
The bacterial pigment xanthomonadin o¡ers protection against

photodamage

Lakshmi Rajagopal, C. Sivakama Sundari, D. Balasubramanian, Ramesh V. Sonti*

Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India

Received 22 August 1997

Abstract Xanthomonas oryzae pv. oryzae is a bacterial

pathogen that causes leaf blight, a serious disease of rice. Most

members of the genus Xanthomonas produce yellow, membrane

bound, brominated aryl polyene pigments called xanthomonadins

whose functional role is unclear. We find that pigment-deficient

mutants of X. oryzae pv. oryzae exhibit hypersensitivity to

photobiological damage. A clone containing the xanthomonadin

biosynthetic gene cluster alleviates the hypersensitivity of the

pigment-deficient mutant. Extracts containing xanthomonadin

provide protection against photodynamic lipid peroxidation in

liposomes. These results lead us to suggest a role for the pigment,

namely protection against photodamage.
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1. Introduction

Xanthomonas oryzae pv. oryzae is the causal agent of a

serious disease of the rice plant called bacterial leaf blight

[1]. Most members of the genus xanthomonas produce yellow

membrane bound, brominated aryl polyene pigments called

xanthomonadins [1^3]. The chemical structure of such a pig-

ment is given in Fig. 1. The presence of these pigments ex-

clusively in the genus xanthomonas has led them to be used as

diagnostic and taxonomic markers [1]. The functional role of

the pigment in xanthomonas is yet to be delineated. The long

polyene moiety that occurs in this molecule is similar to what

is seen in carotenoids. Carotenoid pigments that are found in

photosynthetic and non-photosynthetic bacteria have been

observed to provide protection against damaging photolytic

and photodynamic reactions [4^6]. The polyene moiety in car-

otenoids has been implied to be necessary for photoprotective

action [7].

This suggestion leads to the possibility of whether xantho-

monadin might function as a protecting agent against light-

induced damage to the organism. Indeed, a pigment-de¢cient

mutant of Xanthomonas juglandis was seen to be more vulner-

able to photokilling than the pigmented wild-type [8], hinting

at such a role for xanthomonadin. We have investigated this

issue deeper in this communication, using wild-type and pig-

ment-de¢cient mutants from two di¡erent pathotypes of the

rice pathogen X. oryzae pv. oryzae. Both these mutants are

hypersensitive to photodamage in comparison to the wild-

type. We have been able to o¡er protection to a pigment-

de¢cient strain by introducing into it a plasmid which con-

tains xanthomonadin biosynthetic genes. We have also con-

ducted in vitro experiments on lipid peroxidation of liposomes

in the presence of methanolic extracts of xanthomonadin from

wild-type strains and ¢nd that it inhibits the extent of lipid

peroxidation, while a similar extract from the pigment-de¢-

cient strain does not. These results suggest a functional role

for the xanthomonadin pigments in these organisms.

2. Materials and methods

2.1. Bacterial strains

The bacterial strains, relevant characteristics and their references

are listed in Table 1. The X. oryzae pv. oryzae strains used in this

work were grown in Peptone Sucrose (PS; [9]) medium at 28³C. Rif-

ampicin was added at a ¢nal concentration of 50 Wg/ml (to prevent

contamination). Rif
r
derivatives of wild-type X. oryzae pv. oryzae

strains were obtained and pigment-de¢cient mutants from these rif
r

derivatives were isolated by visual inspection after ethyl methane sul-

fonate (EMS) mutagenesis. Toluidine blue O, EMS and egg PC (phos-

phatidyl choline) were purchased from Sigma Chemical Co. (St.

Louis, MO).

2.2. Isolation of pigment-de¢cient mutants

Pigment-de¢cient mutants of X. oryzae pv. oryzae were obtained by

EMS mutagenesis at a frequency of 1% following a mutagenesis pro-

tocol [10] that resulted in 99% lethality. BXO47 is a pigment-de¢cient

mutant derived from the wild-type X. oryzae pv. oryzae strain BXO43.

Similarly, BXO712 is a pigment-de¢cient mutant derived after EMS

mutagenesis of the X. oryzae pv. oryzae strain BXO711 (see Table 1).

The two wild-type strains BXO43 and BXO711 belong to di¡erent

pathotypes of X. oryzae pv. oryzae [11]. A 17 kb region containing

genes required for xanthomonadin biosynthesis was isolated (L. Ra-

jagopal, unpublished data) by screening a genomic library of X. or-

yzae pv. oryzae [12] using the xanthomonadin clone from X. campes-

tris [13] as a probe. This clone was mobilized into BXO712 using

methods as described [14]. The resulting strain BXO713 was restored

for pigment production. The vector, pUFR034 [15] used in the con-

struction of this library was also mobilized separately into BXO712.

The resulting strain BXO714 remains pigment de¢cient and serves as

a control.

2.3. Xanthomonadin extraction

Approximately equal cell numbers (1U10
8
CFU (colony forming

units) ml
31
) of each X. oryzae pv. oryzae strain were extracted with

methanol as previously described [16] with the modi¢cation that ex-

tractions were conducted in the dark, at room temperature. These

extracts were concentrated to half the original volume by £ash evap-

oration. Absorption spectra were recorded on a Hitachi U2000 spec-

trophotometer.

2.4. In vivo photokilling experiments

A single colony of the desired X. oryzae pv. oryzae strain was

inoculated into 2 ml PS broth containing rifampicin and grown over-

night at 150 rpm at 28³C. The cells were centrifuged at 6000 rpm at

4³C, washed twice with equal volumes of 1UMinimal A [10] and

resuspended to the original volume with 1UMinimal A. A 1.5 ml

cell suspension containing approximately 1U10
8
CFU/ml was added

in a presterilized quartz cuvette and toluidine blue was added at a

¢nal concentration of 5 WM, as described previously [8]. A small

magnetic bead was introduced into the cuvette for gentle stirring.
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The cuvette was placed in a £uorimeter (Hitachi: F4000 with a 150 W

Xenon lamp) and illuminated with light of wavelength 640 nm (ab-

sorption maximum for toluidine blue). No external gases were intro-

duced. Irradiation was done using the excitation monochromator

open (20 nm); the photon £ux is estimated, based on earlier experi-

ments using ferrioxalate actinometry and also a light meter, to be 10

14

photons/s (or 200 WW/cm

2
) [17]. Ten Wl aliquots were removed at

di¡erent time points, i.e. 0, 30, 60, 90, 120 min, diluted in 1UMinimal

A and plated on PS plates containing rifampicin. These plates were

covered with aluminium foil and incubated at 28³C for four to ¢ve

days. Percentage (%) survival was calculated for each strain at various

time points. Percentage survival = (total no. of CFU at one time in-

terval/total no. of CFU at `0' min)U100. Wild-type and correspond-

ing pigment-de¢cient mutants were assayed on the same day. Dye-free

controls (% survival in the presence of light and absence of toluidine

blue) and light-free controls (% survival in the presence of toluidine

blue and absence of light) for both wild-type and pigment-de¢cient

mutants were also performed on the same day.

2.5. Irradiation of egg PC liposomes

A 1 mg/ml solution of egg PC liposomes (small unilamellar vesicles

or SUV) was prepared as described previously [18]. To 300 Wl of this

solution, toluidine blue was added at the ¢nal concentration of 100

WM and irradiated at 640 nm for a period of 90 min. This served as

the blank. Subsequently, increasing amounts of concentrated xantho-

monadin extracts (0, 12.5 and 25 Wl) from either the wild-type or

pigment-de¢cient mutant were added to individual liposome solutions

(containing toluidine blue) prior to irradiation. Unirradiated controls

for each sample were also included.

2.6. Lipid peroxidation assay

The thiobarbituric acid assay (TBA; [19,20]) was used as an indi-

cator of lipid peroxidation in the above experiment. At the end of all

irradiations, the 300 Wl sample was aliquoted into two equal halves.

Trichloroacetic acid (TCA) was added at a ¢nal concentration of 1%

and the solution was heated at 100³C for 20 min following which

TBA was added at a ¢nal concentration of 3.6 mg/ml in 50 mM

NaOH and again heated at 100³C for further 20^30 min. The solution

was then cooled and the intensity of £uorescence measured using an

excitation wavelength of 532 nm and emission at 553 nm. Unirradi-

ated (liposomes+toluidine blue+xanthomonadin but no irradiation)

and xanthomonadin-free (liposomes+toluidine blue+irradiation but

no xanthomonadin) controls were also processed in the same manner.

The level of lipid peroxidation for each set was calculated as:

irradiated blank3unirradiated blank � T �total peroxidation�;

irradiated Xwt3unirradiated Xwt � x�wt�;

irradiated Xmut3unirradiated Xmut � x�mut�;

where wt and mut refer to wild-type and mutant strains respectively.

The percentage lipid peroxidation was calculated as follows: Taking

`T' as the total level of peroxidation i.e. 100%;

Percentage �%� lipid peroxidation for Tx�wt� � x�wt�=TU100;

similarly % lipid peroxidation for Tx�mut� =x(mut)/TU100.

3. Results and discussion

3.1. Isolation of pigment-de¢cient mutants

Pigment-de¢cient mutants of X. oryzae pv. oryzae were ob-

tained by EMS mutagenesis (see Section 2). BXO47 and

BXO712 are pigment-de¢cient mutants derived from wild-

type strains BXO43 and BXO711 respectively. Methanolic

extracts were prepared from both wild-type and mutant

strains and their absorption spectra recorded. Both wild-

type strains showed a peak at 440 nm and shoulders at 420

and 460 nm characteristic of xanthomonadin while the pig-

ment-de¢cient mutants showed neither the peak nor the

shoulders. The absorption scan for one wild-type and one

pigment-de¢cient mutant strain are shown in Fig. 1B. It is

evident that the pigment-de¢cient strain has little or no xan-

thomonadin. The residual absorption seen in the 400^500 nm

region in these cases could to be due to intermediates in pig-

ment biosynthesis that may be present.
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Fig. 1. A: Structure of xanthomonadin I [2]. B: Absorption spectra

of methanolic extracts from Xanthomonas oryzae pv. oryzae strains.

Methanolic extracts of xanthomonadin were prepared and absorp-

tion spectra recorded as described in Section 2. BXO711 is a pig-

ment-pro¢cient strain and BXO712 is a pigment-de¢cient mutant

derived from BXO711.

Table 1

Bacterial strains and plasmids

Strain Relevant characteristics Reference

Plasmids

pUFR034 IncW, kan

r
, Mob

�
, mob(P), lacZK

�
, Par

�
, cos [15]

pLR9 pUFR034+17 kb insert containing genes required for xanthomonadin biosynthesis unpublished data

Xanthomonas oryzae pv. oryzae strains

a

BXO1 laboratory wild-type; an Indian isolate lab collection

BXO43 rif

r
derivative of BXO1 lab collection

BXO47 pig

3

; rif

r
(derived from BXO43) lab collection

BXO8 a natural isolate from India lab collection

BXO711 rif

r
derivative of BXO8 lab collection

BXO712 pig

3

; rif

r
(derived from BXO711) this study

BXO713 pig

�
; rif

r
; kan

r
+pLR9 this study

BXO714 pig

3

; rif

r
; kan

r
+pUFR034 this study

a
Rif

r
denotes resistance to rifampicin; kan

r
denotes resistance to kanamycin; pig

3

denotes pigment de¢ciency.
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3.2. Pigment-de¢cient mutants show hypersensitivity to

photobiological damage in vivo

In both the in vivo and in vitro assays, toluidine blue was

used as the exogenous photosensitizer that liberates reactive

oxygen species upon irradiation at 640 nm. The in vivo assay

measures the kinetics of survival of wild-type and mutant

strains when exposed to light and air in the presence of the

photosensitizer. Percentage survival values for each strain at

di¡erent time points were calculated as described in Section 2.

Fig. 2A shows that the pigment-de¢cient mutant BXO47

shows 10^100-fold greater sensitivity to photokilling than

the pigmented strain BXO43. Percentage survivals in light-

free and dye-free controls were also determined after a period

of 120 min for both strains, which established that the dye by

itself and irradiation by itself is not cytotoxic per se. Thus in

the presence of both the photosensitizer and light, the wild-

type mutant is able to survive better than the pigment-de¢-

cient mutant. As further con¢rmation, we included another

wild-type X. oryzae pv. oryzae strain BXO711 and a pig-

ment-de¢cient mutant derived from it, i.e. BXO712. The re-

sults plotted in Fig. 2B indicate that the mutant strain

BXO712 shows 10^100-fold greater sensitivity to photokilling

when compared to the pigmented strain BXO711. Percentage

survivals in dye-free and light-free controls in these cases too

gave similar values as with the BXO43-BXO47 pair. This ex-

periment was also repeated thrice. These results therefore in-

dicate that pigment-de¢cient mutants of X. oryzae pv. oryzae

show hypersensitivity to photodamage thereby con¢rming the

earlier studies with X. juglandis [8].

3.3. Clone of xanthomonadin biosynthetic genes restores

photoprotection to pigment-de¢cient strains

In the next set of experiments we worked with strains

BXO713 and BXO714 that are both derived from the pig-

ment-de¢cient strain BXO712. The strain BXO713 was con-

structed by introducing into BXO712 a plasmid containing

the genes for xanthomonadin biosynthesis, while BXO714

was also constructed from BXO712 with a plasmid that did

not include the xanthomonadin genes (see Section 2 and Table
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Fig. 2. Kinetics of survival of X. oryzae pv. oryzae strains after ex-

posure to light and air in the presence of toluidine blue. Percentage

survival was calculated for each strain as described in Section 2.

The datum shown at each time point represents an average of two

independent experiments. Note the logarithmic scale of the Y axis.

A: BXO43 is a pigment-pro¢cient strain and BXO47 is a pigment-

de¢cient mutant derived from BXO43. B: BXO711 is a pigment-

pro¢cient strain and BXO712 is a pigment-de¢cient mutant derived

from BXO711. C: BXO713 is the pigment-de¢cient mutant that is

complemented for pigment production and is therefore pigment pro-

¢cient; BXO714 is the pigment-de¢cient mutant into which only the

plasmid pUFR034 has been introduced and is thus pigment de¢-

cient.

Fig. 3. Xanthomonadin protects lipids from peroxidation in lipo-

somes. Liposomes were prepared and xanthomonadin was added to

liposomes containing toluidine blue and irradiated for a period of

90 min, following which the amount of peroxidized lipids was calcu-

lated as described in Section 2.
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1). BXO713 is thus a complemented strain which is pigment

pro¢cient, while the pigment-de¢cient BXO714 serves as a

control.

Fig. 2C shows that BXO713 has 10-fold greater number of

cells that survive the photodynamic assault of toluidine blue,

while the response of BXO714 after 120 min is comparable to

that of BXO712. The protection o¡ered in this instance is

modest in comparison to what is seen in the pairs in Fig.

2A and B, and we wonder whether this could be because of

the level of expression of the pigment in the clone under

study. Nevertheless, the point gains ground that the pigment

o¡ers protection against photodamage.

3.4. Xanthomonadin provides protection to lipids from

peroxidation

In order to determine the nature of the antioxidant proper-

ties of xanthomonadin, we conducted lipid peroxidation stud-

ies in the presence of this pigment. Methanolic extracts were

prepared from both wild-type strains BXO43 and BXO711 as

well as from the pigment-de¢cient mutants BXO47 and

BXO712. Liposomes (SUV) were prepared and the methanolic

extract was added to liposomes containing toluidine blue, in a

dose dependent manner, and then irradiated at 640 nm. Fol-

lowing irradiation, the amounts of peroxidized lipids were

estimated by the well-known TBA assay [20]. Fig. 3A shows

the results obtained with methanolic extracts of BXO43 and

pigment-de¢cient mutant BXO47. As is evident from the

graph, the percentage of peroxidized lipids in the presence

of increasing amounts of xanthomonadin from wild-type

BXO43 is reduced to less than 20%, while with extracts

from the pigment-de¢cient mutant BXO47 the percentage of

peroxidized lipids is about 80% even with increasing amounts

of the extract. The slight drop in peroxidation seen with the

mutant extract may be due to intermediates in pigment bio-

synthesis that are present in BXO47.

Likewise, the methanolic extract from BXO711 provides

over 50% protection to lipids from peroxidation when com-

pared to the mutant BXO712, in which case again the level of

peroxidation remains static at 80% even with increasing

amounts of the extract (Fig. 3B). Unirradiated and xantho-

monadin-free controls were included for each wild-type mu-

tant set. The experiment was repeated twice for each set. The

slight di¡erences in the amount of protection observed be-

tween the two wild-type strains may be due to di¡erences in

the extraction procedure and the concentration of the pigment

intermediates in them. (The strain BXO43 seems to have a

greater amount of the protectant in it in comparison to

BXO711; this seems apparent in Fig. 2 as well.)

We also extracted the pigment from the strain BXO713 (the

pigment-pro¢cient strain into which the xanthomonadin bio-

synthetic genes were introduced on a plasmid) using methanol

and tested the product for its ability to inhibit lipid peroxida-

tion in egg PC SUV. The inhibition displayed by this extract

was around 52^54% which compares well with the 55^60%

inhibition displayed by the pigment isolated from wild-type

strains at equal concentrations.

The observation that xanthomonadin, a membrane bound

pigment, can protect lipids from peroxidation suggests that it

may serve to protect the bacterial membrane from oxidative

damage. X. oryzae pv. oryzae may be exposed to photobio-

logical damage caused by reactive oxygen species during the

phase of its life cycle in which it is present on the leaf surface

[21]. Alternatively, X. oryzae pv. oryzae may also be exposed

to reactive oxygen species in planta, as these are known to be

produced as part of the host defense response. The novel

observation that xanthomonadin can function as an antioxi-

dant in vitro provides the opportunity to explore possibilities

that it could function like other synthetic antioxidants used

for the protection of polymers and foodstu¡ against oxidative

damage.
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