the Hilbert space [81–83] - note that
H commutes with the parity operator, P =

∏N
n=1 σ

z
n. The

first step in the diagonalization is to apply the Jordan-Wigner
transformation, given by

σxn = −
(
cn + c†n

) ∏
m<n

(1− 2c†mcm) , (3)

σyn = i
(
cn − c†n

) ∏
m<n

(1− 2c†mcm) , (4)

σzn = 1 − 2c†ncn , (5)

where fermionic operators cn satisfy
{
cm, c

†
n

}
= δmn and

{cm, cn} =
{
c†m, c

†
n

}
= 0. For periodic boundary condition,

the Hamiltonian H becomes [81]

H = P+ H+ P+ + P− H− P− , (6)

where P± = 1
2 [1± P ] are projectors on subspaces with even

(+) and odd (−) parity,

P =

N∏
n=1

σzn =

N∏
n=1

(
1− 2c†ncn

)
, (7)

and H± are corresponding reduced Hamiltonian. Although
the spin Hamiltonian is periodic, after the JW transformation,
cns in H− satisfy periodic boundary condition, i.e., cN+1 =
c1 while the cns in H+ are anti-periodic, cN+1 = −c1.

When dealing with the periodic Hamiltonian in the thermo-
dynamic limit, we constrain ourselves to the positive parity
subspace and the Hamiltonian in Eq. (2) reads as

H+ =
∑
n

h

2

(
1− 2c†ncn

)
+
∑
n,r

Jr

[
(c†ncn+r − cnc

†
n+r) + (c†nc

†
n+r − cncn+r)

]
,

(8)

with anti-periodic boundary condition cN+r = −cr ∀ r.
The anti-periodic boundary condition corresponds to the
case where the total number of quasi-particles is even, i.e.,∑N
n=1 c

†
ncn = s = even, so that

∏N
n=1(1− 2c†ncn) = (−1)s.

In the thermodynamic limit, the translationally invariant
H+ is diagonalised by a Fourier transform followed by a Bo-
goliubov transformation [83–85]. The Fourier transform ap-
plicable for the anti-periodic boundary condition is given by

cn =
e−iπ/4√

N

∑
k

cke
ikn , (9)

where the pseudomomentum takes half-integer values

k = ±1

2

2π

N
, . . . ,±N − 1

2

2π

N
. (10)
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In case of even parity, P =
∏N
n=1 σ

z
n, the fermionic cre-

ation (annihilation) operators satisfy anti-periodic boundary
conditions. Using the Fourier transformation given in Eq. (9),
we can rewrite the Hamiltonian as

H+ = 2
∑
k>0

(
h

2
−<(J̃k)

)(
c†kck + c†−kc−k

)
+ =(J̃k)

(
c†kc
†
−k + c−kck

)
− g, (11)

where J̃k =
∑Z
r=1 Jre

ikr is the Fourier transform of Jr.
Therefore, we have J̃k = 1

H
(α)
Z

∑Z
n=1

xn

nα .

The stationary Bogoliubov-de Gennes equations are

ωk

(
Uk
Vk

)
= 2

[
σz(

h

2
−<(J̃k)) + σx=(J̃k)

](
Uk
Vk

)
, ,(12)

with eigenfrequencies

ωk = 2

√
(
h

2
−<(J̃k))2 + =(J̃k)2, (13)

where <(J̃k) =
∑Z
r=1 Jr cos kr and =(J̃k) =∑Z

r=1 Jr sin kr. Here (Uk, Vk) and (−Vk, Uk) are the
corresponding eigenvectors. We can now define a new
quasiparticle,

γk = Ukck + V−kc−kk
†, (14)

which finally brings the Hamiltonian to its diagonal from,

H+ = E0 +
∑
k

ωkγ
†
kγk, (15)

where E0 = − 1
2

∑N
i=1 ωi.

Let us briefly discuss here the diagonalization procedure
of finite size Hamiltonian of both few-neighbor and true LR
Hamiltonian with open boundary condition. We first rewrite
the Hamiltonian in Eq. (8) as

H =

N−1∑
r=1

N∑
i,j=1

(
c†iAijcj + c†iBijc

†
j + h.c.

)
, (16)

where Aij and Bij are the ij-th element of a symmetric and
anti-symmetric matrices respectively, having dimension N ×
N , given by,

Aij = −hδij + Jrδi+r,j + Jrδi,j+r,

Bij = (Jrδi+r,j − Jrδi,j+r) .
(17)

Here, for the finite case, we consider open boundary condition
because otherwise the effective maximum distance between
two lattice sites becomes N/2 instead of N . We diagonal-
ize the Hamiltonian in Eq. (16) with a linear transformations
which take care of both the Fourier and Bogoliubov transfor-
mations at the same step and are given by

µk =

N−1∑
i=0

(
dkici + ekic

†
i

)
,

µ†k =

N−1∑
i=0

(
dkic

†
i + ekici

)
,

(18)

where k = 0, 1, 2, . . . N − 1 and dki, eki ∈ R to be found nu-
merically such that the Hamiltonian becomes diagonal H =∑
k ξkµ

†
kµk + const. Since µk obeys the fermionic anti-

commutation relations {µk, µk′} = δk,k′ , we can also write
Eq. (8) in terms of µk such that the coupled equations,

(A+B)φTk = ξkψ
T
k ,

(A−B)ψTk = ξkφ
T
k ,

(19)

hold. The coefficients are then found by solving the linear
matrix equations,

(A+B)(A−B)ψTk = ξ2kψ
T
k ,

(A−B)(A+B)φTk = ξ2kφ
T
k ,

(20)

where ψk and φk are φki = dki + eki and ψki = dki − eki.
When ξk 6= 0, we first evaluate φTk from Eq. (20), and then
ψTk is obtained from Eq. (19) while for ξk = 0, it is possible
to compute both ψTk and φTk by solving Eq. (20) where their
relative sign remains arbitrary.

III. CRITICAL POINTS OF A FEW-NEIGHBOR
EXTENDED ISING MODEL

We now determine the quantum phase transitions for the
family of LR Hamiltonian [51, 69–71]. Such an analysis also
helps us to identify critical points, and to obtain dispersion
relation for a few-neighbor extended Ising model. The critical
point of the true LR model in the thermodynamic limit can be
found easily from Eq. (13) where the gap closes (ωk = 0) at
h1c = 2 and k = 0 ∀ α > 1. However, for α < 1, h1c = 2 does
not remain to be a critical point in the thermodynamic limit
(since the normalization, A =

∑
r Jr, fails). However, for

finite size systems, we can always have the normalization and
therefore , h1c = 2 continues to be a quantum critical point.
The other critical point corresponding to k = π is located at

h2c =
2

ζ(α)

∑
r

(−1)r

rα
= 2(21−α − 1), (21)

which continues to exist even at the thermodynamic limit ir-
respective of the values of α.

Let us now concentrate on the critical point of Z-neighbor
extended Ising model. By analysing the vanishing ωk, i.e., the
points where the gap vanishes, the critical point corresponding
to k = 0 is again at h1c = 2. While the critical point with
k = π gets shifted to

h2c =
2

H
(α)
Z

Z∑
r=1

(−1)r

rα
(22)

which interestingly, depends on α. Therefore, in sharp con-
trast to short-range Ising model, few-neighbor Ising models
are not symmetric against mirror inversion. In this paper, we
mostly use h1c = 2 as a point of comparison since it is the
critical point for all the models including the SR Ising, the Z-
neighbor extended Ising and the true LR models. Unlike crit-
ical points, the phase diagram of SR and LR models match.
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Figure 1. (Color Online.) Dispersion relation to prove criticality.
ωk (ordinate) vs. k (abscissa) at the critical point, h1

c = 2. Different
lines indicate different values of Z . Lower and upper panels depict
quasi-local and non-local regimes respectively. Specific choice of pa-
rameters are mentioned in the headings of each plot. Inset indicates
the dependence of k on the velocity of the quasi-particles for the LR
model and a few-neighbor model. Here N = 256 (throughout the
paper, we consider N = 256 unless stated otherwise). Both the axes
are dimensionless.

The region between h1c and h2c belongs to the ordered phase
while the rest of the regions is in the disordered phase. In
the extreme limit of high magnetic field, the system would be
polarized in the z-direction which clearly specifies the disor-
dered (paramagnetic) phases . Note here that unlike transverse
Ising model, the critical points as well as the phases are not
symmetric across h = 0.

Let us now move to the finite system which also leads
to the energy dispersion from Eq. (13), both for LR and
the Z-neighbor extended Ising models. As it can be readily
seen from the plot of the spectrum in Fig. 1, near k = 0,
ωk ∼ kα−1 when 1 < α < 2 for the true LR model. How-
ever, dispersion of the Z-neighbor extended Ising model is
like the Ising one, ωk ∼ k when k ≈ 0 for all Z ≤ 20 which

 0
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Figure 2. (Color Online.) Dispersion relation to find critical point.
Eigenfrequency, ωk (vertical axis) against h (horizontal axis) at k =
π. The value of h for which ωk becomes zero is the critical point, h2

c .
It is in good agreement with Eq. (22). Different lines correspond to
different values of Z . Upper and lower panels are for non-local and
quasi-local regimes respectively. Both the axes are dimensionless.

will be the main focus of this work. It implies that, in princi-
ple, only the true LR case support the instantaneous informa-
tion transfer since the fastest excited quasiparticle has infinite
propagation velocity vg = dωk/dk ∼ kα−2 → ∞, when
k → 0 for 1 < α < 2. Therefore, this result gives us the
intuition that features of the ground state in the LR model can
be distinctly different than that of the ground state of the few-
neighbor Hamiltonian. It indicates that different patterns for
bipartite entanglement between two sites of these two classes
may emerge. However, we will show that it is still possible
that the behavior of two-qubit entanglement of the true LR
model match with that of the few-neighbor Hamiltonian. The
appearance of such similar characteristics is possibly due to
the fact that in practice, the maximum velocity of the fastest
quasiparticle is not infinity and is bounded by the generalized
Lieb-Robinson bound [86–90].

In the regime when α < 1, h1c = 2 is still a critical point
in the finite size system of the LR model and the dispersion
looks like a delta function for the LR case. However, for the
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few-neighbor model, it is still a Ising like dispersion but with
different prefactors. This should also indicate that the true LR
case is heavily different from the few-neighbor Hamiltonian.

IV. OUTLINE FOR COMPUTING CORRELATIONS

From the diagonalization discussed in the preceding sec-
tion, we are now ready to compute both classical and quan-
tum correlations, especially, two-qubit entanglement between
two arbitrary lattice sites. Before studying the behavior of
quantum correlation, let us describe the formalism used for
computation.

A. Classical correlation

To compute bipartite reduced density matrices between any
two sites, i and j, we require to evaluate magnetizations and
long-range classical correlators. Suppose, the ground state of
the system is |℘0〉. The magnetizations at the site i are defined
as

mα
i = 〈℘0 |σαi |℘0〉 , (23)

with α = x, y, z while the correlation functions (correlators)
between spins i and j can be represented as

Cαβij =
〈
℘0

∣∣∣σαi σβj ∣∣∣℘0

〉
, (24)

where α, β = x, y, z. Since we are dealing with the ground
state of a Hermitian Hamiltonian, the magnetization in the y-
direction, my and correlators, Cxy , Cyx, Cyz and Czy vanish.
To compute other correlators, let us define two operators,

Ai = c†i + ci, Bi = c†i − ci, (25)

and by using Jordan-Wigner transformations, magnetizations
and classical correlators (CC) can be written in terms of Ai
and Bi as

mz
i = −〈℘0 |AiBi|℘0〉 , (26)

Cxxij = 〈℘0|BiAi+1Bi+1 . . .Bj−1Aj |℘0〉, (27)

Cyyij = (−1)(j−i)〈℘0|AiBi+1Ai+1 . . .Aj−1Bj |℘0〉, (28)

and

Czzij = 〈℘0|AiBiAjBj |℘0〉. (29)

Here, the magnetization mx and the correlation functions,
Cxz, Czx vanish by means of Wick’s theorem since these quan-
tities involve an odd number of fermionic operators. To evalu-
ate rest of the correlators, we contract pairwise the product of

operators again via Wick’s theorem. Since the aforementioned
operators, Ais and Bis obey anticommutation relations, only
certain pairs give non-trivial values. Precisely,

〈AiAj〉 =
∑
k

φkiφkj = δij , (30)

〈BiBj〉 = −
∑
k

ψkiψkj = −δij , (31)

and

〈BiAj〉 = −〈AjBi〉 = −
∑
k

ψkiφkj = −
(
ψTφ

)
ij
= Gij

(32)
are the pairs that finally contribute to the expectation values.
Here G is the correlation matrix which can be obtained from
ψ and φ. In terms of G, the non-zero diagonal correlation
functions read as

Cxxij =

∣∣∣∣∣∣∣
Gi,i+1 Gi,i+2 . . . Gi,j

...
Gj−1,i+1 . . . . . . Gj−1,j

∣∣∣∣∣∣∣ , (33)

Cyyij =

∣∣∣∣∣∣∣
Gi+1,i Gi+1,i+1 . . . Gi+1,j−1

...
Gj,i . . . . . . Gj,j−1

∣∣∣∣∣∣∣ , (34)

and

Czzij = (GiiGjj − GjiGij). (35)

By solving Eqs. (17) and (18), we can compute magnetization
and all the CCs.

B. Quantum correlation

We are interested to investigate the trends of pairwise entan-
glement between two lattice sites i and j in the ground state of
the Hamiltonian. From the nonvanishing transverse magneti-
zation and classical correlators, the two-party reduced density
matrix obtained from the ground state becomes

ρij =
1

4

[
Ii ⊗ Ij +mz

i σ
z
i ⊗ Ij + Ii ⊗mz

jσ
z
j

+
∑

α=x,y,z

Cααij σαi ⊗ σαj
]
. (36)

We can immediately determine any quantum correlation mea-
sure, especially an entanglement measure which is a nonlinear
function of mz and Cααs. In this work, we compute logarith-
mic negativity [91, 92] for investigation. Apart from bipartite
entanglement, we are also interested to examine the distribu-
tion of entanglement of the ground state among different sites,
quantified via monogamy of entanglement [66–68].
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Figure 3. (Color Online.) Entanglement pattern in quasi-local
and non-local regimes. Variation of Er (ordinate) as a function
of r (abscissa). Different symbols represent different coordina-
tion number, Z . Notice that Z = 255 indicates fully-connected
model. Here h = 2.5. In the quasi-local regime (lower panel),
the variation of Er with r follows the law governed by rα

′
, where

α′ = {−0.37,−0.43,−0.46,−0.48,−0.53} for the corresponding
Z = {5, 10, 15, 20, 255}. Both the axes are dimensionless.

V. GROUND STATE ENTANGLEMENT IN LR AND
FEW-NEIGHBOR MODELS

LR models are known to have rich characteristics which are
typically not present in nearest-neighbor model. Hence the
LR or a few-neighbor model requires a careful analysis from
the scratch. For example, even without the absence of scale-
invariance at a quantum critical point, the classical correla-
tions of a LR model are allowed to have an infinite correlation
length, thereby spreading over the entire system [70, 76, 80].

On the other hand, quantum correlation, especially entan-
glement is known to be fragile as compared to the classical
correlations and cannot be shared arbitrarily between differ-
ent parts of the systems due to the monogamy property [66].
This, in turn, should restrict entanglement from having an al-
gebraic scaling or an infinite entanglement length.

Until recently, most of the studies on entanglement are
restricted to one-dimensional nearest-neighbor quantum spin
models. The primary reason behind such investigation is the
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Figure 4. (Color Online.) Entanglement trends of a fully con-
nected model, mimicking a few-neighbor model. Two-qubit en-
tanglement, Er (y-axis) with the variation of r (x-axis) for different
values of (Z, h, α). For a given r value, equal values of entangle-
ment for different sets of values are observed which demonstrates
that a few-neighbor model can mimic the entanglement of the ground
state in the LR model efficiently by adjusting the system parameters
accordingly. Both the axes are dimensionless.

existence of a method by which one can compute several fea-
tures analytically both for finite system size and in the thermo-
dynamic limit. Moreover, with the advent of tensor networks
in the last decade, a variety of numerical techniques has been
developed which make LR models tractable with good enough
accuracy [29, 57–65]. For example, the entanglement area
law typically holds for SR systems in one dimension [48–50]
which is not guaranteed to be hold in LR systems, although
the success of tensor network-based numerical techniques in
quasi-local regimes of the LR systems suggest that at least in
those regimes area law is not strongly violated.

The twin restrictions of entanglement area law and
monogamy of entanglement hinder the spreading of entan-
glement in true LR systems. In a quantum network, LR sys-
tem are typically used as the underlying architecture, although
preparing a true LR model can be immensely costly as well
as difficult in some physically realizable systems due to the
increases of noise in the system. Hence the question arises
whether it is worth to develop such LR system which leads to
a reasonable spread (distribution) of entanglement. In general,
in a digital quantum computer e.g., in quantum approximate
optimization algorithm, simulation on superconducting cir-
cuits, as mentioned before, we requireO(N !) two-qubit gates
to implement a true LR system of system size N . The ques-
tion that we address here is the following: can one achieve the
same distribution of entanglement using only a few two-qubit
gates? Therefore, one could significantly reduce the noise if a
exponential-to-algebraic reduction of two-qubit gates can be
achieved. In fact, such intuition has already been implemented
in the Chimera setup in the d-wave quantum annealing com-
puters [93] to mimic the LMG model (α = 0 case) [72] with
a limited number of interacting qubits.
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In the Hamiltonian considered here, we have two tuning
parameter that can control the long range interactions of the
model. The first one is the exponent α if we move from α =
∞ to α = 0, we continuously go from the nearest-neighbor
Ising to the end-to-end connected LMG model where all pairs
of interaction have the same strength, independent of the
distance between the pair of spins. Note that except when
α = ∞, the number of two-qubit gates required in all other
cases are the same (exponential with N ). The other parameter
that we can regulate to achieve the same control is to manually
increase the number of pairing interaction from two to ∞ in
the thermodynamic limit. For a finite system of size N , when
Z = 1, we get the NN Ising model while Z = N − 1, we
have the end-to-end extended Ising model with open bound-
ary condition. The first question that we answer here is that
for the same algebraically decaying interaction (α is same in
both the models) whether it is possible to mimic the behavior
of two-qubit entanglement of the fully connected model with
a few interaction.

Mimicking true LR model with α > 1. To answer the above
question, we first study the pattern of two-qubit entanglement
as a function of the distance for different values of Z . When
α > 1, we find the answer to be affirmative. In other words,
in classes of quasi-local models, two-qubit entanglement of
a finite-range system indeed behaves like the true LR model.
Specifically, entanglement between two arbitrary sites, i and
j, denoted by Er with r = |i− j| being the distance between
sites i and j (as depicted in Fig. 3) decreases with the increase
of r and finally vanishes at r = rc above which Er is zero
even for the true LR model. If we now compare Er obtained
from the model withZ << N , we find that indeedEr → 0 as
r → rc when Z v Zc, thereby simulating the equivalent fea-
ture of the LR model by a Zc-neighbor extended Ising model.
With decreasing value of α, rc increases for the LR model.
We observe that the number of required pairing interactions
(Zc) also increases. After a careful numerical search, we con-
clude that Z < O(101) when 1 < α < 2, i.e., the quasi-local
regime.

No resemblance of Z-neighbor model with LR model hav-
ing α < 1. If we move towards the deep non-local regime
(α ≤ 0.6 for N = 256), entanglement becomes long-ranged
with an algebraic scaling roughly as Er ≈ r−α, therefore,
rc ∼ O(N). To mimic the long-range entanglement, the
minimum number of finite-range interaction (Zc) approaches
to O(N). This implies that the entanglement, Er of the LR
model can no longer be simulated by a finite number of inter-
actions. We show in the Fig. 3 (upper panel), noZ 6= N−1 is
sufficient to mimic the entanglement in the LR model. On the
other-hand, close to transition between quasi- and non-local
regimes, Er vanishes at some finite rc 6= N − 1 which im-
plies that the model can be mimicked by finite Zc ≈ O(rc),
even when α < 1. However, Zc is higher in this situation as
compared to the Zc observed in the quasi-local regime.

Upto now, when comparing the different classes of models,
we always choose the same value of α for all the considered
Z values. At this point, let us ask another reasonable question
– can we further reduce Zc if we can also tune the value of
α for the finite-neighbor Hamiltonian ? We observe that the

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 2  4  6  8  10  12  14

α = 1.5

E
r

r

h = 0.5

h = 1.5

h = 2.5

 0

 0.002

 0.004

 0.006

 50  100  150  200  250

α = 0.2

E
r

Figure 5. (Color online) Effects of phases on entanglement. Er
(ordinate) against r (abscissa). Solid, dashed and dotted lines corre-
spond to different values of h while upper and lower panels are for
non-local and quasi-local regimes respectively. The model is fully
connected, i.e., Z = N − 1. Counter-intuitively, for α < 1 (upper
panel), pairwise entanglement is higher for spins separated by longer
distance r compared to that between nearby sites. Both the axes are
dimensionless.

value of Z has a monotonic relationship with α i.e., the trends
of entanglement of a true LR model with exponent α can have
remarkable resemblance with a fewer pairing interaction (i.e.,
Z < Zc) having exponent α′ < α (see Fig. 4).

In Fig. 3, we choose the magnetic field as h = 2.5 which
belongs to the disordered phase. In the following section, we
report the behavior of entanglement in the different phases of
both the LR and the few-neighbor models.

VI. ENTANGLEMENT IN DIFFERENT PHASES OF THE
MODELS

We will now investigate the effects of magnetic field on
the pairwise entanglement, thereby changing the phases of the
system along with the change of interaction strength and num-
ber of interacting pairs. In general, in the disordered phase,
the value of entanglement decreases with the increase of h
i.e., when we move deep into the disordered phase. However,
due to the monogamy property of entanglement, such a de-
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creasing pairwise entanglement also has some beneficial role
in the system. Specifically, the spread of entanglement i.e.,
the number of non-vanishing pairwise entanglement between
two sites i and j increases with the increase of h. However, at
h → ∞, the ground state is a fully separable state and there-
fore, both bipartite as well as multipartite entanglement vanish
which also implies that individual terms in monogamy score
also goes to zero, thereby leading to vanishing monogamy
score. It suggests that there is a trade-off between the pair-
wise entanglement and the distribution of entanglement in the
system.

The contrasting entanglement spread over pairs of distant
neighbors that we will report now in different phases of the
system can only be seen in the true LR model, not in the Z-
neighbor extended model. Hence we concentrate on the pat-
terns of entanglement in the disordered and the ordered phases
of the true LR system i.e., the model having Z = N − 1.
As discussed in Sec. III, the quantum phase transition point,
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Figure 6. Entanglement in the thermodynamic limit. Entangle-
ment between first and fifth spin, E4 (ordinate), with respect to the
system size, N (abscissa). Here α = 1.5 is chosen in the quasi-local
regime, and h = 2.5. Both the axes are dimensionless.

which is common to both the LR and the Z-neighbor sys-
tems, is at h1c = 2. Using the same analogy known for SR
Ising model [94], at the two extremum points at h = 0 and
h =∞, the ground states are product and therefore entangle-
ment vanishes at both the points. Usually, as we move from
the deep disordered phase at h =∞ towards the critical point
at h1c = 2, we expect that the pairwise entanglement increases
as shown in Fig. 5.

Let us first concentrate on the non-local regime, i.e., α < 1.
In the disordered phase i.e., when h is high enough, bipartite
entanglement between different neighbors, Er first decreases
and then saturates with the variation of r (see Fig. 5). If we
move towards the critical point, h1c = 2, the pairwise entan-
glement content for a given r increases. Surprisingly, entan-
glement between distant pairs also increases with the increase
of r, resulting an U -shaped entanglement pattern as a function
of r. In general, it is expected that the bipartite entanglement
between spins decreases when the distance between spins, r,
increases. However, such an intuition does not hold for α < 1,
e.g., we observe that, Er increases with r after certain r value
in both ordered and disordered phases. The reason for this

behavior can be attributed to the fact that the Hamiltonian is
not a typical two-body one. Since the distant spins are inter-
acting with the corresponding σz operators in between, more
body interactions involve in the system which leads to a higher
amount of entanglement between the distant spins compared
to the nearby sites.

Notice, however, that such a behavior is not universal for
α < 1 and it depends on N . In particular, with the increase of
N , the value of α for which such a distant neighbor entangle-
ment is created also changes. As it has already been argued in
the previous section, the model cannot be simulated with a fi-
nite range of interacting model. This is in sharp contrast with
the previous results [22, 71, 95, 96] and cannot simply be ex-
plained by the violation of entanglement area law. However,
crossing the critical point h1c = 2, if one moves towards the
product state at h = 0, the value of entanglement reduces fur-
ther which is illustrated by the red solid line (h = 0.5) in Fig.
5 (upper panel). Although the U -shaped pattern still persists
in the ordered phase.

Let us now deal with the quasi-local regime (1 < α < 2).
Entanglement is always short-ranged here and vanishes after
certain r. Therefore, entanglement in this regime has the typ-
ical expected behavior, i.e., entanglement decays with r when
α > 1. In most cases, for any r > O(101), Er becomes zero
and, therefore, no U -shaped pattern is observed in the quasi-
local regime. The other features across different phases of
the LR model remains the same. Specifically, deep in the or-
dered phase, i.e., in the neighborhood of h = 0, entanglement
decreases and at the same time, becomes short-ranged. For
example, h = 0.5, we observe that the entanglement survives
only up to next-nearest-neighbor even though we are dealing
with a fully connected LR model (as depicted in Fig. 5 (lower
panel)). On the other hand, with the increase of h, especially,
in the vicinity of h1c = 2, the value of pairwise entanglement
is substantial and it survives for certain but low values of r.

Scaling. It is interesting to determine whether the re-
sults described also holds with the increase of system-size or
not. We find that the results remain valid with the increase
of N . Although the entanglement value decreases with N ,
the decrement slows down as N increases and Er saturates
when N > 103 (see Fig. 6). It manifests that the trends of
entanglement length for moderate values of N mimics the en-
tanglement behavior that can be expected in thermodynamic
limit.

A. Quasi-local vs non-local regime: Entanglement behavior

To make the comparison between entanglements in quasi-
local and non-local regimes, we consider different Ers both
for α > 1 and α < 1. Depending on the tuning parameter α
which dictates the strength of interactions between neighbors,
we determine contrasting behavior in entanglement. In partic-
ular, in the local regime, unlike classical correlations, entan-
glement is always short-ranged in both the phases. Therefore
entanglement in the LR model can always be mimicked with
only interactions between few-neighbors. On the other hand
different behavior emerges in the non-local regime, i.e., when
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α < 1.
When α ≈ 1, i.e., when the system is at the cross-over

between the quasi-local and non-local regimes, entanglement
still remains short-ranged, i.e., only a few Er remains non-
vanishing. As we move towards the deep non-local regime,
entanglement becomes fully connected, and U-shaped, i.e.,
non monotonic with r in both the disordered and ordered
phase. Although with the further reduction of α value to-
wards the LMG model with uniform interaction strength [73],
the U-shape pattern of Er with r gets flattened, the counter-
intuitive nonmonotonic behavior of entanglement with r is
more prominent in the ordered phase as compared to the dis-
ordered phase. More importantly, the entanglement in the dis-
ordered phase have a algebraic tail with increasing r if we ne-
glect few farthest spins (the part after it becomes minimum).
To be precise, in the disordered phase, i.e., when α < 1, Er
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Figure 7. (Color Online.) Functional dependence of Er on r in the
non-local regime and disordered phase. Variation of Er (vertical
axis) with r (horizontal axis) for different values of α in a fully con-
nected model i.e., Z = N − 1. Upper and lower panels demonstrate
two different phases, ordered and disordered phases respectively of
the system, both depicting the same features. The solid lines are the
numerical fits for the corresponding α values. For small range of r,
entanglement roughly scales as≈ r−α in both the phases except near
the transition regime α ∼ 1 where entanglement is short-ranged.
In particular, the numerical fits are {r−0.28, r−0.49, r−0.68} (upper
panel) and {r−0.22, r−0.42, r−0.62, r−0.92} (lower panel). Both the
axes are dimensionless.
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scales as ∼ 1/rα ∀ α where Er is decreasing with increasing
r (see Fig. 7).

In the non-local regime of the LR model, it is possible to
have end-to-end connected entanglement and hence a natural
question to address is to determine the distribution of entan-
glement between different pairs. For example, if the ground
state possess an end-to-end entanglement but with a vanish-
ing value, the entanglement may not be so useful for a mul-
tiparty quantum information processing task. Therefore, we
now look for scenarios where the monogamy bound is satu-
rated which can be though of an optimal spread of entangle-
ment for a given quantum information protocols.

B. Contrasting characteristics of monogamy scores in
different phases of the model

To capture the spread of entanglement among the pairs, we
examine entanglement monogamy score. We are interested in
the scenario where, δC2 = 0, i.e., C2

1:rest =
∑N
i=2 C

2
1i.
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Figure 9. (Color Online.) Monogamy score with coordination
number. δC2 (vertical axis) against Z (horizontal axis). Different
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As we have seen before, entanglement is short-ranged in
the quasi-local regime and, therefore, we can expect that the
monogamy score will be far from vanishing. However, in the
non-local regime, entanglement is long-ranged that can pro-
vide a bound on the distribution of the entanglement at the
thermodynamic limit. For example, near α ≈ 0, i.e., for the
LMG model, pairwise entanglement is mostly flat with r in
the disordered phase.

In general, we expect that the value of entanglement should
decrease as we go deep into the discorded phase. However, we
also expect that entanglement gets well-distributed through
out the spin chain in this phase as depicted in Fig. 8. In
particular, the monogamy score decreases as one increases h,
thereby moving towards the disordered phase. If we compare
the same with Fig. 5, we notice that the value of entanglement
also decreases in the disordered phase.

On the other hand, in the quasi-local regime (Fig. 8 (lower
panel)) i.e., when 1 < α < 2, the monogamy score does
not have an algebraic tail instead saturates to a constant value
with the increase of Z although overall pattern of δC2 across

different phases remains the same. The saturation of the
monogamy score indicates that such LR models can be simu-
lated with a model having finite-neighbor interactions. How-
ever, it is difficult to numerically evaluate the optimalZc from
the monogamy score which can mimic the true LR model,
since there is no sharp change in the pattern of monogamy
score.

To monitor the dependence of monogamy score on the
phases along with the α, we consider three different regimes
of α and two different values of h, belonging to ordered and
disordered phases. When α > 2, i.e., in the Ising universality
class, the monogamy score is flat (blue dot-dashed line in Fig.
9) with increasing Z which implies that the overall behav-
ior of entanglement is similar to the SR model and, therefore,
Zc ∼ O(1) should be enough to mimic the true LR model.
In the intermediate quasi-local regime, i.e., 1 < α < 2, we
find that the monogamy score decays with the increase of Z ,
although its inclination changes to a shallow decay and ulti-
mately becomes flat with Z . It is in a good agreement with
the previous finding that Zc ∼ O(101) is enough to mimic
the fully connected LR model. However, as α < 1 (except the
transition from quasi-local to non-local regimes), δC2 has an
algebraic tail which illustrates that there is no Zc 6= N − 1
which can behave similarly as the true LR system.

In summary, we point out that the monogamy score is a
good indicator of entanglement distribution in the system. The
saturation of monogamy score for a finite Z , which happens
only when α > 1, indicates the similar result that the fully
connected model can be simulated only with a few pairing
interactions.

VII. CONCLUSION

Among available physically realizable systems, long-range
(LR) interactions arises naturally in some systems like trapped
ions while there exists systems in which realizing LR models
is costly. Both from theoretical and experimental points of
view, simulating the LR model is an important task to under-
stand many exotic properties, responsible for counter-intuitive
phenomena which are typically absent in the corresponding
short-range models.

In this work, we showed that to examine the behavior of
entanglement between any pairs in the ground state, it is not
necessary to consider a fully connected model. In particu-
lar, we demonstrated that a model having a few-neighbor con-
nections is sufficient to faithfully mimic the behavior of en-
tanglement in the ground state of a fully connected model.
However, we showed that such resemblance is not ubiqui-
tous – it depends on the fall-off rates of interactions, denoted
by α. Specifically, patterns of two-party entanglement of the
LR model match with the model of a few-range interactions
only when 1 < α < 2, which we call the quasi-local regime.
Counter-intuitively, when α < 1, we observed that entangle-
ment between the spins that are separated by a longer distance
is higher than those pairs that are spatially closer to each other.
Moreover, in this model, we reported that in the quasi-local
regime, as the amount of external magnetic field increases,
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the amount of entanglement between spins decreases although
the range of entanglement is strikingly increasing. Consid-
ering monogamy of entanglement, we illustrated that in the
quasi-local regime, monogamy score for entanglement sat-
urates with the range of interactions, thereby demonstrating
that a few range of interactions is enough to mimic entangle-
ment in the LR system. On the other hand, the monogamy
score of the LR system whose entanglement can not be repro-
duced by a few range of interactions, vanishes with the range
of interactions, which is in a good agreement with the results
obtained for pairwise entanglement.
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F. Verstraete, (2018), 10.1103/PhysRevLett.121.090603,
arXiv:1801.00769.

[59] L. Cevolani, J. Despres, G. Carleo, L. Tagliacozzo, and
L. Sanchez-Palencia, Phys. Rev. B 98, 024302 (2018).

[60] J. T. Schneider, J. Despres, S. J. Thomson, L. Tagliacozzo, and
L. Sanchez-Palencia, Phys. Rev. Research 3, L012022 (2021).

[61] J. C. Halimeh, M. Van Damme, L. Guo, J. Lang, and P. Hauke,
Phys. Rev. B 104, 115133 (2021).

[62] J. Schachenmayer, B. P. Lanyon, C. F. Roos, and A. J. Daley,
Phys. Rev. X 3, 031015 (2013).

[63] A. S. Buyskikh, M. Fagotti, J. Schachenmayer, F. Essler, and
A. J. Daley, Phys. Rev. A 93, 053620 (2016).
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Appendix A: Logarithmic negativity

Logarithmic negativity [97, 98] is an entanglement measure
that originates from the partial transposition criterion [99]. It
is a necessary and sufficient condition for quantifying entan-
glement for arbitrary two-qubit states. For any two-qubit state
ρAB , logarithmic negativity E can be defined as

E(ρAB) = log2[2N(ρAB) + 1],

where N is the negativity defined as

N(ρAB) =
||ρTAAB ||1 − 1

2
.

Here, ||ρ||1 is the trace-norm of the matrix ρ defined as,
||ρ||1 = tr

√
ρ†ρ and TA is the partial transpose of ρAB with

respect to A.

Appendix B: Concurrence

Concurrence [100] quantifies the amount of entanglement
present in an arbitrary two-qubit state. Given a two-qubit den-
sity matrix, ρAB , the concurrence is defined as

C(ρAB) = max{0, λ1 − λ2 − λ3 − λ4}, (B1)

where λis are the eigenvalues of the Hermitian matrix,
R =

√√
ρ ρ̃
√
ρ satisfying the order λ1 ≥ λ2 ≥ λ3 ≥ λ4.

Here ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy) with ρ∗ being the complex
conjugate of ρ in the computational basis.

Appendix C: Monogamy Score

Monogamy score [] quantifies the distribution of the en-
tanglement among N -parties of a quantum state, ρ12...N .
Monogamy of entanglement states that if entanglement be-
tween two parties is maximum, they cannot share any amount
of entanglement with other parties. To find the trade-off re-
lations between entanglement content among parties, we use
concurrence, Cij between spins i and j as a bipartite entan-
glement measure. By considering the first spin as the node
and calculate the entanglement shared between the first spin
and rest of the system, denoted by C(ρ1:rest). We can define
the monogamy score as

δC2 = C2(ρ1:rest)−
N∑
i=2

C2(ρ1i), (C1)

where C2(ρ1i) denotes the concurrence between the first and
any arbitrary site, i. Notice that C2(ρ1:rest) ≤ log2 d1, where
d1 is the dimension of the first spin which is unity for a two-
qubit case. Similarly, C2(ρ1i) ≤ 1. It was shown that for
arbitrary N -party state [66, 67], δC2 ≥ 0.
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