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Abstract. The stability of a plane-parallel polytropic fluid layer in the presence of a uniform horizontal
magnetic field is investigated to explore the possibility of identifying the running penumbral waves and the
penumbral filaments with different types of instabilities.

1. Introduction

An outstanding feature of any theory of sunspots is the role played by the spot
magnetic field in influencing the mode of energy transport. It is now generally
accepted that modified convection in some form must take place in a spot region, as
there are convincing reasons to believe that sunspots cannot be in a completely
radiative equilibrium (e.g. Chitre, 1963; Deinzer, 1965; Yun, 1970). The role of
thermal dissipation in producing convective overstability was studied by Chan-
drasekhar (1952) in an attempt to investigate the convective transfer of heat under a
constraint. His theory predicted the possibility that in the presence of a magnetic field
instability can occur in the form of growing oscillations (overstability). Danielson
(1961) employed Chandrasekhar’s linearized equations to study the structure of the
sunspot penumbra to demonstrate that instability in the penumbra will manifest as
convection rolls if the penumbral magnetic field is assumed to be nearly horizontal
and suggested that these rolls could account for the observed properties of the
penumbral filaments.

The foregoing investigations were undertaken in the framework of the Boussinesq
approximation which is applicable only when the thickness of the layer under
consideration is much smaller than the scale height of any thermodynamic variable.
Moreover in this approximation the acoustic modes which directly result from the
effect of compressibility are filtered out. Moore and Spiegel (1966) have argued that
the presence of thermal conduction could overstabilize the acoustic modes. It has
been shown by Ando and Osaki (1975, 1977) that the observed five-minute
oscillations on the solar surface are due mainly to the k-mechanism operating in the
hydrogen ionization zone. Antia et al. (1978, hereafter referred to as Paper I) studied
the over-stabilization of acoustic modes in a polytropic atmosphere and found that
acoustic modes can be overstabilized under suitable circumstances, even in the
absence of k-mechanism.
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The foregoing investigations are restricted to a non-magnetic fluid. The presence
of the magnetic field gives rise to anisotropy in the fluid medium as the gravitational
field and the magnetic field, each introduce a preferred direction. In addition the
disturbances are subject to the combined effect of the three restoring forces arising
from compressibility, buoyancy and magnetic field, and so the various pure modes
(acoustic, gravity, and Alfvén) are severly modified. The problem of magneto-
acoustic waves has been studied by a number of authors by adopting one of the
following approaches. The first approach is based on neglecting the effect of
zero-order stratification by assuming the unperturbed physical quantities to be
constant over the fluid layer (Kato, 1966; Nakagawa et al., 1973). This assumption
can be justified only if the vertical extent of the fluid layer is much less than all the
scale heights for variations of the physical quantities involved. The second approach
is to investigate the stability of an isothermal atmosphere in which the sound speed,
Alfvén velocity and density scale height are all taken constant by assuming the
horizontal magnetic field to decrease exponentially with height. The dispersion
relation for this case has been studied by Yu (1965) and more recently by Rudraiah et
al. (1977). These models although not very realistic, nevertheless help us in
understanding the variety of modes in a more complicated problem, and we have
used them as guidelines for classifying the various modes.

Observationally, the penumbra consists of long filamentary structures (penumbral
filaments) of thickness 300 km and length 2000 km arranged radially around the
umbra. The characteristic life-time of a penumbral filament is 30 min (Danielson,
1961; Bray and Loughead, 1964). Besides these intensity inhomogeneities, recent
observations have detected an interesting spectrum of velocity fields in the sunspots.
The most remarkable pattern among these oscillations is the running penumbral
waves discovered by Zirin and Stein (1972) and Giovanelli (1972), which propagate
radially outward in sunspot penumbra, with predominantly vertical motions obser-
ved in Ha. Giovanelli (1974) has summarized the observational results of running
penumbral waves which have periods in the range 180-240s and horizontal
wavelengths in the range of 2350-3800 km, and they travel outward in the penumbra
at a typical speed of 15kms™'.

Nye and Thomas (1974, hereafter referred to as NT) have made a theoretical study
of penumbral waves on the basis of a piecewise linear model of the vertical structure
of a typical sunspot penumbra. They have identified the penumbral waves with
magneto-acoustic fast (‘plus’-type) waves, that are vertically trapped at photospheric
levels, and have argued that the slow (‘minus’-type) waves cannot be similarly
trapped. However, their analysis overlooks the singularity in the governing differen-
tial equations. We have shown that if the singularity is properly considered, then it
turns out that the slow modes can also be trapped, although our study supports their
main conclusion that the penumbral waves can be identified with fast modes. In a
later paper Nye and Thomas (1976) have studied the mode of running penumbral
waves in a simpler but mathematically consistent two-layer penumbral model
consisting of an upper isothermal layer with uniform horizontal magnetic field and a
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lower adiabatic layer with a constant temperature gradient to find that observed
frequencies and wavelengths of penumbral waves agree with those of the lowest fast
mode.

The object of this paper is to study the stability of a plane parallel polytropic fluid
layer with infinite electrical conductivity and finite radiative conductivity in the
presence of a uniform horizontal magnetic field. We explore the possibility of
identifying the running penumbral waves and the penumbral filaments with two
different kinds of instabilities. For a reasonable choice of physical parameters we find
that the time-scales and wave-lengths of fast modes for the disturbances propagating
along the field lines roughly correspond to the observed values for the running
penumbral waves.

2. Formulation of the Problem

We investigate the linear stability of a plane-parallel superadiabatic inviscid fluid
layer in the presence of a uniform horizontal magnetic field. The governing hydro-
dynamical equations in the usual notation are:

momentum:

v ixXB
p(§+v - grad v) = —grad (P) +pg+]—— ,
c
continuity:

d
—a?+div (pv)=0, 1)
energy:

oT d
pc,,(§+v . grad T) —RT(a—f+v . grad p> —div (K grad T),
state:
P=RpT.
Here we assume the gas constant R and the specific heat at constant volume C, to

be constants thus neglecting any changes in the degree of ionization.
These equations are supplemented by Maxwell’s equations

4
curlH=—Wj R
c
16B
1E= ———
cur T (2)
divB=0.
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Introducing the further assumption that the fluid is ideally conducting we have

vxB
c

E+

0. (3)

Following Jones (1976) we have included the x-mechanism by taking opacity x to
be variable and assuming it to be of the form x ~p*T~", where A and » are assumed
to be constants. Then the thermal conductivity K is given by

_ 4acT?

K
3xp

p_)‘_lTB-HJ. (4)

We consider a polytropic fluid layer confined between two parallel horizontal
planes at z=0 and z = d, which is stratified under constant gravity acting in the
negative z-direction. If Ty, and T, arg the temperatures at the lower and the
upper boundaries respectively and py.. is the density at the lower boundary, then
T, = Tiop/ Tvase essentially determines the layer thickness d. Further for a uniform
magnetic field the Lorentz force would vanish in the static state and this state would
be the same as the corresponding non-magnetic case. Thus if

_dlnPO_m+l
dIn pg m

is the polytropic index, then in the undisturbed state po~ Tg', Po~ To"' where we

have used the subscript zero to denote the various quantities in the static state. Now
for the basic state to be polytropic we must demand the thermal conductivity K to be
constant, i.e.

mA+1)=v+3. (5)

This gives xo~ T4 ™ and the basic state turns out to be completely independent of
the choice of A or v as long as Equation (5) is satisfied. For A = —1(v=-3) the
perturbation terms arising from the variation of K will vanish and we can say that
k-mechanism will not be operative. A departure of A from —1 will give rise to
k-mechanism and the value of (A +1) will control the effectiveness of the «-
mechanism. We have chosen two values of A namely —1 and 3 for illustrating the
numerical calculations.

We shall non-dimensionalize all the physical quantities with respect to the scale
height H = (RT,.s./ g), the sound travel time v RT,,./ g, the pressure and tempera-
ture at the base of the layer. The unperturbed temperature is then given by
T=1-(1-(1/I'))z. Denoting the perturbed quantities by subscript one, we
linearize the governing equations by writing all physical quantities in the form
f(z)=fo(z)+ fi(z) exp (wt + ik, x +ik,y), where k, and k, are the x and y
components of the dimensionless horizontal wave number, and w is the dimension-
less eigenvalue which can be complex. In what follows we shall treat thermal
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dissipation in the optically thick approximation. After a certain amount of elimina-
tion, the equations can be written in the following form:

do,
— wk, P\ +(w>po+ Gk)(iv,)+ kyGBi =0,
2 2
w ) ) P, } do,
@ z+—0—(—+k§)—— k - =0,
I'T, ° Ty Ty Po © y(wy) @ dz (6)
dpr d(iv d?*v,
0D Gy, S G, SV 0+ Gk +
WP w
+—9-—p,,
T, Tp '
de 0T} 1 dé
G[———k20+ /\+1( z———)]=
kldz2 A+ Do~ g,

P

Y
= —<l —;)povz +wyped —w(y—1)P; .
Here p;, p1, 0 are the perturbations in the pressure, density and temperature
respectively, v, and v, are the components of velocity v in y and z directions,
k*=kZ+ ki, v 1s the ratio of specific heats, G, is the conductivity parameter,

Kog _ ko(0)g
Pbase Cv (R Tbase)3/2 (R Tbase)3/2 ’

where ko= Ko/(poC,) is the radiative diftfusivity, Gp is the magnetic field parameter,
B3/ (477R T s Poase) Which is just the square of dimensionless Alfvén velocity at the
lower boundary.

These equations have to be supplemented by boundary conditions at the upper
and lower boundaries of the layer. We have used the following two sets of boundary
conditions.

(a) Fixed boundary conditions in which both boundaries are maintained at
constant temperature and there is no momentum flux across the boundaries:

pov:=0 and 6#=0 at z=0 and z=d.

(b) Free boundary conditions at the upper boundary which demands the vanishing
of Lagrangian pressure perturbations and the linearization of the radiative flux
condition, and fixed boundary condition at the lower boundary of the layer:

pov;=0 and 6=0 at z=0,

d
pov, — P, + GBd—ZZ+ Gk, (iv,) =0
at z=d
r-1 T, de
— + —_—
O “tar—naz Y
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[t may be noted that the free boundary conditions are modified by the presence of
magnetic field, since perturbations in the magnetic pressure also need to be consi-
dered.

The set of Equation (6) which is free from any singular coefficients was found to be
suitable for numerical solution by the method discussed in Paper I. However by
eliminating v, from these equations, it can be reduced to a form similar to the
non-magnetic equations of Paper I to get

<]— Gka, >dUz:

(Uzp()+ GBk2
1 N w o ( w N k2 . wki )
:——vz _
I'T, T, poly wpo wzp()+GBk2
(1+ Gg +GBki> dP; _
po Ty wzp() dz
[ Ggki: Gg Gk’ ]
—| wpot -
(L)FT() wf' T() ((1) p()+ GBk )
[ 198, Gk, ]0 (7)
To I'Tg(w’po+ Gsk?)
24 2,2
[—1— 1+ )+GB(2k k)+ > Gszy 2] +
T Po T() r IT'peTy,  I'Topo(w™po+ Geky)
T() dZ
d’e T, 1 dé
G[——k20+ /\+1< z———>]=
“dz2 R o

—<1 —Il:>povz +wypob —w(y— 1P .

It is evident that for Gg =0 and A = —1, these equations are identical to cor-
responding equations of Paper I. We first consider the disturbances propagating
along the lines of force i.e. (k, = 0). It is clear that in this case the equations have a
singularity at the point given by

2 Gski/po _ civak; ®)
1+(Gp/poTo)  c5+yva’

where v, is the Alfvén speed and ¢, is the sound speed. Equation (8) can be evidently
satisfied only for purely imaginary values of w.

This singularity gives rise to the critical level phenomenon similar to that obtained
for plane shear flow (cf. Booker and Bretherton, 1967). In a recent paper Adam
(1977) has studied the significance of critical levels in the presence of magnetic fields.
He found that waves are captured as they approach the critical level from either side
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and are neither reflected nor transmitted but constrained to propagate along the field
lines. The function on the right hand side of Equation (8) has a maximum at a point
given by

0 = and T Wmax = X -

Tm+1 GB 5 m (GB) 1/(m+1) k2
m m+1\m

Thus for |®|>|®ma| N0 such critical levels exist and the equation is free from
singularities. This is the case for the fast modes which are unaffected by these critical
levels. For purely imaginary values of  such that |@| <|wmay| in general there can be
two critical levels, but one or both of them may actually fall outside the layer under
consideration. The frequencies of slow modes fall in the range of critical levels and as
aresult these levels put stringent restrictions on the slow modes that can be admitted
by the boundary conditions and continuity requirements. It would thus appear that
only a limited number of slow modes can exist. In the absence of dissipation (G = 0)
we can eliminate 6 by using the second equation in (7) and in that case the singularity
will occur at

2,212
2 __Csvakx

w ==
2 2 -
c, tvy,

It then follows that the adiabatic equations of NT also have a singularity as can be
clearly seen from the coefficient of k2 in the dispersion relation (Equation (15) of
NT). Thus at the point where (c2 + v3)w” = cZv2k2, k2 will be infinite. Further as we
cross the singularity line

[0 BEl Rae—— x
2 2
\/cs + vy,

in the diagnostic diagram, k> will change from +00 to —0o or vice versa. As a result
the waves would be propagating above the w. curve in the form of fast modes as
noted by NT (Figure 1), while the slow modes would be propagating between the
singularity line and the w_ curve instead of below the w_ curve as conjectured by Nye
and Thomas. This severely restricts the propagating region for slow modes in the
diagnostic diagram and in fact it can be readily seen that the conclusion reached by
NT that slow modes cannot be trapped in the photosphericlayer is reversed. Figure 3
of NT should therefore be replaced by Figure 1 of the present paper, where the lines
2s and 3s represent respectively the singularity lines in the layers 2 and 3 of NT (the
same set of parameters is used for comparing the figures). There is no magnetic field
inlayer 1 and hence the singularity line would coincide with the k,-axis (o = 0). Also,
since layer 1 is convectively unstable, the -ve mode curve has vanished. It can be
clearly seen that almost all the slow modes which are propagating in layer 2 are
evanescent in layers 1 and 3. Thus the slow modes can also be trapped in the
photosphere.
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Fig. 1. The diagnostic diagram for values of cZ, v2 and the scale height corresponding to three different
levels of the penumbral model considered by NT. The shaded region indicates vertical trapping of fast
and slow modes.

It may be noted that the critical levels will be absent for disturbances propagating
perpendicular to the magnetic field lines (i.e. k, = 0). For disturbances propagating in
an arbitrary direction the situation will be more complex and we will not consider
that case in the present analysis.

3. Modes with Wave Vector along the Magnetic Field Lines (k, = 0)

We set k, = 0 in Equation (6) to get v, =0 and the motion in the horizontal plane is
then restricted along the lines of force, while the vertical motion will always be
perpendicular to the lines of force. The magnetic field provides an additional
restoring force and as a result the frequencies of oscillatory modes will increase with
the magnetic field strength. However the convective modes which give rise to steady
circulation perpendicular to the field lines will tend to be stabilized. In general the
various modes can be classified into three different categories: the fast and slow are
oscillatory modes, while the convective modes have real eigenvalues. It may be noted
that the Alfvén mode cannot arise if the Alfvén velocity varies with height. The
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lowest fast mode (F-mode) has no nodes in pressure or velocity perturbations and
the number of nodes in pressure perturbation increases with ||. The successively
higher modes will be denoted by P1, P2, P3, . ... The fast mode tends to the usual
acoustic modes in the limit of zero magnetic field and these are thus the acoustic
modes modified by the magnetic field. The slow modes are oscillatory with much
lower frequencies and as the magnetic field decreases, these modes tend to the
convective or gravity modes. The convective modes have real eigenvalues and can be
easily distinguished from the other two modes. The highest convective mode
(F-mode) has no node in v, and one node in P1.

We have solved Equation (6) numerically in order to compute the various
eigenvalues w for certain typical values of the parameters I, y, Gy, G, A, T, and k,.
However because of the very large number of parameters involved in the present
problem it is not possible to cover all the possible combinations and only a small
representative set of values appropriate to the solar atmosphere was chosen. We
choose g=2.47X 10*cms™2, Ty, = 15 000 K and Poase = 2.67 X 107° g cm " to geta
time scale of 45.2 s and a length scale of 504.9 km. We have selected three values of
G, namely 8.8x 107, 1.77x 107> and 3.55x 1072 corresponding to the radiative
diffusivity of 5x 10, 10", and 2x 10" cm > s~ ! respectively. For the magnetic field
B we have assigned values 1000 G and 500 G, which typically represent the value of
the horizontal component of the magnetic field near the inner boundary and in the
middle regions of the penumbra (cf. Gokhale and Zwaan, 1972).

(a) Fast Modes: We find the frequency (imaginary part of ) to increase with the
magnetic field which is to be expected. Further the growth rates (real part of w) are
always quite small for small values of conductivity parameter and they are found to
be rather sensitive to the choice of various parameters.

In the absence of the k-mechanism (A = —1) the magnetic field tends to stabilize
the fast modes. As expected the k-mechanism always tends to overstabilize the fast
modes. For a value A =3 many of the modes which are stable for A =—1 acquire
positive growth rates. We summarise in Table I the complex eigenvalues of the first
four fast modes for I'=1.66, y=1.1, G, =0.0355 and 0.001 77, Gz =0.0239,
0.00597 and 0.0, A =3, T,=0.33 and k, =0, 1, 2. For a value of the magnetic field
B=1000G (Gg=0.0239) appropriate to the sunspot penumbra, several of the
modes are found to be overstable. For any given set of parameters in general, P1 and
P2 modes have maximum growth rates which decrease with increasing k,. This
decrease is very mild for k, <1 and so we believe that it is of no consequence in
determining the preferred wavelength of fast modes. It should be noted that k, =1
gives a wavelength =3200 km which is in the range of observed values for the
running penumbral waves (Giovanelli, 1974). For different choices of parameters the
frequency of the most unstable mode is in the range of 1.4 to 3.3 which gives time
scales in the range 85 to 200 s. This is somewhat less than the observed range of 180
to 240 s. Further the phase velocity of these wave modes is of order of 1540 kms™".

In all cases it has been found that the lowest fast mode (F-mode) is damped and so
it is unlikely to be observed. Thus the running penumbral waves should be identified
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with P1 or P2 modes which turn out to be the most unstable modes. Another curious
result is that for A = 3 the magnetic field tends to destabilize the modes in contrast to
the stabilizing effect for A = —1. Thus it appears that the k-mechanism is essential for
driving of oscillations in the presence of a horizontal magnetic field.

The foregoing results are obtained for fixed boundary conditions which are of
course not realistic when applied to the solar surface layers. To get somewhat nearer
to reality, we have considered free boundary conditions, for which most of the modes
turn out to be stable in the absence of the k-mechanism. Even for A = 3 the magnetic
field tends to stabilize the fast modes. However for field strength of 1000 G
(Gg=0.0239) and for highest chosen value of G, (0.0355) the free boundary
conditions tend to give growth rates larger by a factor of 2 to 3 for the fast modes
compared to those for rigid boundaries. Further the maximum growth rate is now
attained for P3 modes which have frequency =4 corresponding to a time scale =70 s.
In this case also the maximum growth rate decreases with k, although for k, <1 the
decrease is not very pronounced to be of any consequence in determining a preferred
wavelength. For lower values of G, the free boundary condition tend to stabilize the
fast modes. Thus we see that the maximum growth rates are obtained for periods
which are two times lower than the observed values. It may be noted that the growth
rates are somewhat sensitive to various parameters and so for a realistic model of the
solar penumbra the maximum growth rates may be obtained at lower harmonics
which could yield periods in the range of the observed values.

(b) Slow Modes: It has been noted earlier that the slow modes are controlled by
the critical levels in the fluid layer. Numerically it was found rather difficult to
compute the eigenvalues of these modes and so only a few of the slow modes are
calculated to find that the x-mechanism tends to stabilize them. For ['=1.33,
v=1.1, G, =0.0355, Gg =0.0239, A =3, T, =0.33, and k, = 1, with rigid boundary
condition, the only slow mode calculated has the eigenvalue 0.033 + 0.168i, while for
A =—1 it has the eigenvalue 0.052 +0.147i. Thus it can be seen that the growth rate
of this mode is roughly two times that of the most unstable fast mode for the same
choice of the basic parameters. This mode gives a time period =1700 s and it seems
highly unlikely that the running penumbral waves have any relationship with the slow
modes. Another reason for not identifying the penumbral waves with the slow modes
is that the frequency and growth rate of the slow mode is very sensitive to the choice
of the basic parameters especially the magnetic field while the penumbral waves
which have been observed in practically all the sunspots have a very narrow range of
periods and associated wavelengths. Also the slow modes are not sensitive to the
boundary conditions and for the same set of parameters but with more realistic
free boundary conditions the slow mode has eigenvalue 0.036+0.166i, while the
growth rate of the fastest growing fast mode (P3 mode) is 0.041. Thus it appears
that with more realistic boundary conditions the fast modes grow faster than the
slow modes. Observationally it may be rather difficult to detect the slow modes
though their growth rates seem to be comparable to those of the fastest growing
fast modes.
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(c) Convective Mode: In the absence of the magnetic field and thermal dissipation,
the convective modes can appear if the temperature gradient is superadiabatic (i.e.
I">v). But in the presence of magnetic field this condition is modified and if the
coefficients in the Equation (6) (with G, = 0) are assumed to be locally constant this
can be written as

_1> GyTo

1
r Po

(ki +k2), ©)

where k, is the local vertical wavenumber. The unique feature of this condition
which distinguishes the magnetic case from the non-magnetic case is the occurrence
of (k% + k2)in the right hand side of the inequality. Thus for sufficiently large value of
k, or k, (i.e. sufficiently higher order modes) this condition can always be violated for
any finite non-zero value of Gg. Thus for large values of k, or Gg there will be no
convective modes. For a small value of k, only a finite number of convective modes
exist, while the higher modes will manifest themselves as slow modes. This is in
contrast to the possibly denumerably infinite number of convective modes in the
absence of magnetic field. In this manner, as Gp increases, large number of
convective modes will go over into the slow modes. It should however be noted that
the number of slow modes is strictly controlled by the critical levels in the layer, and it
is not altogether clear whether the spectrum of slow modes is finite or infinite. This is
especially true in the presence of dissipation, when the eigenvalues can have a
non-zero real part and there is no singularity in the governing equations. An
interesting feature of condition (9) is that the convective modes for higher k, are
damped more pronouncedly by the magnetic field. Consequently the growth rates for
convective modes posses a distinct maximum for some value of k, which otherwise
they would not. This gives rise to a preferred scale of convective modes even in the
absence of dissipation.

The above conclusions are borne out by our numerical computations which show
that for small values of Gg and k, there is a limited number of convective modes. In
Table II we give the real eigenvalues for the case I'=1.33 and 1.66, G, =0.0,
0.00177 and 0.0355, y=1.1, 7,=0.33, y=-1, k., =1,2,4,6, and Gg=
5.97%x 107 (B =500 G). We find that the eigenvalues decrease as Gy increases and
for the highest chosen value of G, (0.0355) in most cases there are no growing
convective modes. It is found that the magnetic field tends to stabilize the convective
modes by decreasing the growth rates, a decrease which is more pronounced for
higher values of k,. Consequently the maximum growth rate occurs at lower values of
k., with the preferred length scale correspondingly larger; at the same time the
maximum growth rate becomes smaller with the e-folding times correspondingly
larger. We also find that the k-mechanism tends to stabilize the convective modes
although the effect is somewhat less pronounced and the growth rates for convective
modes turn out to be insensitive to the boundary conditions. The e-folding times for
the convective modes are in the range 100 to 400 s and these modes may not be
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TABLE 1I

Eigenvalues of convective modes for y=1.1, T,=0.33, Gz =0.00597, A =—1, k,=0.0, for different

values of I, G, and k,. For I'=1.33 and G, =0.0355 no growing convective mode was found. The

numbers in parenthesis preceding the eigenvalues are the numbers of nodes in v,, for the corresponding
eigenfunctions.

k, r=133 r=1.66
G, =0.0 G, = 0.001 77 G, =0.0 G, = 0.00177 G, = 0.0355
1.0 (0) 02379  (0) 0.2276 (0) 02794  (0) 0.2702 0) 0.1380
(1) 0.1078  (0) 0.0024 (1) 0.1353 (1) 0.0895 (0) 0.0373
(2) 0.0524 (1) 0.0300
(0) 0.0016
2.0 (0) 02762  (0) 0.2520 (0) 04232  (0) 0.4067
(1) 0.1148  (0) 0.0138 (1) 02320 (1) 0.1697
(2) 0.0809 (1) 0.0470
(0) 0.0047
4.0 ©0) 04321  (0) 0.3679
(1) 0.2474  (0) 0.0472
6.0 (0) 0.1627

observable in the presence of the steady, Evershed flow. Moreover for higher values
of G, which are probably more appropriate for sunspot penumbra there are no
convective modes present and so naturally they cannot be observed.

A remarkable feature in this case is the existence of another series of growing real
modes in the presence of thermal dissipation. This may be attributed to the
transformation of a pair of growing slow modes into a patr of growing convective
modes. These modes are essentially the same as the usual convective modes but with
a smaller value of w and also have the property that the number of nodes in v,
decreases with w. Thus the lowest mode has no node in v, while the successively
higher modes have one more node in v,. These are the diffusive modes.

4. Modes with Wave Vector Perpendicular to Magnetic Field Lines (k, =0)

In this case it can be seen from the basic equations that the component of velocity
along the magnetic field vanishes (v, =0) and so the motion is always perpendicular
to the lines of force. There will in general be three types of modes. The fast modes are
essentially similar to those discussed for the case k, = 0. The only interesting feature
about the fast modes is that the growth rates are 3—4 times smaller than those for the
corresponding modes for the case k, = 0. These modes are therefore not expected to
be observed in the sunspot penumbra. The slow modes are completely different in
character because of the absence of critical levels in this case. In the absence of
thermal dissipation if we treat the coefficients in Equation (6) as locally constant,
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then it follows that the convective modes exist if

(10)

The essential difference between condition (10) and condition (9) is the absence of k,
and k,. It would then appear that the perturbations with any wavenumber can be
locally stable or unstable with respect to convection. Thus if Gg > (I"— ), there will
be no convective modes, and for Gg/(po(d)To(d))<(I"—vy) there will be no oscil-
latory (slow) modes. For intermediate values of Gy a portion of the layer at the top
will be stable with respect to the convective modes, while the lower portion would be
convectively unstable. In this fashion the problem would be somewhat similar to the
problem of two-fluid layer model with a stable upper layer overlying an unstable
lower layer. And in general both the oscillatory (slow) and the convective modes can
be expected to prevail in such a layer. Of course it must be noted that po~ T’ and
that po occurs in the coefficients of Equation (6) and hence to treat them as locally
constant can hardly be justified. Nevertheless this analysis helps to gain some insight
into the classification of modes. Further it is also not clear from this analysis how
thermal dissipation would affect the various modes.

It is found that for intermediate values of Gg both slow and convective modes can
exist, and that in both cases the mode with highest value of Iw\ has no node in v,, while
the number of nodes increases as || decreases. In fact the calculated eigenfunctions
show that the various perturbed quantities are very small in the upper portion of the
layer for convective modes and in the lower portion of the layer for the slow modes.
Thus the qualitative behaviour obtained on the basis of the locally constant
coeflicients is borne out. These convective modes may be identified with the
convective rolls as discussed by Danielson (1961) while discussing the stability of a
plane parallel layer in the framework of the Boussinesq approximation. In this case
also there is a second series of growing convective modes in the presence of thermal
dissipation presumably of diffusive origin.

The slow modes are again found to be difficult to compute numerically but some of
the calculated modes turn out to be overstable with significant growth rates =0.01.

Convective Mode: The magnetic field tends to stabilize the convective modes with
the growth rates decreasing with increasing magnetic field. The growth rates also
decrease as G, increases. As in the non-magnetic case, in the absence of dissipation
the growth rates are a monotonically increasing function of k,. But in the presence of
thermal dissipation the growth rates attain a maximum value for some finite value of
k,, thus giving a preferred length scale for convection. The value of k, for maximum
growth rates decreases with increasing G,. Consequently for higher G,, the preferred
length scale would be larger and at the same time the growth rates would be lower.
The convective modes are not sensitive to boundary conditions and the -
mechanism is found to have a mild stabilizing influence on them.

In Table III we summarize the convective modes for I'=1.33, y=1.1, T, =0.33,
G, =0.0355, 0.00177 and 0.0, Gg=0.0239 and 0.00597, A=-1 and k,=
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TABLE III

Eigenvalues of convective modes for I'=1.33, y= 1.1, T,=0.33, A = —1, k, = 0.0, for different values of
Gg, Gy, and k. For Gg = 0.0239 and G, =0.0355 no growing convective mode was found. The numbers
in parenthesis preceding the eigenvalues are the numbers of nodes in v, for the corresponding eigen-

functions.
k, Gg=0.00597 Gg =0.0239
G,=0.0 G, =0.00177 G, =0.03555 G,=0.0 G, =0.00177
1.0 (0) 0.2490 (0) 0.2386 (0) 0.1182 (0) 0.1833 (0) 0.1733
(1) 0.1531 (1) 0.1242 (0) 0.0180 (1) 0.0984 (1) 0.0587
(2) 0.1059 (2) 0.0523 (2) 0.0653 (1) 0.0173
(3) 0.0800 (2) 0.0076 (3) 0.0485 (0) 0.0035
2.0 (0) 0.3493 (0) 0.3293 (0) 0.1196 (0) 0.2694 (0) 0.2513
(1) 0.2569 (1) 0.2162 (0) 0.0352 (1) 0.1744 (1) 0.1252
2) 0.1927 2) 0.1252 (2) 0.1231 (1) 0.0193
(3) 0.1512 (2) 0.0077 (3) 0.0938 (0) 0.0057
4.0 (0) 0.4063 (0) 0.3568 (0) 0.3291 (0) 0.2869
(1) 0.3513 (1) 0.2788 (1) 0.2607 1) 0.1774
(2) 0.2987 (2) 0.1951 (2) 0.2068 (1) 0.0310
(3) 0.2538 3) 0.1110 (3) 0.1678 (0) 0.0121
6.0 (0) 0.4222 (0) 0.3382 (0) 0.3490 (0) 0.2753
(1) 0.3861 (1) 0.2770 (1) 0.3012 (1) 0.1714
(2) 0.3494 (2) 0.2055 (2) 0.2567 (1) 0.0497
(3) 0.3134 (3) 0.1263 (3) 0.2194 (0) 0.0210
8.0 (0) 0.4293 (0) 0.3093 (0) 0.3582 (0) 0.2466
(1) 0.4021 (1) 0.2544 (1) 0.3230 (0) 0.0330
2) 0.3757 (2) 0.1900 (2) 0.2872
(3) 0.3481 3) 0.1137 (3) 0.2546

1,2, 4, 6, 8.1t can be seen that for the choice G, = 1.77 X 10~ the maximum growth
rate (=0.3) is attained for k, between 4 and 6. This gives a half wavelength of
250-400 km and e-folding time =2.5 min. This can be compared with length scale of
300 km and lifetime of 30-40 min for the penumbral filaments. Thus it can be seen
that although the length scale agrees with the observed values, the e-folding time is
more than an order of magnitude smaller as compared to observed lifetimes.
However these results must be viewed with caution since the eigenvalues of
convective modes are very sensitive to a number of parameters such as (I'—vy), Gy
and by changing these parameters suitably we can get a very wide range of e-folding
times and length scales.

It is found that as G increases or as (I’ — y) decreases the growth rates for the two
series of convective modes approach each other and ultimately they merge together
to give a pair of growing slow modes. This gives a lower limit on the growth rates of
convective modes. The length scale of convection is essentially controlled by the
conductivity parameter G,. For G, =8.8%x 107" the length scale turns out to be
<200 km, while for G, = 1.77 x 10> it is in the range of 200-400 km for still higher
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value of G, (0.0355) it is =800 km. The e-folding time for various set of values of
parameters falls in the range of 1 min to 12 min.

The main conclusion from our computations of an idealized penumbral model is
that the running penumbral waves could be identified with the fast magneto-acoustic
modes propagating along a horizontal magnetic field in the sunspot penumbra. The
time scales and the associated wavelengths come out to be in reasonable agreement
with the corresponding observed values for the running penumbral waves. It should,
however be stressed that the observed field across the penumbra is not strictly
horizontal and in fact it varies by an order of magnitude from the inner edge of the
penumbra to the outer edge of the spot. Nevertheless, our simplified model indicates
the kind of modes excited at the photospheric levels that may be identified with the
running penumbral waves.

The situation concerning the penumbral filaments is not all that clear. The
convective modes arising from disturbances with wave vector perpendicular to the
magnetic field lines have half wave-length of the order of the thickness of the long
filamentary structures but their characteristic e-folding times come out to be an order
of magnitude smaller than the lifetimes of the filaments. But it should be remarked
that the growth rates of convective modes depend rather sensitively on a number of
parameters including the degree of superadiabaticity, the inclination of wave vector
to the magnetic field and the radiative conductivity. By suitably adjusting these
parameters it is not altogether impossible to bring the e-folding times in accordance
with the observed filamentary time-scales.
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