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Abstract. The overstability of sound waves in a polytropic atmosphere is examined for disturbances of
arbitrary optical thickness. It is concluded that the Cowling-Spiegel mechanism can operate in the solar
convective zone, although the x-mechanism is predominantly responsible for the observed five-minute
oscillations.

1. Introduction

An extensive amount of work has been done to study the instabilities occurring in
unstable atmospheres in the framework of the Boussinesq approximation (cf.
Spiegel, 1971). These investigations have been largely undertaken with possible
applications to outer convection zones in late-type stars. However, it has been
shown by Spiegel and Veronis (1960) that the Boussinesq approximation is strictly
valid only when the layer depth is small compared to the local density scale-height
and as a result it is inadmissible in the study of instabilities which can be excited in
these regions of rapidly varying density. Furthermore, the acoustic modes are also
filtered out in this approximation. It is for this reason that the full effect of
compressibility must be included in any reasonable study of instabilities arising in
stellar convective zones.

The main objective of the present paper is to study the growth rates of acoustic
modes which can be excited in an unstable compressible layer where thermal
dissipation operates. It is proposed to examine the nature of these growth rates and
to test their sensitivity to a variety of boundary conditions. The simplest inhomo-
geneous model incorporating the variation of pressure and density with height is
the polytropic atmosphere which has a linear temperature-profile. The polytropic
model may be an idealization of the stellar convective zone. Nevertheless, it can
include a substantial density variation across the layer and is thus valuable in
bringing out the full effects of compressibility in promoting acoustic instabilities.
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It has been recognized that the radiative transfer plays an important role in the
behaviour of acoustic modes in the presence of an unstable temperature gradient.
Spiegel (1964) has shown that acoustic waves are overstabilized in an unstable
polytropic atmosphere provided thermal dissipation obeying Newton’s law of cool-
ing operates. The work of Spiegel and the later work of Moore and Spiegel (1966),
brought out the essential physical role played by the pressure forces, analogous to
the Coriolis forces or the magnetic forces (Cowling, 1957; Chandrasekhar, 1961);
this demonstrated that the compressibility can provide the restoring force capable
of rendering a layer overstable in the presence of radiative exchange, provided the
prevailing temperature gradient is sufficiently superadiabatic. Recently, Graff
(1976) investigated the problem for a finite polytropic layer to conclude that the
Cowling-Spiegel mechanism makes a non-negligible contribution to the over-
stabilization of acoustic waves. Such a mechanism has a natural bearing on the
observed oscillations in the solar atmosphere and the associated problem of heating
the overlying chromospheric layers. The earlier studies of Ulrich (1970) and
Leibacher and Stein (1971) were largely motivated to account for the observed
five-minute oscillations in terms of the non-propagating response of the solar
atmosphere to the trapped acoustic waves excited by overstable oscillations. The
acoustic overstability in all the foregoing investigations was worked out in the
optically thin approximation. Chitre and Gokhale (1975) demonstrated numeri-
cally the existence of acoustic overstability in an unstable polytropic layer for
optically thick disturbances. But full problem of non-radial oscillations of the Sun
was recently solved by Ando and Osaki (1975) in the framework of the Eddington
approximation and it was shown that the driving of the five-minute oscillations is
due mainly to the so-called «-mechanism (cf. Cox and Giuli, 1968) operating in the
hydrogen ionization zone.

The work of Ando and Osaki should be considered as a complete analysis of the
non-radial modes in the non-adiabatic approximation and it provides a highly
plausible explanation of the observed five-minute oscillations. The purpose of the
present work is to undertake a hydrodynamical study in order to isolate the
Cowling-Spiegel mechanism and to understand the circumstances under which the
acoustic waves can be overstabilized for disturbances of arbitrary optical thickness
under different boundary conditions. It is concluded that this mechanism does
indeed contribute to the self-excitation of acoustic waves in the solar convection
zone when there is a large density variation across the layer and provided there is
an efficient radiative transfer. Thus, even though the «x-mechanism is dominant for
the five-minute oscillations, it is nevertheless of interest to study the problem of
self-excitation of sound waves by the effects of compressibility under a variety of
boundary conditions. Clearly such a mechanism has applications to the dynamics of
pulsating stars and possibly to the wide spectrum of oscillations observed at the
solar surface (Deubner, 1976).

The remainder of the paper is arranged in the following way: the basic equations
and boundary conditions are set out in Section 2, along with numerical scheme to
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handle the generalized eigenvalue problem to determine the complex eigenvalues.
The numerical results for optically thin and optically thick approximations are
described in Section 3. Finally, the discussion and conclusions on the results are
given in Section 4.

2. Basic Equations

We consider a polytropic fluid layer confined between two parallel planes situated
at z=0 and z=d and which is stratified under constant gravity acting in the
negative z-direction. The governing equations are the usual hydrodynamical
conservation equations for mass, momentum and energy together with the equation
of state:

ap

" +div (pv) =0,

dv
—_— +
P grad P+pg,

dT
pCVE't—-l-P divv=Q,

P=RpT.

In the energy equation Q is the radiative source term. Throughout we shall
assume the gas constant R, the acceleration due to gravity g, the specific heat at
constant volume Cy, and the radiative conductivity K to be constants. Let us
denote the temperature at the base of the layer by Ti.... We shall nondimen-
sionalize all the physical quantities with respect to the scale height H = RT ../ g,
the sound travel time v RTy,s./g, the pressure and temperature at the base of the
layer. We adopt the convention of denoting the unperturbed quantities by a
subscript 0 and the perturbed quantities by a subscript 1. The unperturbed
temperature is then given by To=1—(1—1/I')z, and the unperturbed density
Po= 75TV, where the polytropic index

_dInPy m+1
dlnp, m

These equations are linearized by writing all physical quantities as f=
fo(2)+f1(z) exp (iax — wt), where ax = kxH is the dimensionless horizontal wave
number and w the dimensionless eigenvalue which may be complex.

We shall consider two types of disturbances: optically thin and optically thick.
For optically thin disturbances Newton’s law of cooling becomes applicable and the
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linearized equations take the following dimensionless form:

d w(1—y/T) (ax w(w+q) >
—_— W 4—_
dz(po W)= oty + )(p )— o To(ya+q)/Pt
dp: ((1_‘)’/” ) (‘U""I)IH
= — W) — j 243
dz To(yw+q) @)(po W) yo+q/ Ty’ M
1
= 1 W)+ -1
pob (o+q) )+o(y—1)p1),
= (1= pot)
P T, 1~ PoV).
For the optically thick approximation the perturbed equations become:
d () Ol X)
dz(Po W)= (Po 0)— ( T, D1,
de
2V _ 2
i 6, (2)
dp: _ Pob p1
— +==
dz w( oW) T, To
do’  (1—v/T) < 2 vao) w(y—1)
— =N 7 + + _
dz Gy (oo W) +{ Gy o Gy b1

Here p,, p1, 6 and W are the perturbations in the pressure, density, temperature
and vertical velocity respectively. The ratio of specific heats is denoted by y and G
is the conductivity parameter

K _ K
pO(O) CV(RTbase)3/2 (Izjﬂbasef/2 ’

where « is the radiative diffusivity; g is the inverse of the radiative cooling time
which is related to the parameter G, by q = G, (H/mfp).

The foregoing equations have to be supplemented by the boundary conditions at
the top and at the base of the layer. We have adopted three sets of boundary
conditions (cf. Jones, 1976).

(a) Fixed boundary conditions in which the perturbations in the vertical velocity
and temperature vanish at both the boundaries:

poW =0, 6=0 at z=0,
poW =0, =0 at z=d. (3)
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(b) Adiabatic boundary conditions at both the boundaries:

-1
poW =0, 0=y——£1- at z=0,
Y Po

-1
poW =0, ¢9=——Yy —i—l at z=d. 4)
0

(c) Free boundary conditions at the top which demands the vanishing of the
Lagrangian pressure perturbation and the linearization of the radiative flux condi-
tion, and adiabatic boundary condition at the base of the layer:

~1
peW=0, 0=2""PL 4 ,=90,
Y Po

r-1 T, dé
poW = wp;, o=——W+—"——

—d.
Tw 441, *F ()

We require all the four boundary conditions for complete specification of the
problem for the optically thick disturbances, but for optically thin approximation
the resulting equation in (po W) comes out to be of second order and we do not
require the boundary condition involving 6 on both the boundaries, and so the fixed
and adiabatic boundary conditions become identical.

It should be noted that for the adiabatic case the boundary conditions for
optically thick equations agree with those for the adiabatic equation obtained by
setting g = 0 in optically thin equations.

The governing equations for the optically thick case may be cast in the form

dy
—=AY

dz ’

where A is a 4 X4 matrix whose elements are functions of complex eigenvalue
and Y is the column vector (poW, 6, py, 8')". A suitable choice of grid points z;
(i=0,1,...,N) and the replacement of the equations by the corresponding
difference equations enables us to write the equations as:

Yin—Y_ , YiutY,
=A )
h 2 ©)

where
Y =(poW(z:), 6(z:), p1(z:), Gl(li))T

and h is the step length. This yields four equations in each of the N intervals
(between the N +1 grid points) and hence a total of 4N equations. Along with the
four prescribed boundary conditions we get 4(N +1) linear homogeneous equa-
tions in equal number of unknowns.
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By writing a 4(N +1) dimensional vector X =(xy, X, . . . , X4n+4) With X4 =
PoW(2,), Xame2=0(Zm); Xam+3=P1(Zm), Xam+a=0'(z,) (m=0,1,..., N), we can

rewrite Equation (6) as BX = (. Here B is a block matrix with 8 non-zero elements
in each row except the first two and the last two which in general, will contain only
four non-zero elements resulting from the chosen set of boundary conditions. Thus
for a non-trivial solution of X we demand that det (B) = 0 which gives the required
dispersion relation since the elements of the matrix B are functions of eigenvalue w.
In the actual numerical solution it was found convenient to investigate the adiabatic
approximation when w is purely imaginary and det (B) also turns out to be purely
imaginary. Under such a circumstance the eigenvalues can be located by examining
the changes of sign. These were used as initial guess for evaluating the complex
eigenvalues for the full non-adiabatic case ‘employing Muller’s method.

It was found that the lowest adiabatic mode has no nodes in the pressure
perturbation as well as in the vertical velocity. For successively higher modes the
number of nodes in pressure perturbation increases by one. The number of nodes
in the vertical velocity function are same as that for pressure perturbation when
lw| <V'y ax but for |w| >y ax, the number of nodes in vertical velocity is one less
than that in pressure perturbation. The lowest mode which corresponds to the
Lamb mode in isothermal atmosphere is referred in this work as f-mode, while the
successively higher eigenvalues are referred to as P1, P2, ....

3. Numerical Results

3.1. OPTICALLY THIN APPROXIMATION

We have made extensive numerical computations to calculate the complex eigen-
values for the optically thin approximation with fixed boundary conditions. We
have adopted two values of the polytropic index I'=1.15 and 1.66 with the ratio of
the specific heats y=1.01, 1.05 and 1.1 for I'=1.15, and y=1.05, 1.1 and 1.2 for
I'=1.66. For all the cases considered in this work we have calculated the four
lowest eigenvalues corresponding to f, P1, P2 and P3 modes. The lowest f-mode
which corresponds to the Lamb wave turns out to be stable for all cases considered.
The acoustic modes are determined for two values of the dimensionless horizontal
wave number ax =1 and 2, but for only one value of the radiative conductivity
parameter g =0.0528. It is found that the results for other values of g can be
obtained by noting that the frequencies (i.e. the imaginary part of w) for all the
modes are left practically unaltered by the variation of g, while the corresponding
growth rates come out to be directly proportional to q. It may be noted that this
value of the dimensionless inverse of radiative cooling time corresponds to the
radiative diffusivity k =2 x 10" cm” s™" which is typically obtained at the top of the
solar convection zone and we have chosen the maximum value of g permitted for a
given G by taking the ratio of (H/mfp) to be unity. The base temperature is taken
to be 11 500K and the results are computed for a number of values of the
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parameter T, = Tyop/ Tipase, Namely 0.01, 0.1 and 0.5. We can thus look at the results
as being applicable to a layer whose base temperature is 11 500 K and the
parameter 7, determines the temperature at the top. The layer thickness is given by .

d__1-T7
H (I'-1)/Tr

Let us first discuss the case I'=1.15 (i.e. m =6). For ax =1, we get acoustic
overstability for all the choices of y=1.01, 1.05 and 1.1 for the value of the
parameter 7,=0.01. The case 7, =0.01 represents an almost complete polytrope
and the density variation across the layer is so large that acoustic overstability
occurs for all superadiabatic temperature gradients chosen. However, when 7,
becomes of the order of 0.10 the overstability occurs only for y=1.01 and 1.05,
that is when the temperature gradient is moderately superadiabatic, while for
T, = 0.5 the overstability disappears for y=1.05 and is present only for y=1.01.
Such a value of v is very close to unity and the y-mechanism is likely to contribute
to the overstability of the oscillations. When the wave number is increased to 2, the
overstability is present only for 7, = 0.01 (almost complete polytrope) and y=1.01
and 1.05.

For the case of I'=1.66 (m = 1.5), the overstability for the wave number equal to
1 is obtained for 7, = 0.01 for y=1.05, 1.1 and 1.2, but when T, is increased to 0.1,
the temperature gradient has to be sufficiently superadiabatic to drive the oscil-
lations, that is, the overstability vanishes when y becomes 1.2, but is present for
smaller values of v, and for T, =0.5, the overstability for the same wave number
shows only for y = 1.01 (very likely due to y-mechanism).

All the results which we have discussed so far were obtained with fixed boundary
conditions. We relaxed the boundary condition by letting the top surface to be free
and found that the frequencies were only mildly affected but the growth rates
tended to increase for free boundary condition. However it is found that for
I'=1.15 the growth rates are only very mildly affected by the change in the
boundary condition. This means that the free boundary conditions tend to destabil-
ise the layer in optically thin approximation, the effect being more pronounced for
higher value of I

The overstability arising from the Cowling-Spiegel mechanism for the optically
thin approximation seems to occur when the temperature gradient is sufficiently
superadiabatic and the parameter 7, is sufficiently small. In other words, in the
notation of Jones (1976) a large enough depth parameter favours overstability. It is
worthwhile to observe here that the criterion given by Spiegel (1964) for over-
stability in the limit ax » 1 and T, =0 namely, y <2(m +2)/(2m +3) is borne out
by our detailed numerical results. Graff (1976) has examined the overstabilization
of acoustic waves for optically thin disturbances to find that the joint effect of the
superadiabatic temperature gradient and of the radiative dissipation can generate
acoustic overstability in a simplified model of the solar convection zone.
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3.2. OPTICALLY THICK APPROXIMATION

The coupled system of four equations obtained for the optically thick approxima-
tion is solved numerically for a variety of boundary conditions. Extensive cal-
culations of dimensionless complex eigenvalue w giving the growth rates (wg) and
the frequencies (w;) are performed for fixed boundary conditions. The calculations
are carried out for three values of dimensionless horizontal wave number ax =0, 1
and 2, and for three values of the conductivity parameter G; corresponding to the
physical variables applicable at the top of the solar convection zone (k =2 X
10 cm®s™!, G, =0.0528), at the base of the layer (k=5x10°cm’s™!, G, =
1.32x10™*) which is approximately two scale-height deep, and an intermediate
value of (k =10 cm?s™ !, G, =2.64x107>). We have selected four values of the
parameter T,,i.e. 0.01, 0.1, 0.2, and 0.5. The polytropic index I" is taken to be 1.15
and 1.66, the corresponding value of m is 6.0 and 1.5 respectively. A variety of
values of the ratio of specific heat y ranging from 1.01 to 1.2 for I'=1.15 and from
1.01 to 1.8 for I'=1.66 are chosen. For all cases the four lowest eigenvalues
corresponding to f, P1, P2 and P3 modes are calculated. The f-mode which
corresponds to the Lamb wave always turns out to be stable for all cases consi-
dered. This f-mode is absent for ax =0 and so in that case the four lowest
eigenvalues correspond to P1, P2, P3 and P4 modes. Table I gives a sample of
numerical results showing the dimensionless growth rates and the frequencies for
the case ax =1, I'=1.66. It is clear from the results that the frequencies are pretty
much insensitive to the variation of G, in fact for a large variation of G by a factor
of 400, the frequencies are hardly changed. They are also seen to be only mildly
affected by variations in vy, and are monotonically increasing function of y. They
exhibit the expected monotonically increasing behaviour with ax. The frequencies
also increase with I" and T,, when other parameters are kept constant. However the
growth rates are drastically influenced by all the above parameters. Moreover it is
found that there is no fixed monotonic behaviour with respect to most of the
parameters.

It 1s found in all the cases considered that the growth rates are always mono-
tonically decreasing function of -y when all other parameters are kept constant. Two
features that are evident from the numerical results are that acoustic overstability is
favoured by small values of T,, and by a sufficiently large superadiabatic tempera-
ture gradient, i.e., when v is sufficiently less than I'. Also it is found that the values
of vy close to unity (i.e., the 'y-mechanism) promotes overstability. It is also found
that for small values of T, the overstability is favoured by the smaller values of Gy
while for larger value of T, the larger values of G, favour overstability. The most
remarkable difference between the optically thick and thin results is that in the
optically thick case the growth rates are not proprotional to the conductivity
parameter G and in fact in most cases they change sign as G, varies. This is in
sharp contrast to almost exact proportionality of better than one tenth of a percent
even for values of g as high as 0.0528, for the optically thin case. This is probably a
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manifestation of the fact that the adiabatic limit in the case of optically thick
equations represents a singularity unlike the optically thin case where the
behaviour is smooth in the limit. Some other less pronounced features of our results
are that for larger values of I the effect of 7, is more evident than for the small
value of I. Also in most cases the smaller values of ax favour overstability.
However the behaviour of growth rates with respect to ax or the frequency wy (i.e.
the various modes) shows no fixed pattern and depends on the combination of other
parameters.

As an example consider the case I'=1.15 and ax = 1. For T,<0.1 the P1-mode
is unstable for all three values of G, when y<1.05. For y= 1.1 it is stable for the
highest value of G, (0.0528) while for lower values of G it is still unstable. For
T, = 0.5 the P1 mode is always stable, however the P2 and P3 modes are unstable
for the highest value of G, (0.0528) and y = 1.01, while for other values of y and
G, all the modes calculated turn out to be stable. This clearly shows the operation
of the y-mechanism. Now consider the case I'=1.66 and ax = 1. For T,=0.01 the
P2 mode is unstable for all values of G, when y=<1.1, but for y> 1.1 it is stable for
the highest value of G, while for lower values of G, it is still unstable. For 7, =0.1
all modes calculated are stable for lowest value of G (1.32x 10™*). However for
the highest value of G, the P2 mode is unstable for y=<1.1 and stable for highest
values of v. In the case of T, = (.5 only the P2 and P3 modes for highest value of G,
and y = 1.01 are unstable, while all other cases are found to be stable.

We shall now examine the sensitivity of the Cowling-Spiegel mechanism to the
boundary conditions applied at the top and the base of the layer. We have discussed
the results obtained with fixed boundary conditions, i.e. no flux of momentum
across the boundary surfaces which are also held at constant temperatures. Such
fixed boundary conditions are evidently not realistic when applied to the solar
surface layers. In order to get somewhat closer to the solar surface conditions we
have considered two more sets of boundary conditions, i.e. adiabatic and the free
boundary conditions as mentioned earlier. The results are displayed in Figures 1, 2,
3, 4 for two values of parameters 7,=0.1 and 0.5, and G, =0.0528 and 1.32 X
10™*. The dimensionless growth rate for the P1 mode which has one node in the
pressure perturbation are plotted against ax. Clearly the growth rates for acoustic
modes are highly sensitive to the boundary conditions. The growth rates obtained
by using the fixed and adiabatic conditions at both the boundaries are seen from the
plots not to be too different from each other. The character of the growth rates is
however, drastically altered by the free surface conditions applied at the top
boundary. For the choice of the parameter 7,=0.5, i.e. a small variation of the
temperature across the layer, the free boundary conditions have tended to
destabilize the acoustic modes for both choices of the polytropic index I" and the
conductivity parameter G. The situation is different for 7, =0.1, or a large varia-
tion of the temperature (and hence of density). Here for a large value of G; the free
boundary conditions have always given stable acoustic waves, while the other two
sets of boundary conditions have yielded instability. But for a small value of Gy
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~3.10°F / "\

—5.152—/

-2
=7.10 |-

Fig. 1. The dimensionless growth rate wg for the P1-mode is plotted against the dimensionless wave

number ax for the value of the parameter T, = T,,p/ Thase =0.1 and Gy =5.28 X 1072, The results for

the rigid ( ), adiabatic (-————— ,free (-—+—-— ) boundary conditions are indicated for two
choices of the polytropic index I'=1.15 and 1.66 with y=1.05.
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Fig. 2. The dimensionless growth rate wg for the P1-mode is plotted against the dimensionless wave

number ax for the value of the parameter T, = T,/ Tpase =0.1 and G, =1.32X 10~*. The results for

the rigid ( ), adiabatic (~—-——— ), free (--—-—-—-) boundary conditions are indicated for two
choices of the polytropic index I'=1.15 and 1.66 with y=1.05.

(=1.32x107" the free boundary conditions have tended to overstabilize the
acoustic modes for I'=1.66, while for I'=1.15 the situation is reversed. The
question of realistic boundary conditions needs a careful examination and we hope
to study the effect on the acoustic modes of penetration into an overlying stable
layer in a separate communication.

A remarkable feature of the computation is the occurrence of subadiabatic
overstability in the optically thick approximation for all sets of boundary conditions
and for an almost complete polytrope. It is found that even for y>I" when the
prevailing temperature gradient is subadiabatic, some of the modes turn out to be
overstable when T,« 1 and G; is small. For example for fixed boundary conditions
and I'=1.15, y=1.2 and T, =0.01 the most unstable mode found is the P2-mode
for G, =1.32%x 107, which has the dimensionless complex eigenvalues as (0.0026,
1.253) for ax =1, and (0.0045, 1.036) for ax=0. For ax =2 all the modes
calculated turn out to be stable. Similarly for I'=1.66, y=1.7 and 7,=0.01
several modes turn out to be unstable for the lower values of Gy i.e. 1.32x10™*
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Fig. 3. The dimensionless growth rate wg for the P1-modes is plotted against the dimensionless wave

number ax for the value of the parameter T, = Tyop/ Thase = 0.5 and G =5.28 x 1072. The results for

the rigid ( ), adiabatic (--———- ), free (=« =+ =+ —- ) boundary conditions are indicated for two
choices of the polytropic index I"=1.15 and 1.66 with y =1.05.

and 2.64x107>. The maximum growth rate for ax =0 is for the P2-mode for
G, =2.64x10> and is given by (0.0164, 2.048) and for ax =1 it is (0.0121,
2.190). For ax =2 the P3 mode for G, =1.32%x107* is the most unstable with a
value of (0.0086, 3.291). This shows that we get a significant positive value of
growth rates of order of a percent of the frequencies under favourable conditions
even for subadiabatic gradients. The mechanism for the subadiabatic overstability
is not altogether clear, but it is probable that the k-mechanism is not completely
absent in Equations (2) because of the variation of the opacity even though the
conductivity K is held constant.

It would be interesting to compare our results with those of Jones (1976), who
has made an analytic study of growth rates for the optically thin as well as optically
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Fig. 4. The dimensionless growth rate wg for the P1-modes is plotted against the dimensionless wave

number ax for the value of the parameter T, = Tiop/ Thase = 0.5 and G, =1.32 X 10™*. The results for

the rigid ( ) and adiabatic (~—--—--- } boundary conditions are indicated for two choices of the

polytropic index I'=1.15 and 1.66 with y=1.05. The growth rates for the free boundary conditions
come out to be of the order of 107° and are not shown in the diagram.

thick disturbances in the framework of the quasi-adiabatic approximation. For
optically thin disturbances in the limit ax > 1, his results agree with those of Spiegel
(1964), and also with our numerical results. For optically thick disturbances he finds
that the values of vy close to unity will promote overstability (y-mechanism). This
result is again confirmed by our calculations. Jones has indicated that the large
depth parameter (i.e. small values of 7,) promotes instabilities, which is consistent
with our calculations. However he has pointed out that in the absence of the
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k-mechanism it is not possible to get overstability for superadiabatic temperature
gradients, on the other hand there is overstability occurring for subadiabatic
gradients. This is at variance with our numerical results. We would like to point out
that our numerical results are in perfect agreement with his numerical results for
completely nonadiabatic optically thick equations (Jones, 1977). We do get over-
stability for subadiabatic gradients when T, is very small but in that case the
overstability is even more pronounced for superadiabatic gradients. For small
values of depth parameter (7,=<1) and small values of G, we do not get over-
stability for any value of vy (including the subadiabatic cases). However it should be
noted that we do get overstability even for small values of the depth parameter
when v is close to unity and G is fairly large. For example for y=1.05 and
T,=0.5, I'=1.15, G, =0.0528, which is a pronouncedly non-adiabatic situation,
some of the modes are found to be unstable for ax =0 and 1.

The analytical results derived by Jones (1976) are based on the quasi-adiabatic
approximation which we believe to be not good for 7, « 1. But even for 7T,=<1 it
appears that the quasi-adiabatic approximation is an oversimplification for optically
thick disturbances. Our results show that for optically thin disturbances for all
values of T, the growth rates are very nearly proportional to g, even when q is of
order of 0.05. This is exactly what is expected from the quasi-adiabatic approxima-
tion. However, for optically thick distrubances it is found that even when G is as
small as 107> there is no such proportionality. This clearly shows that numerical
results for completely non-adiabatic optically thick equations do not agree with the
analytic results obtained on the basis of quasi-adiabatic approximation. In other
words the non-adiabatic effects are very significant and cannot be treated in the
framework of quasi-adiabatic approximation when the disturbances are optically
thick. This is probably due to the fact that the optically thick equations are of fourth
order while the adiabatic equations are of second order only and so to treat the
non-adiabatic effects as a perturbation over the adiabatic solution is not fully
justified. Specially, To=0 is a singular point of both the adiabatic as well as
non-adiabatic equations. However the solutions in neighbourhood of this point
have different character for the two sets of equations. The fully non-adiabatic
fourth order system of equations has solutions of form poW=
a, TS +a, Tg™! In T,, while the adiabatic second-order system has solution of
form poW = boTq', where a,, a, and b, are arbitrary constants. Thus clearly for any
value of Gy, however small, these two solutions can never agree for sufficiently
small values of Ty, and so the quasi-adiabatic approximation will breakdown for
small values of Tj i.e. for an almost complete polytrope. Even for 7,=<1, it is
obvious that adiabatic solutions in general cannot satisfy all the four boundary
conditions which are applicable for the full system of equations and so it would be
necessary to develop a boundary layer theory (analogous to the boundary layer
theory for viscous flow) to incorporate the effects of this thermal boundary layer. In
the boundary layers the eigenfunctions will be significantly different from the
adiabatic eigenfunctions which in any case cannot satisfy the required boundary
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condition. This thermal boundary layer clearly makes an appreciable contribution
to the eigenvalues, and especially the growth rates turn out to be sensitive to the
boundary conditions. It may appear that by choosing adiabatic boundary conditions
one can avoid the boundary layer since the adiabatic solution will also satisfy these
boundary conditions by taking care of the temperature perturbation 8. However it
should be noted that even for this set of boundary conditions the values of the
derivatives of 8 at the boundaries will not be the same for the two sets of equations
and there is no reason to assume that the boundary layer will be absent. To examine
this aspect we calculated the eigenfunctions of non-adiabatic as well as adiabatic
equations for the adiabatic boundary conditions. It is found that eigenfunctions
poW, 6 and p, for non-adiabatic equations are not significantly different from the
adiabatic eigenfunctions. However it is found that the flux perturbation is
significantly different near the boundaries, although in regions away from the
boundaries it is nearly the same as adiabatic functions. Thus the boundary layer is
important even for adiabatic boundary conditions. We believe that discrepancy
between our results and Jones’ results is due to this thermal boundary layer which
has not been accounted for by Jones. ' :

4. Discussion and Conclusions

The main thrust of the computation was to establish the existence, albeit numeri-
cally of the overstable acoustic modes in a polytropic layer for disturbances of
arbitrary optical thickness due solely to the Cowling-Spiegel mechanism. It is clear
from our numerical results that the acoustic overstability does indeed arise in such a
layer provided the thermal dissipation operates efficiently and there is a sufficiently
strong superadiabatic temperature gradient driving the instability. The principal
source that is responsible for exciting the acoustic waves is the flux of thermal
energy that is maintained in the layer. The acoustic overstability arises when the
restoring force resulting from the compressible effects is sufficiently strong to
induce oscillations caused by the combined influence of buoyancy forces, pressure
fields and thermal dissipation. The frequencies are found to be insensitive to
boundary conditions, but the growth rates depend in a sensitive manner on the
boundary conditions adopted and also on the type of optical disturbance.

We have investigated the mechanism for an idealized model by choosing a
polytropic layer. This may not be the true description of the solar surface layers, but
the polytropic atmosphere has the analytical simplicity, and at the same time has
the essential physical features which are believed to be responsible for the self-
excitation of sound waves. We have assumed the radiative conductivity to be a
constant in the present calculations, but in the subphotospheric layers the radiative
conductivity varies by three orders of magnitude over a couple of scale-heights
largely because of the steep increase in the absorption coefficient in the hydrogen
ionization zone. This mechanism will almost certainly be very efficient in driving the
oscillations in the solar convective zone. Ando and Osaki (1975) have given a
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global solution for non-adiabatic, non-radial oscillations of the Sun and they find a
large variety of overstable acoustic modes with the most unstable modes centred at
a period of 300s with a wide range of associated horizontal wavelengths. The
driving of these oscillations takes place mainly in a narrow transition zone in the
sub-photospheric layers between the inner convective layers and outer radiative
zone. Amongst the two excitation mechanisms providing the strong driving, the
Cowling-Spiegel mechanism was found by Ando and Osaki to be less efficient than
the k-mechanism on the basis of the contribution of the work integrals.

Our work merely brings out the existence of acoustic overstability as the self-
excitation mechanism for sound waves in the solar convection zone. It is almost
certain that the x-mechanism is dominant for the five minute oscillations, but it is
conceivable that the simultaneous operation of several physical mechanisms could
be responsible for exciting a variety of oscillatory fields on the solar surface. There
is already observational evidence for a spectrum of oscillatory periods varying from
90's to 50 min excited at various levels in the photosphere and chromosphere. It
cannot be ruled out that some of the shorter period oscillations could largely be due
to the Cowling-Spiegel mechanism. We would like to conclude by remarking that
under suitable conditions it is possible to excite sound waves directly in an unstable
compressible atmosphere provided there is efficient radiative transfer. The
instability is sustained by the conversion of the thermal flux in the medium into the
mechanical flux. The favourable condition for promoting the occurrence of acoustic
overstability is a large phase lag between the thermal field and the velocity field
brought about by the process of heat transfer. The adjustment of temperature takes
time as a result and if, at the phase of greatest compression heat is communicated to
the gas and at the phase of greatest rarefaction it is abstracted from it, a condition
favourable for the self-excitation of sound waves arises. In the present work we
have not included the effect of viscous dissipation on the growth rates of the
acoustic modes. This may well turn out to be important.
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