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Abstract. Coherent inelastic neutron scattering techniques are employed to measure
several branches of the phonon dispersion relation in KNO; in its orthorhombic

" (a-phase or phase II) form at room temperature. Group theoretical selection rules
for external modes of the crystal have been used in the measurements along the three
symmetry directions Z(£00), A(0£0) and A(008).

Theoretical investigation of the lattice dynamics of the crystal is carried out on the
basis of a rigid molecular-ion model using the external mode formalism. A two-
body potential consisting of the Coulombic interaction and the Born-Mayer type
short range interaction is assumed. The effective charges and radii of different atoms
are determined by applying the stability criterion for the crystal. Dispersion curves
are calculated, representation by representation, making use of group theoretical
information. Comparlson of theoretical results with experimental information on
elastic constants, optical data and neutron results are made. Agreement between
theoretical and the various experimental results may be considered very satisfactory.

Keywords. Lattice dynamics; potassium nitrate; inelastic neutron scattering;
neutron scattering selection rules; group theoretical analysis.

1. Introduction

KNO; (potassium nitrate) is an interesting solid because of its ferroelectric properties
in one of its phases (Jona and Shirane 1962). The possibility of using this material
as a fast, non-volatile, non-destructive read out memory element has been suggested
in the literature (Born et al 1970). Its switching behaviour has been studied by
several workers (Dork et al 1964; Nolta et al 1965). The nature of ferroelectricity
in KNO,, the underlying phenomenon for these properties, has been extensively in-
vestigated (Nolta and Schubring 1962; Chen and Chernow 1967, Siouffi and Cerisier
1972, Teng et al 1971; Yanagi and Sawada 1963; Gay 1967). In addition other
properties like morphology, crystallisation, structure (Shinnaka 1962, Gay 1967;
Teng 1970 and Nimmo and Lucas 1973), dielectric constant (Sawada et al 1961;
Doucet et al 1965; Yanagi 1965; Mansingh and Smith 1971), etcare known. Perhaps
because of the simple structure in the ferroelectric phase, lattice dynamics of this phase
is also theoretically investigated earlier (Krishnan and Haridasan 1972). ;
It is now well understood that there is a close relation between phase transitions and
lattice dynamics (Cochran 1972). In particular, displacive phase transitions in ionic
crystals are responsible for onset of ferroelectricity in a number of crystals. From
the point of view of understanding the mechanism of phase transitions in solids it is
desuable to study the lattice dynamics of various phases. :
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The objective of this paper is to present results of our experimental and theoretical
investigations of the lattice dynamics of the room temperature phase of KNO,
Details of the phase diagram and structure are given in section 2. 'We have carried
out neutron inelastic scattering experiments on a single crystal of KNO; and measured
the phonon dispersion curves. Since there are four molecules per unit cell (20 atoms
per cell), a very large number of phonon branches (as many as 60) may be responsible
for the inelastic processes. However one can treat the NO;™ ion as a rigid unit (some-
times referred to as ¢ molecule ) capable of translations and rotations only as is indi-
cated in section 3.” Thereby one can invoke the external mode formalism. In section
4 we discuss the role of group theoretical selection rules for neutron scattering, parti-
cularly for the choice of suitable regions of reciprocal space, to make meaningful
experiments. Experimental aspects are covered in section 5. We have resorted to
a simple lattice dynamical model to carry out theoretical calculation of the dispersion
relation of phonons. This model treats the dynamics of the crystals in the spirit of
the conventional rigid ion model wherein one does not take into account the polari-
sabilities of any of the ions; but we are essentially concerned with the ‘ external’
modes of the lattice (Venkataraman and Sahni 1970). The external mode formalism
has been used with several crystals like hexamine (Dolling and Powell 1970), NaNO,
(Sakurai et al 1970), Boron trihalides (Binbreck et al 1974), etc. In some of these
studies the ionic nature of the ‘molecular’ constituents is taken into account as point
charges and detailed charge distribution in the “ molecule * isnot considered. One of
the important aspects of the work of Venkataraman and Sahni(1970) is the extension
of Kellermann’s work to external modes by considering detailed chargedistribution in
*molecules’. Although this formalism applicable for ionic crystals has been existing
in literature for nearly a decade, to the best of our knowledge it has not been used and
our work is perhaps the first to make use of this aspect by considering in detail the
various Coulomb coefficients of ¢ molecular’ units. The details of the dynamical
equations are given in section 6. Group theoretical aspects which help to consider-
ably simplify the problem are also discussed here. Section 7 goes into details of two
models investigated. Certain constraints on the crystal potential are discussed which
lead to determination of potential parameters. - Application of theoretical aspects
given in sections 6 and 7 to the case of a-KNO, are discussed in section 8. Comparison
of theoretical and experimental results on elastic constants, optical data and-the
present neutron results is made in section 9. Section 10 gives summary of results of
our study. '

2. Structure-
2.1. General

KNOj, exhibits several polymorphic transitions, as summarised in the phase diagram
given in figure 1. Figure la indicates the pressure vs temperature diagram (Rapoport
and Kennedy 1965) and figure 1b the appearances of various phases at atmospheric
pressure as a function of temperature, on heating and cooling. The crystallographic
information is summarised in figure lc. In the temperature range 124°C to 110°C
by cooling from higher temperature, the crystal exhibits the ferroelectric phase,
commonly referred to as the y-phase or phase III. The high temperature phase
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Figure 1. Phase diagram of KNO,. a. Pressure vs temperature diagram. b. Phases
at atmospheric pressure in the heating and cooling cycles. e, Crystallographic
information in various phases. . ,
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above 130°C is generally referred to as f-phase or phasel. This phase can be super-
cooled down to 124° and is metastable in the 130°C to 124°C range. The room
temperature phase with which we are concerned is generally referred to as a-phase or
phase II. It may be noted that the crystal transforms itself from o-phase directly to

y-phase under pressure.

2.2 The a-phase

In the a-phase, having the space group D,, 15, the unit cellis simple orthorhombic and
contains four molecules. The crystal structure was studied by Edwards (1931) by
x-ray diffraction. The arrangement of atoms was found to be isomorphous with the
well known structure proposed by Bragg (1924) and Wyckoff (1925) for aragonite.
Recently Nimmo and Lucas (1973) have reinvestigated the crystal structure by
neutron diffraction. Among other results, they find that the fractional z-coordinate
of potassium and the fractional y-coordinate of mitrogen does not have special and
equal values of 075, The cell parameters and fractional coordinates are given in

Table 1a. Cell dimensions and fractional coordinates of atomic positions in «-KNO
(i) Cell Dimensions (A):

a b ‘ c Reference
1 645 5:43 917 Edwards (1931)
2 6-4309 5-4142 9-1659 Wyckoff (1964)
3 6-4213 5-4119 9:1567 Nimmo and Lucas (1973)
4 64255 5:4175 9:1709 Wyckoff (Vol IT)
(i) Fractional coordinates of atomic positions:
Atom 3 . oq 4 Reference
1 K 075 . 025 0416 Slater (1965)
N 0417 0:25 0-75
o) 0417 0-25 0-617
o) 0417 0-444 0-814
2 K 075 0-25 0-416 Edwards (1931)
N —0-083 0-25 0-750
oq) —0-083 025 0-883
oQ) —0-083 0-444 0-686
3 K 0-7568 0-2500 04166 Nimmo and Lucas (1973)
N —0-0848 0-2500 0-7548
o) —0-0893 0-2500 0-8902
o) —0-0849 0-4492 0:6866
Table 1b. Atomic masses and scattering amplitudes:
P Neutron scattering
Atom Atomic mass (amu) = amplitude (1012 cm)
KX 391 0-35
N 14-0 0-94

o 16:0 0-581
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Table 1c. *‘ Molecular’ labelling and atomic positions
fractional coordinates as per Slater (1965) and cell dimensions as per
Wyckoff (Vol. IT)
Mole- Atom Fractional coordinates Coordinates (A)
cule No Atom
No. : ¢ 1 L X y z
1 1 K 0-75 0-25 0416 4-8191 1-3544 3-8151
2 1 K 0-25 0-75 0-584 1-6064 4-0631 5-3558
3 1 K 0-25 0-25 0-084 1:6064 1-3544 0-7704
4 1 K 0-75 075 0916 4:8191 4-0631 8-4005
5 1 N 0-417 0-25 0-75 2:6794 1-3544 6-8782
2 (O 0-417 0-25 0-617 2:6794 1-3544 56584
3 0] 0-417 0-444 0-814 2:6794 2:4054 7-4651
4 O 0-417 0-056 0-814 2:6794 03034 7-4651
6 1 N 0-583 0-75 0-25 37461 4-0631 22927
2 e 0-583 075 0-383 3-7461 4-0631 3:5125
3 (6] 0:583 0-944 0-186 3-7461 5-1141 1-7058
4 (o] 0-583 0-556 0-186 3-7461 3-0121 1-7058
7 1 N 0-917 0-25 0-75 5-8922 1-3544 6-8782
2 (o) 0917 025 0-883 5-8922 13544 80979
3 0] 0917 0-056 0:686 5-8922 0-3034 62912
4 (0] 0917 0444 0:686 5-8922 2-4054 62912
8 1 N 0-083 0-75 0-25 0-5333 4-0631 22927
2 (0] 0-083 0-75 0117 0-5333 40631 1.0730
3 (0] 0-083 0-556 0-314 0-5333 3-:0121 2:8797
4 0] 0-083 0-944 0:314 0-5333 51141 2:8797
Z
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Figure 2. Projéctioq of atomic coordinates on the xy and yz planes. The inset
guration of the NO,~ ion according to Pauling (1967).
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Table 2. Space group operations of D:;
'?rj;mon;. ‘ Siitt;’s International tables Kovalev s vES) .
eration notation _ _ . , §§
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Figure 3. Brillouin zone of the orthorhombic lattice.

table 1a. We have used the cell parameters given by Wyckoff (1964) and fractional
coordinates given by Slater (1965) in this paper.

Given the fractional coordinates, one can describe the disposition of atoms in the
cell as follows: The potassiums, the nitrogens and one set of oxygens (0(1)) are
at +(@éi,bnj,clkand (G +9Haibn) G — ¢) c k) and the other set of
oxygens (0(2)) are at (a ¢1, b 7], ¢ { k) and at positions derived from this position
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by operations of the point group of the lattice. i, j and k are unit vectors along a, b
and c cell axes. The atom positions in the unit cell are given in table 1c. The space
group operations of D, are given in table 2. Figure 2 shows the projections of
the coordinates of the atoms in the unit cell in the xy and yz planes.

2.3 Brillouin zone

The Brillouin zone of the simple orthorhombic lattice which is also orthorhombic is
shown in figure 3. The nomenclature of symmetry points and lines follows Slater
(1965). Our measurements are confined to the symmetry directions 2, A, and A.

3. The external mode approach in the dynamics of KNO,

Bonding inside NO;~ ion in KNO, is much stronger than the bonding between any
two different ions in the lattice. This is substantiated by the fact that the internal
modes (covalent modes) of NO, " ions correspond to high frequencies as given in table 3.
These modes do mnot change significantly through different phases of the system.
One can therefore resort to ‘ external’ mode approach (Venkataraman and Sahni
1970) to deal with lattice dynamics of KNO,.  In this approach the NO,~ ion is
assumed to be a rigid unit capable of rotation and translation as a whole. The
approximation of rigidity of ionic units and separation of external modes from
internal modes is based on the fact that internal mode frequencies are well separated
from external mode frequencies and consequently there is no coupling between the
two types of modes.

- Table 3. Internal modes of KNO, (Balkanski ef al, 1969)

Observed frequencies (cm-?) in

Phase I(8) Phase II (o) Phase III (y)
714 714 716, 717
836 829, 830 836

1056 1054 1053, 1054
1428 1348, 1362 1352

4. One phonon neutron scattering in complex crystals

4.1 One phonon cross section

Determination of dispersion relation v; (q), the frequency-wave vector relation (v; is
the frequency of the jth branch for a wave vector q) of a complex crystal is an intricate
problem because of the large number of branches associated. If there are @ atoms
and v ‘ molecules * in the unit cell, there would be as many as 3u+-6v external modes
all of which could, in principle, contribute to any inelastic scattering process cor-
responding to a given wave vector. The problem of identifying the branches becomes
therefore formidable as », the number of constituents (=p-+v) becomes very large.
The number of external modes would be less than 3u-+6vif a few of the branches
were to degenerate by symmetry. '
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The one phonon (inelastic) coherent scattering cross-sectionper unit cell is given by,

dcg; = (kr/k:){ (ng ji%fl-%)/(z(uj(q) 7))}

X | F;(Q) |2 8(Q—2m7—q) 8(eLFwy(q) 1)
with the population factor
g = {exp (haj (@ T)— 1) @

the inelastic (dynamical) structure factor for the ¢ atomic * model of the crystal,

F(Q) = f(bk/ 22{Q " exq N} exp (—W(Q) exp (2ni G 1) 3)

and the Jacobian,
T = {1 Em{(h key Vo @@} @

Here b, is the bound-atom coherent scattering amplitude of kth nucleus, r, the position
vector of the kth nucleus, M, its mass and exp(— W,(Q)) its Debye-Waller factor. m
is the neutron mass and k, and k, are incident and scattered neutron wave vectors
respectively. Q=k;—k; is the wave vector transfer and G a reciprocal lattice vector.
¢ (=hw) is the neutron energy transfer, # is Planck’s constant and kj the Boltzmann's
constant. e, (q j)is the polarisation vector of the kth nucleus when its displacement is
governed by a phonon w,(q). The -+ and — sign in (1) and (4) are associated with
phonon creation (neutron energy loss) and phonon annihilation (neutron energy

. gain) respectively.

In the external mode formalism, the dynamical structure factor F(Q) given in (3)
is replaced by an involved expression (Casella and Trevino 1972, their eq. (67))
containing translational and rotational components. Further details are given in the
next section.

4.2 Group theoretical selection rules for neutron scattering

Elliot and Thorpe (1967) discussed the properties of the symmetry vectors and derived
a sum rule for the dynamical structure factor. They showed that the sum of squares
of the reduced structure factor (i.e. the dynamical structure factor modulo

Q? exp (—2W(Q)) {é-ﬁk(q /}?) at any point Q over the modes j which transform
according to the same row A of an irreducible multiplier representation (IMR) s of
the group of the wave vector q, (G,(q)) is constant and completely determined by
symmetry, that is by the matrix elements of the IMR : :

FQ= Y |FQ=Ca@ )

JESsA

ila
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The sum rule, which is sometimes referred to as ¢ selection rule °, is an important aid
in analysing intensities in one phonon scattering, in assigning observed phonons to
different symmetries and in identifying regions of the reciprocal space where phonons
of the different symmetries may contribute to considerable inelastic cross-section.

The formalism developed by Elliot and Thorpe (1967) is strictly applicable to
‘ atomic’ case. Recently, Casella and Trevino (1972) have studied the nature of
sum rules governing external modes only, They have shown that the structure
factor F* (Q) associated with IMR s can be written as

F(Q) =F(Q) + F(Q)

where F,*(Q) is associated with translations of atomic and ‘ molecular * centres of
mass and Fp*(Q) with rotations about centre of mass of ‘molecules’. The detailed
formalism has been used only in a few cases so far, namely for study of dynamics of
NaNO; (Trevino et al 1974) and of D,0, (Trevino et al 1976). Trevino and Casella
(private communication) have developed the software for calculating F(Q) and
Fe(Q). We have employed this software to obtain the structure factors. We have
also cross-checked the results of the software by using a small program developed
by us to calculate the sum rule for F5(Q) in external mode approach.

The input to the software (Trevino and Casella, private communication) include
atomic (molecular) coordinates, atomic masses and scattering amplitudes (table 1b),
matrix representations of rotational operations (table 2) and the IMR corresponding
to Gy(q) of q (see table 4a) under consideration. In table 5we give F;*(Q) and F*(Q)
for qalong A direction at a few lattice points. From this table we see that at G=(050),

Table 4. (a) Gy(q) for X, A, A directions and their irreducible representations
(Kovalev 1964) s (q, R

(¢ 00 Gy(2): hy hy haq hae

A ¢ 0 Gy(A): hy hag hag

A OO f) Go(A): Ay h, hag hay

Representation IMRs

Zy A Ay 1 1 1

Zy Aax A, 1 1 -1 -1

2y As A 1 -1 1 -1

E‘ A4 -A.4 1 —1 —1 1
—i<é<}

(b) Decomposition of T'(q):
T@) =102, + 83, + 10X; + 82,
T(A)= 9A; +9A: + 9A; + 9A,
T(A) = 10A; + 8A, + 8A; + 10A,
(c) Compatibility relations

2+ 2 - X
3 +Z - X
A],‘I" A.; — Y;l
Ag+ Ag - Yz
Al + .A.4 - Z
A+ As > Z,
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Table 5. Neutron inelastic structure factors FS(Q) and F‘(Q) for some typical
~wave vectors of g along A(OO&) direction at certam remprocal lattice vectors G-

Cq Ay Ay 2 Ao 3 v Ag 54 oAy g ': ‘
¢ ¢ ®m R K R B FR R F;‘__,

© 50 02 000 000 155 006 000 000 003 000
04 000 000 1514 024 000 000 006 000 -
© 6 0) —04 005 000 000 000 1425 039 000 000
—02 004 000 000 000 1462 031 000 0-00
6 00 02 011 000 000 000 000 000 1605 012
04 010 000 000 000 000 000 1530 011
6 0 1) —04 1498 101 000 000 000 000 017 001
—02 1410 173 000 000 000 000 021 ° 001
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Figure 4 a. Inelastic structure factors for neutron scattering along X direction.
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A, modes predominantly contribute to inelastic cross-section compared to Ay, Ag
and A, modes. At G=(060), (600) and (601) Ay, Ay and Ay modes respectively
are to be observed for similar reasons as against other modes. In general, it is
observed that translational modes are likely to have larger cross sections com-
pared to the rotational modes. From this kind of considerations, we have chosen
suitable regions of reciprocal space for measurement of phonons. In figure 4 we have
shown variation of the structure factors along various lines in the reciprocal space for
studying 2, A, A phonons. Structure factors not shown in this figure are identi-
cally zero or negligible compared to the others shown here. Evaluation and use of
group theoretical selection rules has helped considerably in favourable choice of
reciprocal space for measurements discussed in the next section.
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4 ¢. Inelastic structure for neutron scattering along A direction.

5. Experiment

v

5.1. Measurements

We have used a single crystal of KNO, (of nearly 4x3x3 cm?® size) grown by slow
evaporation from a saturated aqueous solution held at a temperature of about 45°C.

Phonon measurements have been carried out using one of the triple axis spectro-

meters at CIRUS reactor at Trombay (neutron flux nearly 6x 10 cm™2 s7). The

incident neutron wavelength (using Cu (111) monochromator) was held at 1-43 Ain
most of the measurements. A few measurements were carried out using a wavelength é
of 1-2A for purposes of cross-checking. A Cu (111) analyser was used throughout.

Constant Q and e techniques (Brockhouse 1960) were employed, and mostly we

resorted to neutron energy loss scans. Focusing geometries were resorted to define

the phonons as well as one can (Cooper and Nathans 1967; Peckham et al 1967). The
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wavelength resolution AA/Ais 6 % at 1-43A as measured by energy analysis of the
incoherent elastic peak from vanadium.

The measurements of phonon frequencies were made along the three symmetry
directions Z(£, 0, 0), A0, &, 0) and A(0, 0, £). Figure 5 shows several experimental
line shapes obtained along these directions by constant Q and e techniques in energy
loss and sometimes in energy gain scans.

Figure 6 shows the dispersion curves obtained by using frequencies corresponding
to centre of observed neutron groups (that is frequencies not corrected for resolution
effects). [Error bars on the frequencies correspond to expected uncertainties taken
to be 109, of the full width at half maximum of the neutron groups. »

5.9. Resolution corrections to measured data

The resolution function of the triple axis neutron spectrometer for inelastic scattering
measurements for a nominal setting (Qy, wo) of the spectrometer is given by

R(Q"‘Qo: w"'wo)=Ro(Qo» wo)

4

4
Xexp { "% z z My (Qqs @o) X Xl} . ©)
k=1 I=1

The matrix elements M, are functions of incident wave vector k;, momentum and
energy transfers 1Q,, fiw, and various collimator parameters and mosaic spreads of
the monochromator and analyser crystals. X; (k=1to 4) represent the three compo-
nents of (Q—Q,) and (w—wy). Expressions for M,, are given by Cooper and
Nathans (1967).  The counting rate at the detector is given by,

d?c

Need | 0k

ROQ—Qy w—ay) d° (Q—Qy) d (w—wy) Q

where ¢, is the number of neutrons incident on the sample and d%c/d€)de is given by
(1). One can assume that | F(Q)|? in (1) is not varying fast and that ¢, and efficiency
of detector are constants and thereby calculate relative line shapes of phonons of a
particular branch. We have developed a computer program (Venkatesh 1978) to
evaluate the resolution function using the formalism of Cooper and Nathans (1967)
and to get the phonon shapes. The input parameters for the software include the
divergencies of the various collimators of the spectrometer, expected phonon fre-
quency and gradient of the dispersion surface. We have estimated the gradient of the
acoustic branches on the basis of the elastic constants and assume the dispersion
surface to be planar with this gradient. For optic branches we have relied on the
measured data itself. Figure 7 shows the comparison of calculated and measured
line shapes. One can see that although the calculated line shapes are in good agree-
ment with measured line shapes as far as the widths are concerned, the mean position
of neutron groups cannot be taken as the phonon frequencies. The observed line
shapes occur at positions shifted from the true phonon frequencies (shown by arrows)
by as much as 20 % of the lowest frequencies measured. Dispersion curves based on
the true frequencies are to be compared with theoretical curves.
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Figure 7. Comparison of numerically evaluated and experimentally measured neu-
tron groups. The numbers in square brackets refer to assumed phonon frequency in
THz and cartesian components of the gradient of the dispersion curves in THz A.

We have seen a series of line shapes indicating observation of spurious phonons.

This happened when we were looking for longitudinally polarised phonons along
0, 2, 6+4-£). The frequencies associated with these peaks do not agree with the fre-
quencies expected on the basis of elastic constants for longitudinal acoustic modes and
one of the pairs has frequency less than that of transverse acoustic mode also. We
believe that one of the peaks is * spurious’ due to resolution effects and the other
occurs at a position shifted considerably from the true longitudinal mode.
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6. Theoretical analysis
6.1. General formulation in the external mode approach
In the framework of the adiabatic and harmonic approximations (Born and Huang

1954), the crystal potential can be written in terms of the translational and rotational
displacements of the atomic and molecular units as follows (Venkataraman and

Sahni 1970);

ooy 3 (0w () () e

Ika

l,K’ﬁ

with ¢Z;<”')=_ Rk SN (8b)

VK K vauai (l) auﬁil (l’)
K K

. I\ . .
Here « and B are the cartesian components x, y and z. ug, (K) gives displacement of

the x-th unit in the /-th unit cell; when i=t implying translation, u,* (i) is transla-

tional displacement along the a-direction and when i=r implying rotation, u," (Z)
K

is rotational displacement about the a-axis. , / " are unit cell indices. « and «'
denote different atomic or ¢ molecular > units in the unit cell.
The equations of motion are given by,

i ()= [ 3 (L0 03 a4 )

Ve'ell
B
(9a)
this being the force on (i) , and
(1) i (1Y ¢ (I
D it (1) == > & () (<)
B l/K/B
w (1T » (I
+12 o (1 0) ()] (9b)
’K,GII
f |

the torque on (K) The various symbols in these equations have the following

meaning: « € IT implies summation over ‘ molecular’ units only, m, is the mass of
the «-th atomic or ‘ molecular * unit; Z,g(x) denotes the moment of inertia tensor

%%i: 5
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elements of «-th ¢ molecular * unit. Wave-like solutions of the type

w)-u (@ fox()moi] o

X ( i) being the equilibrium position of the «-th unit in -th cell with respect to some
origin chosen arbitrarily) give rise to (3 u -+ 6v) simultaneous equations in the wave

amplitudes Ug' (Z) which can be expressed in matrix notation as

M(q) U(q) = «*(g) m U(g) 11)

where M(q), referred to as the dynamical matrix, has elements given by
i’ [\ _ iiv (01 -y
W(9)=S H0 et o
r :

and (') =iy Sqg S 87 for =t

=Iaﬁ(lc) Spw’ Oj5r fori==r

with my, = Z my, | | (12b)
kex
and Lp() = > m { | X(K)|? 828 — Xa(K) Xp(k)}- (120)
kex

Here k denotes different atoms in a unit and

@ )-x()-x0)
X(k) =X (,Sc) ~X (2) ‘ | (13b)

The dynamical problem reduces to solving the eigenvalue equation .(1 1), requiring
that the wave amplitudes have nontrivial solutions. The eigenvalues w2 (q) (j=1
.. .3p-+6v) are obtained by solving the equation,

| M@ — 2@ m | =0. W

From this discussion, we therefore find that the crux of the problem-is to define a
suitable crystal potential or a suitable model for the force constants in order to calcu-
late the dynamical matrix.
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6.2. Properties of the force constants and their sum rules

The force constants defined by (8) have to satisfy certain properties arising from the
space group symmetry of the crystal. These properties help in the simplification of
the dynamical problem. In addition, the force constants are also required to obey
certain sum rules resulting from the fact that an infinitesimal translation or infinitesi-
mal rotation of the crystal as a whole does not produce any restoring force or torque
on any vibrating unit. Any potential function or force constant model chosen for
the dynamical calculation should therefore satisfy the properties of the force constants
and sum rules described below (Venkataraman and Sahni 1970).

¥

(i) Assuming that the potential function ¢ is well behaved,

i (11 i (I 1\
¢aﬁ (K KI) = ¢Ba. (KI K). ' (15a) .
HIR L (i) Due to the translational symmetry of the lattice,
] i (11" _ i (I4+L I'+L :
i Pap ( K') = bap ( PR ) : (15b)
L (iii) Let

Su={8N(S) +X(m)},

a space group operation, acting on the undistorted crystal produce the transforma-

tions
1\ S L I'\ S, L '
X (K> X (K) and X (K,>_—> X (K’)
Then, | g ‘
Lr 11"\~ - )
i’ — i ii’ i’
¢ (KK’) =ci(§) S ¢ (K K,) S c¥'(s). (15¢)
where
c(S) =1 for i =1,
=|8§| fori=r. )
(iv) Since an infinitesimal translation produces no restoring force or torque on
| any vibrating unit,
i o I'Y k
¢aﬁ (K K’) '_Oa | (ISd) g%
U’ 2

0. (15¢)

I

A

K K
VK’
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(v) Again, since an infinitesimal rotation does not produce any restoring force or
torque on any vibrating unit,

E Z Bys Xy (Z ,i) bos (z ,i) + z bog (Z i) =0, (15f)

'k 95 ' eIl
and
! o lI'\N ,rt [0l ww o I
> > ek (L) 6 (20)+ > (0 l)=0 asw
' v I'eell

6.3. Constraints on the force constants and hermiticity of the dynamical matrix

The sum rules described in § 6.2 eqs (15d) to (15g) are useful in determination
of the self-terms ¢ii’ ( ° 0> . We have
af \iw k

G934 e

olod =2 s o) o

r ooy XV . fol ol'\ ut fo !
¢aﬁ (K K) o ¢a}9 K rc') z “Brd 7(k K)¢05 (lc K')’
I'e'ell Ik
(16c)
rr [0 0) "o [o ol ol
Yol ==2 ()2 D nf (i)
I'eell V' 95
(16d)

. C . . . I o
where prime over summation indicates omission of term ( .| equal to .
K \K

These equations (16a~16d) combined with the equation
i’ 60\ _ ,iifoo
(/’aﬁ (K K) — ¢ﬁ'0~ (K K)’ | (16e)

result in several constraints on the force constants, for example,

S a3 4l o

U K
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Any dynamical model should satisfy these constraints, otherwise the dynamical
matrix as calculated using (16a) to (16d) will not be hermitean. If the force constants
are treated as parameters or obtained from a potential function, these constraints

may be imposed on the parameters or on the potential function. Inparticular, ifa

two body potential function

b=t > Vaper §|7 (e o) ‘ )

Ik Uk’
kex
k'ex’

is used, the translational sum rules are automatically satisfied.
1N _ (U _ (!
Here, r (:ck x’k’) = (K’k’) r (xk) and

! . s l
T (:ck) denotes instantaneous position of (Kk)

It can be shown that the rotational sum rules are also satisfied, if

i =0 for all , k € x and «a. (18a)
)
ory ko
We define
o d ! o I
T T o\ 7o\ z Vick, 'k’ {l r(xk x'k’)‘% (18b)

as “ external force’ on atom at (K(;C) in the a-direction. Thus the constraint (18a)
means that the external force on different atoms in their equilibrium positions be zero.
If this constraint is not satisfied, it may result in the lattice being unstable and the
eigenvalues w,? () of the dynamical matrix may come out to the negative. We shall
come back to this point in § 7.2.

6.4. Properties of the dynamical matrix, group theoretical simplification of the
dynamical problem and symmetry classification of normal modes

Just as the force constants have to satisfy certain general properties as mentioned in
§ 6.2, the dynamical matrix (elements) satisfies the following relations due to space
group symmetry, we list these properties in addition to other group theoretical aspects
(Venkataraman and Sahni 1970)

(i) M(g) =M*(q) - » | (19a)
(i) M (9) =M*(—q) | (19b)
(i) M(q+G) =uM(@u* (19¢)

LR e )

T8 &

o



R
@e
S

Inelastic neutron scattering and lattice dynamics 273

where G is any reciprocal lattice vector, and u is a unitary diagonal matrix consisting

" of elements

g (i 1) = 8ap e Buy exp {—iG " X ()} (194)
(iv) If S, = {8 [ v(S) + X (m)} € G, the space group of the crystal, then
I' (4, Sm) M (@) T* (g, Sw) = M (Sq). (19¢)

The matrix T' (q, S,,) consists of elements

Pf/; (rx’

q, Sp) = ¢ (S) 8 Sop 8 (x, Fy (', S))
X exp [—i(Sq) * (v(S) + X (m)) ], (19f)
where & (x, Fy («', §)) =1 when « = F, (', S)
== 0 otherwise (19g)
with F, (', S) being the sublattice arrived at from the sublattice «’ via S,,.

(v) If R € G,(g), the point group of q, (Rq=q- G) then since M (Rq)
= M (¢ + G) = u M (q) u*, we have by using (19%)

T (q, R) M (q) T* (g, R) = M (g), (19h)
where T(g, Ry =u*T (g, Ry) exp [iq* {v(R) + X (m)}].

The matrix T (q, R) consists of elements*
Thg (e’ | @ R) = 8y ¢! (R) Rag 8 (x, Fy (', R))
Xexp[iG: {X () —v(R)}] (19i)
(vi) If §_€ G,, the point group of the crystal, such that‘
S.¢q=—q+G, |

then, since M (S_q) =M (— q+ G) =u M (— q) u* = u M* (q) u*, we have by
using (19¢) ' ,

r ((l, S’m) M (Q) r+ (q9 S‘m) =u M* ((I) u’,
or T(q, SIM(Q)T*(q, S)=M*(q). , 19
Here T(q,S))=u"T (g, S-,) exp[—iq" (v +Xm}1

*Qur TZB (xx’| @, R) differs from that given by Venkataraman and Sahni (1970). This is because
our dynamical matrix contains an additional phase term.
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Elements of T (g, S_) are given by (191 with R replaced by S_.
Relations (19h) to (19]) are useful in finding out relations between different

elements of the dynamical matrix. In this way one can recognise the independent
elements of the dynamical matrix and thereby reduce evaluation of the large
number of dynamical matrix elements to that of a few independent ones.

The matrices T (q, R) are unitary. The set of matrices {T (q, R) | R € Gy (@)}

form a reducible multiplier representation of G, (9).
According to standard group theoretical arguments, the number of times a given sth

irreducible multiplier representation (IMR) appears in the matrix T is given by

— 1 % 'Ts |
G=1 Z [T (¢, B)] x* [~ (g R)], (20)

where 7 is the order of the group G, (q), * (¢, R) is the sth IMR corresponding to
the point group operation R in G, (@), x [T (g, R)] and x [ (q, R)] are respectively
characters of the T(q, R) and +° (¢, R) matrices. Kovalev (1964) has given tables
of IMRs for lattices having different space groups and corresponding to various

wavevectors.
Symmetry vectors belonging to various representations (IMRs) can be used

for block-diagonalising the dynamical matrix. This helps to classify the eigenvalues
representation by representation. The symmetry vectors can be determined from
the projection operators,

Py (@) %: z (@ R T (g B), (1)
"R

where f, is the dimensionality of the IMR +*. These vectors are used in block diago-

nalising the dynamical matrix using the relation

M (Q = £ (@) M (@) ¢ (@), (22)

where . (q) is the block-diagonalised dynamical matrix and ¢ (q) is the symmetry
vector matrix. Details of this method are described by Venkataraman and Sahni
(1970) and Maradudin and Vosko (1968). _

The various blocks of the block-diagonalised dynamical matrix belong to different
IMRs. The size of the blocks is given by (20); the order of the block is equal to the
number of times the representation occurs in the 7' matix. The phonon frequencies
obtained by diagonalising these blocks are said to belong to the corresponding re-
presentation and hence labelling is achieved.

7. Dynamical model calculation in the external mode approach

7.1. Rigid molecular-ion model

In the last section we described a general formulation of the dynamical problem in
the external mode approach. We also discussed certain constraints which have to

e

iy
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be satisfied by the dynamical model. In this section, we describe a dynamical model
which may be applied to ionic or partly ionic crystals containing ¢ molecular * units.

The rigid-ion model is well known in lattice dynamics. Here one considers the
constituents of an ionic lattice as ¢ atomic * rigid units and does not take into account
relative displacements between the atomic core and outer electronic shells and there-
fore does not consider polarisabilities of the ions. In the external mode approach
where certain ‘molecular’ units are considered rigid, one can still work out the dyna-
mics in the spirit of rigid-ion model. To differentiate the situation from the conven-
tional rigid-ion model we refer to this as rigid molecular-ion model. In this model,
one assumes some effective ionic charges to be situated at the positions of atoms
constituting the ‘ molecules >. These charges interact via the long range Coulombic
interaction with all other charges in the lattice. The effective ionic charges may be
treated as parameters in the model. One also assumes that short range forces act
between the atomic units and atoms constituting the ‘molecules’. Different kinds of
interaction may be assumed for this purpose. We assume Born-Mayer type short
range potential. Thus the crystal potential* ¢ consists of two body potentials between.
atoms of different molecular units given by

1 Z.Z,e —136 7~
o= L 4k {____12_% 23
("12) 41750 s + a exp 1 (Rl TRy ( )

Here Z, and Z, are * effective charges ’ situated at the centre of masses of the inter-
acting atoms. R, and R, may be called the * effective radii * of atoms. ¢, is the per-
mittivity constant, 1/4we;=9-0 X 10° nt — m?/coul?, Following Kitaigorodsky and
Mirskaya (1964), we choose a=4-2X 10 kcal/mole=1822-0 ev/atom. The effective
charges and radii are treated as parameters of the model.

7.2. Constraints on the potential function

We have mentioned in §6-3 that the constraint on the crystal potential which is made
up of two body potentials is

o —o.

0
or, (Kk) 0

Expressing ¢ as sum of two parts, namely qSC the Coulombic and ¢SR the short
range parts, we have '

¢ =¢C 4 ¢SR, (24)

Therefore,
84° o™ | _
O oy T @9)
o lck) 0 "o (Kk) 0 :

* Since we are interested only in external modes, force constants are derived by differentiating
the crystal potential with respect to only those coordinates which are allowed to vary, namely
translations of atoms and ‘molecules’ and rotation of ‘molecules’. Internal coordinates are not
allowed to vary. Hence we are dealing with only external forces which are obtained by differentia-
ting the potential in which interactions involving atoms on different ¢ molecules® only are involved.
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The first term may be obtained by differentiating the Madelung energy of the

crystal with respect to r, 2k) and subtracting from this the contribution due to

other atoms in the same molecule. We have

1 ! 1 Z2.,Z .. €
C = — Kk K k .
NP N R Y )
kex ' (Kk K'k’)l
; k'ex
Thus
Z.Z.. X (0 0 )
2¢4° __Derivative of the z 1 ik Sk o\ ok ek
0| ~ Madelung energy I EERNE 27)
or ( ) ke 0 ’X( , ,)
“\ek/lo k' =k wk 'k
Similarly ;
(0 f
¢SR —]. ! a exp Kk K,k, g
2 1 PR +Repe) ] (28)
kek
. kKex
and |
o I '
SI’SR z 136 a Xa(Kk K'k')
TT(Rg + R [ (0 7 )
k EK xk k'k’
g <
_ 13-6'x(" , )l ‘
X exp [ xk «'k . 29) i
TT Ry + Byp)

We also have the condition of charge neutrality of the unit cell:

> Za=0. | (30)
xk

In general, the constraint given by (25) may not be satisfied for a given crystal
structure. In such a case, the constraints may be applied on the effective charges and x
radii parameters so as to preserve the structure. A proper set of parameters may be
obtained by balancing the Coulombic and short range external forces on different
atoms. It maynot be necessary to be able to exactly balance the Coulombic and short %
range forces but considerations like getting real phonon frequencies may be more ‘
important in arriving at the parameters, this set of parameters being not necessarily
unique. Amnother consideration that has to be kept in view is that the cohesive energy
of the crystal should be of the right order of magnitude. Otherwise one may be
fictitiously reducing all the parameters to reduce the forces, but that would be
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unphysical. If mecessary, the coefficient ¢ in the short range potential may also
be treated as a disposable parameter. :

Once a proper set of parameters is obtained, the dynamical calculations may be
carried through using the formalism in § 6:1. As the crystal potential is made up of
two parts qS_C and gSSR, correspondingly the dynamical matrix would also have two
parts M Cand MSR, These two parts may be calculated using the method described
in the next two sections. Then the dynamical matrix may be block diagonalised
using the group theoretical method outlined in §6-4. Finally the blocks are
diagonalised by brute-force to get the eigenvalues w2 (q). We have developed a
computer program to evaluate M, MSR ang the eigenvalues w;®(q) using the
model described in this paper (Chaplot 1978).

7.3. Electrostatic part of the dynamical matrix

Because of the long range nature of the Coulombic potential, the summations involved
in the evaluation of the dynamical matrix elements pose difficulties. Venkataraman
and Sahni (1970) have adopted the methods developed by Ewald (1917) and
Kellermann (1940) to obtain analytical expressions for dynamical matrix elements
Mj%ﬁ’(’c?c,). These expressions involve summations of fast converging series in

direct and reciprocal spaces. To the best of our knowledge, these expressions have
not been used in lattice dynamical calculations so far.

7.4 Short range part of the dynamical matrix

We outline here two different approaches which we have tried.

Model (i)

This model makes use of the so-called ‘extended point mass approximation’ develop-
ed by Rafizadeh and Yip (1970), wherein one assumes that the short range potential
can be expressed as a function of the ‘net-displacement * of molecules rather than in
terms of translations and rotations. Using this assumption the force constants
¢, ¢ and ¢ are expressed in terms of ¢** only (and that was the attraction to try
this model) and parameters called the ©effective size’ of the molecules. These
parameters also depend on the particular pair of molecules between which the inter-

actions are considered. In certain calculations, it was found that taking the effective
size parameter

()--ix(ll)

gave quite satisfactory results. = If relation (31) is.assumed then only ¢** have to be
obtained through the short range potential of the type (28). Another alternative is
to treat ¢ as disposable parameters in the dynamical calculation. However, these
parameters have to satisfy the constraints given in § 6.3. The self terms have to be
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obtained by using the appropriate sum rules. It is not clear to us whether the poten-
tial (28) and the corresponding constraints on that potential are compatible with the
approximation of extended point mass and with the assumption of expressing the
short range potential as a function of net displacement.

Model (i)

In this model, we make use of the following equations in which the external mode
force constants are expressed in terms of the atom-atom force constants (Venkata-
raman and Sahni 1970)

e (11 10
‘}Sa‘g (K K’) = z ¢¢IB (.Kk K’kl) (32&)
kex
Kek'
1 1r ,
(]SZ?(K K') = z z Pay (Kk K/k:) eyps X5 (K') (32b)
kek vd
ke
L 1 r
B3 Seldi)ene
ke 75
ke’

and

(L) =D > bl p) v ms BB X @) 2

ke po
k’EK’ '}’6

The interatomic force constants are to be obtained by differentiating the external
short range potential given by (28), after ensuring that the short range potential along
with Coulombic potential satisfies the constraint given by (25). The self terms

#(2 ) are obtained by using the expressions (16a-) given in § 63.

8. Application to a-KNO,
8.1 Refinement of parameters of the potential and calculation of phonon frequencies

As already pointed out we have assumed a two-body potential of the type given by
(23). We assumed that the effective charges in NO,~ are as given by Pauling (1967)
(see inset in figure (2)) namely that O(1) is neutral, O(2)’s carry unit negative charges
and the nitrogen carries unit positive charge. To maintain charge neutrality unit
positive charge is associated. with K+, We assumed that the effective radii can be
taken as those given by Kitaigorodsky and Mirskaya (1964) shown in table 6.
With these charges and radii parameters we calculated the ‘external’ Coulombic

y)

2
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Table 6. Effective charges and radii parameters

Effective charge Effective radius (&)
Atom Pauling’s Equilibrium Kitaigorodsky’s Equilibrium
value value value value

K 1-0 1-1 : 2-75 2:2

N 1:0 02 1-55 09

o(1) 00 —0-44 1:52 1:3

02 —-1-0 —0-43 1-52 1-3
Contribution :
to cohesive —30-1 —34-6 19-1 0-6
energy (eV) -

and short range forces (eqs (27) and (29)) and also the contributions to the crystal
cohesive energy per unit cell due to these interactions (egs (26) and (28)). The result-
ing net forces on atoms were non-zero and some of them were quite large. Secondly
the contribution to the cohesive energy due to the short range potential was much
larger than the corresponding values for other ionic crystals like KCI1.*

The dynamical matrix evaluated with the parameters discussed above was non-
hermitean because the rotational sum rules were not being satisfied by those potential
parameters. Forcing the dynamical matrix to be hermitean by arbitrarily equating
the lower triangular part to the upper triangular part, and diagonalising such a
matrix yielded nearly 50 9 of the frequencies to be imaginary for both the models.

Examination of the forces on the various atoms in the crystal indicated that X+ ion
was experiencing a large force due to the unequal charge distribution on the three
oxygens of the NO;~. Hence the effective charges on the three oxygens were made
equal**(~ —0:5). The effective radii parameters were also reduced in order to
bring down the contribution to the cohesive energy due to the short range forcest.
The parameters were further allowed to change to minimise the forces but at the same
time keeping the cohesive energy nearly the same. We evalnated the phonon fre-
quencies at various stages of the parameter refinement and aimed at obtaining all
phonon frequencies real. With the parameters as given in table 6 the rotational sum
rules were almost satisfied and the resulting dynamical matrix for the model (ii) was
also hermitean. This yielded real phonon frequencies. However, use of model (I)
still resulted in nearly 309, of frequencies being imaginary. We find that the net
forces on atoms cannot be reduced much further keeping the cohesive energy to be
the same and therefore with model (I) we cannot obtain real frequencies only. Possible
reasons of failure of model (I) not to yield real frequencies may be due to some of
the reasons already discussed in § 7-4. In view of the simplicity of the model, we
have not gone ahead with refinement of parameters once we get real frequencies
in model (ii). There may be other sets of parameters which may yield real

*We have assumed in the absence of experimental data that the cohesive energy of KNO; is of the
same order as that of other ionic crystals like KCl.

*¥In - and y-phase of potassium nitrate, the nitrate has a three fold symmetry. This justifies
assuming equal charge distribution on the three oxygens.

1The Kitaigorodsky’s radii may not be proper for two reasons. First, their values were not
obtained for atoms in ionic solids and secondly they also included an attractive term (r—®) in the
proposed atom-atom potential.
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frequencies and provide reasonable agreement with measured data as we have now.
It is for this reason, use of constraints other than vanishing external forces was
thought to be unnecessary at this stage of dynamical considerations of the solid.

8.2 Use of group theory

So far we have not discussed details of actual method of calculation of eigenfre-
quencies. We have made use of considerations given in §6.4 extensively. The
relevant result applicable to a-KNO; are discussed below.

We note that for q along 2, A and A directions for all the elements § in G(q),
Sq=q or —¢q. Thus in (191)) G=0 and therefore

T (' |0, 5) = B ¢ (5) Sap 8 L, Fo (¢S] (3

Using the symmetry operations given in table 2, one can determine the permuted
‘molecular’ labels and thereby 8 [«, Fy(«x’, S)]. The latter decides the pair indices ««’
for which T (x«’|q, S) will be non-zero. Table 7 gives the permuted molecular
labels and the pair indices «x’ for which T (x«’ | q, S) are non-vanishing. Using (33)
and table 7 one can easily construct T (g, S). For example for q along A,

Table 7. (a) Permuted ¢ molecular * lables under various space group operations

¢ Mole- '

cular’ Permuted ¢ molecular ’ lable (l ,)
lable K
(=0
K S1 Sg Ss S4 S5 S(I Sv, Sg
000 100 -10-1 —~1-10 —~1-1-1 —~-100 0 00 100
1 1 3 2 4 2 4 1 3
000 0—-1-1 -1 1-1 0—-11 —-1-1-1 011 0—10 00-1
2 2 ‘ 4 1 3 1 3 2 4
000 00O -1 0—1 0—-10 —-1-—-1-1 000 0 00 000
3 3 1 4 2 4 2 3 1
000 1-1-1 -11-1 —-1i-11 ~—1-1-1 -—-111 0—-10 10~-1
4 2 3 1 . 3 1 4 2
000 0 0-1 -1 0-—1 0—-11 —1—-1-1 001 0 00 00-1
5 5 7 6 8 6 8 5 7
000 1-1 0 -11~-1 —-1-10 —-1-1-1 -110 0—10 100
6 - 6 8 5 7 5 7 6 8
000 1 0-1 -10-1 -1-11 —-1-1—-1 -101 0 00 10-1
7 5 8 6 8 6 7 5
000 0—1 0 —11-1 0—-10 —-1-—1-1 010 0—-10 00 0
8 8 6 7 5 7 5 8 6

The cell index /" is given in terms of three integers /'y, I’;, I’s corresponding to X (1)
= I'y ai+ 1’y bj+1's ck . Sy = {Su/V(Sn)}

o

@

R
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Table 7. (b) Pair indices (««’) for which § (x, Fy(x’, S)) and therefore
T g (xx’ g, R) are non vanishing

S] Sz Ss S4 S5 Ss S', Sg

11 13 12 14 12 14 11 13
22 24 21 23 21 23 22 24
33 31 34 32 34 32 33 31
44 42 43 41 43 41 44 42
55 57 56 58 56 58 55 57
66 68 65 67 65 67 66 68
77 75 78 76 78 76 77 75
88 86 87 85 87 85 88 86

Table 8. The matrix T'(A, R,)

0 0 R, 0
0 0 0 Ry
R 0 0 0 0 0
0 R O 0
Ry O 0 0
0 R, 0 0
0 0 0 0 Ry, 0
0 0 0 R,
R, 0 0 0
0 R, O 0
0 0 R, 0 0
0 0 0 R,

R, € G, (A), the T (A, R,) is given in table 8. Using the T (q, R) matrices the
independent elements of the dynamical matrix are found to be [using (19h) and 19j)]

M (;:;lc') with «x' =11,12,13,14,15,16,17,18, 55, 56,57 and 58. These are the only

elements we have evaluated in actual calculations.

The group of the wavevectors G, (q) and their IMRs (Kovalev 1964) for the three
symmetry directions are given in table 4. Decomposition of T(q,R) into various
IMR’s is also indicated therein. The symmetry vectors ¢(g) were derived using the
projection operator technique discussed in § 6.4. The symmetry vector matrices for
the three symmetry directions are given in table 9. They were used to block diago-
nalise the dynamical matrix using the relation (22). The individual blocks obtained
thereby were diagonalised by standard computer programmes. The phonon
frequencies obtained from different blocks are labelled by the IMR to which the cor-
responding block belongs,

9. Results
Figure 8 shows the theoretical dispersion curves along the three symmetry directions,
based on model (ii) described in § 7.4. In drawing these curves we have kept in view

that the branches belonging to the same representation do not intersect. At points

P.—4
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Table 9a. Symmetry-adopted vector matrices for ¢ along =, A and A directions*
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B
; g

Frequency 1 {THz)

Figure 8a. Theoretical dispersion curves based on model (ii). The lines —

£
= =y === = correspond to first, second, third and fourth representations of Gy(q)
along the various q’s indicated.

Figure 8b. Resolution correlated dispersion curves—Continuous lines correspond
to those derived from experimental

] 1 data (Fig. 6) and dashed lines correspond to
theoretical curves with which we believe the experimental curves are associated.
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Table10. Comparison of measured (Michard and Plicque 1971) and calculated elastic
constants (units 10 dynes cm™?)

Derived from calculation

Elastic Measured q along

constant 3 A A
Cu 3-58 4+ 0-04 3-11
Cia A 1-34 + 015
Cis 1:16 4 0:15
Cas 3:00 + 0-03 2:88
Cas 092 4 015 -
Cas 2:04 4+ 002 1:68
Cu 0-67 + 001 072 0-80
Css 0-54 -+ 0-01 0-63 0-87
Cas 0-83 + 001 0-97 1-02

p = 2109 gfcc

degenerate in pairs due to higher symmetry of these
points. (Table 4 indicates the compatibility of the branches at X, Y and Z). For
comparison we have shown in figure 8 the resolution corrected experimental dis-
persion curves also. The continuous lines at the origin in this figure show the slopes
of the dispersion curves based on elastic constant data (Michard and Plicque 1971).
Comparison of the experimentally measured elastic constants and those derived from
our theoretical calculations indicate remarkably good agreement as is seen in table 10.
In the literature one finds that the elastic constants based on rigid ion model cal-
culations are sometimes several times smaller or larger than measured values (for
example see Striefer and Barsch, 1975). Continuous lines through resolution correct-
ed frequencies give a guide to the eye of the experimental dispersion curves. We
have also shown by dashed lines the theoretically calculated branches with which we

believe the measured data are associated. Differences between the calculated and

experimental dispersion curves are less than 15%. Frequencies obtained from experi-

ments on laser Raman spectra (Balkanski, 1969, Bockermann et al 1976), are shown
by concentric circles at g=0. Although, several frequencies are indicated by Balkanski
et al (1969), only two of the frequencies at 1-50 and 2-49 THz (1 THz =333 cm™)
are well confirmed by the recent work of Bockermann et al (1976). In the infrared
spectrum also one observes only two frequencies at 2-4 and 3'9 THz (Hill and
Mohan 1971). ‘

We have also carried out inelastic neutron scattering measurements from a poly-
crystalline sample at room temperature using energy loss and energy gain techniques
by means of filter detector spectrometer and a rotating crystal time-of-flight spectro-
meter. In the energy gain spectrum, a broad inelastic distribution is observed ex-
tending over 1-5to 5 THz. No finer featureslike any singularities due to high density
of states at any frequency could be discerned. The energy loss spectrum indicated
an upper cut-off which is not more than 6:7 THz in the frequency distribution.

X, Y and 7 the branches

10. Summary

In this paper we have discussed the measurement and theoretical analysis of phonon
dispersion curves of a-KNO, at room temperature. Group theoretical aid has been
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extensively made use of in (a) choice of reciprocal lattice regions for measurements
based on selection rules for neutron scattering and in (b) block diagonalisation of
dynamical matrix, classification and labelling of phonon frequencies in terms of
irreducible representations. The theory has made use of rigid molecular-ion model.
Formalism based on external mcde approach is resorted to for the first time in
evaluating the Coulomb coefficients and short range interaction terms. The para-
meters defining the dynamical model were arrived at purely from the fact that the
crystal is stable with the known structure and hence the equilibrium forces on atoms
must be minimal in this configuration. The parameters have not been fitted to
elastic or optic or neutron data and to this extent the calculations may be said to be
even a kind of first-principle calculation. In view of this, the agreement between
calculated values and measured data on elastic constants, optic frequencies and
phonon dispersion relation may be said to be very satisfactory.
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