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WAVES IN THE SUNSPOT UMBRA
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Abstract. The magnetoacoustic modes excited in a thermally conducting polytropic fluid layer in the
presence of a vertical magnetic field are examined with a view to classify them with the help of phase
diagrams. The possibility of identifying the umbral flashes with overstable magnetoacoustic modes is
explored.

1. Introduction

The generation and propagation of hydromagnetic waves in the solar atmosphere
have received considerable attention because of their possible role in providing the
necessary energy to heat the overlying layers and also because of their importance in
accounting for some of the features associated with active regions. Specifically, there
have been observations in sunspots of flashes in the umbra and running penumbral
waves (Giovanelli, 1972). Suggestions have been made by Savage (1969), Moore
(1973), and more recently by Uchida and Sakurai (1975) that overstable oscillatory
motion is a possible mechanism to account for both these phenomena. Furthermore
the overstable oscillations are also important from the theoretical point of view, since
the theoretical work of Chitre (1963) and Deinzer (1965) necessarily requires some
mode of non-radiative energy transport in order to produce consistent spot models.
Parker (1974) has suggested that Alfvén waves can account for the ‘missing energy’
of sunspots. However Parker’s work has been criticised by Cowling (1976), pointing
out that the incompressibility assumption and the Boussinesq approximation do not
permit any distinction between Alfvén waves and magnetoacoustic waves; the
motions excited by overstability are expected to be quite different from those
corresponding to Alfvén waves.

The umbral flashes which appear as periodic brightening in sunspots were first
observed in the H and K lines and also in Ha lines (Zirin and Stein, 1972). The
flashes manifest themselves as bright spots of approximately 1000 km in diameter
occurring in coherent sequences with a period ranging from 110 s to 190 s. Although
flashing may appear continuously for several hours in the umbra, a coherent
sequence normally lasts only up to an hour or so. It is also observed that the flashes
which seem to arise in the central regions of the umbra move out towards the
penumbra with an average speed of 40 km s™". In large sunspots along with umbral
flashes the running penumbral waves are seen and there is some evidence that the
two are phase locked. There is some indication that the larger the spot magnetic field,
the shorter is the period associated with umbral flashes and penumbral waves.

It is well known that sunspots are endowed with strong magnetic fields (= 2000 G)
and the field is largely vertical in the umbral region. The stability of a fluid layer in the
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presence of a vertical magnetic field has been discussed by Chandrasekhar (1961)
and more recently by Savage (1969) and Parker (1974). But all these investigations
are performed in the framework of the Boussinesq approximation which ignores the
effects of compressibility and the consequent density variation in the steady state.
Such an analysis is hardly applicable to sunspots where there is believed to be a
substantial density variation from the base of the spot to its surface. Besides, the fast
(magnetoacoustic) modes are filtered out in the Boussinesq approximation and it is
just these modes which turn out to be very important in understanding the velocity
fields in the sunspot penumbra (Nye and Thomas, 1976; Antia et al., 1978, hereafter
referred to as Paper I). The effect of compressibility has been considered by
McLellan and Winterberg (1968), Bel and Mein (1971), and more recently by Bel
and Leroy (1977). These authors have studied the local dispertion relation and thus
although their analysis includes the fast modes, still it does not incorporate density
variation in the steady state. Furthermore they have not considered the effect of
thermal dissipation, without which the oscillatory modes are always neutral.

The motivation of the present work is to include the full effects of compressibility
and thermal dissipation on the modes excited in a fluid layer in the presence of a
vertical magnetic field. For the sake of simplicity we study the stability of a thermally
conducting polytropic fluid layer with infinite electrical conductivity, pervaded by a
uniform vertical magnetic field. We explore the possibility of identifying the umbral
flashes with overstable magnetoacoustic modes excited in such a fluid layer.

The rest of the paper is arranged as follows: the basic equations and boundary
conditions are set out in Section 2, the classification of oscillatory modes into fast and
slow modes is considered in Section 3. Finally the numerical results and discussion
are given in Section 4.

2. Mathematical Formulation

We investigate the linear stability of a plane parallel thermally conducting inviscid
fluid layer stratified under constant gravity in the presence of a uniform vertical
magnetic field. Further we assume the fluid to be an ideally conducting perfect gas
with unit magnetic permeability. The governing equations in the usual notation are:

ov iXB op
—4(v-V)V)=—Vp+pg+t——  —+V:(pv)=0,
p(at (v V)V) Vp+pg . (pv)
oT op
pCv(57+v'VT)—RT(§+v-Vp>=V-(KVT), P=RoT,
1 6B
vxH=2"i  yxE=-1%8
c c ot
XB
V-B=0, E vc =0.
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Assuming the static state to be polytropic with the associated index ['=
(d 1In Py)/(d In py), and following the same procedure and approximations as given in
Paper I we arrive at the following set of perturbed equations in the dimensionless
form with distance expressed in units of RT,/g and time in \/R—To/ g. Hereafter all
quantities are assumed to be in dimensionless form unless otherwise stated:

d(pov;) wpo w .
P 09— 2 P —kypolivs) »
dz T() To ! k pO(lv )

dpP, Po P
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dz*

Gs = —wk, P+ (GBki +w200)(i0x) .

Here P; and 6 are the perturbations in the pressure and temperature respectively,
v, and v, are the components of velocity v in x and z directions, 7y is the ratio of
specific heats, K is the constant thermal conductivity in steady state. The opacity is
assumed to be of the form ~ T”p", where the constants » and A are adjusted so as to
make conductivity K, constant in steady state. In Equations (1)

Kog By
G = d Gg=—F77—"
“ Phbase Cv (R T‘basc):;/2 an B 4 7TR Tbasep base

are the dimensionless parameters which are measures of the effectiveness of radia-
tive dissipation and magnetic field respectively. The quantities occurring on the right
hand side of the definitions of Gz and G, are in standard units.

It can be seen that this set of equations is of sixth order in z derivatives and hence
for a complete specification of the problem we require in all six boundary conditions
at the bounding surfaces. The four of these may be taken to be same as those for a
non-magnetic fluid (viz. v, = 0 and # = 0 at both the boundaries), while an additional
boundary condition will have to be imposed on the magnetic flux perturbations at
each of the boundaries. In the simplest cases this can be taken as b, =0 (dv,/dz =0)
or b,=0 (v, =0), where b, and b, are respectively the horizontal and vertical
components of magnetic field perturbations. Specifically we shall adopt the following
three sets of boundary conditions.

(I) Fixed boundary conditions in which both the boundaries are maintained at
constant temperature and there is no momentum flux across the boundaries. Further
the perturbations in the horizontal component of magnetic field is also assumed to

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System



.63...67A

1979SoPh. .

70 H. M. ANTIA AND S. M. CHITRE

vanish at both the boundaries, which gives
do,
pov, =0, =0 and 5=0 at z=0 and z=d. (2)

(I) Fixed boundary conditions in which the perturbation in the vertical
component of magnetic field is assumed to vanish at both the boundaries, while the
first two conditions are same as in the first case. This gives

pov, =0, 6=0 and v,=0 at z=0 and z=d. 3)

(IIT) Free boundary conditions at the upper boundary, which demand the vanish-
ing of the Lagrangian pressure perturbations and the horizontal component of
magnetic field, and the linearization of the radiative flux condition. The lower
boundary is assumed to be fixed as in (I):

pov; =0, 6=0 and %=O at z=0
dz
and
Pol;z —wP1 + kaB(iUx) =0 , )
r-1 I'T, dé
0— z+ _=O, t =d. 4
ol 27 4(-1) dz , at 2 @
do,
a0 ,

The set of Equations (1) supplemented by the boundary conditions is solved
numerically by a method described by Antia (1979) to obtain the complex eigen-
values w and the corresponding eigenfunctions for various perturbed quantities.
Most of the results are obtained for the first set of boundary conditions since for this
case the eigenfunctions are simplest to handle and the classification of modes
becomes relatively easy as will become evident in the following section.

3. Classification of Modes

We shall first discuss the classification of various modes that are excited in the
compressible medium in the presence of a vertical magnetic field. It can be seen from
Equations (1) that if k, =0, the last equation gets decoupled from the other equa-
tions; furthermore the remaining set of equations does not contain any term
involving the magnetic field. This gives the usual acoustic modes for k, =0 (with
v, =0), while the last equation involving only v, yields eigensolutions with P, =0,
v, =0 and v, #0. These latter modes may be identified with the Alfvén waves with
the wave-vector along the field lines. These Alfvén modes are not affected by thermal
exchange and they remain neutral even in the presence of thermal dissipation. For
small values of Gp, the Alfvén modes have lower frequency compared to the
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corresponding acoustic modes. For k, = 0 the frequency of Alfvén modes is propor-
tional to v Gg and consequently by increasing Gp sufficiently the frequencies can be
made higher than those of acoustic modes which do not depend on G for the case
k. =0. For non-zero values of k,, the acoustic modes will have non-zero v, and
correspondingly the Alfvén modes will have non-zero v, and P;. For both the series
of modes the number of nodes in various perturbed quantities increases with w. As
there is an overlap of the frequency of the two series, itis rather difficult to classify the
modes, into two distinct series for moderate values of k,. Because of the boundary
conditions and stratification in the layer the various modes are a mixture of pure
modes which we might have obtained for an infinite homogeneous medium, and
hence there is no clear phase relationship between various perturbed quantities for
the two series of modes. It is found that as &, increases the frequency of the lower of
the two series of modes (hereafter referred to as slow modes) decreases very
gradually and should tend to a finite limit as k, - 0. For small values of the magnetic
field, some of these slow modes may become convective modes at higher values of &,
in the absence of thermal dissipation. However a sufficiently strong thermal dis-
sipation restores their oscillatory character. On the other hand, the frequency of the
higher of the two series of modes (hereafter referred to as fast modes) increases
monotonically with &k, and tends to infinity as k, - 0. Thus for very large values of k,
the fast modes have frequencies much higher than those of slow modes, and it is not
difficult to distinguish between them. As the magnetic field decreases, the fast modes
go over into the acoustic modes, while the slow modes go over into the gravity or
convective modes depending on the temperature gradiant.

To classify the modes unambiguously into fast or slow modes we consider the
non-dissipative case (G = 0). In this case the eigenvalues w are purely imaginary for
both the modes, and it is possible to eliminate # from Equations (1) to get the
following fourth order system of differential equations,

1 ik,
) (2o

dz \w =;T—o o/ yTopo w

dpP, [ 2 [1 - ('Y/F)]] Pol; 1

—=| -—w "+ — P, 5

dz @ Y]B w Y]b ! ( )
dzvx

GB? = iwk P+ (Ggk? +®°po)vx .

To illustrate the classification of modes we shall consider the first set of boundary
conditions which, for G, =0, become

v,=0 and ‘;—’;"=0 at z=0 and z=d. (6)

For these equations the eigenvalues are either real or purely imaginary. It is
evident from the equations that for purely imaginary values of w, the perturbed
quantities v,/w, P; and v, are all real and it is then possible to study their phase
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relationship. It should be noted that the introduction of thermal dissipation produces
only a small change in the eigenvalues making them complex, and the classification
based on non-dissipative case serves as a good guide to the corresponding modes
with dissipation. Further we appeal to the phase diagrams discussed extensively by
Eckart (1960) and more recently by Scuflaire (1974) who has used it to classify the
modes arising in the study of non-radial oscillations of condensed polytropes.
However in the present case since the equation is of fourth order, both the slow and
fast modes can have propagating (oscillatory) character simultaneously, above a
certain frequency. To study the phase relations we plot all the six possible combina-
tions of the four basic perturbed quantities (v,/w, P;, v,, dv,/dz) against each other
as shown in Figures 1 and 2, for different cases. For all the cases the plots are assumed
to start from the base of the layer. It turns out that the various modes fall in two
distinct classes (fast and slow) with the lowest fast mode (F0) occupying a unique
position in the sense that it shares characteristics of both the classes of modes. The
following features emerge from the plots which are displayed in Figures 1 and 2:
(1) (vx—P,) and [(dv,/dz)—(v./w)] diagrams: These diagrams show the phase
relation between v, and P; and dv,/dz and v,/ w. It is found that for lower values of
Gp the eigenfunctions have some distinct phase relationship and can be clearly
identified with the help of these diagrams. For fast modes v, and P, (or, dv,/dz and

p
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\

=
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Fig. 1. The phase diagrams for I'=1.66, Gg =0.0239, T, =0.33, vy =1.1, and k, = 1.0 displaying the
relative phase of all six possible pairs of the four basic perturbed quantities (v,/w, Py, v,, dv,/dz), for three
different modes (FO, F2, and S2).
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Fig. 2. The phase diagrams for I'=1.66, Gg =0.215, T,=0.33, y= 1.1, and k, = 1.0 displaying the
relative phase of all six possible pairs of the four basic perturbed quantities (v,/w, Py, v,, dv,/dz), for
three different modes (FO, F2, and S2).

v,/ w) are out of phase and the corresponding phase paths lie essentially in the second
and fourth quadrants, while for slow modes the paths lie essentially in the first and
third quadrants. The FO mode has the unique behaviour in that its phase path lies in
the first or third quadrants in the [(dv,/dz) — (v./w)] plane, while it lies in the second
or fourth quadrant in the (v, — P;) plane. Such a behaviour is also observed in the
phase diagrams for lower harmonics or high values of k,. However it is found that the
above phase relationship doesn’t hold good for higher values of Gz and moderate
values of %, (=1).

(2) [P;—(v,/w)] and [v, — (dv,/dz)] diagrams: The motion of the phase point in
these diagrams is generally anticlockwise (about the origin) for both fast and slow
modes, except for the FO mode, for which the motion of the phase point is partly
clockwise and partly anticlockwise. Further, normally for the successive harmonics in
the same series of modes the phase point has one more node in the perturbed
quantities. Thus the number of times the phase point crosses the v,/w (or dv,/dz)
axis in the anticlockwise sense gives the order of the harmonic involved. However,
again at higher magnetic field or for a layer involving large density variation the
number of crossings may not exactly give the order of harmonic involved, but still the
motion of the phase point remains essentially anticlockwise in these diagrams.

(3) [vy—(v,/w)] and [P, — (dv,/dz)] diagrams: In these diagrams the motion may
appear to be quite irregular at first sight but these diagrams are the key to distinguish
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between fast and slow modes. It is found that in these diagrams the motion of phase
point is anticlockwise for slow modes, while it is clockwise for fast modes, thus
enabling us to distinguish between the two types of modes. However again for k, =1
and Gp = 1 the situation is somewhat complicated and the motion of phase point is in
general partly clockwise and partly anticlockwise. In such cases if we count each node
of eigenfunction as positive if it crosses the corresponding axis in anticlockwise sense
and vice versa, then it turns out that the algebraic sum of number of nodes in these
two diagrams gives a reliable and consistent index for classifying the modes. Thus if
this sum is positive, we have a slow mode and for negative sum, we get a fast mode.
This criterion may not always apply to the FO mode which occupies a singular
position in this respect and can be easily identified by its behaviour in (P; —v,) and
[(dv,/dz)— (v,/w)] diagrams.

4. Numerical Results and Discussion

We shall discuss the behaviour of growth rate with respect to various parameters of
the layer for the first set of fixed boundary conditions. Table I gives the frequency
(imaginary part of w) and growth rate (real part of w) of the various modes for
I'=1.66, Gg =0.0239, T, =0.33, y =1.1, and A = 3.0 for different values of k, and
G. 1t is found that the k-mechanism is important to overstabilize the fast modes,
while the slow modes can be overstable even in the absence of x-mechanism
(A =—1). With the increasing magnetic field the slow modes tend to be stabilized,
while the fast modes are stabilized for low values of Gy, but for higher values of Gy
their growth rate increases with G (for Gz <1). Thus for low magnetic field the slow
modes will dominate over the fast modes while at moderate values of magnetic field
(G =<1), the fast modes begin to dominate. The growth rate of both the series of
modes show a maximum with respect to the horizontal wave number k,, as can be
seen from Figure 3. This gives a preferred length scale for overstable modes. The
growth rates of slow modes decrease as we go to the higher harmonics, while those of
fast modes show a peak, as we go to higher harmonics. The lowest fast mode (FO0) is
usually stable. As in the non-magnetic case the growth rates are monotonically
decreasing function of v, and further decreasing the temperature at the top of the
layer tends to destabilize the layer. For the second set of fixed boundary conditions
the results are not essentially different, although in general the growth rates are
somewhat lower while the frequencies are slightly higher than those for the first set of
boundary conditions.

Let us consider the application of our results to the sunspot umbra. We choose the
following set of parameters for the layer: base temperature of 15 000 K, base density
2.67x107%gcm™ and the acceleration due to gravity g =2.47x10% cms™. We
then get a time scale of 45.21 s and length scale of 504.9 km. We take I'=1.66 and
T, =0.33 giving a top temperature of 4950 K and layer thickness of 850.7 km. We
further assume the magnetic field B =3000 G (Gg =0.215) and thermal diffusivity
k =2x10"” cms™" (G« =0.0355), y=1.1and A = 3. Figure 3 displays the frequency
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TABLE 1
Real and imaginary parts of eigenvalues of the first few harmonics for I'=1.66,
Gp=0.0239, T,=0.33, y=1.1, and A =3 for different values of G, and k,. The
numbers in parentheses are the powers of ten while the last four columns give the
number of nodes in the eigenfunctions of various perturbed quantities for correspond-
ing non dissipative (G, = 0) eigenvalue.

ky Mode G, =0.00177 Gy =0.0355 Number of nodes in
du,
v, P v, P

S1 1.13(-3) 0.370 1.93(-2) 0.388 0 1 1 0
FO —-9.88(—4) 0.475 -1.45(-2) 0.468 1 0 0 0
S2 2.91(—-4) 0.797 2.30(—-3) 0.801 1 2 2 1
S3 1.32(-4) 1.193 3.88(—4) 1.194 2 3 3 2
0.5 S4 6.97(-5) 1.588 —8.31(-6) 1.589 3 3 4 3
) F1 1.30(-3) 1.643 6.71(-3) 1.666 0o 1 1 1
S5 4.83(—5) 1.983 7.26(—=5) 1.984 4 5 5 4
S6 2.99(-5) 2.378 2.50(-5) 2.379 5 6 6 5
S7 1.90(-5) 2.774 4.89(—6) 2.774 6 6 7 6
F2 -2.24(-3) 3.125 8.44(-3) 3.125 1 2 2 4
St 7.95(-3) 0.296 5.03(-2) 0.374 0 1 1 0
S2 1.19(-3) 0.784 7.75(=3) 0.798 1 2 2 1
FO —-1.29(-3) 0.931 -1.35(-2) 0.929 0O 0 o0 2
S3 5.24(—4) 1.188 1.57(-3) 1.193 2 3 3 2
1.0 S4 2.99(—4) 1.585 3.86(—4) 1.587 3 4 4 3
) F1 7.04(-4) 1.813 8.49(-3) 1.834 0 1 1 1
S5 2.00(—4) 1.981 3.65(—4) 1.983 4 4 5 4
S6 1.21(-4) 2.377 1.04(—4) 2.377 5 6 6 5
S7 7.85(=5) 2.772 2.79(=5) 2.773 6 7 71 6
F2 —-2.51(=3) 3.217 7.25(-3) 3.216 1 2 4 7
S1 9.57(-2) 0.359 0o 1 1 0
S2 5.23(-3) 0.744 2.32(-2) 0.793 1 2 2 1
S3 2.21(-3) 1.171 5.76(-3) 1.189 2 3 3 2
S4 1.21(-3) 1.575 1.79(-3) 1.583 3 4 4 3
FO —-6.26(—4) 1.819 4.46(—4) 1.827 0O 0 0 2
20 S5 7.15(—4) 1.974 6.56(—4) 1.978 4 5 5 4
F1 —-1.46(-3) 2.371 4.61(-3) 2.387 0 1 1 2
S6 3.81(—4) 2.373 —1.08(-3) 2.371 5 4 6 5
S7 3.34(—-4) 2.768 1.74(—4) 2.769 6 7 71 6
S8 2.09(-4) 3.164 5.00(=5) 3.165 7 8 8 7
F2 —-3.73(-3) 3.555 9.07(-5) 3.550 1 2 2 3

and growth rate of various modes as a function of k,. It can be seen that the maximum
growth rate (=0.04) corresponds to S1 mode at k, =5 while the fast modes have
maximum growth rate of =0.015 for F3-mode at k, =2.5. It should be noted that
growth rates of slow modes decrease with Gp, while those of fast modes increase with
Gp. Thus for larger values of magnetic field the fast modes are expected to dominate
over the slow modes.
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Fig.3. Realpart (growthrate, wg) and imaginary part (frequency, w;) of the eigenvalue w are shown as a
function of the horizontal wave-number k,, for various modes for I'=1.66, Gg =0.215, T,=0.33,
y=1.1, G, =0.0355, and A =3.
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All the foregoing results are obtained for fixed boundary conditions which are of
course not realistic for the umbra. To approach nearer reality we have considered the
free boundary conditions and it is found that the fast modes tend to be destabilized
while the slow modes are slightly stabilized. Thus for the same set of parameters with
the free boundary conditions, the most unstable fast mode has growth rate compar-
able to that of fastest growing slow mode. The approximate properties of the most
unstable fast and slow modes for all the three sets of boundary conditions are
summarized in Table II. These may be compared with observed periods in the range
of 110-190 s and length scales of < 1000 km, e-folding time <1 hr and phase speed
~40 kms.”".

TABLE II
Most unstable modes for I'=1.66, Gg =0.215, G, =0.0355, T,=0.33, y=1.1,and A =3

Boundary Mode Dimensionless k. Time Wavelength  Phase e-folding
condition eigenvalue period  (km) speed time
(s) (km s (min)
I fast 0.01+5.2i 2.5 55 1270 23 75
slow 0.04+1.0i 5 285 635 2.2 20
I fast 0.008 + 3.6i 1 80 3170 40 95
slow 0.03+1.2i 4 235 795 3.4 25
I fast 0.04+2.7i 1 110 3170 29 20
slow 0.04+1.0i 4 285 795 2.8 20

5. Conclusions

The unstable modes arising in a thermally conducting compressible fluid layer in the
presence of a uniform vertical magnetic field are computed. The phase relations
between various perturbed quantities are examined with a view to classify the fast
and slow modes. It is found that the sign of the algebraic sum of the nodes
(determined by the sense of motion of the phase point) in the [v, —(v./w)] and
[P;—(dv,/dz)] planes turns out to be a reliable indicator for the classification of the
two series of modes.

For the range of parameters appropriate to the sunspot umbra and for free
boundary conditions it turns out that the fast modes give reasonable agreement with
the observed features associated with umbral flashes.
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