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ON THE COMPOSITUM OF TWO POWER SERIES RINGS

SHREERAM S. ABHYANKAR, WILLIAM HEINZER, AND SYLVIA WIEGAND

(Communicated by Louis J. Ratliff, Jr.)

Abstract. This paper concerns subrings of the bivariate power series ring over

a field.

In this note, we study subrings of the power series ring k[[X, Y]] in two

variables over a field k .

In particular, in § 1, we exhibit an element z in k[[X, Y]] which is transcen-

dental over the compositum A — k[k[[X]], k[[Y]]] of the power series rings

/:[[X]] and k[[Y]]. In fact we show that the power series ring k[[X, Y]] has

uncountable transcendence degree over the compositum A .

Stephen McAdam raised a question, discussed in [HW], concerning the ex-

istence of a non-Henselian Noetherian two-dimensional local domain S such

that S/P is Henselian for each height one prime P. In §2 of this article, we

construct such a domain S, lying between k[[X, Y]] and the compositum A ,

and containing an element transcendental over A , such as z .

In §3, some questions are raised concerning various subrings of k[[X, Y]].

Also we include an argument due to Kunz that the compositum is not Noethe-

rian.

We would like to thank Ray Heitmann for a careful reading of an earlier draft

of this paper and for providing us with an improved proof (given in § 1 ) of the

transcendence of the element z mentioned above. Also Heitmann has com-

municated to us another proof that the compositum A is not Noetherian. We

thank the referee for pointing out that the transcendence degree of k[[X, Y]]

over A is uncountable.

1. Power series

Proposition 1.1. For every element a of the compositum A = k[k[[X]], k[[Y]]],

there exists a finite dimensional k-vector subspace W o/A:[[T]] suchthat ae

W[[X]].
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Proof. We see that a can be expressed as a finite linear combination

a=pl(X)ql(Y) + ---+pd(X)qd(Y),

where each pe(X) e k[[X]] and each qe(Y) £ k[[Y]]. Because a £ k[[Y]][[X]],

we get

a = r0(Y) + rx(Y)X + ■ ■ ■ + rj(Y)Xj + ■ ■ ■ ,    with r}(Y) £ k[[Y]],

and now upon letting

Pe(X) = pe0+pelX + ■ ■ -+pejXJ + ■■■ ,    withpej £ k

we obtain

r;(Y) = pXjqx(Y) + ■■■+ Pdjqd(Y)   with pej £ k for all j

and hence

rj(Y)£W   for all;

where  W = the finite dimensional k-vector space generated by ql(Y), ... ,

qd(Y). Thus a£W[[X]].

For convenience, we assign letters to some power series rings.

Notation 1.2. List of power series rings and localizations:

R = k[[X,Y]].

A = k[k[[X]], k[[Y]] ] = fc[[X]][/c[[7]] ] = k[[Y]][k[[X]] ].

D = k[[Y]][X].

E =   U  k[Wl[[X]], where W is the set of all finite dimensional

k-vector spaces contained in fc[[F]].

£0= U *TO1

= {power series in X, with coefficients in some W £ W}.

Let Af denote the maximal ideal of R and let A1 = AAnM .

Corollary 1.3. (i) DcAcEQcEcR.

(ii) None of these elements are in A :

ux =lXiYi,

u2 = lX'(Y' + YM +■■■),

u4 = (\-XY)'/2.

(All powers of Y occur as coefficients of the powers of X in w4). Note that w,

and u3 are in E\E0, while u2 is outside E.

Remarks 1.4. 1. Actually w, = 1/(1 - XY) and u2 = w,/(l - Y). Hence m,

and u2 £ A'. Question: are w3 and w4 e A1' ? Is u3 transcendental over A ?
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2. It is possible to choose an uncountable set {fa(Y)}aen of algebraically

independent power series in Y over k . (This can be proved by a cardinality

argument: it is true for the prime field K of k, since K is countable, but

AT[[r]] is uncountable and so has uncountable transcendence degree over K.

It follows that the same holds for k[[Y]].)

3. In [Al], it is shown that if {fr(Y)}r€r is a countably infinite set of al-

gebraically independent power series in Y over k, then {fT(Y)X}z€r is a

countably infinite set of analytically independent power series over k .

Definition 1.5. Let Y be a countably infinite subset of Q from Remark 1.4 (2),

then {f (Y)} r is a countably infinite set of algebraically independent power

series over k . Set

z = J2f7(Y)Xy£R.
rer

Proposition 1.6. The element z from Definition 1.5 is transcendental over F,

the quotient field of A .

Proof. We will omit the proof, since it is clearly contained in the proof of 1.8

below.

By revising the procedure used for construction of z, we can construct un-

countably many transcendental elements zß as follows:

Definition 1.7. First, let {/„ : ß £ 0} be an uncountable disjoint collection of

countably infinite subsets of Q. Say

lß = {ß(0),ß(l),...,ß(n),...}.

Let {fa(Y)}a€çi> be an uncountable set of power series in k[[Y]] which are

algebraically independent over k . Now set
oo

Zß = J2fß(n)(Y)X" '       f0r eaCh ß-

Proposition 1.8. The elements z„  are algebraically independent over the quo-

tient field of E, and hence the power series ring K[[X, Y]] has uncountable

transcendence degree over F, the quotient field of A .

Proof. It will suffice to prove the following:

Claim. For each AeO, zx is transcendental over the quotient field ofE[{zß} .J,

Proof of Claim. Suppose not. Write z = z} . Then there exists a finite subset

{z,, ... , zm} of {Zß}ßfti and a nontrivial expression

(*) anz" +--- + a0 = 0,

where a- £ E[{z{, ... , zm}] for 0 < j < n. By Proposition 1.1, there ex-

ists a finite-dimensional /c-vector subspace  W of &[[F]] so that a   e k[W]

[{z,, ... , zJ][[X]], for 0 < j < n. Relabel z, = ET=ofi,(Y)x^ for > <

/ < m, and z = ZZofi(Y)x' ■   Then aj e kmiUlMY^mX]], for
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Q<j<n. Recall that the set {f(Y)}™0 U IJ/li {///(^)}^o is algebraically in-
dependent over k . Consequently, if L denotes the algebraic closure of the quo-

tient field of k[W][\JJLl{fn(Y)}110\ (in a fixed algebraic closure of k[[Y, X]] ),
then at most finitely many of the f(Y) are in L.

Choose i minimal so that /■ £ L. Then we revise z tobe (z-J2'tZo ft(Y)x')

¡X1, and revise the a- as necessary, including if some 5 is such that Xs di-

vides üj for all 0 < j < n, then we replace a by aj/Xs. As a result, we

may suppose in ( * ) that aj e L[[X]] for all j, z(Y, 0) = f0(Y) £ L, and

aj(Y, 0) 7^ 0, for some j . However, setting X = 0 in ( * ):

an(Y, 0)/0" + • ■ • + aj(Y, 0)f¿ + • • • + a0(Y, 0) = 0,

leads to a nontrivial algebraic expression for f0(Y) over L, which is impossible

since L was algebraically closed.

Remarks 1.9. 1. Abhyankar and Moh have shown there exists an element of

k[[X, Y]] which is analytically independent over k[[X, AT]] [AM, Theorem

3]. Also Sheldon showed k[[X, Y]] has infinite transcendence degree over the

quotient field of k[[X, XY]] [Sh].

2. In his thesis [H], Huang did some interesting work on the algebraic closure

of the quotient field N((Y)) of a power series ring jV[[T]], where N is an

algebraically closed field. Newton's theorem [A2] or [C] states that, in case N

is an algebraically closed field of characteristic zero, the algebraic closure of

N((Y)) is N(Y)b = {"power series" Ç in Y over N so that the exponents

in C are a well-ordered subset of the rationals and the set of denominators

occurring in the exponents of Ç is bounded} = \J{N((Y''")) : n a positive

integer}.

However for characteristic p £ 0, Chevalley shows N(Y)b is smaller that

the algebraic closure by exhibiting a specific irreducible polynomial over N(Y)b

of degree p [C, p. 64]. In [Al], a factorization of this polynomial is given, with

the factors being generalized power series where the exponents have unbounded

denominator. Using this type of factorization, M. F. Huang (in [H]), shows that,

if TV is an algebraically closed field of characteristic p > 0, then N{Y)b con-

tains an algebraic closure of N((Y)). Here, N(Y)b - {"power series" C in

Y over TV so that the exponents in Ç are a well-ordered subset of the rationals

and the set of denominators occurring in the exponents of Ç is bounded except

that these denominators may include arbitrarily large powers of p }. (Huang

also gives criteria for certain generalized power series to be algebraic over the

field of meromorphic functions N((Y)). For example, if ai are integers be-

tween 0 and p - 1  and aZi denotes the image of a¡ in the field N, then

Huang shows that a = J2^[ Q,Y~ is algebraic over N((Y)) if and only if

ß = S/^i ai/p' is a rational number.)
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2. A non-Henselian example

Proposition 2.1. Let (32 ,Jf) be an analytically normal, local, unique factor-

ization domain with completion (31, JÍ). Assume that for each nonzero prime

€ of 32, S n32 ^ (0), and that for all but at most a finite number of the height
one primes 30 of 32,32/3* is complete. Let 3? be the field of fractions of 32,

and 3? the field oj fractions of 32. If S? is any field between 5? and 3f, then

5?= -S5' (132 is a normal local domain with maximal ideal Jf n^. Moreover,

dim32 = d\mS?.

Proof. It is always true that S? is a Krull domain (5" is an intersection of

the discrete valuation rings formed when the essential valuations of the Krull

domain 32 are restricted to S? ) and so 5? is normal [N, 33.4]. Also each

height one prime in S? is the contraction of a height one prime in 32. In

view of the theorem of Mori-Nishimura [M, Theorem 104], to show that &* is

Noetherian, it suffices to show that each prime ideal S in S? of height greater

than 1 is finitely generated. If 3° is a height one prime in 32 such that 31/3*

is complete, then

3ZI& = 32/3^32,

so 3s32 is a height one prime in 3? . Our hypothesis implies that all but a finite

number of the height one primes of 32 are of the form 3s32 for 3s a height

one prime of 32 . Since <S is a prime of height greater than 1 in 3* = 32 í)¿2?

and & is the union of the height one primes of 5? contained in S, all of

which are contractions of height one primes of 32, there exists a height one

prime 3° of 32 such that 32 ¡30 is complete and 3*32 n S* is contained in

¿?. Therefore

32/3* = 3*/(3332 r\S*)= 32/3*.

Since 32 isa unique factorization domain, 3s is principal. Now, since princi-

pal ideals in a Krull domain have no imbedded primes,

3>32r\3* = 3>3*.

Thus &' ¡SPS? is Noetherian and so @'j&SP is finitely generated. Hence S

is finitely generated, which completes the proof that 5? is Noetherian. Now

clearly S? is local, with maximal ideal Jf n S*. Moreover, the existence of a

principal height one prime 3° of 32 such that 32/30 = SPj&S' implies that

d\m32 = dimS* [M, Proposition 12K, p. 78].

By Proposition 1.6, there exists an element z in R = k[[X, Y]] which is

transcendental over F , where F is the field of fractions of A . Let

S = RnF(z).

Proposition 2.2. S is not Henselian, but S/P is Henselian, for each height one

prime P of S.

Proof. Notice that D' = DMnD , where D = Ac[[y]][A], satisfies the hypotheses

on 32 in Proposition 2.1, and thus S is a two dimensional normal local do-
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main. The fact that S is not Henselian follows from a result that goes back to

F. K. Schmidt [S], [BBKN, Satz 2.3.11, p. 60], which states that any rank-one

discrete valuation domain of the field of fractions of a Henselian domain must

contain the domain. Therefore the field of fractions of a Henselian domain

which is not a field cannot be a function field of positive transcendence degree

over some subfield. It follows that S, which has field of fractions F(z), is not

Henselian. Now also for each height one prime P of S,

S/P^R/PR^A/(Pr\A),

so S/P is Henselian, for each height one prime P of S.

3. Some further remarks and questions

It would be interesting to know more about the structure and quotient fields

of the power series rings discussed in §§1 and 2, so that, for example, we could

more easily decide if a given power series belongs to them.

In addition, we are interested in the following power series rings:

B = k[k[[X]], k[[Y]], k[[X + Y]]]. (Notes: I(A + Y)' 0 A , but it is in F .

Is the quotient field of B properly larger than F ? X(A + Y)l] £ A ; is it in F ?)

BQ = k[{k[[X + aY]], a £ Q.}], for Q any subset of k U {oc}. Convention:

For a = oo,X + aY=Y. Also P, denotes k[k[[X +Y]]] = k[[X + Y]], etc.

(Conjecture: If £i ¿ tí, then Ba ¿ Bn, .)

Cçi = k[{k[[f]] : f £ £1}], where Q is a subset of the polynomials in A and

Y with zero constant term. Two specific rings here that it would be interesting

to consider are Cn and Cn , where fi, is the set of irreducible polynomials

in A and Y with zero constant term, and ii2 is the set of all polynomials in

A and Y with zero constant term.

Also we wonder which of the rings mentioned in this paper (and/or the appro-

priate localizations) are Noetherian, Henselian, complete, unique factorization

domains, unicomplete, or unihenselian? (We say a ring S is uni- P for a prop-

erty P, if S/H is P for every height one prime ideal H in S.) What are

their prime spectra like?

The following result concerning the Noetherian question was communicated

to us by Reinhold Hübl and Ernst Kunz. (Kunz stated that he believes it is

well-known. We are grateful to Kunz for sending us the proof so that we could

include it here.)

Proposition 3.1. Let k ç K be fields such that K has infinite transcendence

degree over k . Then K ®kK is not Noetherian.

It follows that k[[X]] ®k k[[X)], which localizes to k((X)) ®k k((X)), is

not Noetherian. In other words, the compositum A, which is isomorphic to

k[[X]\ ®k k[[Y]], is not Noetherian.

Proof (due to Kunz). Choose a transcendence basis {xj of K over k. Then

K ®k K has a free basis over k({xx}) ®k k({xf}), and 1 may be taken as

part of the free basis. Therefore if K <&k K were Noetherian, it would follow
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that k({xx}) ®fc k({xx}) would also be Noetherian (see, for example, [AH]).

Now the module of differentials Qk/rx xyk is infinite dimensional as a k({xx})

vector space [K, 5.4]. This implies Qk,tx i,« cannot be finitely generated as a

/:[{x/1}]-module, since

Qfc({x<})A = k({x¡}) %({JCJ] &k[{xj]/k

[K, 4.22]. But Cllk[{x }]/k s I/12 where / is the kernel of the map

fc[{xj] ®k k[{xk}] -> ^[{^}]        (via a®b >-> ab)

by [K, 1.21]. Then / cannot be finitely generated as an ideal of ^[{xA}] ®k

k[{xÁ}]. Therefore A:[{x/l}]®fcrV[{xA}] is not Noetherian and neither is K®kK.

Remark, (i) As a consequence of 3.1, Hübl also observed that the localization

Á of A = k[k[[X]], k[[Y]] ] is not Noetherian. Since by Proposition 2.1,
R n F is Noetherian, it follows that A1 is properly contained in RtlF .

(ii) In an earlier version of the paper, we asked about the existence of some

concrete power series which are transcendental over the ring A. Hübl gave

us the following example: Choose a countably infinite set {AJO < i < oo} of

complex numbers which are linearly independent over the rational numbers,

then the power series {e ' \i £ 1} are algebraically independent over the com-

plex numbers. (For example take X¡ = u+\/2.) Now, as in Definition 1.5, set

z = Yt'ito e ' X'. By Proposition 1.9, z is transcendental over A .

Added in proof. Rayner has also described an algebraically closed field contain-

ing a power series ring /V[[y]], where N is an algebraically closed field of

characteristic p ^ 0 [R].
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