LT1A

. 66. .

1980SoPh.

STABILITY OF A STEADY VERTICAL FLOW
IN A VISCOUS FLUID
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Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India

(Received 31 May; in revised form 2 August, 1979)

Abstract. The one-dimensional non-linear equations for a viscous fluid with finite thermal conductivity
are solved to get an exact solution for a steady vertical flow. The stability of such a steady flow is examined
to find that the viscosity has a very pronounced stabilizing influence on convective and acoustic modes.

1. Introduction

The stability of a viscous fluid layer heated from below was first investigated by
Rayleigh (1916) who found that the stability of the fiuid layer is determined by the
numerical value of the non-dimensional parameter,

=§a_‘éd4
KV

R* ,
where g denotes the acceleration due to gravity, d the depth of the layer, B(=
|dT/dz|) the uniform adverse temperature gradient maintained across the layer, and
a, k, and v are respectively the coefficients of volume expansion, thermometric
conductivity and kinematic viscosity; R* as defined here is called the Rayleigh-
number. Rayleigh further showed that instability must set in when R™ exceeds a
certain critical value R¥, and that when R* just exceeds R¥ a stationary pattern of
motion will prevail. The problem of determining the critical value R¥ has been
discussed extensively by Chandrasekhar (1961) within the framework of the Bous-
sinesq approximation. Later Spiegel (1965) considered the problem of onset of
convection in a compressible atmosphere and derived the equations for time-
independent convection in a plane-parallel layer of perfect gas with constant
viscosity and thermal conductivity. Vickers (1971) and Gough et al. (1976) have
solved these equations numerically for a simple polytropic atmosphere. Recently
Graham and Moore (1978) have derived the equations for onset of convection in a
fluid with an arbitrary equation of state and any arbitrary conductivity and viscosity
that can be expressed as a function of temperature and pressure. They find that the
form of the viscosity has little effect upon the degree of instability of the convective
layer, and that there is no falling off of velocity with depth as density increases. There
is also no sign of any tendency for motions on a scale other than that of the depth of
the entire unstable region.

The foregoing studies are restricted to the onset of steady convection in a fluid
layer, and do not attempt to give any information about the growth rates to be
expected in an unstable situation. Further they do not consider the overstabilization
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of acoustic modes, which is likely to prevail in a compressible fluid. The over-
stabilization of acoustic modes in an inviscid polytropic fluid has been considered by
Spiegel (1964), Jones (1976), and Antia et al. (1978, hereafter referred to as Paper I).
Goldreich and Kelley (1977) have examined the effect of turbulent viscosity on the
stability of acoustic modes in a model solar atmosphere to find that all the acoustic
modes are stabilized. Their study does not include the effect of turbulent convection
in the equation of motion, and they have computed the effect of turbulent viscosity
using a perturbation theory.

In this paper we propose to examine the effect of a velocity field on the stability of
convective and acoustic modes in a viscous fluid. To keep our analysis simple we
assume that the steady state quantities depend only on the vertical coordinate and
that the steady flow is in the upward direction. With these simplifying assumptions we
solve the system of nonlinear equations governing the motion of a viscous fluid to get
an exact solution for various physical quantities in a steady state. We then examine
the linear stability of such a fluid flow to find that both convective and acoustic modes
are stabilized.

2. The Steady State

We shall adopt the usual hydrodynamical equations for the conservation of mass,
momentum and energy as being applicable to a compressible fluid layer stratified
under constant gravity. Using cartesian coordinates and the usual summation
convention, these equations are:
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Here K is the thermal conductivity, u is the coefficient of dynamic viscosity, and @ is
the rate of viscous dissipation given by
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where ¢;; is the strain tensor given by
(av, av,-)
€ij =2 +—).
ox; 0x;
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We assume the gas constant R, acceleration due to gravity g, and specific heat at
constant volume C, = R/(y —1) to be constants. Here v is the ratio of specific heats.
Further we take the z-axis to be in vertical direction and for simplicity assume that
velocity in the steady state is of the form v = (0, 0, W(z)). We shall assume that all
the physical quantities in steady state are functions of z only. Using the convention of
denoting the steady state quantities (except the vertical component of velocity W) by
a subscript zero, Equation (1) yields

d(poW
ﬁo—‘lIO, Po=RpoTy,

dz
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Equation (2) defines a system of nonlinear equations for po, To, Po, W, wo, and Ko,
and it can be verified that the following solution satisfies the system of Equation (2):
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where a, b, m,and K¢ are constants. To ensure positivity of the temperature we must
have g >0, and to ensure positivity of wo we must have bm <0. Thus the z-axis is
directed vertically downwards and for m > 0, the velocity is in the vertically upward
direction. It can be seen that for m >0, this solution is identical to the polytropic
solution of Paper I with index dIn Po/dInpo=1 =(m +1)/m, except for the fact
that in the present case the thermal conductivity is not constant. This solution is thus
rendered suitable for comparison with our results of the inviscid case discussed in
Paper I.

3. Linear Perturbation Theory

We consider a polytropic fluid layer confined between two horizontal planes situated
at z =d; and z =d, (d,>d.). The various physical quantities in the steady state are
given by Equation (3). At this stage it is convenient to express all the physical
quantities in a dimensionless form. For this purpose we use the values of correspond-
ing physical quantities at the base of the layer (z = d;) as the units, and we further
choose a length scale of RTy(d;)/g and time scale of JRT,(d)/ g. Then the steady
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state quantities in the dimensionless form are given by

V4 _d m m+
To=1+m—+—1—[, po=To, Po=Tg"",
m m+1

W=-GwTo™,  wo=3Gw —~ To, (4)
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where the Mach number

_ Iwa|
VRTo(d)

is the dimensionless value of velocity at the base of the layer and the constant K§ is
determined from the prescribed value of diffusivity at the base of the layer,
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We linearize the basic equations by writing all physical quantities in the form

f(x, v, z, ) = fo(z) + f1(z) exp (wt + ik.x + ik,y)

and neglecting the higher powers of perturbed quantities. Because of the symmetry
about z-axis there will be no loss of generality in assuming k, = 0. We treat thermal
dissipation in the optically thick approximation, and do not consider perturbations in
thermal conductivity or the coefficient of viscosity. After a certain amount of
algebraic manipulation we get the following system of differential equations in
dimensionless form:
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d do,
~ WL = kpo(ivg) +povs +po o=+ (0 + Wy
dz dz
dpl d K() dT1>
(y=1) dz ' dz (Cv dz
e ! ! fdvl
=3y = Dhapeo W'(iv.) + (0o To — (v = 1) Top6)v, —3(y = Do W P
[ ’ KO 2
+(WTo —w(y —1)To)p1 + (wpo— (¥ — 1) Wpo +Z:‘ ki)Ty+
dT
+p0W ! .
dz

Here v, and v,, respectively denote the perturbations to the x and z components of
velocity, and the primes denote the derivatives of corresponding unperturbed
quantity with respect to z.

It can be seen that this set of equations is of seventh order in z derivatives and
hence for a complete specification of the problem we require in all seven boundary
conditions at the bounding surfaces. We assume that the bounding surfaces are
maintained at constant temperature and that the xz and zz components of viscous
stress tensor vanish at the boundaries. In addition we assume that a constant flux of
fluid is maintained at the lower boundary. These conditions can be written as

T1:0,
d(iv,)
_kx z=03

dz v

4d‘l)z 2 .

Eg_ikx(wx)=0 at z=d, and z=d, ©)
and

pov: + Wp, =0 at  z=d.

The set of Equations (5) supplemented by the boundary conditions (6) is solved
numerically by the method described by Antia (1979) to obtain the complex
eigenvalues w for various values of I', y, Gi, Gw, T,, and k,.

4. Discussion and Conclusions

The system of Equations (5) together with boundary conditions (6), for a choice of
parameters [, v, Gy, Gw, T,, and k,, give two series of modes. The convective modes
which correspond to aperiodic disturbances have real eigenvalues. The fastest
growing convective mode (i.e. the one for which w is largest) has no nodes in v,
eigenfunctions while for the successive lower modes the number of nodes in
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v, increases by one. The harmonics of convective modes are denoted by C1, C2,
C3,....The C1 mode which has higher growth rate than any other convective mode,
dominates over the other modes and hence in our discussion we will consider only the
C1 mode. The other series of modes with complex eigenvalues w= (wg + iw;) are
identified with acoustic modes. These modes which arise due to the effects of
compressibility correspond to the acoustic modes of Paper I modified by the presence
of the velocity field and viscosity. The lowest (i.e. the one for which the frequency w;
is smallest) acoustic mode is denoted by F-mode while the successive higher
harmonics are denoted by P1, P2, ....

TABLE I

Real and imaginary parts of eigenvalues of the first four harmonics of acoustic modes for y=1.1,
G, =0.0355, Gw = 0.0, 0.002 686 and 0.008 955, T, = 0.1 for different values of I" and k,. The numbers
in parentheses are the powers of ten

Mode Gw =0.0 Gw =0.002 686 Gw =0.008 955
F -1.89(=3) 0.091 —1.72(=3) 0.091 -1.03 (=3) 0.091
=133 P1 1.88(-2) 0.870 -3.39(-2) 0.876 —8.28 (-2) 0.903
k,=0.10 P2 2.01(-2) 1.421 -1.23(-1) 1.503 -2.32(-1) 1.617
P3 ~1.07 (-2) 1.939 -2.96 (-1) 2.170 —-4.74 (-1) 2417
F -8.97 (-3) 0.907 -2.07 (=2) 0.907 -3.59(-2) 0.910
=133 P1 8.49(-3) 1.129 —6.46 (-2) 1.144 -1.38(-1) 1.169
k.=1.00 P2 2.07(=3) 1.579 -1.63(-1) 1.687 -2.86 (—1) 1.806
P3 -1.33(-2) 2.052 -3.25(-1) 2.289 -5.30(-1) 2.539
F —2.00(=3) 0.086 —2.47(-3) 0.085 —3.11(-3) 0.085
I'=1.66 P1 2.01(=2) 1.051 -3.04(-2) 0.947 -1.32(-1) 0.967
k.,=0.10 P2 3.68(-2) 1.982 -1.00(-1) 1.794 -2.65(-1) 1.893
P3 -3.27(-4) 2918 -2.65(-1) 2.628 =5.77(-1) 2.852
F -1.25(-2) 0.869 ~-2.40(-2) 0.858 -4.31(-2) 0.865
I'=1.66 P1 7.27(-3) 1.281 -5.24(-2) 1.181 -1.58 (-1) 1.206
k,=1.00 P2 2.62(-2) 2.109 -1.28(-1) 1.927 -2.99(-1) 2.036
P3 -7.38(=3) 3.000 -2.81(-1) 2.708 -6.12 (—-1) 2.940

The frequency (imaginary part of w ) of acoustic modes is essentially unaffected by
the velocity field and viscous dissipation. However, the velocity field has a
pronounced effect on the growth rates (real part of w). Table I gives the frequencies
and growth rates of the acoustic modes for the following choice of parameters:
I'=1.66 and 1.33, y = 1.1, G, = 0.0355, Gw = 0.0, 2.686 x 10> and 8.955x 107,
T, =To(d.)/ To(d;) =0.1and k, = 0.1 and 1.0. The case Gw = 0.0 corresponding to a
situation where there is no motion in the steady state is discussed in Paper 1. Thus
introduction of an outflowing velocity field stabilizes the acoustic modes and in fact
none of the modes are overstable even when the velocity is rather small. It can be
seen that even such small value of Prandtl number (¢/«) of order 0.1 completely
stabilizes the acoustic modes. The coefficient of kinematic viscosity » in our case is
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given by
3("14‘1) }?Tb
v=u/p=-—% w
m g

=—3I'WH  (note that W <0),

where H is the local pressure scale height. This is of the same form as the turbulent
viscosity used by Goldreich and Keeley (1977) and our results about the damping of
acoustic modes are consistent with their results obtained by using a perturbation
theory. The stabilizing influence of viscosity is quite marked and only under very
extreme circumstances it is possible to get overstable acoustic modes. Thus when
T,<0.01 and Gw <2.68 X 10> we can get some overstable acoustic modes for small
values of k,. This corresponds to the case of a layer in which the temperature varies
by two orders of magnitude and density varies by even more. Such an almost
complete polytrope leads to an unstable situation as we have seen in Paper 1.

As expected the degree of instability of convective modes is also decreased by the
introduction of a velocity field and it is found that the grwoth rates of convective
modes decrease by increasing the velocity. Figure 1 displays the growth rate of
convective (C1) mode against k, for the following choice of parameters: I" =1.33,
y=1.1, G« =0.00178, Gw =0.0, 2.686 x107> and 8.955x 107> and T, =0.33. It

05
G,=0-0

04 r
6,=0-002686

0-3 -

Gw=0-008955

02

00 1 1 | ] | 1 ] 1 | 1 |
1-0 2:0 3-0 4-0 50 6-0

Fig. 1. Eigenvalue w for convective (C1) mode are shown as a function of the horizontal wave number k,
for I'=1.33, y=1.1, G, =0.001 78, Gw = 0.0, 0.002 686, and 0.008 955 and T, =0.33.
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can be seen that the growth rate of convective modes possess a distinct maximum
with respect to k,, thus giving a preferred length scale for convection. However, the
value of k, at which maximum growth rate is attained, decreases by increasing Gw
and hence the preferred length scale (277/k,) of convective modes increases by
increasing Gw. It is found that for higher values of Gw or k, there are no growing
convective modes, while for small values of Gy and k, only a limited number of
convective modes exist.

We have studied the influence of an outflow in the unperturbed state on the
stability of acoustic and convective modes in a polytropic fluid. We find that the
introduction of such a field has a pronounced stabilizing influence on the acoustic
and convective modes. The preferred length scale of convective modes increases by
increasing the magnitude of the vertical velocity. Our results may not be directly
applicable to situations arising in the outer layers of stars. Nevertheless our analysis
shows that viscosity plays an important role in determining the stability of various
modes in stellar atmospheres.
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