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Multicriterion decision making in groundwater planning

Shishir Gaur, K. Srinivasa Raju, D. Nagesh Kumar and Mayank Bajpai
ABSTRACT
The groundwater planning problems are often multiobjective. Due to conflicting objectives and

non-linearity of the variables involved, several feasible solutions may have to be evolved rather than

single optimal solution. In this study, the simulation model built on an Analytic Element Method (AEM)

and the optimization model built on a Non-dominated Sorting Genetic Algorithm (NSGA-II) were

coupled and applied to study a part of the Dore river catchment, France. The maximization of

discharge, the minimization of pumping cost and the minimization of piping cost are the three

objectives considered. 2105 non-dominated groundwater planning strategies were generated.

K-Means cluster analysis was employed to classify the strategies, and clustering was performed for 3

to 25 clusters. A cluster validation technique, namely Davies–Bouldin (DB) index, was employed to find

the optimal number of clusters of groundwater strategies which were found to be 20. Multicriterion

Decision-Making (MCDM) techniques, namely VIKOR and TOPSIS, were developed to rank the 20

representative strategies. Both these decision-making techniques preferred representative strategy

A5 (piping cost, pumping cost and discharge respectively of 880,000 Euro, 679,000 Euro and

1,263.1 m3/s). The sensitivity analysis of parameter v in VIKOR suggested that there were changes

in ranking pattern for various values of v. However, the first position remained unchanged.
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HIGHLIGHTS

• The simulation model built on an Analytic Element Method (AEM) and the optimization model

built on a Non-dominated Sorting Genetic Algorithm (NSGA-II) were linked and applied for

groundwater planning.

• The Davies–Bouldin (DB) index was employed to find the optimal number of clusters of

groundwater strategies.

• Multicriterion Decision-Making (MCDM) techniques, VIKOR and TOPSIS were implemented to

rank the 20 representative strategies.
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INTRODUCTION
Growing water demand necessitates the development of

cost-effective wells and transport system. This involves the

development of groundwater pumping and transport
systems. A major part of the total energy consumption, in

a water distribution network, is for extracting the ground-

water. This consumption becomes more dominant due to

unmanaged extraction and corresponding diminishing of

groundwater resources (Ahlfeld & Laverty ). Therefore,

optimal wells and transport system are expected to

achieve sustainable economic benefits and utilization of
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groundwater resources, avoiding reconstruction of pumping

wells in view of declining groundwater resources in a multi-

objective framework. The use of a simulation–optimization

model was found suitable for different groundwater manage-

ment problems (Onwunalu & Durlofsky ; Gaur et al.

a, b; Ayvaz & Elci ).

Singh et al. () presented an Interactive Multiobjec-

tive Genetic Algorithm for a hypothetical aquifer. It was

concluded that expert interaction improved the prediction

capability of the calibrated model. Raju et al. () applied

Multiobjective Differential Evolution, K-Means Cluster

Analysis, Davies–Bouldin and Dunn’s indices for an irriga-

tion planning problem in India. Tabari & Soltani ()

compared the sequential genetic algorithm and the Non-

dominated Sorting Genetic Algorithm (NSGA-II) to the

Karaj-Iran aquifer and found that NSGA-II performed

better. Zekri et al. () applied NSGA-II, MODFLOW

and Compromise Programming to a coastal aquifer, in

Oman. Studies revealed that the evolved annual ground-

water abstraction resulted in considerable economic

benefits. Farhadi et al. () employed Nash modelling for

the Daryan Aquifer, Fars Province, Iran. Fulfilling irrigation

water demand, a reduction in the groundwater drawdown

and an increase in equity of water allocation were the con-

sidered objectives. A MODFLOW simulation model, an

Artificial Neural Network and an NSGA-II-based optimiz-

ation model were employed. Sreekanth et al. ()

presented a stochastic multiobjective formulation to assess

the maximum volume of water which can be injected into

a hypothetical confined aquifer. Well locations and injection

rates were taken as decision variables. Reliability analysis

was performed using Monte Carlo Analysis. Results con-

cluded that stochastic-based multiobjective optimization

was very efficient in identifying robust groundwater manage-

ment strategies.

Rezaei et al. () applied fuzzy Multiobjective Particle

Swarm Optimization (f-MOPSO) to improve water resource

planning in the plains of Najafabad, Iran, and two other

MOPSO algorithms and found f-MOPSO to be superior.

Alizadeh et al. () applied a methodology based on

NSGA-II, MODFLOW, Social choice rules, M5P model

tree and fallback bargaining procedures to the Darian aqui-

fer, Iran, to determine optimal groundwater policies. The

evolved model resulted in a mean increase in groundwater
om http://iwaponline.com/jh/article-pdf/23/3/627/892755/jh0230627.pdf
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level throughout the aquifer. Makaremi et al. () coupled

NSGA-II with EPANET to pipe network distribution.

Mortazavi-Naeini et al. () proposed efficient multi-

objective ant colony optimization-I (EMOACO-I) and

compared with NSGA-II, SMPSO and εMOEA for the Can-

berra system and the Sydney system, Australia. None of the

optimization methods was found superior. Sadeghi-Tabas

et al. () employed the Cuckoo optimization algorithm

(COA)-AMALGAM and the MODFLOW for an arid

groundwater system in Iran. Three objectives of minimiz-

ation in nature were considered to generate Pareto

solutions, and it was concluded that the model evolved in

their study provided sustainable groundwater management

alternative. Cisty et al. () proposed NSGA-II for a two-

phase approach to the case study of the Balerma irrigation

network. Bozorg-Haddad et al. () compared the

multiobjective developed firefly algorithm (MODFA), the

multiobjective firefly algorithm (MOFA) and the multiobjec-

tive genetic algorithm (MOGA) with Karoun basin, Iran. It

was concluded that the MODFA performed better than

the other two. Mirzaie-Nodoushan et al. () applied

NSGA-II for the cost-effective design of groundwater moni-

toring networks for the Eshtehard aquifer, in central Iran.

Johns et al. () applied a multiobjective adaptive locally

constrained genetic algorithm (MOALCO-GA), an NSGA-

II and a multiobjective pipe smoothing genetic algorithm

(MOPS-GA) for water distribution network systems. They

used a hyper volume indicator for the comparison of algor-

ithms. The other two algorithms were found to perform

relatively well compared with NSGA-II.

The limited utilization of Multicriterion Decision-

Making (MCDM) was noticed in groundwater management.

Hajkowicz & Collins (), Geng & Wardlaw () and

Rousta & Araghinejad () made extensive studies on the

role of MCDM in water resources. Duckstein et al. ()

discussed the prioritization of groundwater management

strategies. Rahman et al. () applied spatial multicriteria

decision analysis (SMCDA) to find the most suitable sites

for applying a Managed Aquifer Recharge technique. Six

locations were identified and ranked on the basis of different

decision criteria. The study recommended a combined use

of mathematical modelling and SMCDA. An et al. ()

proposed MCDM for the sustainability assessment of differ-

ent remediation techniques of groundwater resources. Eight
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criteria were used and alternative technologies were

evaluated. ELimination Et Choix Traduisant la REalité

(ELECTRE) and Analytic Hierarchy Process (AHP) were

used to rank the alternatives. Bajić et al. () applied

Fuzzy AHP to choose the optimal groundwater manage-

ment system to open-cast mine and found the results

satisfactory. Wang et al. () applied weighted product

and simple weighted addition methods, Technique for

Order Preference by Similarity to an Ideal Solution

(TOPSIS) and Cooperative Game Theory for selecting

appropriate remediation technology for the Chengli oil field.

Roozbahani et al. () developed a groundwater level

prediction mechanism using Bayesian Networks and

MCDM techniques, Simple Additive Weighting (SAW),

PROMETHEE-II and TOPSIS. They applied these method-

ologies to the Birjand aquifer in Iran. Borda method was

used for aggregating the final ranking of the scenarios and

found the methodologies satisfactory. Studied research

works have used various multiobjective optimization algor-

ithms for the generation of Pareto front and ranking of

groundwater strategies. However, no study was reported

on filtering or classifying a large number of generated non-

dominated sets to a manageable size if generated Pareto

front is too large to handle the ranking which is one of the

focuses and novelty of the present study. Clustering and

validation indices that minimize duplication of data and

facilitate optimum clusters play a major role in this regard.

Therefore, the present study is focused on the application

of clustering to find the representative solutions from gener-

ated Pareto front that can be used in multicriterion analysis.

Keeping these developments, the present study focuses on

the following objectives:

• To explore NSGA-II as the multiobjective optimization

algorithm for generating non-dominated groundwater

strategies to a part of the Dore river catchment, France.

• To develop a methodology for clustering and ranking of

non-dominated strategies that can be used as the basis

for groundwater policy studies.

Objectives are proposed to be achieved by employing

the following four-stage procedure:

1. NSGA-II-based multiobjective optimization to generate

non-dominated groundwater strategies based on
://iwaponline.com/jh/article-pdf/23/3/627/892755/jh0230627.pdf
objective functions: maximize discharge, minimize cost

of piping and minimize cost of pumping.

2. K-Means based cluster analysis for grouping the number

of strategies generated in stage 1 into clusters.

3. The DB cluster validation index for finding the optimum

cluster size.

4. Application of two MCDM methods, TOPSIS and

VIKOR, to select the best groundwater strategy.

To our knowledge, no earlier study is reported in

groundwater planning incorporating approaches similar to

the ones suggested in the present work.

The next section presents the study area and model

development; Section ‘Methodologies employed’ describes

the employed methodologies. Section ‘Stage 1: model appli-

cation’ presents results related to stage 1 (multiobjective

modelling), Section ‘Stages 2 and 3: cluster analysis and vali-

dation’ is related to stages 2 and 3 (clustering aspects) and

Section ‘Stage 4: application of VIKOR and TOPSIS’ is

related to stage 4 (ranking aspects). The last section presents

the conclusions of the study.
STUDY AREA AND MODEL DEVELOPMENT

The study area consists of part of the Dore river catchment,

France, and is about 30 km2 in extent (Figure 1). The

annual average rainfall is 780 mm. Different hydrological

features along with other relevant information are taken

from the maps developed by BRGM (National Service for

Geological Survey). The aquifer is unconfined and most

of the catchment consists of fluvial quaternary sediments

underlain by clay and marls. The impervious sub-stratum

is a mixture of sand and clay. The quaternary alluvium

comprises of sand, gravel and pebbles with silt. Twelve

piezometric measurements available were considered for

the model calibration and validation. Eleven gauging sites

are chosen to measure river stage data for the development

of a conceptual model.

The proposed groundwater model is intended to estab-

lish new wells and transport system by locating the

optimal position of wells and corresponding discharge

rates. The wells were characterized by well elements and

river sites were labelled by 39 head line-sink elements. The



Figure 1 | Map of part of the Dore river catchment (Modified and adapted from Gaur et al.

(2011a)).
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conceptual model is based on the Analytic Element Method

(AEM). The aquifer is considered to be homogenous as it is

located between the two rivers with alluvium property. The

AEM is particularly developed to deal with simulation–

optimization problems and it was found efficient (Gaur

et al. a, b). The AEM has some advantages such as

fast convergence as the head can be computed directly at

the desired location without getting the head for a whole

grid system. Here also, the authors are trying to utilize the

benefits in the application of simulation–optimization tech-

niques in groundwater management problem.

The calibration of AEM was performed using 12 avail-

able piezometric measurements (Gaur et al. a, b),

the values of hydraulic conductivity are changed methodi-

cally and the model output has been compared with the

observed values at a 95% confidence level. The constant

hydraulic conductivity of 0.02 m3/day is considered due to
om http://iwaponline.com/jh/article-pdf/23/3/627/892755/jh0230627.pdf
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the homogeneous nature of the aquifer. A detailed descrip-

tion of AEM is available in Strack (). The optimization

model calls the simulation model to generate the state vari-

ables which excessively increases the computational burden.

Therefore, the AEM is coupled with Particle Swarm Optim-

ization (PSO) so that potentials from all the known elements

are stored in a single matrix. So for each run, this model

does not calculate the value for the whole equation again

and again. This coupling of the models reduces the conver-

gence time (Gaur et al. a, b). The development of

wells and transport systems is multiobjective, and the

description of objectives is as follows:

The maximization of discharge of water that can be

extracted from the aquifer through the given number of

wells is:

f ¼ Max
XNw

i¼1

Qi � α1P(h)� α2P(Q)

( )
(1)

where Q, h, P(Q) and P(h), Nw respectively are discharge

(m3/s), head (m), penalty terms and the number of wells.

α1 and α2 are weighing factors.

The total cost of pumping from each well is to be mini-

mized and is expressed as follows (Gaur et al. a, b):

Cpum ¼ Min

α1P(h)þ α2P(Q)þ
XNw

i¼1

kp
γQiHi

η
þ 8:76REγQiHirT

η

� �( )
(2)

where H is the head from the water table in the aquifer to

the water level in the storage tank. The height of the storage

tank is 5 m; η is the combined efficiency of pump and prime

mover; RE is the cost of electricity per kilowatt-hour (euros/

kwh); r is the rate of interest (euros/euros/year); T is the life

of project (year); kP is the cost of pumping per kwh (euros);

when T→∞, rT¼ 1/r. γ is the specific weight of water

(N/m3).

The total cost of a new pipe system is to be minimized

and is expressed as follows:

Cpip ¼ Min
XNw

i¼1

(A2Li)þ α1P(h)þ α2P(Q)

( )
(3)
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where A2 is the cost of piping includes the earthwork and

other miscellaneous items and L is the total length of

pipes. Decision variables are co-ordinates and discharge of

wells.

The constraints incorporated into the model are as fol-

lows:

Qi,min <Qi <Qi,max (4)

XNw

i¼1

Qi >Qtotal (5)

hi > hi,min (6)

(xi, yt) ≠ Ai (7)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi � xj)

2 þ (yi � yj)
2

q
� Sw, min (8)

P(h) ¼ hi,min if hi < hi,min

0 if hi � hi, min

�
(9)

P(Q) ¼ Qtot �
P

Qi if
P

Qi <Qtot

0 if
P

Qi � Qtot

�
(10)

where hi,min is the minimum allowable head of groundwater

at ith well; Qi,min and Qi,max are minimum and maximum

discharge limits for ith well; Sw,min is the minimum distance

between any pair of wells; xj and yj are co-ordinates of the

well, i.e. i≠ j. More details of modelling are available in

Gaur et al. (a, b). Limits of the drawdown were

defined as 258 m, whereas minimum and maximum dis-

charge limits were 120 to 280 m3/h. Retention time was

considered 20 h.
Figure 2 | Working structure of NSGA-II.
METHODOLOGIES EMPLOYED

Even though a number of advanced multiobjective optimiz-

ation techniques were developed and are available, we

propose to explore NSGA-II as it is highly efficient in

preserving elitism, crowding-distance mechanism, fast non-

dominated sorting mechanism, robustness and convergence

in less computational time (Deb ; Deb et al. ).

NSGA-II offers better flexibility and this advantage make

the simulation–optimization process faster and more effi-

cient (Chaturvedi et al. ). No algorithm was found to
://iwaponline.com/jh/article-pdf/23/3/627/892755/jh0230627.pdf
be best globally for all situations and locations because the

superiority of one algorithm over another is based on the

case study and relevant parameters. Parameters in NSGA-

II are the size of the population, the number of generations,

crossover fraction, creation function, selection function,

mutation rates, Pareto front population fraction and func-

tion tolerance. The working structure of NSGA-II is

presented in Figure 2 which mainly includes initialization

of variables, evaluation of objective functions, operations

of cross over, mutation and related operators (Johns et al.

).

K-Means is used for the grouping of groundwater plan-

ning strategies generated with NSGA-II (Raju & Nagesh

Kumar ). K-Means is an iterative process-based

algorithm with an objective function related to the

minimization of error (Raju & Nagesh Kumar ). The

working structure of the K-Means algorithm is presented

in Figure 3 which is self-explanatory. Cluster validation indi-

ces are found to be advantageous for finding optimal

clusters as they will be able to assess the separation between

clusters in an efficient way (Wang et al. ). The DB index

is one such validation index (Davies & Bouldin )

employed in the present study for finding the optimal

number of clusters of groundwater strategies. The DB

index works mainly based on intercluster error and

intracluster error and a less index value is preferred.



Figure 3 | Working structure of K-Means cluster analysis with cluster validation mech-

anism (modified and adapted from Raju & Nagesh Kumar (2018)).

Table 2 | Methodology of TOPSIS

Step Description
Mathematical expression/
Remark

1 Ideal and anti- ideal values of
criterion j

f�j , f
��
j

2 Separation measure of each
strategy a from the ideal

Dþ
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ
j¼1

wj(fj(a)� f�j )
2

s

3 Separation measure of each
strategy a from the anti-
ideal

D�
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ
j¼1

wj(fj(a)� f��j )2
s

4 Closeness index of each
strategy a

Ca ¼ D�
a

(D�
a þDþ

a )

5 Ranking basis Higher Ca value is
preferred

Table 1 | Methodology of VIKOR

Step Description Mathematical expression/Remark

1 Ideal and anti-
ideal values
of criterion j

f�j , f
��
j , j ¼ 1, 2, . . . J

2 Si and Ri, i¼ 1,
2,…, N

Si ¼
PJ
j¼1

wj( f�j � fj(a))

Ri ¼ Max [Si];

3 Value of Qi Qi ¼ ν
(Si � S��)
(S� � S��)

þ (1� ν)
(Ri � R��)
(R� � R��)

S�� ¼ Min(Si, i ¼ 1, 2, . . . , N)

S� ¼ Max(Si, i ¼ 1, 2, . . . , N);
S� ¼ Max(Si, i ¼ 1, 2, . . . , N);
R�� ¼ Min(Ri, i ¼ 1, 2, . . . , N);
R� ¼ Max(Ri, i ¼ 1, 2, . . . , N);
ν = weight for the strategy of the
maximum group utility; (1� ν) =
weight of the individual regret

4 Ranking basis Minimum Qi value is preferred
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Two different distance-based MCDM techniques were

employed to rank the representative strategies obtained by

K-Means for optimum cluster size, namely VIKOR (VIšekri-

terijumsko KOmpromisno Rangiranje; Wu et al. ) and

TOPSIS (Opricovic & Tzeng ). TOPSIS was selected,

as the concept is rational, comprehensive; and the compu-

tation is simple (Ulengin et al. ). VIKOR was chosen

as it is one of the most successfully applied MCDM tech-

niques to various problems (Salehi ). VIKOR is

similar to TOPSIS, but with different aggregation functions

(Opricovic & Tzeng ). These techniques are described

in Tables 1 and 2, respectively.
RESULTS AND DISCUSSION

Stage 1: model application

AEM-based flow model (Gaur et al. a) and NSGA-II-

based optimization models were coupled and used for simu-

lation–optimization analysis. MATLAB global optimization

toolbox with multiobjective optimization was used for analy-

sis (Matlab ). MATLAB functions were written for

coupling of models. To couple the model with NSGA-II,
om http://iwaponline.com/jh/article-pdf/23/3/627/892755/jh0230627.pdf
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the AEM model function was called through cost function,

with discharge and location as inputs of the model. Further,

the outputs of the AEM model were post-processed along

with the imposition of constraints and penalties. The

coupled AEM-NSGA-II model was applied to generate the

Pareto front fulfilling the three objectives. Fifteen decision

variables were considered based on the location and dis-

charge of five pumping wells. The corresponding

coordinate values X and Y along with the discharge value

of each well were taken as the decision variables. A penalty

function approach was employed to facilitate constraints
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and the same weightage was given to each constraint. The

weightage factor of 107 Euros was considered which was

arrived at on the basis of trial and error (Ayvaz & Elci

) as the model was not able to converge for values less

than 107.

For tuning of NSGA-II parameters, many values were

tried until they were found insensitive to variations (mini-

mum and maximum of solution bounds), their default

values were used. The detailed discussion about the tuning

of parameters is as follows:

• As per the MATLAB suggestions, if the number of

decision variables is greater than 5, the population

should be set near 200. In our case, there were 15

decision variables; so the population was set to 200.

• We used the system without parallelization; hence, there

is no migration of the sub-population and consequently

no effect of migration fraction.

• The creation function generated the initial population

which was set as ‘feasible’. This creates uniformly distrib-

uted points and handles linear constraints, if any.

• Tournament selection was chosen as the selection func-

tion for choosing parents for the next generations. For

our problem, changing the mutation rate from 0.1 to 0.8

did not affect the range of solutions obtained; so it was

again set to the default value of 0.1.

• Decreasing the crossover fraction to 0.5 to 0.2 caused the

penalty solutions being persistent, and increasing the
Figure 4 | Pareto front generated by AEM-NSGA-II model for 200 population size.

://iwaponline.com/jh/article-pdf/23/3/627/892755/jh0230627.pdf
value from 0.8 to 1, had no significant effect in diversity.

Hence, the default value of 0.8 was chosen.

• Pareto fraction defines the number of Pareto solutions to

be obtained from the previous Pareto fronts. On increas-

ing the Pareto front population fraction from 0.35 at

intervals of 0.25, a decrease in penalty solutions was

observed. Finally, the value of 0.85 was chosen.

• If the change of best fitness was very small over 100 gen-

erations (stall generations) it was considered that the

solution was stable and the Pareto front had stopped

moving. So, the function tolerance was set to 10�5. The

number of generations was set high (700 generations) to

prevent any premature convergence. Also, the function

tolerance criterion was satisfied always and earlier com-

pared with the full number of generations.

The tuned AEM-NSGA-II was run up to the maximum

number of 700 generations. However, convergence occurred

after 542 iterations. The model identified 2105 non-

dominated solutions out of 108,400 evaluations (200

population × 542 iterations). Figure 4 presents the Pareto

front generated by the AEM-NSGA-II model. The minimum

and maximum values of the final Pareto front were found to

be 840 and 1,337 m3/s for discharge, 183,110 and 1,014,811

Euros for piping cost and 187,863 and 761,799 Euros for

pumping cost. Figure 4 also shows the mutual dependence

and sensitivity towards each other, i.e. impact of cost

change of one objective over another. As a note, if functions
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are multiplied by any constant number, it will only act as a

scaling factor and the solution will follow the same trend.

2105 non-dominated groundwater planning strategies

were generated. These were difficult to handle directly for

ranking; K-Means in conjunction with the DB index was

used for finding the optimal size of clusters that could be

further processed for ranking of representative strategies.

Stages 2 and 3: cluster analysis and validation

The normalization approach was used for making the cri-

terion dimensionless (Raju & Nagesh Kumar ). Weights
Figure 5 | Percentage number of strategies among 2105 falling in each cluster, representative

om http://iwaponline.com/jh/article-pdf/23/3/627/892755/jh0230627.pdf
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of the three criteria, piping cost, pumping cost and discharge

are adopted as equal in line with NSGA-II analysis. Weighted

normalized values, which are the product of weights and nor-

malized values, are input to cluster analysis. K-Means and the

DB index were computed with Cluster Validity Analysis Plat-

form (CVAP) (Wang ). K-Means is performed for 3 to 25

clusters and the algorithm is run multiple times in an iterative

manner. Accordingly, the DB index is also computed for 3 to

25 clusters. Most of the time, the optimum cluster size varies

between 20 and 25. Keeping the variation of the DB index

over the number of iterations and data similarity, the opti-

mum cluster size is chosen as 20. The percentage number
strategy number and corresponding notation.
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of strategies among 2105 falling in each cluster is presented in

Figure 5. For example, A1(1946): 6.22% meant that 6.22% of

2105 strategies are part of cluster 1; 1946 is the representative

strategy in cluster 1 and A1 is the notation to present the cor-

responding representative strategy. It is observed that, in

some of the clusters, the division of strategies is almost uni-

form. The representative strategy for each cluster needs to

be determined. The squared error between the weighted nor-

malized strategy in that group and group mean is computed.

The strategy that gives the least error is picked up as the repre-

sentative for that group. A1 to A20 represent strategy

numbers 1946, 856, 1545, 314, 1274, 185, 1492, 1675, 1503,

1524, 658, 172, 62, 1654, 909, 1454, 1685, 1911, 61, and

2050 for computational purposes. Figure 6 presents the 20

representative strategies A1 to A20.

Stage 4: application of VIKOR and TOPSIS

Matlab based VIKOR and TOPSIS codes were developed

for ranking of A1 to A20. The methodologies of VIKOR

and TOPSIS are presented in Tables 1 and 2. The code

had provision for browsing input file, weights file, as well

as the normalization approach. In the VIKOR method,

user can choose any value of ν (between 0 and 1). Figure 7

presents values of Sj, Rj, Qj for ν ¼ 0.5. Sj, Rj, Qj varying

between 0.5938–2.3763, 0.528–1, 0–0.9834 over 20 strat-

egies. A5, A7 and A14 are the top three preferred

strategies with Qj values of 0.0, 0.222 and 0.2523. The

least preferred strategies are A11, A18 and A12 with Qj
Figure 6 | Weighted normalized payoff matrix (20 representative strategies and 3 criteria).

://iwaponline.com/jh/article-pdf/23/3/627/892755/jh0230627.pdf
values of 0.9834, 0.9666 and 0.9368. Figure 8 presents the

ranking pattern corresponding to ν values of 0.1 and 0.5,

0.7, 1.0 (termed as S1, S2 and S3). The sensitivity analysis

of the changing values of ν did not show any impact on

the top-ranking strategy (A5), i.e. strategy number 1274 fall-

ing in cluster 5. The corresponding piping cost, pumping

cost and discharge are 880,000 Euro, 679,000 Euro and

1,263.1 m3/s, respectively.

However, a significant effect is observed in other strat-

egies. Spearman rank correlation (Gibbons ) between

S1–S2, S1–S3 and S2–S3 are found to be 0.911, 0.844 and

0.977, respectively, indicating a reasonably strong corre-

lation between different scenarios.

Figure 9 presents values of Dþ
a , D

�
a and Ca by TOPSIS.

Dþ
a , D

�
a and Ca are varying between 0.1937–1.0321, 0.2468–

1.0299 and 0.213–0.8261 over 20 strategies. A5, A3 and A2

occupied the first three positions (with Ca of 0.8261, 0.7751

and 0.7101) andA19, A4 andA11 occupied the last three pos-

itions (with Ca of 0.213, 0.2221 and 0.2307).

Figure 10 presents the ranking of strategies by TOPSIS

and its comparison with VIKOR (ν ¼ 0.5). Spearman rank

correlation between VIKOR and TOPSIS is 0.3503, indicat-

ing not so strong correlation even though these are based on

a similar methodology. In our opinion, it is the first appli-

cation of VIKOR to groundwater studies in conjunction

with cluster analysis.

The methodology in our opinion is robust and can be

replicated with suitable modifications. However, the out-

come may vary for different periods and locations which we



Figure 8 | Ranking pattern obtained by VIKOR corresponding to various values of ν.

Figure 7 | S, R and Q values obtained by VIKOR (ν ¼ 0.5).

Figure 9 | Dþ
a , D

�
a and Ca values obtained in TOPSIS.

Figure 10 | Comparison of the ranking pattern obtained by VIKOR (ν ¼ 0.5) and TOPSIS.
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propose to study in future with the present methodology.

Since a similar methodology was not applied for the Dore

catchment in the past, there is no mechanism to verify the

effectiveness of the present approach. However, we propose

to collect more micro level data and conduct field surveys

to validate or test the efficacy of the present approach.
om http://iwaponline.com/jh/article-pdf/23/3/627/892755/jh0230627.pdf

022
Water managers can perform sensitivity analysis to

assess the impact of one unit of piping cost/pumping cost

on discharge which will help analyse the impact of chan-

ging piping material cost or electricity cost due to

inflation. With this hypothesis, water managers can use

this information to optimally locate the pumping wells

and their corresponding discharges to accomplish the

water demand of nearby city ‘Thiers’ in a unified manner

with future economical scenarios. This also unlocks the

path to place the results into pragmatic use. However, a

few more challenges still remain. Some amount of convic-

tion is needed for the field experts and end users about the

reasonableness and ability of methodologies that suit their

thinking and requirements before implementing. The

approach suggested here has an academic and practical fla-

vour and we are confident that it would assist water

resources planners and researchers.

We will take this opportunity to collect more field

data, field visits and targeted to compare the present

methodology with traditional methodology for more mean-

ingful inferences. Efforts will also be made to minimize

computational time to perform simulation and optimization

process seamlessly.
CONCLUSIONS

The present study discussed the methodology consisting of a

four-stage procedure comprising the application of NSGA-

II, K-Means cluster analysis, DB index and ranking tech-

niques for groundwater planning problem of the Dore
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river catchment, France. The following specific observations

are made from the present study:

• It is observed that representative strategy A5 (strategy

number 1274 falling in cluster 5) (piping cost, pumping

cost and discharge respectively of 880,000 Euro,

679,000 Euro and 1,263.1 m3/s) is found to be the best

by both VIKOR and TOPSIS.

• Spearman rank correlation suggests not so strong corre-

lation between VIKOR and TOPSIS. The sensitivity

analysis of changing values of ν did not show any

impact on the top-ranking strategy (A5).

• Performing clustering of the NSGA-II generated non-

dominated strategies that minimized duplication of data

and facilitated getting at the optimum number of clusters.

• AEM-based groundwater model is efficient to handle

simulation–optimization model efficiently.

• Location of the storage tank and corresponding piping

cost significantly impact the optimal location of pumping

wells.
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