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The task of a telecloning protocol is to send an arbitrary qubit possessed by a sender to multiple
receivers. Instead of performing Bell measurement at the sender’s node, if one applies unsharp
measurement, we show that the shared state can be recycled for further telecloning protocol. Specif-
ically, in case of a single sender and two receivers, the maximal attempting number, which is defined
as the maximum number of rounds used by the channel to obtain quantum advantage in the fi-
delity, turns out to be three both for optimal and nonoptimal shared states for telecloning while the
maximal number reduces to two in case of three receivers. Although the original telecloning with
quantum advantage being possible for arbitrary numbers of receivers, we report that the recycling
of resources is not possible in telecloning involving a single sender and more than three receivers,
thereby demonstrating a no-go theorem. We also connect the maximal achievable fidelities in each
round with the bipartite entanglement content of the reduced state between the sender and one of
the receivers as well as with the monogamy score of entanglement.

I. INTRODUCTION

Efficient information transmission among distant
parties is one of the thriving avenues in the field of
communication. Although the existing communication
protocols serve our most of purposes, it has been re-
alized that the performance of these classical protocols
can be improved qualitatively by using quantum me-
chanical laws [1–6]. Specifically, successful transmis-
sions of classical and quantum information between a
single sender and a single receiver via quantum chan-
nels have been proposed and experimentally verified
through various protocols like teleportation [2, 7], dense
coding [1, 8, 9], quantum key distribution [3, 10–14].
The possible next step is to generalize these protocols
in a multiparty scenario, thereby building a commu-
nication network or quantum internet which is one of
the centre of attentions in recent years [15]. In this
direction, prominent works include the measurement-
based method for transmitting information over a long
distance, known as quantum repeaters based on en-
tanglement swapping [16, 17], combination of cloning
and teleportation to share an arbitrary quantum state
between the senders and the receivers, called the tele-
cloning scheme [18, 19], distributed quantum comput-
ing in a network [20], quantum dense coding network
involving multiple senders and a single or two receivers
[21]. Notice that in all these situations, shared multipar-
tite entangled states are shown to be the key ingredient
for successful realizations [22].

Despite giving advantages during various informa-
tion processing tasks over their classical counterparts,
quantum mechanical laws also enforce stringent condi-
tions on some available resources, recognized as no-go
theorems [23–27]. Among them, no-cloning theorem re-
strain us from copying an arbitrary quantum state per-
fectly [23, 28, 29] although an approximate universal
cloning machine exists by which a quantum state can be
copied with a certain fidelity [19, 30, 31]. Taking opti-
mal cloned state and performing teleportaion, informa-

tion of a quantum state can be transferred from a sender
to multiple receivers with optimal fidelity [18, 19, 32, 33]
– the protocol is known as telecloning which will be the
main focus of this work. Instead of generating opti-
mal clones [30, 31] and sending them to arbitrary num-
ber parties which require several bipartite entangled re-
source states, one can achieve the same task in quan-
tum telecloning protocol with less resources by a single
measurement provided the optimal multipartite state is
apriori shared between the senders and the receivers.
Since the protocol involves a projective measurement at
the sender’s side which destroys quantum correlations
between the sender and the receivers, the shared state
cannot be used for any other purpose in later time.

At this point, the natural question arises – for some
reasons, if the single or the multiple receivers do not complete
the protocol, can one design a protocol in such a way that the
shared entangled state can be reused for telecloning again?
In case of projective measurement performed by the
sender, the answer is immediately negative. If we now
assume that the measurement process is not perfect,
i.e., instead of projective measurement, unsharp (weak)
measurements are performed at the sender’s side, the
answer can be affirmative. We will now concentrate on
the scenario where the shared state can be reused for
the purpose of telecloning (see Fig. 1 for schematics).

Using weak measurements, such sequential imple-
mentations of protocols involving two parties have re-
cently been observed in several directions which in-
clude violation of Bell inequalities [34–39], detecting
entangled states with the help of steering inequalities
[40], and entanglement witnesses [41], the scenario of
bi-nonlocal inequalities [42–44], and reusing states for
quantum teleportation [45] to name a few. Specifically,
it was found that in these sequential scenarios, at most
two observers can share the nonlocality [34, 35] and
maximum twelve observers can witness entanglement
at one side [41] while maximum six receivers can reuse
the shared state for teleportation [45]. In multipartite
settings, a limited number of works has also been re-
ported in the direction of detecting multipartite entan-
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gled states [46–48].
We report here that by using optimal telecloned state,

the shared state can be reused thrice with the aid of
weak measurement at the sender’s port, when two re-
ceivers are involved while the maximum number for
attempting the scheme reduces to two, when there are
three receivers. Interestingly, we observe that for a
fixed number of receivers, maximal attempting num-
ber remains unaltered even with the nonoptimal shared
state, provided the parameters are adjusted appropri-
ately. Moreover, we find that recycling of state becomes
impossible when there are more than three receivers.
We also establish a relation between the fidelity ob-
tained in each round of the protocol and the entangle-
ment content of the bipartite reduced state [49] as well
as with the monogamy score of entanglement [50–52].

Sec. II illustrates the scenario of recycling the shared
multipartite state used in telecloning. In Sec. III, we
present the main results, show the maximum number
of recycling possible when the optimal state for tele-
cloning is shared between a single sender and two re-
ceivers and establish a connection between entangle-
ment content of the shared state and the fidelity ob-
tained in this process while Sec. IV deals with the re-
cycling protocol involving a single sender and an arbi-
trary number of receivers. In contrast, Sec. V shows
the maximum recycling number even when the nonop-
timal state is shared between the sender and receivers.
We summarize in Sec. VI.

II. PICTURE OF RECYCLING IN NETWORK

Teleportation is the transfer of an arbitrary qubit from
a sender, Alice, to a receiver, Charu, with the help of
two-bits of classical communication and a shared en-
tangled state between Alice and Charu [2]. When the
shared state is maximally entangled, it is always pos-
sible to teleport an arbitrary qubit to Charu while in
case of a non-maximally entangled state, the fidelity be-
tween an arbitrary qubit to be teleported and the state
created at Bob’s end has to be maximized after optimiz-
ing over measurement at Alice’s side and the rotation
at Bob’s part [53].

Let us now consider a scenario involving a single
sender and multiple receivers where the sender, Al-
ice, wants to send an unknown qubit to M num-
ber of spatially separated receivers, Charus. We call
the Alice’s end as port, denoted by P. Alice can
make multiple clones at her node locally and sends
each of them to each Charu via teleportation proto-
col. However, this is not an efficient protocol and re-
quires much more resource than the scenario when the
shared state is multipartite entangled which is known
as telecloning protocol. Suppose Alice and M Charus,
denoted by C1, . . . , CM share a multipartite entangled
state, ρPC1C2...CM used as a multi-receiver teleportation
channel and the input state which is in possession with

FIG. 1. Schematics of sequential telecloning protocol. A
single sender, Alice, called port, share an entangled state with
M Charus who do not perform the prescribed rotation at their
end for n times. To send an arbitrary qubit, Alice performs
a weak measurement which creates a possibility to reuse the
state after Charus refusal for the next round of telecloning. We
assume that M Charus are spatially separated and n attempts
to finish the protocol occurs at different time.

Alice to be teleported denoted as |φin〉 at site X. Al-
ice performs a measurement in the Bell-basis, {|B1,2〉 =

1√
2
(|00〉 ± |11〉), |B3,4〉 = 1√

2
(|01〉 ± |10〉)} jointly on her

part of the entangled state and the input state. De-
pending on the classical communication about Alice’s
measurement outcome, different Charus perform their
corresponding unitary operations at their node. In this
way, Alice can simultaneously teleport the unknown
qubit to different receivers conclusively with an opti-
mal fidelity, which cannot reach to unity due to the
no-cloning theorem [23] and is bounded above by the
optimal fidelity obtained from approximate universal
cloning machine [19, 30, 31].

We now present the entire protocol mathematically.
Let us define a string {c} = {c1, c2, . . . , cM} where ci =
1 if ith Charu Ci is participating in the protocol, and
applies local unitary while ci = 0, otherwise. If the
initial state can be represented as

ρin= |φin〉X〈φin| ⊗ ρPC1C2 ...CM , (1)

the reduced state at one of the Charu’s end, i, after the
measurement and applying the corresponding unitary
operation, can be written as

ρCi = Ti(ρin) = Tr{Ci ,X,P}(∑k µkρinµ†
k) (2)

where Ci =
⋃M

j=1,j 6=i Cj and µk =
√
Mk ⊗M

j=1 (Uk)
cj with

∑kMk = I being the set of positive operator valued
measurements at Alice’s part. In the projective Bell-
measurement scenario, Mk = |Bk〉 〈Bk| and the set of
unitaries at node i for the output is {I, σx, σy, σz}. For
a particular channel used between Alice and multiple
Charus, the average fidelity of a teleported state at i-
th receiver’s node over all possible input states can be
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defined as

Fi(ρPAC1 ...CM )=
∫
〈φin|Ti(ρin)|φin〉dφin. (3)

Notice that the fidelity obtained here is same even when
the measurement performed at Alice’s port is the un-
sharp measurement.

For the telecloning protocol, we require to replace
the initial multiparty state between Alice and Charus,
with a particular type of multiparty entangled channel
from the universal optimal cloning machine [18, 19]. We
choose the shared 2M-partite entangled resource state
to be

|ψ〉PAC =
1√
2
(|0〉P |φ0〉AC + |1〉P |φ1〉AC) , (4)

where

|φ0〉AC =
M−1

∑
j=0

αj
∣∣Aj
〉

A ⊗ |{0, M− j}, {1, j}〉C ,

|φ1〉AC =
M−1

∑
j=0

αj
∣∣AM−j−1

〉
A ⊗ |{0, j}, {1, M− j}〉C ,

(5)

with ∣∣Aj
〉
= |{0, M− j− 1}, {1, j}〉

αj =

√
2 (M− j)

M (M + 1)
. (6)

Here |{0, a}, {1, b}〉 is the symmetric and normalized
state of (a + b) qubits with ’a’ no. of qubits in state |0〉
and remaining ’b’ no of qubits are in orthogonal state
|1〉. A refers to the M− 1 qubit auxiliary system, which
is also at Alice’s side by convention, although it can
be at a different location. In this case, the shared state
between Alice and Charus reads as

ρin = |φin〉X 〈φin| ⊗ ρPAC1 ...CM

ρPAC1..CM = |ψ〉PAC1..CM
〈ψ| . (7)

Let us now discuss the sequential scenario of the tele-
cloning protocol.

• Suppose only M′ number of Charus agree to ap-
ply their unitary operations and receive the tele-
ported states. In this situation, we define a map to
get back the recycled channel of (2M−M′)-party
state, where M′ charus are traced out and finally
averaging is performed over uniformly generated
input states so that the recycled channel does not
depend on a particular input state. Note that fi-
nally averaging over the input states is equivalent
to initially taking the input state as the average

state
∫
|φin〉〈φin|dφin = I

2 [45]. The recycled chan-
nel, in this case, is given by

R{c}(ρPAC1 ...CM )

=
∫

Tr{{Ci∀i;ci=1},X}(∑
i

µiρinµ†
i )dφin

= Tr{{Ci∀i;ci=1},X}(∑
i

µi((
∫
|φin〉〈φin|dφin)⊗ ρPAC1 ...CM )µ†

i

= Tr{{Ci∀i;ci=1},X}(∑
i

µi(
I

2
⊗ ρPAC1 ...CM )µ†

i . (8)

Note that the map defined above does not act on
the auxiliary system, i.e., identity operators only
act on them.

• Depending on the type of measurement per-
formed on Alice’s part, the recycled channel be-
comes useful for teleportation in the next round.
Instead of projective measurement, if Alice per-
forms an unsharp Bell measurement, given by

Mλ
i = λ |Bi〉 〈Bi|+

1− λ

4
I4, (9)

where λ is the unsharp parameter, we will show
that the channel can further be used for more
rounds depending on the residual entanglement.
Similarly, we can redefine, R{c},λ, Fi,λ, Ti,λ by re-

placing µi with µλ
i =

√
Mλ

i ⊗
M
j=1 (Ui)

cj in previ-

ously defined R{c}, Fi, and Ti consecutively.

• Suppose upto round n− 1, all the receivers refuse
to collaborate in the telecloning protocol. The re-
cycled channel through n− 1 round can be reused
in the next round, n and the corresponding aver-
age fidelity in the round n can be calculated as

Fi,λn(ρ′PAC1 ...CM
) =

Fi,λn(R{0},λn−1 · R{0},λn−2 · · · R{0},λ1 · (ρPAC1 ...CM )),
(10)

with the definition {0} = {0, 0, . . . , 0} where all
ci = 0 and λi is the unsharp parameter of Alice’s
measurement in the round i.

• Let us assume that in previous (n− 1) rounds, not
all Charus are refusing. Hence the bit string of the
round, k, {c}k with the information which Charus
have refused , the recycling map acts accordingly
and we get the required fidelity in the round n as

Fi,λn(ρ′PAC1 ...CK
) =

Fi,λn(R{c}n−1,λn−1 · R{c}n−2,λn−2 · · · R{c}1,λ1 · (ρPAC1 ...CM ))
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where K < M and total (M − K) receivers re-
ceive the state in all (n − 1) rounds and go out
of the protocol in further round. We will evaluate
all these situations in the succeeding section for a
given state.

III. REATTEMPTING VIA OPTIMAL TELECLONED
STATE

In this section, we will mainly concentrate on the se-
quential telecloning protocol which starts with a tripar-
tite entangled state shared between a single sender and
two receivers along with the auxiliary state. After the
unsharp measurement by Alice, we consider two situ-
ations – (1) when both the Charus do not perform the
unitary operations for a few rounds, (2) when one of
the Charus wishes to finish the protocol while the other
one refuses. We are also able to connect the fidelity ob-
tained in each round with the entanglement content of
the state in that round.

A. Sequential telecloning with a single sender and two
receivers

Let us illustrate this protocol for the simplest scenario
having a single sender and two receivers. From Eq. (4),
the optimal state in this case can be written as

|ψ〉PAC1C2
=

1√
2

(
|0〉P |φ0〉AC1C2

+ |1〉P |φ1〉AC1C2

)
,

(11)

where

|φ0〉AC1C2
=

√
2
3
|000〉AC1C2

+

√
1
6
|101〉AC1C2

+

√
1
6
|110〉AC1C2

, (12)

and

|φ1〉AC1C2
=

√
2
3
|111〉AC1C2

+

√
1
6
|001〉AC1C2

+

√
1
6
|010〉AC1C2

. (13)

The state between the sender, P, Charus, C1 and C2
and the auxillary system along with the state to be tele-
ported can be represented as

ρin = |φin〉X〈φin| ⊗ ρPAC1C2 , (14)
where ρPAC1C2 = |ψ〉〈ψ|PAC1C2 ,

and |φin〉X = α |0〉+ β |1〉 .

After the first round of unsharp measurement in Eq.
(9), the teleported state at any one of the receiver’s side,

say C1, reduces to

ρC1 = T1,λ(ρPAC1C2) = Tr{C2,X,P,A}(∑
i

µλ
i ρinµλ†

i ) (15)

=

( 1
2 + λ

3
(
|α|2 − |β|2

) 2
3 αβ∗λ

2
3 α∗βλ 1

2 + λ
3
(
|β|2 − |α|2

))
=

2
3

λ |φin〉 〈φin|+
3− 2λ

6
I2. (16)

The shared state is symmetric in both the receiver’s end,
and hence the second Charu, C2 also obtains the same
state. Therefore, after the first round, the expression of
required fidelity as a function of the sharpness param-
eter λ can be computed for a receiver, say, C1 as

f1 = F1,λ(ρC1) (17)

=
∫
〈φin| T1,λ(ρin) |φin〉 dφ

=
∫
〈φin| ρC1 |φin〉 dφ

=
1
2
+

λ

3
.

It clearly demonstrates that there exists a range of λ
above which any arbitrary state can be telecloned to
both the receivers with a fidelity more than the classical
one, i.e., 2/3 [54] while the maximal fidelity is in ac-
cordance with optimal cloning machine [19, 30, 31], i.e.,
f1 = 5

6 is achieved when the measurement is projective.

1. Unable to complete the protocol by both the receivers

Let us now consider the situation when both C1 and
C2 refuse to perform the corresponding unitary opera-
tions required to complete the protocol. Since unsharp
measurement is performed at P’s node, even after the
refusal, the shared resource state can possibly be used
for another round of telecloning protocol. As discussed
before, the optimal channel has to be recycled and to
be used in the second round. The average fidelity for
C1(C2) in this round can be calculated as

f2 = F1,λ2(R{0},λ1(ρPAC1C2)) (18)

= F1,λ2(∑
i

µλ1
i (

I

2
⊗ ρPAC1C2)µ

λ1†
i )

=
1
2
+

P(λ1)

3
λ2

µλ1
i =

√
Mλ1

i ⊗
M
i=1 (I).

The subscript, i in λi denotes the round in which mea-
surement is performed. In a similar fashion, if both the
Charus refuse to finish the process till round n− 1, the
average fidelity of C1(C2) in the round n is found to be

fn (19)

= F1,λn(R{0},λn−1 · R{0},λn−2 · · · R{0},λ1 · (ρPAC1C2))

=
1
2
+

P (λ1) P (λ2) .....P (λn−1)

3
λn,
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where P (λ) = 1
2

[
1− λ +

√
(1− λ) (1 + 3λ)

]
. Note

here that with the weakness parameter λi, the action
of the recycled map, R{0},λi depends on the predecided
fidelity in the previous rounds. It is due to the fact that
Alice performs the measurement having a prefixed λ
value according to this predecided fidelity, after which
Charus refuse to act. By fixing the fidelity, fi > 2/3,
we can calculate the range of unsharp parameter λi for
i = 1, . . . , n − 1. If one demands the high fidelity in
the previous round, the weakness parameters also ap-
proaches to unity, thereby reducing the quantum corre-
lations in the recycled channel.

Maximum attempting number. Let us now define the
maximal number of rounds that a channel can be used
such that the quantum advantage in the fidelity can be
obtained – we call it as the maximum attempting num-
ber (MAN). It is well known that the classically achiev-
able bound in teleportation is fcl = 2

3 [54] and hence
quantum enhancement is guaranteed when the fidelity
is above 2

3 . If we demand the lower bound of fidelity in
each round to be fi ≥ fl∀i, we will reach to a round, ncr
for which

0 < λi ≤ 1 ∀i ∈ {1, 2, ..., ncr − 1}, (20)
and λncr > 1.

Therefore, the round (ncr − 1) signifies the maximal at-
tempting number since λ > 1 is not a valid measure-
ment. E.g., let us fix fl = 0.675. To satisfy this, we
get a range of possible λ values in each round which
leads to a fidelity more than fl for a shared state in Eq.
(11), i.e., λ1 ≥ 0.525, λ2 ≥ 0.664158, λ3 ≥ 0.992511 but
λ4 > 1. In Table. I we report the relation between this
lower bound in fidelity fl and the MAN for the optimal
telecloned state (see Fig. 2).

Range of fl MAN
0.6667− 0.6754 3

0.6755− 0.7222 2

0.7223− 0.8333 1

TABLE I. Maximal attempting number, MAN, when the fi-
delity of each round is greater than or equal to fl .

2. Completion of protocol by a single receiver

Let us now assume an asymmetric situation, i.e., any
one of the receivers, say C1, performs the unitary opera-
tion communicated by the sender, thereby finishing the
telecloning task while C2 does not finish the protocol.
We will now address the question whether the accep-
tance by C1 can have any affect on the reuseability of
the channel with respect to Alice and C2. We find that
the answer is negative, i.e., reusability of the channel

 0

 1

 2

 3

2/3  0.7  0.75  0.8  0.85

M
A

N

f
l

FIG. 2. (Color online.) Maximal attempting number (ordi-
nate) vs. fidelity ( fl). When we demand that each round has
fidelity just above the classical one, the maximal attempting
number by Charus becomes three while it decreases with the
increase of the fidelity in each round. Both the axes are di-
mensionless.

between port and C2 does not depend on whether C1
has completed its telecloning protocol or not.

In this picture, C1 applies the unitary accordingly and
leaves the protocol while C2 does not perform the uni-
tary. Hence in the second round, the entire multipartite
protocol reduces to a standard teleportation with a sin-
gle sender-receiver pair. The fidelity achieved by C1 can
be calculated to be same as before, i.e.,

f C1
1 = F1,λ1(ρPAC1C2) (21)

=
1
2
+

λ1

3
.

Using the reduced scenario involving single sender
- single receiver teleportation channel, C2 can achieve
fidelity in the round n as

f C2
n (22)

= F2,λn(R{0},λn−1 · R{0},λn−2 · ·R{c}1,λ1(ρPAC1C2))

=
1
2
+

P (λ1) P (λ2) .....P (λn−1)

3
λn,

where {c}1 = {1, 0} carries information that C1 has fin-
ished while C2 has not. Comparing Eqs. (20) and (23),
we can confirm that the maximum attempting number
still remains three provided that each round has fidelity
just above the classical one. Moreover, we notice that
the achievable fidelity by C2 in each round does not de-
pend on C1’s refusal or acceptance on the first round.

B. Connecting entanglement with fidelity in a sequential
scenario

We will establish a connection between entanglement
content of the shared state used in each round and the
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 0.67  0.71  0.75  0.79  0.83
 0

 0.2

 0.4

 0.6

2/3

 0.8

 1

f 2
 (

λ
2
 =

 1
)

f1

δLN
LNP: C1(C2)

FIG. 3. (Color online.) Maximum achievable fidelity, f2 (or-
dinate) with λ2 = 1, i.e., with the projective measurement in
the second round against f1 (abscissa) in the first round of
the protocol. Entanglement in the bipartition LNP:C1(C2) and
monogamy score, δLN (ordinate) defined in Eq. (C2) obtained
in the second round, i.e., of the first recycled state shared be-
tween port, auxiliary system and two receivers with respect
to f1 (abscissa). Here we assume that in the first round, un-
sharp measurement is performed and both the Charus have
not performed the unitary operations. All the axes are dimen-
sionless.

fidelity obtained in that round. To quantify bipartite
entanglement, we choose logarithmic negativity (LN) in
Eq. (B2) for the reduced state between the sender (port)
and one of the receivers. On the other hand, we also
relate the shareability of entanglement in each round
which we characterize via monogamy of entanglement
(see Appendix C).

Let us first calculate the entanglement after the un-
sharp measurement is performed by the sender in the
first round and both C1 as well as C2 decline to perform
the unitary operations. In this situation, the fidelity, f1
is given in Eq. (18). For a fixed fidelity, the correspond-
ing entanglement of the first recycled state between the
port and one of the receivers, say C1 can be computed,
LNP:C1 after tracing out the auxiliary qubit, and C2. It
takes the form as

LNP:C1 =

log2(
1
6
|(0.5 + 3 f1 −

√
2.5− 3 f1

√
9 f1 − 3.5− 2

√
2

×
√
(2.5− 3 f1)(3 f1 − 0.5

√
2.5− 3 f1

√
9 f1 − 3.5))|+ 1).

(23)

We find that by demanding high fidelity in the first
round, the entanglement in the recycled state decreases
with the increase of f1 and vanishes for a certain f1
value, i.e., f1 = 0.7697 (as shown in Fig. 3). If one
uses this recycled state to perform another telecloning
scheme with the projective measurement at the port’s
end, the fidelity also decreases and goes below the clas-
sical limit at the same point where entanglement van-
ishes as expected.

Let us now analyze the monogamy score of LN, δLN
after the first round by taking port, P as the nodal ob-
server. It specifies the distribution of entanglement be-
tween different sites with respect to the port. We ob-
serve that δLN actually reaches maximum at the same
point where LNP:C1 vanishes as depicted in Fig. 3.

We now examine the situation after the second round.
In this case, in both first and second rounds, unsharp
measurements are performed and Charus do not per-
form the unitary operations. If we now study the be-
havior of entanglement of the recycled state between
the port and C1 or C2 in Eq. (B3), we find that it is non-
vanishing only when we demand fidelities, f1 and f2
to be just above the classical bound in previous rounds,
thereby giving fidelity in the third round beyond 2/3
(comparing Figs. 4 (a) and (b)).

IV. NO-GO THEOREM FOR RECYCLING OF
TELECLONING WITH MULTIPLE RECEIVERS

Let us now move to the telecloning situation which
involves a single sender and arbitrary number of re-
ceivers, say M. When the projective measurement is
allowed at port’s end, the fidelity of the telecloned state
gradually decreases with the increase of the number of
receivers, M and for M → ∞, the optimal average fi-
delity goes to 2/3, the classical limit. This result sug-
gests that the opportunity to recycle the shared entan-
gled state should also decrease with the increase of M
in case of unsharp measurement at the sender’s side.
The question that we address here – what is the max-
imum number of receivers allowed, i.e., the maximum
M upto which the recycling can happen?

When M receivers refuse to finish the protocol in all
the rounds till n− 1, the average fidelity at the round n
with M number of receivers can be computed as

fn =
1
2
+

[
M + 2

6M

]
P (λ1) P (λ2) .....P (λn−1) λn. (24)

Let us now elaborate the picture when there are three
receivers along with a sender. The teleported state at
one of the receiver’s end, say C1 after the first round
with M = 3 looks like

ρC1 =

( 1
2 −

5
18 λ + 5

9 λ|α|2 5λ
9 αβ∗

5λ
9 α∗β 1

2 −
5

18 λ + 5
9 λ|β|2

)
=

5
9

λ |φin〉 〈φin|+
(

1
2
− 5

9
λ

)
I2, (25)

and fn at the round n can be determined as

fn =
1
2
+

5
18

P (λ1) P (λ2) .....P (λn−1) λn. (26)

If we now assume that in each round, the lower bound
of the fidelity is taken to be 0.67, i.e., just above the clas-
sical bound, the maximum attempting number in case
of three receivers reduces to two provided in the first
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(b)

LNP: C1(C2)

 0.67  0.68  0.69  0.7  0.71

f1

 0.67

 0.68

 0.69

 0.7

 0.71

f2

 0

 0.02

 0.04

 0.06

 0.08

(b)(a)

f3 (λ3 = 1)

 0.67  0.68  0.69  0.7  0.71

f1

 0.67

 0.68

 0.69

 0.7

 0.71

f2

 0.56

 0.6

 0.64

 0.68

 0.72

FIG. 4. (Color online.) Features in the second recycled state. (a) Map plot of the fidelity, f3 with λ3 = 1 in the plane of f1 − f2
(horizontal-vertical axis). (b) The behavior of LNP:C1(C2) of the second recycled shared state with f1 (abscissa) and f2 (ordinate)
which can be used to perform the teleportation in the third round. Both the axes are dimensionless.

round, all the receivers do not perform their unitary
operations.

Theorem 1. No recycling is possible when the number of
receivers exceeds three.

Proof. Analyzing Eq. (24), we realize that with the
increase in the number of the receivers, the opportu-
nity for recycling gradually decreases. And when the
number of receiver becomes four or more, i.e., M ≥ 4,
leads to a condition on sharpness parameter which is
unphysical in the second round. �

V. CONSEQUENCE OF DISENTANGLING OPERATOR
ON ATTEMPTING TELECLONING

Instead of using the optimal state for telecloning, we
start the protocol by taking non-optimal state for tele-
cloning as the shared multipartite resource state. Let us
first introduce a disentanglement operator D̂. The effect
of this operator D̂i on the qubit i in the computational
basis is given by

D̂i |0〉i = |0〉i , D̂i |1〉i = ηi |1〉i .

Notice that application of this operator on maximally
entangled state, say on |B3〉 = 1/

√
2(|01〉 + |10〉) pro-

duces a non-maximally entangled state of the form,
D̂1 |B3〉 = 1/

√
1 + |η1|2(|01〉+ η1 |10〉).

We now apply disentangling operator on each qubit
of the two-receiver optimal telecloning state given in

Eq. (11) which modifies the state to [33]

|ψ(η)〉PAC1C2
= B

(
|0000〉+

ηPηC1

2
|1010〉+

ηAηC1

2
|0110〉

+
ηPηC2

2
|1001〉+

ηAηC2

2
|0101〉

+ ηPηAηC1 ηC2 |1111〉
)

, (27)

where

B =

(
1 +
|ηPηC1 |

2

4
+
|ηAηC1 |

2

4
+
|ηPηC2 |2

4

+
|ηAηC2 |2

4
+ |ηPηAηC1 ηC2 |

2
)− 1

2

. (28)

Here the set η = {ηP, ηA, ηC1 , ηC2} contains all the dis-
entangling parameters of the port, auxiliary qubit, C1,
and C2. Note that ηjs can be taken to be real without
loss of generality [55], each of them varies from 0 to 1
and the unit values of all of them represent the optimal
state.

We now study the effect of non-optimal shared state
on the maximal attempting number by considering
different scenarios which emerge due to the different
choices of ηjs.

• Case 1. Let us take the situation, when ηP = η
while ηC1 = ηC2 = ηA = 1, i.e., when only the
port qubit is affected by the disentangling op-
erator. By this action, one expects that the en-
tanglement of the shared state in the bipartition
P : AC1C2 gets reduced, thereby decreasing the
performance. The fidelity of the telecloned state
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in the first round is given by

f1 =
1
2
+

1 + 4η + η2

9 (1 + η2)
λ

=

(
1
2
+

λ

9

)
+

4C (η)
18

λ, (29)

with C(η) = 2η

1+η2 is the concurrence [56] of |B1〉
after applying the disentangling operator on the
first party.

Following the same prescription as discussed in
Sec. III, we calculate the fidelity for the round
n provided all the Charus have not finished the
protocol in previous (n− 1) rounds and it is given
by

fn =

(
1
2
+

P (λ1) P (λ2) ....P (λn−1)

9
λn

)
+

4C (η)
18

P (λ1) P (λ2) ....P (λn−1) λn. (30)

In Table. II, we determine the range of η when we
choose fl = 0.67 > 2/3, by which the maximum
attempting number can be achieved. Interestingly,
we find that even in presence of the disentangling
operation which reduces the entanglement con-
tent of the shared state, there exists a range of
ηP by which the maximal attempting number can
still remain three as in the optimal shared state,
reported in Sec. III.

Range of ηP MAN
1− 0.7327 3

0.7326− 0.3675 2
0.3674− 0.1349 1

TABLE II. Range of ηP with MAN, when fl = 0.67.

• Case 2. Let us now take ηC1 = ηC2 = ηC and the
rest of ηjs can be taken as unity, i.e., ηP = ηA = 1.
This scenario is in some sense complementary of
Case 1 since the disentangling operation in this
case acts on the receiver’s end. It is interesting to
find out which disentangling operations (port or
the receivers) have more adverse effects on MAN.
In the first round, the optimal fidelity reads as

f1 =
1
2
+

1
6

(
1 + 2ηC + 2η3

C + η4
C

1 + η2
C + η4

C

)
λ, (31)

while in the round n, it becomes

fn =
1
2
+

1
6

(
1 + 2ηC + 2η3

C + η4
C

1 + η2
C + η4

C

)
× P (λ1) P (λ2) . . . P (λn−1) λn. (32)

 0

 1

 2

 3

 0  0.2  0.4  0.6  0.8  1

M
A

N

η
i

FIG. 5. MAN vs. disentanglement parameter. The dashed
red line represents the situation with ηi = ηC1(C2) = ηC, while
the orange solid line indicates the picture with ηi = ηP. In
both the the cases, the maximal attempting number can reach
three as obtained in the optimal telecloning case. Both the
axes are dimensionless.

We compute the ranges of ηC1 = ηC2 = ηC (see Ta-
ble. III) for which the maximal attempting num-
ber remains constant to three by choosing fl =
0.67. Comparing Tables II and III, we find that dis-
entangling operation on port has much stronger
consequence on the recycling of telecloning pro-
cess compared to the disentangling operation on
the receivers. In Fig. 5, we illustrate the maximal
attempting number for the entire range of ηC and
ηP when λ is fixed to = 0.67. In both the cases,
the maximum rounds in which the protocol can
be attempted with fidelity more than the classical
one goes to three.

Range of ηC MAN
1− 0.7290 3

0.7289− 0.3115 2
0.3114− 0.0101 1

TABLE III. By choosing fl just above the classical fidelity, the
range of ηC1 = ηC2 = ηC is listed against MAN.

In this non-optimal scenario, more asymmetry can
also be introduced by applying different disentangling
operations on different receivers, or in both the port and
the receiver’s ends and so on. For example, if ηC1 6= ηC2
and ηP = ηA = 1, the fidelity after step n can be written
as

fn =
1
2
+

1
3

[
1 + 2ηC1 + 2ηC1 η2

C2
+ η2

C1
η2

C2

2 + η2
C2

+ 2η2
C1

+ η2
C1

η2
C2

]
× P (λ1) P (λ2) ....P (λn−1) λn, (33)



9

while the same reduces to

fn =
1
2
+

[
1 + ηCηP

(
2 + 2η2

C + η3
Cηp

)
6 + 3η2

C
(
2η2

Cη2
P + η2

P + 1
) ]

× P (λ1) P (λ2) ....P (λn−1) λn (34)

when ηC1 = ηC2 = ηC, ηP 6= 1 and ηA = 1. By choos-
ing the disentangling parameters suitably, it is always
possible to perform the telecloning protocol with quan-
tum advantage for thrice provided all the receivers in
previous rounds decline to complete the scheme.

VI. DISCUSSION

Quantum teleportation protocol which illustrates an
infinite resource reduction using quantum mechanical
systems is one of the main pillars in the field of commu-
nication. In particular, to send an arbitrary qubit from
a sender to a receiver, quantum protocol requires only
two bits of classical communication provided an entan-
gled resource state is shared between them, instead of
an infinite amount of classical communication. After
the discovery of the theoretical protocol, it has been ex-
perimentally verified in several physical systems like
photons, continuous variable systems, ion traps etc and
has also been extended in several directions. One of the
interesting avenues in the field of quantum communi-
cation is to build a quantum network involving multi-
ple senders and multiple receivers. In this direction, it
was shown that instead of sharing multiple maximally
entangled states, genuine multipartite entangled states
can have some beneficial role in multipartite quantum
communication protocols. For example, Greenberger-
Horne-Zeilinger (GHZ) state [57] or W state [58] are
found to be useful for both multipartite version of quan-
tum teleportation and dense coding [21, 22, 59].

A prominent example of teleportation in a multipar-
tite domain include the telecloning protocol where a
single sender wants to send an arbitrary qubit to mul-
tiple receivers, and hence this protocol is restricted by
the bounds obtained via the approximate cloning ma-
chine. Interestingly, one can find that instead of shar-
ing multipartite entangled states like the GHZ or the W
states, the protocol is successful when an optimal state
obtained from the cloning machine is shared.

In summary, we investigated the telecloning scheme
in the sequential scenario where the resource state can
be used in different instances. Such sequential scenar-
ios are applied in different directions, although they
are mostly restricted to the identification of entangled
states. In this work, we go beyond the detection of
entanglement and illustrate the usefulness of unsharp
measurement in the multipartite quantum communica-
tion protocol. Specifically, unlike projective measure-
ment, the measurement at the sender’s side in tele-
cloning is made unsharp so that the quantum corre-
lations between the sender and the receivers do not get

destroyed after the measurement and hence the shared
state remains useful for some quantum information
tasks even after a few rounds of the protocol.

Suppose after the first round, receivers are unable
to perform the unitary operations for some reasons, it
can be shown that the resulting entangled state due to
the unsharp measurement can be reused for another
round of the protocol for some suitable range of un-
sharp parameters. We proved that when the shared
state for telecloning is the optimal as well as the nonop-
timal multipartite states obtained after applying dis-
entangling operations at the sender’s or the receivers’
sides or both, the maximum round in which the proto-
col can be performed with quantum advantage is three.
We found that the fidelity obtained in each round is
connected with the entanglement content of the shared
state between the sender and one of the receivers as
well as the monogamy score between the sender and
the receivers. We also demonstrate that the reattempt-
ing scenario is meaningful in the telecloning scheme
only when it involves a single sender and the maximum
three receivers.
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Appendix A: Optimal channel evolution

The density matrix corresponds to the optimal state
in Eq. (11) is given by

ρPAC = |ψ〉PAC1C2
〈ψ| . (A1)

After performing POVM measurements n times, the re-
cycled state at round n can be written as

ρn
PAC1C2

= pn |ψ〉PAC 〈ψ|+
(

1− pn

6

)[
I4

2
⊗ |B3〉 〈B3|

+I2 ⊗
(
|000〉 〈000|+ |111〉 〈111|

)
+

I2

2
⊗
(
|0〉 〈1| ⊗ I2 ⊗ |0〉 〈1|+ |1〉 〈0| ⊗ I2 ⊗ |1〉 〈0|

+ |0〉 〈1| ⊗ |0〉 〈1| ⊗ I2 + |1〉 〈0| ⊗ |1〉 〈0| ⊗ I2

)]
(A2)

where p = P (λ1) P (λ2) .....P (λn) and n = {1, 2}.

https://github.com/titaschanda/QIClib
https://titaschanda.github.io/QIClib
https://titaschanda.github.io/QIClib
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Appendix B: Logarithmic Negativity for recycled channel

Let us first give the definition of logarithmic negativ-
ity to quantify entanglement in a bipartite state, ρAB.
Based on it, we also compute the monogamy score of
entanglement whose definition will also be given be-
low. For any operator, the trace norm can be calculated
as ‖A‖ =

√
tr(A† A) which is basically the sum of the

singular values. We can define negativity, a non-convex
entanglement monotone [49, 60] as

N (ρA:B) =

∥∥ρΓA
∥∥− 1
2

(B1)

where ρΓA is the partial transpose of ρA:B with respect
to party A [61, 62]. Using this, logarithmic negativity is
defined as

LN(ρA:B) = log
∥∥∥ρΓA

∥∥∥ = log(2N + 1), (B2)

which reduces to the modulus of a negative eigenvalue
in a two-qubit case.

To relate entanglement in the multipartite channel
with its reusability and the maximum achievable fi-
delity in each round, we calculate LN(ρA:B) between
Alice (P) and one of the receivers C1(C2). For the first
recycled channel, we compute logarithmic negativity
which is given in Eq. (23) while the same for the second
recycled state can be found to be

LNP:C1(C2)
= log2

[
1

12

∣∣∣∣3.5 + 3 f1 − X1 +

(
3 f1 − 2.5− X1

)(
X2 − X3

)
− 4

√
(3 f1 − 2.5)(3 f1 − 0.5 + X1)

(
X3 − 1

)(
1 + X2 + X3

)∣∣∣∣+ 1
]

. (B3)

The behavior of the above expression is plotted in Fig.
4 (b).

Appendix C: Monogamy score

In contrast to classical correlations, quantum corre-
lations cannot be shared arbitrarily among parties in
a multipartite state. Specifically, in a tripartite state,
ρABC, if A and B are highly entangled, monogamy of
entanglement says that the entanglement content be-
tween A and C cannot be large [50–52]. More precisely,
the monogamy inequality for a bipartite quantum cor-
relation measure, Q, for a N-party state, ρA1 A2 ...AN can
be written as

∑
i
Q(ρA1 :Ai ) ≤ Q(ρA:A2 ...AN ). (C1)

Based on this inequality, one can define a shareability
measure of entanglement, known as monogamy score

of entanglement as

δQ = Q(ρA:A2 ...AN )−∑
i
Q(ρA1 :Ai ). (C2)

In the paper, we choose LN as a measure of entangle-
ment which we denote it as δLN .

In the telecloning protocol involving a single sender,
two receivers and an auxiliary qubit, the summation in
δLN contains three terms. Among them, LN(ρP:A) = 0
while LNPC1(C2)

are calculated in Eqs. (23) and (B3).
And the first term after the second and third round read
respectively as

LNP:AC1C2 =

log2(
1
4
|(−0.5 + 3 f1 −

√
2.5− 3 f1

√
9 f1 − 3.5− 2

√
2

×
√
(2.5− 3 f1)(3 f1 − 0.5

√
2.5− 3 f1

√
9 f1 − 3.5))|

+ 1), (C3)

and

LNP:AC1C2 = log2

[
1
8

∣∣∣∣1.5 + 3 f1 − X1 +

(
3 f1 − 2.5− X1

)(
X2 − X3

)
− 4

√
(3 f1 − 2.5)(3 f1 − 0.5 + X1)

(
X3 − 1

)(
1 + X2 + X3

)∣∣∣∣+ 1
]

, (C4)
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where

X1 =
√

2.5− 3 f1
√

9 f1 − 3.5, (C5)

X2 =

√
1− 3 f2 − 1.5

P ( f1)

√
1 +

9 f2 − 4.5
P ( f1)

, (C6)

X3 =
3 f2 − 1.5

P ( f1)
, (C7)

P ( f1) =
1
4

(
5− 6 f1 +

√
(5− 6 f1)(18 f1 − 7)

)
. (C8)
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