
1426 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Canopy Averaged Chlorophyll Content Prediction of
Pear Trees Using Convolutional Autoencoder on

Hyperspectral Data
Subir Paul , Vinayaraj Poliyapram , Nevrez İmamoğlu , Kuniaki Uto , Ryosuke Nakamura,
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Abstract—Chlorophyll content is one of the essential parameters
to assess the growth process of the fruit trees. This present study
developed a model for estimation of canopy averaged chlorophyll
content (CACC) of pear trees using the convolutional autoencoder
(CAE) features of hyperspectral (HS) data. This study also demon-
strated the inspection of anomaly among the trees by employing
multidimensional scaling on the CAE features and detected out-
lier trees prior to fit nonlinear regression models. These outlier
trees were excluded from the further experiments that helped in
improving the prediction performance of CACC. Gaussian process
regression (GPR) and support vector regression (SVR) techniques
were investigated as nonlinear regression models and used for
prediction of CACC. The CAE features were proven to be providing
better prediction of CACC when compared with the direct use of
HS bands or vegetation indices as predictors. The CACC prediction
performance was improved with the exclusion of the outlier trees
during training of the regression models. It was evident from the ex-
periments that GPR could predict the CACC with better accuracy
compared to SVR. In addition, the reliability of the tree canopy
masks, which were utilized for averaging the features’ values for a
particular tree, was also evaluated.

Index Terms—Canopy averaged chlorophyll content (CACC),
convolutional autoencoder (CAE), deep learning, Gaussian process
regression (GPR), hyperspectral (HS) data, pear orchard.

I. INTRODUCTION

G LOBAL food demand is rising rapidly with an increase in
population. In order to meet the increasing demand, food
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Nevrez İmamoğlu and Ryosuke Nakamura are with the Artificial Intelligence
Research Center, National Institute of Advanced Industrial Science and Tech-
nology (AIST), Tokyo 135-0064, Japan (e-mail: nevrez.imamoglu@aist.go.jp;
r.nakamura@aist.go.jp).

Kuniaki Uto is with the School of Computing, Tokyo Institute of Technology,
Tokyo 152-8550, Japan (e-mail: uto@c.titech.ac.jp).

Digital Object Identifier 10.1109/JSTARS.2020.2983000

production should be improved. Continuous health monitoring
of plants or crops during their growing period can help in
maximizing food production or yield by identifying diseases,
stress conditions or any other issues and taking necessary steps
to resolve those issues [1]–[3]. Chlorophyll content is a vital bio-
chemical parameter and a major indicator of the growth process,
photosynthetic activity, developmental stage, nutritional, and
physiological status of fruit trees [4], [5], vegetables (or crops)
[6], and other types of plants [7]. Disease detection, maturity
of crops or vegetation and prediction of primary production
or yield can be assessed with the estimation of chlorophyll
content [8], [9]. Chlorophyll content can be estimated using
chlorophyll content meter, optical contact sensor such as soil
plant analysis development (SPAD) 502 of Minolta, images
of airborne cameras, and multispectral and hyperspectral (HS)
images [1]. Chlorophyll content meter and SPAD are most useful
for rapid and nondestructive in situ estimation of leaf chlorophyll
content (LCC) but not suitable for estimation of canopy aver-
aged chlorophyll content (CACC) or canopy chlorophyll content
(CCC) of tall plants [9]. In-field chlorophyll content estimation
techniques are labor intensive, time consuming, expensive and
do not provide real-time monitoring. Remote sensing data can
be considered as a reliable solution for continuous spatial and
temporal monitoring of chlorophyll content.

Numerous studies have used remote sensing data for chloro-
phyll content monitoring of different types of plants. Pérez-
Patricio et al. [1] estimated chlorophyll content of plant leaves
using the reflectance and transmittance of Red–Green–Blue
(RGB) images. Ma et al. [9] constructed a three-layer artificial
neural network (ANN) [10] model for prediction of chlorophyll
content in different light areas of apple tree canopies. Degerickx
et al. [11] estimated chlorophyll content and leaf area index
(LAI) to assess the health of urban trees using HS and LIDAR
data. CCC estimation of fruit trees was attempted in different
studies using the spaceborne sensor data [4], [8]. Li et al. [8]
estimated CCC of apple trees using Sentinel-2A data. However,
coarse spatial and spectral resolution of these data and cloudy-
sky condition effect the precise and continuous estimation of
CCC or CACC [12]. The critical issues of spaceborne (e.g., spa-
tial and spectral resolution, real-time monitoring, cloudy-sky)
and airborne (e.g., high operational cost) sensors can be over-
come with the use of low cost unmanned aerial vehicle (UAV)
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system [13]. Hence, Vanbrabant et al. [12] used remotely piloted
aircraft systems (RPAS) for the acquisition of remote sensing im-
ages, which are flexible enough in revisit time with very fine spa-
tial resolution, and have less dependency on weather conditions.

Biophysical (e.g. LAI, biomass) and biochemical (e.g. chloro-
phyll and nitrogen content) variables retrieval methods using op-
tical remote sensing images can be categorized into 1) parametric
regression, 2) nonparametric regression, 3) physically-based
(i.e., radiative transfer models), and 4) hybrid methods (e.g.,
a combination of physically-based and nonparametric nonlinear
regression methods) [14]. Several parametric and nonparametric
approaches were evaluated for modeling of different biophysical
and biochemical variables. Parametric regression techniques
use limited or optimally selected spectral bands or vegetation
indices [1] for modeling. Numerous spectral band indices or
VIs, viz., normalized difference vegetation index [15], photo-
chemical reflectance index [16], [17], optimized soil-adjusted
vegetation index (OSAVI) [18], modified chlorophyll absorption
in reflectance index (MCARI) [19], transformed chlorophyll
absorption in reflectance index [20], greenness vegetation index
[21], and triangular greenness index (TGI) [22], were developed
for detection or estimation of LCC or CACC or CCC. VIs can be
used in nonparametric models [e.g., ANN, support vector regres-
sion (SVR)] too for estimation of CACC or CCC [8]. However,
these indices do not exploit the ample spectral information of
HS data and instead these consider only 2–5 specific spectral
bands [12], [23], which may be apt for local applications but
lack general applicability [14]. Though VIs can be calculated
using spectral reflectances of narrow-bands, VIs-based methods
are more suited to broadband spectral data [14]. Nonparametric
models do not make any assumptions about the data distribution
and dependencies between variables as in the case of parametric
models. Gaussian process regression (GPR) technique was in-
troduced in Verrelst et al. [23] for overcoming the limitations of
other nonparametric models, viz., ANN [9], SVR [24], [25], and
relevance vector machine [26], for retrieval of biophysical and
biochemical variables. Radiative transfer modeling is a more
challenging task compared to parametric and nonparametric
regression because of several issues, such as more unknowns
compared to observation points, computational resources, and
requirement of experimental data for calibration [14].

Deep learning networks have been proven to be very effective
in discovering low-level (e.g., edges) and mid-level (e.g., shapes)
structures from a dataset [27]. Though deep learning techniques
can be computationally expensive, several applications in classi-
fication studies using high-dimensional datasets (e.g., HS data)
have proven the effectiveness of the deep learning algorithms.
Deep learning techniques, such as autoencoder (AE) or stacked
autoencoder (SAE) demonstrate salient feature representation of
high-dimensional datasets (e.g., HS data), which were efficiently
used in classification applications [28]–[31]. Convolutional au-
toencoder (CAE), a combination of convolution operation of
convolutional neural network and self-supervised learning of
AE, was utilized for 3-D object retrieval [32], deep unsupervised
feature representation and subsequently for classification of
high-resolution remote sensing images [33], and SAR images
[27]. CAE reduces the computational parameters for feature

extraction as compared to AE [33], and can be considered as
an improved spectral-spatial deep feature extraction technique
over spectral deep feature extraction technique SAE. The CAE
extracted features can be used in classification or regression tasks
in two ways, either by including a neural network layer at the end
and training the whole architecture altogether or by using trained
CAE features in a different classifier or regression learner.

Remote sensing data-based LCC or CACC or CCC prediction
techniques mostly consider VIs in the regression model, which
do not exploit the full potential of HS data. Though, a few studies
attempted to use the whole spectrum of HS data but these studies
did not address the issue of redundant information present in the
HS data. Redundancy of HS data can be removed by employing
dimensionality reduction techniques. In this article, we have
proposed the use of unsupervised spectral-spatial features of
HS data, extracted by CAE, for fitting in regression models
and predicting CACC of Pear trees. The CAE features were
utilized for detection of outlier trees to be eliminated in order
to improve the performance of CACC prediction. Multidimen-
sional scaling (MDS) technique was utilized for outlier detection
[34]. After removal of outlier trees, CAE features of rest of
the trees were utilized in GPR or SVR for model fitting and
CACC prediction. A brief overview of the work is presented in
Fig. 1.

The major objectives of this article are as follows.
1) Taking advantage of unsupervised representation learn-

ing for high level features extraction by implementing a
relatively small CAE network on the HS data.

2) Extensive investigations of the unsupervised CAE features
of HS data to predict CACC and demonstration of im-
provements compared to the baseline approach [12].

3) Analysis of the deep high-level CAE representations by
taking advantage of MDS to embed high-dimensional tree
canopy features in low-dimensional two-dimensional (2-
D) space, and to compare each tree with respect to others
to find out anomaly among trees (i.e., outlier trees) in the
orchard.

The rest of this article is organized as follows.
Section II provides the details about the study area and datasets.
In Section III, the methodology of outlier tree detection using
MDS and fitting regression models and CACC prediction using
CAE features are presented. In Section IV, results from different
experiments are reported. Section V presents the discussion
of the experimental results. Finally, Section VI concludes this
article.

II. STUDY AREA AND DATASETS

This work was carried out for a Pear orchard (14 years old
“Conference” trees) [12], located in Belgium (see Fig. 2). The
dataset was acquired by HYPERTEMP project group and made
available as a part of BELAIR HESBANIA 2017 project [12].
The tree canopy areas of 178 Pear trees were provided in this
dataset. HS image acquisitions were done covering these trees
in the orchard for the growing period (May–October, 2017).
However, this dataset includes reference CACC of only 33 trees
for the growing period (May–October, 2017).
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Fig. 1. Brief overview of the present work (Images source: Google Earth and BELAIR HESBANIA 2017 dataset).

Fig. 2. Location of the pear orchard (Images source: Google Earth and BELAIR HESBANIA 2017 dataset).

A. HS Data

The HS images were acquired using the Headwall Micro-
Hyperspec1 during the pear fruit growing period (May–October)
of 2017 [12]. The HS sensor was mounted on a UAV plat-
form which is Altura Zenith ATX8 rotorcraft (Aerialtronics, the
Netherlands). The HS images comprised spectral information
of 326 bands (with ∼2 nm bandwidth and covering the spectral
range of 400–1000 nm) at 5 cm spatial resolution. Geometric and
radiometric calibrations of the HS images were performed using
ground control points and spectral reference targets. Geometric
correction was performed based on direct geo-referencing using
VITO-developed C++ module. Further details about radiomet-
ric and spectral calibration and geometric correction processes
can be found in Vanbrabant et al. [12]. Vanbrabant et al. [12]
found that the spectral bands of around 400 nm and 900–1000 nm

1https://www.headwallphotonics.com/hyperspectral-sensors

were noisy. Hence, only the spectral bands in the range of 405–
895 nm were considered as noise free in this study, which result
in 264 spectral bands. However, they have used 280 spectral
bands for their analysis, which considered few spectral bands
from the noisy region. We have investigated two experiments,
first considering all possible combinations of continuous 280
spectral bands, since the exact spectral region was not specified
in Vanbrabant et al. [12]; and second after removing the noisy
bands only 264 bands (405–895 nm) were utilized for CACC
prediction. It was observed that 264 spectral bands combination,
which did not include any noisy bands, performed better. Hence,
in order to remove the effect of noisy data, we have utilized only
the 264 spectral bands (405–895 nm) for further analysis in this
study. Table I [12] presents the acquisition dates and times of
HS images for different growth-stages of pear trees. However,
the dataset contains reference CACC only for three months (i.e.,
June, July, and October), and the HS image of October month
does not cover all the reference trees. Hence, we have utilized
33 reference pear trees for June and July months but in case of

https:&sol;&sol;www.headwallphotonics.com&sol;hyperspectral-sensors
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Fig. 3. Month-wise CACC (µg/cm2) of experimental trees.

TABLE I
DETAILS OF THE HS RPAS FLIGHT DATES AND CORRESPONDING

GROWTH-STAGES OF THE PEAR TREES

October month, only 17 trees were utilized for CACC modeling
(i.e., data for tree IDs (TIDs) 2–15, 23, and 24 were not included
in the published dataset). The details about the 33 experimental
trees (i.e., TIDs among 178 trees) are available in the BELAIR
HESBANIA 2017 dataset [12].

B. Canopy Averaged Chlorophyll Content

The reference CACC was retrieved for 33 experimental pear
trees during the different growing stages. Reference CACC of
each tree was calculated by averaging the LCC estimates of
20 sampled leaves, collected randomly from all parts of the
canopy, of that tree [12]. However, BELAIR HESBANIA 2017
dataset comprises/consists of CACC estimates of only three
months’ (i.e., June, July, and October) of growth stages. The
reference CACC of all trees for the observed three months of
growing period are shown in Fig. 3. The ranges of the reference
CACC are 49.97–69.11, 57.31–70.17, and 44.16–71.47 µg/cm2,
respectively, for June, July, and October months. The reference
trees had higher CACC values in July compared to June month,
since the tree canopies were in optimal growth condition with
complete growth and ripening of fruits during the July month.
October month was the leaf senescence period, when aging of
leaves started and the color of leaves changed. However, aging
conditions of leaves of different trees might vary, which resulted
to inconsistency in the CACC observations of the trees during
October.

III. METHODOLOGY

The workflow of the CACC prediction is presented in Fig. 4.
In the first step, all the potential noisy bands are removed and
rest of the bands (264 bands starting from 405 to 895 nm with
intervals of ∼2 nm) are utilized for further analysis. Then, CAE
is employed on the 264 bands for extraction of spectral-spatial
features from the data. This part of the workflow (i.e., CAE
network) is highlighted with a dotted line box and the detailed
architecture is presented in Fig. 5. The pixels falling within the
canopy area of each tree are identified and their feature values
are averaged to calculate an average feature representation corre-
sponding to each tree. Averaging the feature values in the canopy
area of a tree is well-suited practice for our experiments since
the reference CACCs are average representation of chlorophyll
content of the whole canopy of a tree. In the next step, these
average CAE features are used to identify outlier trees. Outlier
trees are identified with the help of MDS and visualizing the
trees in a 2-D scatter plot. After removal of the outlier trees,
average CAE features of the rest of the tree samples are utilized
for training (or fitting) the nonparametric models viz., GPR and
SVR and prediction of CACC.

A. Convolutional Autoencoder (CAE) for Unsupervised
Representation Learning

CAE is a deep learning based unsupervised feature
representation algorithm. CAE is designed based on the same
principle of encoder and decoder of AE but it replaces the fully
connected layers of AE with convolution layers, which reduce
the number of parameters and provides a better representation
of the data [35], [36]. CAE extracts the spectral-spatial features
from the data.

Being a deep learning or high-level feature extraction method,
CAE can be computationally expensive compared to tradi-
tional feature extraction strategies such as principal component
analysis, but it has significant importance in deriving features
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Fig. 4. Workflow of CACC prediction.

Fig. 5. Proposed CAE architecture.

which may not be produced by traditional feature extraction
approaches.

Compared to other well-known deep learning-based unsu-
pervised feature representation such as AE and SAE, the CAE
requires less number of computational parameters to be trained
[32], and hence it is computationally efficient compared to AE
and SAE.

CAE introduces 2-D, 3 × 3 kernel-based weights and con-
volve through HS data and hence it is efficient to preserve
neighborhood relationship and local features.

In this work, CAE network is employed with three encoding
and three decoding layers. The architecture of CAE is presented
in Fig. 5. The filter size of last encoding layer is varied from
8 to 256 (i.e., 8, 16, 32, 64, 128, and 256) to investigate

the performances of different numbers of features in CACC
modeling. The CAE network is trained considering “sigmoid”
activation function for all encoding and decoding layers with
“AdaDelta” [37] optimizer. Mean squared error (MSE) has been
used for loss calculation between original and reconstructed
data. The HS image is divided into patches of size 64 × 64 and
CAE network is trained with batch size of 16.

B. Use of High-level Encoded Features for Similarity
Comparison to Detect Outlier Trees

MDS [38] is a visual representation of distances or dissimilari-
ties between sets of objects. The averaged CAE features of each
tree canopy area are used to calculate pairwise dissimilarities
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between all combinations of two trees using Euclidian distance.
MDS uses the dissimilarity matrix to create 2-D variables.
These 2-D variables are plotted in a 2-D plot to visualize the
reference tree samples. Trees that are more similar (or have
shorter distances) are closer together on the graph than the trees
that are less similar (or have longer distances). Hence, outlier
trees can be identified from this 2-D plot, being located away of
the common cluster of rest of the trees.

C. CACC Prediction

GPR has been proven to be an effective tool for retrieval of
vegetation biophysical and biochemical variables using multi-
spectral or HS data [23]. Vanbrabant et al. [12] utilized numerous
linear and nonlinear models for prediction of CACC using the HS
data. It was found that nonparametric and nonlinear regression
models viz., GPR and SVR with Gaussian radial basis function
(RBF) kernel provide more or less consistent performance.
Therefore, we have adopted GPR and SVR along with Gaussian
RBF kernel to fit the models using the CAE features of HS data
and for prediction of CACC.

GPR is a stochastic process or probabilistic model. GPR
learns the relationship between input (i.e., HS bands or CAE
features) and output (i.e., CACC) variables by fitting nonlinear
and nonparametric model to the data. GPR models the response
or output variable by introducing latent variables (i.e., function
of input variables) from a Gaussian process.

SVR uses the principle of support vector machine (SVM)
algorithm for classification with some minor changes, since in
case of SVR output is a real number. The basic concept of SVR
is same as SVM viz., minimization of error, and individualize
the hyperplane by maximizing the margin. The nonlinear kernel
functions transform the data into a high dimensional feature
space for linear separation of the data in the new transformed
space.

D. Experimental Setup

The experiments were carried out on a Desktop PC (CPU: In-
tel Core i5-6500 @ 3.20 GHz, GPU: Nvidia GeForce GTX 1070
8GB, RAM: 32 GB DDR4) using Python and R programming
languages. Extraction of CAE features was performed using the
Python-based deep learning library “Keras” [39]. The R package
“kernelab” has been used for fitting the GPR and SVR models
using the high-level CAE features as input variables to predict
the CACC of each tree. The whole HS images were divided into
patches of size (64 × 64) and these patches are partitioned into
three parts viz., training, validation, and testing datasets for CAE
feature extraction process. All the patches were combinations of
pixels from tree canopy area and background area. The patches
having the reference tree canopy areas were considered as testing
data, and the rest of the patches are randomly divided into
training and validation data considering 80% and 20% patches,
respectively. The CAE network was trained five times for gen-
eralization of the extracted CAE features. In case of CACC
prediction, the reference tree samples were divided into two
parts viz., training and testing data considering 70% and 30% of
the samples, respectively. Ten trials were performed for CACC

modeling of each experiment considering random partitioning
of training and testing data in each trial. At the end, average and
standard deviation (SD) of the performance evaluation metrics
from all trials are reported for each experiment, which will be
demonstrated in the following sections.

E. Performance Evaluation Metrics

The performances of CACC modeling were evaluated with
four different performance evaluation metrics viz., Pearson cor-
relation coefficient (r), Nash–Sutcliffe efficiency index (NSE),
root mean square error (RMSE), and normalized RMSE
(NRMSE) as were used in Vanbrabant et al. [12]. Pearson
correlation coefficient provides the measure of linear associa-
tion between the observed and model predicted values. NSE
quantifies the efficiency of a model in predicting the values away
from mean, which is theoretically applicable to nonlinear models
too [40]. RMSE is the SD of prediction errors and NRMSE
is normalized measure of RMSE, which is normalized by the
range of actual values. The equations for the calculation of these
metrics are presented as follows:

r =

∑n
i=1 (yi − ȳ)

(
ŷi − ŷ

)

√∑n
i=1 (yi − ȳ)2

√
∑n

i=1

(
ŷi − ŷ

)2
(1)

NSE = 1−
∑n

i=1 (yi − ŷi)
2

∑n
i=1 (yi − ȳ)2

(2)

RMSE =

√
1

n

∑n

i=1
(ŷi − yi)

2 (3)

NRMSE =
RMSE

ymax − ymin
× 100 (4)

where yi = observed values; ŷi = predicted values; n = number
of samples; ȳ = mean of observed values; ymax = maximum of
observed values; ymin = minimum of observed values.

IV. RESULTS

Numerous experiments were carried out to develop the most
appropriate model for CACC prediction. The efficacy of outlier
tree detection and use of CAE features for CACC modeling
are presented and discussed by reporting the results of different
experiments in the following sections.

A. Outlier Trees

MDS was performed using the CAE features of each month’s
HS image for identification of outlier trees. TIDs 90 and 92 were,
respectively, recognized as outlier trees from the HS images of
June and July month, which can be identified in Fig. 6(a) and
(b), respectively, using a red dotted circle. Similarly, TIDs 2 and
107 were identified as outliers in case of October month’s image
[see Fig. 6(c)]. The outlier trees can affect the CACC modeling
and reduce the prediction ability of the models. Experiments
were carried out with (i.e., considering 83 reference trees) and
without (i.e., considering 79 reference trees) outlier trees to
evaluate the influence of outlier trees on model performance (see
Table II). Both the experiments were performed using 264 HS
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Fig. 6. MDS visualization of CAE features of (a) June (b) July and (c) October month’s data [Outlier trees: TID 90 (June), TID 92 (July), TID 2, 107 (October)].

TABLE II
CACC MODELING PERFORMANCES WITH AND WITHOUT OUTLIER TREES

TABLE III
PERFORMANCES OF CACC MODELING (WITH GPR) CONSIDERING DIFFERENT TRIALS FOR A FIXED NUMBER OF CAE FEATURES

bands in the GPR model. It has been observed that with the
removal of outlier trees average NSE, RMSE, and NRMSE of
testing datasets are improved. In order to check the statistical
significance of the improvement, the means of the squared
prediction errors from the two experiments were compared using
two samples t-test and the means of the errors were statistically
different with a significance level of 0.10. The experiments (see
Table II) with regression model proved the significance of outlier
tree detection in order to achieve better model performance.
Hence, all further experiments were carried out with 79 reference
samples.

B. Performance of CACC Prediction With CAE Features

The optimal number of CAE features, which can predict
CACC efficiently, depends on the used dataset. Number of CAE

features may change for different datasets. Hence, different
numbers of CAE features, varying from 8 to 256 (i.e., 8, 16,
32, 64, 128, and 256), were experimented for CACC prediction.
For each experiment with a specific number of features, CAE
network was trained five times and CACC was modeled ten
times with each training resulted features. The results from the
CAE network training trials with 32 features are reported in
Table III. The average RMSE of the testing data ranged between
3.67 to 3.77 µg/cm2. The last row of Table III presents the
average performance of 50 iterations (i.e., 5 × 10). The average
performances of 50 iterations considering different sets of CAE
features are reported in Table IV. It was observed that all sets of
CAE features provide almost similar performances. However,
32 CAE features were able to predict the CACC of testing
samples more efficiently (i.e., better NSE, RMSE, and NRMSE)
compared to other sets of features (see Table IV).
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TABLE IV
PERFORMANCES OF CACC MODELING USING DIFFERENT NUMBERS OF CAE FEATURES IN GPR MODEL

TABLE V
COMPARISON OF CACC MODELING PERFORMANCES WITH HS BANDS AND CAE FEATURES

TABLE VI
PERFORMANCES OF CACC MODELING BY CHANGING THE TREE CANOPY MASK AREA

C. Comparison of CAE Features With HS Bands

In this section, performances of HS bands and best CAE
feature-based models were compared (see Table V). CAE fea-
tures were consistently performing better with the testing sam-
ples considering both GPR and SVR based modeling.

Here, we have also compared the performances of GPR and
SVR models by considering the HS bands as well as the CAE
features as independent variables (see Table V). GPR gener-
ally provided better prediction performances (in terms of NSE,
RMSE, NRMSE) for testing samples in both the cases. There-
fore, all the experiments, investigated in this study, considered
the GPR model for modeling and prediction of CACC.

D. Evaluation of the Reliability of Tree Canopy Mask

The tree canopy masks, available in the dataset, were created
using the digital surface model and digital terrain model data in
the Watershed algorithm [41], [42]. These masks do not provide
precise canopy areas of the pear trees. Some masks exclude
the portion of tree canopy area, while some other masks include
some parts of background pixels. These imperfect canopy masks
may influence the model performance. Hence, experiments were
performed to check the reliability of the tree canopy masks.

In order to achieve this goal, a patch of size 25 × 25 was
identified from the centroid of each tree and considered as tree
canopy area for averaging the feature values. Patch size 25
was chosen because of the fact that almost all the trees have
more than 625 pixels within their canopy area. However, patch
size of 21, 23, 27, and 29 were also experimented with but
25 was providing better performance compared to others. We
have reported the training and testing results only for the patch
size of 25 in Table VI. It was observed that with the use of
25 × 25 patch-based canopy area, training and testing both
performances were improved to some extent, when compared
with the provided tree canopy mask area.

E. CACC Mapping for all Pear Trees

At the end, CACC of all the Pear trees were estimated for
the three months (i.e., June, July, and October) using the 32
CAE features of HS data and presented in Figs. 7–9. Figs. 7–9
also present the reference CACC and zoomed-in view of some
specific trees for comparing the reference CACC with the pre-
dicted CACC. Though predicted CACC was estimated for all
the trees, the zoomed-in view of predicted CACC only presents
the predicted values that are shown in the zoomed-in view of
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Fig. 7. CACC map of Pear trees for June month.

Fig. 8. CACC map of Pear trees for July month.

reference map. It has been observed that the ranges of predicted
CACC are narrowed down compared to the reference CACC. For
example, in case of June month (see Fig. 7), predicted CACC is
ranging between 52 and 64 µg/cm2, whereas reference CACC
range is 50–70 µg/cm2. However, CACC of most of the trees
are predicted closely to the reference values. In case of October
month’s predicted map (see Fig. 9), most of the trees of right
row do not show any estimated value due to unavailability of
HS data over those locations.

V. DISCUSSION

This article proposed CAE-based high-level features extrac-
tion from HS data for prediction of CACC of pear trees. We
have performed MDS on the CAE features in order to detect
presence of any anomaly (or outlier) among the trees prior to
CACC modeling.

MDS has identified four outlier trees (i.e., one from each
June and July, and two from October month’s samples) and
by removing these trees from the CACC modeling process, the
prediction accuracy was improved significantly (at significance
level of 0.10). However, we did not have enough ground-truth
information to investigate the real reason of inconsistency or
anomaly present in the pear trees. Since, we were not involved
with the data collection process, we are not able to provide any
physiological explanation behind the detection of outlier trees. In
this study, detection of outlier trees was completely data driven
and depended on the reflectance patterns of the tree canopy area.

CACC prediction was carried out considering different num-
bers of CAE features (i.e., 8, 16, 32, 64, 128, and 256). CAE
features extraction network was run for five iterations and for
each iteration CACC was modeled with ten random trials.
The consistent performances with several iterations prove the
generalization of the CAE architecture to extract the salient
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Fig. 9. CACC map of Pear trees for October month.

features and the effectiveness of the CAE features in predicting
CACC with any set of training samples. More or less similar
performances with the change in numbers of CAE features
implies that use of the CAE architecture to extract the features
has more significance than the selection of optimal number of
features for CACC prediction with this dataset. However, we
have selected 32 CAE features as optimal for CACC prediction
because of its comparatively better performance with the testing
samples and preferable consistency in the performances of train-
ing and testing samples. For example, 128 CAE features were
providing best performance in case of training samples but not
optimal with testing samples, which may raise some chance of
overfitting.

CAE features learn the unsupervised deep spectral-spatial
representation of the HS data and reduce the redundancy present
in the data, which helps in improving the CACC prediction
performance, as compared to the use of original HS bands. Since
large numbers of contiguous narrow spectral bands introduce
redundancy in the data, original HS bands (i.e., without using any
feature extraction technique) are not able to perform efficiently.
This phenomenon is commonly observable in the classification
studies. Hence, our experimental analysis supported the basic
characteristics of high-dimensional HS data, where extraction
of spectral-spatial features is very significant in order to achieve
the optimal performance.

Reliability of the tree canopy masks was evaluated by consid-
ering a 25× 25 patch from the centre part of the canopy. Though
this experiment did not show much significant improvement
in performance, this type of analysis is important to check
the reliability of the automated watershed algorithm-based tree
canopy mask area. Here, the assumed patch size of 25 considers
only the center canopy area instead of the whole canopy area,
which again may not provide the precise average representation
of the features. Manual delineation of tree canopy area can be
the best solution but may not be feasible in case of large number
of tree samples. Hence, there is a need of better automated
algorithm for delineation of tree canopy areas. This emphasizes

the need of more accurate tree canopy area mask in order to
get better representation of the whole canopy and achieve better
performance.

The figures (see Figs. 7–9) with CACC mapping signify that
the tree samples, which have reference CACC close to the mini-
mum or maximum values, were predicted very poorly. In Fig. 7
(i.e., for June month), we can identify three such trees, where two
trees have high range values (i.e., ∼68–70 µg/cm2) of reference
CACC and another tree (which is TID 90, MDS detected outlier
tree) has in the minimum range (i.e., ∼52 µg/cm2). Predicted
CACC of these trees are ranges between 60 and 62 µg/cm2

approximately. Here, an approximate error of 8 µg/cm2 can be
observed for these three trees. Similarly, in case of July (see
Fig. 8) and October (see Fig. 9) months’ CACC maps, few trees
can be identified which have an error of 4 µg/cm2 but this error
is not as high as June month’s.

VI. CONCLUSION

In this article, we have proposed the use of CAE features, de-
rived from HS data, for CACC modeling of pear trees. The CAE
features were proven to be more effective in CACC modeling
compared to the HS bands. Different numbers of CAE features
were utilized for CACC modeling and 32 CAE features were
found to be providing better modeling performance compared
to others. Use of the CAE features for CACC modeling reduced
average RMSE by 7.03%. We have promoted the use of MDS
technique for outlier tree detection prior to CACC modeling,
which was improving the performances significantly. Four trees
were identified as outliers among the 83 sample trees. With the
removal of these outlier trees prior to CACC modeling, average
RMSE was reduced by 5.24%. The combination of MDS and
CAE for CACC modeling reduced average RMSE by 11.9%. We
have investigated the reliability of the tree canopy masks and it
was observed that with the consideration of 25 × 25 patch from
the tree centroid as tree canopy, average RMSE was reduced by
0.81%.
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This study has a few limitations such as, 1) number of avail-
able reference tree samples is too small; 2) unavailability of
reference CACC for all the months during the growing period;
3) lack of ground-truth information to enquire the real cause
behind anomalies of pear trees; and 4) lack of high precision
tree canopy mask area.

Availability of precise tree canopy masks is an important
issue, which requires further investigation. The real reason of
anomaly present in the pear trees can be explored with the
real-time observations and this anomaly or outlier tree detec-
tion process can be fully automated as a future work. The
proposed methodology can be extended and investigated with
more numbers of reference samples in the presence of reliable
tree canopy mask for better generalization of the model and
better prediction of CACC. This approach can be employed for
estimation of biophysical and biochemical variables of different
types of vegetation or trees.
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