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Composition of variable co-efficient singular integral operators
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Abstract. In this paper we give a formula for composition of two singular integral operators
with variable co-efficients by explicitly calculating the lower order terms. Also we discuss the
boundedness of the lower order terms in L?-spaces.
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1. Intreduction

Singular integral operators, extensively studied by Calderon and Zygmund [1]are well
known. They are principal value convolutions of the form

Tf (x) = af (x}+ hm j fx—yK(y)dy (1)
IVI 25
where the kernel K is homogeneous of degree — n, locally integrable away from the
origin and has a mean value zero over the unit sphere. It is known for a long time that
the composition of two singular integral operators of the above type is again a singular
integral operator of the same type. But the relationship between the kernels is not
clearly known.

In a recent paper Strichartz [3] takes a different view of the singular integrals. He
considers the kernels being determined uniquely by their restrictions to the hyperplane
X, = 1. Indeed, introducing the notation |¢|¢ = |t|*(sgnt)* for any realt and aand ¢ = 0
or 1, a kernel K(x,, x) homogeneous of degree —n—1 and of parity ¢ is uniquely
determined by K (1, x) as the identity

K (%o, x) = |Xo|s " K (1, xg ' x)
shows. So it is natural to consider kernels of the form
K(xg, x) = |Xo |- " d(x0 ' x)

for given ¢ and ¢. He considers singular integrals of the form

=0

S(¢, &) f (xg, x) = lim J j S (xo—yo. x = y3}K(®, &) (yo, y)dyody (2)
yo| 26 :
where

K($, &)(x0. X) = |30 |7 " 1 pilxs

This type of singular integrals and those of form (1) differs only bya term of the form af,
a being a constant.
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The conditions on K(¢, &) are transformed into conditions on ¢. The local
integrability of K (¢, ¢) away from 0 is equivalent to the integrability of ¢ and the mean
value zero condition requires {é =0 when ¢ = 0 and is automatically satisfied when
¢ = 1. Given two integrable functions ¢ and ¥, and two parities ¢, and ¢,, he considers

the composition of the two singular integral operators S(¢, &;) S(\/, &,) and proves that
the composition is given by

S(. &) S, &) f = co f+S(A, &, + &) f

where ¢, is a constant and A is given in terms of ¢ and ¥ by

A(x) = Tim j f A ve et s em 0 ()didy )

st 4],
d<iijgem?

In this paper, we try to obtain similar results for the composition of variable
coefficient singular integral operators. As is well-known, the product of two such
singular integrals is not a singular integral of the same form. So we expect that in the
composition formula lower order terms will creep in. We consider singular integral
operators whose Kernels are of the form

K(XO, X. Zg, 3) = b(xCh x)ézo ga—n-l ¢(30_12), (4)

where b is a given function and ¢ is integrable with [¢ = 0 when ¢ = 0. The singular
integral operator T with kernel K(xq, x, zg, 2) is then defined, as before, by

Tf (xg, x) = lim JA J Ki(xo, X, 2o, 2) f (xo — 2o, X — 2)dzodz (5)

&0

E:oﬁ 26

Thus we repose our problem as follows: Given parities ¢; and ¢,, integrable functions
¢. ¥ and functions a and b what will be the form of the composition aS (¢, &,)bS (i, &,)?
Without loss of generality, we assume that g = 1 and the following is the main result of
this paper.

THE MAIN THEOREM

Assume that ¢, Y € D(R") satisfy f¢=0ife; =0and J¥ =0ife; =0 and that the
function b in Clin+1)2]+1 satisfy the following conditions:

(iy D*b is bounded for any x* with |a*| < m — [n;rl]

i) | Db < e(1 + [xo[*+[x*)71 for Ja*| =m+1 for all (x,, x)e R™*1,

Then we have the following formula for any fe D(R"*1)
S, e )bS(y, €2} f (x. x)

= a{xq. X} f(xq. x) + b(x,, X)S(A, & +¢,) f (x,, x)

+ g ;( 9220, X) T f (x,. x) + —-m+1 I.f(xg, x) (6)

. *
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where
a(xy, X) = (—4 j t~'log(t+1/t— l)dt)(jqb) (f) b(xo, X)
2 .
2
4jt’llog(1+t)dt fo)y(dw) (7)
0
A+17
A(x) = ;irrzj I——t‘-ﬂ‘s—‘*f%(x-w(x —y)W(y)didy
s<|i <5 “
(= ) "
Gux (an x) (D b)( X0 X) (8)
T, f(x0, %) = | |zo |;"+e; e Ae(z5 ) f (X0 — 2o, X — 2)dZedz )
with

Ay (2) = lim 12 ve, ATRA =1y (yW(z+ (A1)
§—0 IA 1[81
5<])_|<5 1
x (z—y))dAdy

(where we have put o* = (a5, )) and

L. f(xg, X) = J (1= 8)"G o f (0, X)dt (10)

0
with
Ga*f(xO, X) = Sj. Kat (xO, X, Zg, Z)f(xo —2Zp, X— Z)dZO dZ

and K« (xo, X, Zo, 2) is given by

A T L e
‘ 5<|yo—20| <87} ‘
6 (y5 1) (DY) (xo — tyo, X —tY)¥ (z = y/zo — Yo) dyo dy- (11)
. 1 *
Further T, is bounded from L? into L* wherel <p<g< oo,a = —:; - %%-—IT and I . is

1 1 m+1

bounded from L? into L? where l <p<g < 00, ~=—— .
q p n+l

2. The composition formula

For a given integrable function ¢ on R"and a parity ¢ the kernel K (¢, ¢) is defined on
Rn+1 by ‘
K (o, &) (xo, %) = |%o|c "™ (x5 ' x).

Then this function K(¢, ¢) is homogeneous of degree —n—1 and equals ¢ on the
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hyperplane x, = 1. When the parity ¢ is even, we assume jd)(x) dx = 0. The singular
integral S(¢, &) corresponding to the kernel K(9, ¢) is defined by

S(9, &) f (xo, %) = limJ J K(®, €) (yo, y)f (xo— Yo, x —y)dyedy (12)
—+0
lYo[ EL
for functions fe D(R"*1!).
To find exactly how the composition S(¢, )bS(¥, €;) will look like, we first assume

that ¢ and ¥ are in D(R"). Assume that ¢, ¥ and b satisfy all the conditions of the
theorem. Then we have

LemMMma 2.1.

Define

Ks(xg, X, 2, 2) = JA J‘ I.Vols_"—l IZO"'yO ‘;"ﬂ‘f’(}’gl)’)

‘I}’o|?‘5
[Yo—1z0| 26

b(xo —yo, x — )’)‘//(Z‘“Y/Zo Yo)dyody (13)
Then for any fe D(R"*') we have

S(9. e)bS(, 22)f = lim Ky f (14)

both pointwise and in the L? norm.
The proof of Lemma 2.1 is routine and we omit it here (See [3] Lemma 2.1).
Now we write K; = 4; + B; where

Aﬁ(xOs X, Zg, Z) = Kﬁ(x0$ X, Zp, Z)’ 1f IZOl 2 25 (15)

=O,lf iZO|<25
and
Bj(xo, X, Zo, 2) = Ks(xo, X, 2o, 2), if |zo| <20

=0, if |zo| =26

We will consider the convolution with each term separately. For the convolution B;. f
we have:

LemMMma 2.2.

lim B /= a([6) (J)bf

in the L? norm where the constant a is given by

) 2
a= —-4Jt“log(1+t)dt
0
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Proof. For |zo| < 28 we have after a change of variables

B,;(Xb,x, 20 z):‘aﬁ”—l‘[ J IYOI‘H 1|6_ — Yo 8—2” !

‘}o|>l
|8 1zg— yo| 21

. 57 lz—y
b(xo — 8yos X —0Y) d(y/yo)¥ T2 —ye dysdy.
o= Yo

Therefore,
| Bs(x0, X, 20, 2)| 87" L(67 20, 0 ~1z)

where the function L is given by

L(Zo,Z)"—'"J | J 1Yol ™" 20— Yo | ™" |#(¥/0)]

!YU|?1
20— ¥o| 21
Y (z—y/20— yo)dyody if |zol <26
= 0, if [Zoi 2 25.

It then follows that L is an integrable function and hence

lim H‘B,;(xo, X, Zo, 2) f (Xo — Zo, X — 2)dzodz

-0
= [ lim '”B,,(xo, X, Zo, 2)d2zg dz]f(xo, X).
§—0

Thus it remains to show

lim HBa(xo, X, 2o, 2)dzodz = a([@) (J¥) blxo, x)

50
Now
{{ Bs(xo, X, zo, 2)dzodz
24
= j j dzodz J leolgl""llzo—yo‘;z”'lb(xo——yo, x—y)
—28 [yol 28

|zo—yo| 26

& (y/yolW(z—y/zo—yo)dyody

2
= dezodz J b’olz;r I )’ol—" 'b(x —5y0,x—-5y)

-2 ol 21
|Z<|>y ‘YOI>1
¢(y/yo)xl/( ht )dyody~
Zo— Yo
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Since

j j |oli™ ™ * 2o = yols;" ™ *blxo = 8Y0, X — 8y)$(¥/¥o)

|yol =1
lzo"}’o]>1
z.-_
w( Y )dyody
Zo— Yo

converges to

_[ j I}’oli""llzo—yol;"—lb(XmX)d)(y/Yo)ll/(z*y )dJ’odY
Zo—JYo

lYo|>1
|2o—yo| 21

as & — 0 and is bounded by an integrable function, dominated convergence theorem
shows that

lim jjBa(xo, X, Zgo, 2) dzodz

5= 0
2
= b(xo, X)J“[dzodzj‘ j I}’ol;"—llzo“)’o a—zn_l

-2 [yl =1
‘Zo"‘)fo‘?l

S(y/yol (f—"—f—)dyo dy
0~ Yo

2
= b(xo, x)(jd’)(f‘l’) J. j |}’o‘;1‘zo“.\’0‘e_z1d}’odzo-
-2

kzo—}’ol 21

We have to consider only the case ¢; = &, = 1 and in that case the change of variable

Yo = (yo +13)zo gives
2

j j Yo 1(.7-’0 ~Yo)~ ! dyedz,

=2 |yo| =1
|20—yol 21

2
=4j 5 (%“"}’o)_l(%“‘}’o)_lzc}_ld}’odzo
o itz

Zo

2

- —-4jzallog<1+zo>dzo.

0 Q.E.D.
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Turning our attention to the next term, we have for |zo| =26

A&(x05 X, Zo» Z) = j‘ j\ lyO ls—;'l“l ‘ZO——yOlE—;"'-l

|yo| 26
|zo=yo| 20

b(xo — Yo, X — V)P (¥/Yo)¥ (ZO =

y
dyed
yo) Yo QY

Expanding b(xo — Yo, X — y) in Taylor series about (xo, X)
b(xo“E’O, x”Y)
- 1)! a*|
a*

y&oy*(D*"b) (xo, X)

= b(xO, JC) +

L<o|<m

+ j Jy0 y%(D¥"b) (xo — tyo, X —ty)dt, (16)
4 _

*
[a*\—m—(—l o*!

where o* = (ato, &) is a multi index and m = [3(n+1)]. Thus we have for |zo| =20

Aé(x09 X, ZO? Z)
| <— 1)“’

= b(xg, X)Ao, s(X0, X. Zo» 2) + Y (D*"D) (xo, X)
1 <

1
Ag*,ﬁ(xoa X, Zp, Z)+ z mai-‘ j‘ (1 —t)m ACL' 5 r(xo, X, 20 Z) dt
' |e*|=m+1 : ”
0
where we have set (17)
Ao, 5(X0, X, 20,2) = J J lvola™t |zo— yols," ™
' |yo| =6
IZo —Yo| 20
¢(y/yo)d1( yo)dyo dy (18)
Aa‘,&(xO: X, Zo» Z)=j J\ |y0|'"7l 1\20_y0l8—2n—1
|yo| 26
lzo“}’ol =6
¢(y/yo)¢( )d}’o dy, (19
—Yo
Aa*,&,z(xm X, Zg, 2) = J J~ |y0 !E_l"_llzo Yo ;2" ly““ya
\yD] >3]
|zo= —yo| 20
(D¥'b)(xo —tye> * ty)¢(y/yo)|lt( )d)’o dy. (20)
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Then the following Lemma 2.3 follows immediately from Lemma 2.3 of [3].

Lemma 2.3.

lim Ay g f=S(4, & +&)f+a([¢)J¥) f

0= 0

both pointwise and in L? norm where
1
a = -—4-[ z“llog( +1>dt
2

A(x) = lim PP 1le
50 \Alsz
s<iafgs™!

and

Y(y)d(x +Alx —y))didy

the limit existing both pointwise and in L’ norm.

Next we consider the terms A, g« f for 1 < [a*| <m. Settmg Ay 5= Ay, for
convenience when |a*| =k, 1 < k < m we have the following proposition concerning
the convolution

lim A 5 *f.
d=0

ProrosiTION 2.1.

im {§ Ay 5(xo, X, 2o, 2)f (X0 =20, X —z)dzodz
50

= [[]20 |5 72 i Au(zs 1 2) f (%o — 20, X —2)dzo dz,

where the function 4,(z) is given by

: A
mw=Mf f P ve ;- 1pyegiy)
50 |A—1 ]
Y(z+(A~-1)(z~y)dAdy - @
where the limit exists in the L? norm. Furthermore, the operator
= {120 552 1Az 12) f (X0 — 20, X —2)dzo dz

: . 1 k
is bounded from L? into L*for 1 <p<g< oo,a 1

p n+l1

Proof. The proof follows in several steps.

Steps. A change of variables in (19) shows that

Ay, 5(20, 2) = |Zo |;'f+_s::kk/1k,5izorl(1, 25 '2) (22)
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where

Ak,a(1,2)=j J [ola " |1 =0l ¥5e o (3/ o)

1)’0[?5
[1—yo| =8
z—y ‘
X 1,{/(1_})0>d}0dy. 23)

By changing y into yoy and then putting A = y,/(1 — y,) we obtain

A+10
Ay, 51, 2) = “‘-——l—l%ﬂiﬁ;f(z + 1) (W)W (z + Az — y))dAdy,

where T} is the union of the intervals

5 1=, L 1+ 6
1-5" ¢ 50 1+4)

Changing A+ 1 into 2 we obtain

T

Ay, 5(1,2) = jﬂ—;—t—l_%‘—“- ATHA=1Fy (W + (A —1) (2 =y))dxdy

T

with the region T given by

(1o b
¢ \1=66 S1+6)

Considering only 6 < i we take T; = R; V S; where

1 1
RF('Z’m)U(mﬂ)
1 1
5, = (__3, —2)u(2,3).

We then write

A1, 2) = JJB—lml““(K — 1)y Wiz + (2 =Dz —y)didy

and

M—llex
R,
+ j j__.._—{j ‘_21;‘52 1A =1y (YW + (A —1) (z—y))dxdy (24)

Ss
= B, 5(1, 2)+ Cy, (1, z).

Adding and subtracting appropriate terms we obtain

B s(1,2) = jjllj—‘_:—’ff’—i"‘(i — 1Yy () Y+ A-1) =)

Ry |
—y(2)} dAdy + b, s ([ YOIV (@), (25)




e

. We have

10 Adimurthi and S Thangavelu

where

. ;L\"
h, ;= _____-—‘ G¥e a-kp 1) dA.
oo j\ll—lia,l ( )

Ry

Likewise we obtain

Cy,5(1,2) = jjl—l—lg‘ﬁll"‘(l ~ MY+ @A—-1) -y De0)

|4 —1],
—2%¢p(2)]dAdy + 1, s (V)" (2), (26)
where
— H":ﬂ'az —k() —_1¥|1—1l""dA. (27)
Tr,6 = jml (). 1) \}. ‘

Ss

Define a function 4,(z) by

Ak(Z)=J jll—jlii;—rﬁi“"(ﬂ-—l)"y“tﬁ(J’)[w(2+(/1—1)(2—Y))

|4 <2

—llf(z)]didy+j j-l—)i";—‘ﬁ—l‘*(/l—l)"w(z+(l—l)(z—y))

|A-—1|el
A|=2 '
[y°o(y) — 220 (2)]dAdy + h( [y )(2) + ri(f)z"¢(2) (28)
with
—_ |A|:1+52 -k _
h, = Jp:__ll:z (A—1)da
jAl<2
and
— |A|21+52 - _
{4 =2

Step 2. Assume that both ¢ and ¥ are supported in the ball {x: |x| < R}. Then

| Ai(2) = 4i, 5(1, 2) | <0 for |z] <3R

Ax(2) = 4, 5(1,2) for |z|>3R.
Writing

A(2) = Ay D)+ 43 1@+ By OWED +r((V26E). (29)

A (2) = A 5(1, 2) = (A1,4(2) = By, 5(1, 2)) + (42,4 (2) _ |
— i, 5(1, 2))+ (e —hy, 5) ([ YW (2) + (re =) (¥)2*(2), (30)



Composition of singular integral operators 11
where
1/(1-8)
] Als,4e, 5 .
Ayo@)—Bro(1,2) = j j %r‘jl— A= 14 60)
1/(1+8) &
[vz+@A—-1)(E—y) —y(z)]didy, (31)
Alg 4oy 4
Az 1(2) —cx,5(1,2) =J J %‘:‘—fl—’-l KA =1 (0 (»)
14> "
— 2@z + (A —1)(z —y)didy, (32)
1/(1-8)
by —hs = J T‘;—lf‘—ﬁ—‘— AR —1)dA, (33)
LAL+9) &
and
re—Tis = j‘ -—u———l‘jli"l*rz i"‘(ﬂ.—l)"]k-—lr"di. (34)
e " |

When |z| > 3R, we have to consider only terms of the form ¢ (YW(z + (4 — Dz —=y)
For this to be nonzero, we must have ly| <R and [z+(A-1)(z— »)| < R. These

inequalities imply
MHzl =|Az| < |Az + (1 —)y|+|(A— Hy|< A+|4- 1})R,
and since |z| > 3R we obtain
3lA|< +|A=1]).
But this is true only when —1 <4< 1 and our region of integration excludes this.

Hence A,(z) = Ax, s(1, z) when |z| > 3R follows. Next assuming |z| < 3R, to estimate
(31), we apply mean value to theorem to get an estimate

We+(G=D) - —v@| <cla-1]|z=vl
Thus the integral (31) is dominated by
1/(1-3)
¢ f |AlP¥|A—1[*|z—y|dAdy < cd
Iyl <R 1/(1+3)

since (5, o) = 4, 2) and the integrand is bounded there.
Coming to (32), we have, again by an application of mean value theorem,

|A2, 1(2) —cx, o(1, 2) |

“f j AP+ A= Y+ (=1 @ = p)l|z —y|dAdy

4] >4

QCJ j M—l\""1|l//(z+(l—1)(z-—y))Hz—yldJ.dy.

[A-1]|2%s
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Putting (1 —1)|z—y| = 4 and writing |z —y|™! (z =) = w, we obtain
lAz,k(Z)“Ck,a(la Z)|

~<~CJ j |Vt |z =yt "W (z + Aw)|d A dy.
] > |z —yl/28
Note that |y(z + Aw)| = 0if || > 4R. So we have to integrate only over | i < 4R.This
gives
|42, 2) — i, 5(1, 2)| <€ J. |z—y['7"dy |A]"dA < b
| lz—y| <8R [4]<4R

It is easy to check that |h, —hy 5l < ¢é and for the remaining term we need to
consider only the case when g, = 1 and in that case it is simple to estimate it in terms of
. This completes step (2).

Step 3. Next we write

A s(1, 2) = Ay, s+ 11, 2) + Dy 5(1, 2), (35)
with
Dy, 5(1, z) = Ay, 5(1, 2) — Ay, s+ 1(1, 2).

We have to consider the convolutions of f with the kernels defined by

Ey, 5(Z0, 2) = | 20|, 1ot i Ak, 312y - 41(1 201 2)
—~A(z512)} for |zo]| =26 (36)
=0, for |zo| <294, ‘
Ab(zo, 2) = | 20|52 i ¥ Au(z5 12), for |zo| =26 (37)
=0, for |z, <24,
Di(zo, 2) = | Zo|i; e i D, sjzo|- 1 (1 20 '2), for |zo| > 20 (38)

=0, for |z,| < 24.

We will take up the terms one by one. For the first term (36), we claim
lim [{E; 5(zo» 2) f (o — 20, X —2)dAdz = 0. (39)
5-0

By step (2), we see that
| Ex, 5(20, 2)| < ¢8]20|7""? and E, (20, 2) =0
if |z| > 3R|z,| or |z,| < 26. Defining an integrable function L; by
Li(zo, 2) = c|zo| 772, for |z| < 3R|zo|and 29| >2 (40)
=0, for |z| > 3R|z,]| or|zo| < 2.
We observe that
|Ex, 5(zo, 2)] < 07" 1Li(87 Y2, 67 12).
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Therefore, we get

lim §§ Ek, 6(20’ Z)f(xO —2p, X ""‘Z) dZOdZ

6—0

= (;i_f’% H Ey, 5(Zos z)dz,dz) f (xo, X)-

Write -1
Ex 5(zo» 2) = |2oa. vtk LAk oz e +1( 25 '2) — Axlzg '2) ]
= ‘ZO|61 +821:kkF5!Z°|"(la Z(—)—lz)a
with
1/(1=8""
A € 3
Fs(1,2) = J J #—lj_’lil?— AT¥A = DFy* o (Y (Az — (A —1)y)didy
1/(1+85+1)
+ |‘,l l_a_‘rls’ ATEA =1y o (yW(Az — (A —1)y)dAdy
lA1>5'(k+l)

= F}(1, 2)+ F3(1, z) (say).
Now we have
(1 =(@|zo| 7!

j Fé\zol-l(l, zglz)dz = |Zo l"(jy"‘d)) (f\//)
(1+(jzo|t¥*H ™!

L(A—1)

( di
H.lsl-re |l_]l51

and we obtain

|20 heai Fojzol2 (1, zg 'z)dzedz).
|zo]

|zo| =26
(1 _(5l20|—1)k+ y-1

<c |20~ * dz, ATk A —1"1d2

lzo} 226 - (14 (Blzo|~ 1y 1)t

< e |zo| " *dzo < cd*.
|zo| 22

For F? term we add and subtract the term Z*¢(z) and both terms can be estimated as
in the previous case to yield a bound of &*. Thus we obtain

lim {{ Ey, 5(zo, 2)dzodz =0
60

and this proves the claim.
Regarding (37), we claim the following:

-0

lim J j |20 |57 17 L Ak(z5 ' 2) f (X0 — Zo, x —z)dz,dz = A, f,

|zo| 226
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where
Ay f (xo, x) = ” lzo l;i;}:;!‘Ak(ZJIZ)f (xo— 20, X —z)dzo dz,

. 1
and A, defines a bounded linear operator from L?into Lfor 1 < p < ¢ < oo and 5 =

1k

p n+l
We first make the observation that
|4i(2)] < c(1+ B o
Indeed, we have to prove this only for 4, s(1, z) since

| 4,.(2) — Ay, 5(1, 2) |<cd for |z| < 3R

and they are equal when |z| > 3R. From the expression

A n
Ay 51, 2) = Jj -l‘jllilﬁil_'-‘(l— 4y ¢y (z+ (A —1) (z—y))dAdy,

T

itis clear that 4, (1, z)is bounded and for |z| > 3R the integrand vanishes unless |4||z]
<(1+]A-1 DRand —1 <4< 1 Thus in the above, the 4 integration is only over the

) 3R I . .
interval || < 7 and this gives the required estimate.

|z|
Az(z()a z) = ‘Zo \;1:;21:kkAk(2512)

is homogeneous of degree —n—1+k. By setting A2 = |zo|* +|z|> we have

Ai(% %) = 2z | A5 )

which shows that

A VA
#(%3)

Now

+1 -k

2\253 ,
) | Ai(z5 ' 2)|.

<(1+—z—
20
4

<

Therefore
|42 (z0, D] < el 22 +|2

which is the Riesz-potential of order n+1— k. Hence the convolution with A$(zo, 2)
makes sense and we can pass to the limit as 6 — 0. Also

A f(xo, x) = j”zo \;'L'affk"Au(za 11’-’)f(>¢o — 24, x —2z)dzodz

defines a bounded linear operator from LF into L? whenever 1 <p <g <0, ! =

l_ k
p n+l

Q.E.D.

-

e

e —
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Finally for the convolution with Di(z,, z) we have the following claim.
lim {{ Di(zo, 2) f (o — 2o, x —2)dzodz = 0
60
in the L? norm for any p satisfying

n+1 <p< n+1
ni2—k PShyi—k

Proof. We will show that for any p satisfying the above inequalities Diisin LP(R"*1)
and the L? norm of it tends to zero as § — 0 and this will prove the claim.
We first make the observation that D{(zo, z) vanishes for |z| > 3R |z,|. This follows

from the fact that
Dy, (1, 2)= Ak,a(l, z)— Ay, s+1(1, 2),

and this vanishes for |z| > 3R. Thus we have

§T1zo| 72"+ 27| Dy g1 (1, z5tz)|Pdzydz

< ’ 5P lZOI—p("*.l—k)lel—.deOdz

|z] < 3R}zo] |zo| =28

<05n+1-—p(n+1—k) ‘Zo‘n-p("+2—k)d20.
|z0] =2

Since n —p(n+2—k) < — 1 the integral is finite and sincen+ 1 —p(n+1 - k) > 0 the
L? norm of D{ tends to 0.
Q.E.D.
Step 4. From step (1), (2) and (3), the proof of the Proposition (2.1) is complete save
for the expression for A,. We now write 4;(z) in the form '

Ay(2) = :l_lf:) {j ll;—l_g‘ﬁ‘“l_k(l — DYy (yW(z+(A—1)(z—y))didy
s<lijgs o

o[- J ﬂmrm—.lm](ma)w(z)
A

l’l—l‘s,
1) 2
+[rk”‘
2

Since we have removed the singularities at 0 and co the above integral exists and the
bracketed expressions tend to zero as 6 — 0. Thus the above limit exists in the L? norm

<|

<
)' n
J |‘,1|_€_1Irz l—k(;{_.1)k|i—1|’"dii|2“¢(2) (H’)}
267! h

<

e |
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and equals

A Als
Ay(z) = lim J j l——isﬂ—sli"‘(i-— 1 y*d(y)
é—0 ‘i - 1 IE[

L EVIET A
Y (z+ (A—1)(x—y)didy.

This completes the proof of Proposition 2.1.
Now it remains to consider convolution with kernels of the form

1
J (1 —t)" Ay 5, (X0, X, 2o, 2)d2 with |a*| =m+1.
0

Concerning the convolution with
Au*,é,t(x()’ X, Zp, Z),

we will prove now the following Lemma. For the sake of convenience, we will drop ¢
and write G,,, , s instead of A, ;. With this notation, we have

Lemma 24.
Gm+1f(x07 X) = lim fj Gm+ 1,6(xOs X, Zg, ZK)f(xo - Zp, x“‘Z)dZo dz (41)
-0

exists and we obtain
Gm+1 f(an x) = j.s Km+1(x03 X, 205 Z)f(xo —Z2p, x-‘Z)dZo dz, (42)

where the Kernel K, . (xq, X, Zy, 2) is given by

Kpm+1(Xo, X, 2, 2) = lim J J‘ | Yo L:n—l IZO_—yOle:n-l
50
d<|zo—yo| €87}
z—y

Zo—=Yo

Y& ¥ (D**b) (xo — tyo, x —ty)d (yo ‘Y)Y ( ) dyody. (43)

The limit exists in the L? norm and G,, ., defines a bounded linear operator from L?

1 1
into L? whenever 1 <p<g<o and —=-— m
qg p n+l

and the norm of G, is

independent of ¢.

Proof. Let us write g instead of (D*'b) and define
Hy(xo, X, Yo ¥) = YV ¥olo" 1 (¥5 1»)g(xo = tyo, x—1ty),for |yo| =8

- =0, otherwise.
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In the integral
(Gm+1,6 *f) (an X)

= [{ f(xo—20, x—2)dzo dzf J yE Y| yols " 1d(ye 'y)

[yo| 28
|zo=yo| 2 6

o z—
tzo—yolz," ‘g(xo—tyo,x—ty)llf( Y )dyody

Zo—JYo
changing the order of integration we have

(Gm+1,5 xf) (xo, x) = H H(xo, X, Yo, ¥) Kg f (%o — Yo, x —y)dyo dy
- where K3 f is the integral given by

(Kgf)(xm x) = J J Izole',""t//(ZE‘Z)f(xo — 2y, x —z)dzp dz.

lzo| 26

Let us now estimate the L2 norm of Hj(x,, X, yo. ¥) for fixed (xo, x).
§§1 Hs(xo, x, yo. ¥)|*dyody
< [[1yo 2™ (r5 1P| glx0 — tyo, x —ty)|* dyody

< Sup (1+]xo[2 + [ g0x0. 0)[* [§ | 9o [** "¢ (ys 0

(x0,x)
(1+‘xo—tJ’o lz)_zd.vody
< C(l + ‘x0|2)2t2(n—m)—n~1 li ¢ ll%j‘}yoil(m—n)+n(1 + lyolz)—-l dy0~

Since we have choseén m = [ (n+1)/2] the integral converges. Thus we see that H; isin
L2 and in the L? norm it converges to the function H defined by

H(xo, X, Yo, ¥) = Y& ¥*| Yo ls," " &(¥5 '¥)g(xo — tyo,. x — 1Y)

Since K f is a truncated singular integral, it converges boundedly to the function K, f
in the L? norm. Therefore, passing to the limit as 6 — 0, we obtain

Gy #f = [1H (%o, X, Yo, ¥)K3 f (X0 = yo, x = y)dyo dy.

Now suppose m; is the multiple associated with the singular integral K, = S(¥, &)
Then it is shown in [2] that we have

m,(zq, 2) = ;in})J exp[ — i(xo2o + X" 2)] | Xo|;," ¥ (xg ' x) dxo dx
5~$'X0|<6_1

= lim m3(zo, 2),
é—0
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where m} is the Fourier transform of the function which equals
|xols," Wixg'x) for o< |x0] <67

and zero elsewhere. The relation between K, and m, is given by (K, ) =m,y fwhere
~ denotes the Fourier transformation.

In the expression for G,, . ; * fmaking the change of variable yo = Vo + Xo, ¥y 2 Y T X,
writing K, f in terms of m, fand changing the order of integration, we obtain

G,y #f (30, x) = [fexp[i(zoxo +2-x)]my (20, 2) H (X0, %, 2o, 2) T (2o, 2)dzodz
the Fourier transform being in the z variables. Writing
F"‘[mzﬁI] = K, +1(X0, X, 20 2)
we obtain the formula
Gppy xS (X0, X) = [ K 1 (X0s X, 2o, 2) f (X0 — 2o, x —z)dzgdz.

Since m, is a bounded function and H (xo, X, 2o, 2) is an L? function K, 1, is an L?
function in the z variables. As mj —m, as 6 — 0, we get

K, 41 (X0 X, Zo, 2) = lim Fi[m3H] (20, 2).
6—0

Fi[m3H] (20, 2) = (F " 'm} + H) (20, 2)

=j j |Yols " (s 'y)H (x0, X, Zo = Yo, 2= ¥)dYo dy

d< |yl <o™!
~-n—1 z—-)y X
= [ { | ¥o = Zolg, ll/( )H (X, X, Yor ¥)dyody.
J Zo— Yo '
5~<~120".\’o‘<5_1 '
Thus we have obtained
Koo (o, %, 23, 2) = lim j j 10— 2ol ol ™™ vy*
(5“0 2 1

5<|z0—yo| S 87!

@ (yo '¥)glxo—tyo, X~—ty)w( ahtd )d)’od.\’-

Zo— Yo

Since we have an integral in ¢ variable also and since the L?norm of H dependsontina
non-integrable way, we are unable to assert that

1

J (1—£)"G,,,  *fdi

0

defines a bounded linear operator on L2 Instead, we have

|Gm+1 *fl < c”l)’o I(—”m) id)(y(;ly)HKz S (x0=Yo- X‘Y)id}’ody
and the kernel -

ol 1605 |
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is homogeneous of degree —n+m and hence G, xf defines a bounded linear
operator from L? into L? whenever

1 1 m+1
Il<p<g<oo,—=—-——
qg p n+l1

with the norm independent of t.
Q.ED.

Proof of the theorem:

Combining Lemmas 2.3, 2.4 and Proposition 2.1 together, we immediately obtain the
Theorem stated in the introduction.

3. Some estimates

To obtain the composition formula, we have made extremely restrictive assumptions
on ¢ and ¥ viz ¢,  are in D(R"). We want now to relax these conditions by getting
appropriate estimates.

As far as the term A is concerned, we immediately obtain the following theorem
which is proved in [3].

THEOREM 3.1.
Let B denote the Banach space of all functions f for which the norm

1712 = j PR+ < dx < o,

R

and let B, denote the subspace of B containing those functions satisfying { f (x)dx = 0.
Then

| Al < ] & sl |l for all 6, weD(RY

satisfying {¢ = 0, {{ = 0, so the mapping (@, y) — A extends to a bounded bilinear
mapping from By x B, to By.

We are now going to show that similar estimates for the terms 4, can be obtained. We
are not venturing to get optimal estimates. We just imitate the proof of the above
theorem and we would not give a complete proof. We will just give a sketch of the proof.

To start with, we first prove the following Lemma concerning the Fourier transform
of Ay.

Lemma 3.1
Under the hypotheses of the main theorem, we have

4,(8) = lim J [1—s]5t]sl;? (D) (P ((L—s))ds
80

5<|1—s|g67!
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Proof. Since we have

Ak(z)=§i}3}) j j T‘—f%ﬁ%“‘(l—l)"y%(yw(w(i"1)(Z~y))didy

EESVIE-

and the limit exists in the L? sense we can interchange the limit and the Fourier
transform. Thus

n

A . . A
A, (&) = lim J‘ J exp(—i&-z) l—lﬁﬁrﬁz—l”‘(l—— Dry*d(y)
s<|A g6t

Y(z+(A—1)(z—y))didy.

The triple integral is absolutely convergent and so we may put z' = z+ (A—1)(z—y)
and then integrate with respect to z' and y to obtain

y : Mlg+e -k (¢ Ay (A1
= LR Wt — —_ % ——me
Ae) = lim j e VIl o é>¢L
LESPIE-

Now the change of variable (A—1)/4 = s gives

A,(6) = lim J |1=s|;t|sl;! s*(D*$) (s¢)
- Rad ) .
’ 5$ll—s\$5"‘

V(1 —5)9)ds.
Q.E.D.
We will now prove the following theorem.

THEOREM 3.2.
For 1 < k < m let B, denote the space of all functions f for which the norm

171, = j oo+ X < 0.
J

Then [|Allg < ¢ 1l sl I 5 for all ¢, ¥ e D(RT) satisfying [¢ = 0 and so the mapping
(¢, ¥) > A, extends to a bounded bilinear mapping from By X By into By.

Proof. As we have remarked earlier, the proof is exactly same as the proof of
Theorem 2.6 of [3]. We remark that f € B is equivalent to
feH

and the condition [ f = 0is equivalent t0 £(0) = 0. Thus we haveto obtain an estimate of
the form

ng.l__,,k

[ Al i < 11 Ny 11 laga
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Again we have to consider two cases.

n+1, .
Case 1: —— is an integer.

2

In this case the H =k horm is equivalent to

( Y HD”f‘II%)“2
o] < 25—k

and we have to bound each of || D* 4, ||, by the product of H'T norms of ¢ and . Our
hypotheses allow us to differentiate 4, under the integral sign (and even we can put
& =0since p(0) =0 = ¥ (0) the integral being absolutely convergent). Thus D!4,isa
sum of terms of the form

j 11— sl A5 s 15 4R (D2 8) (s8) (D) (L = 5)¢) ds

where v+7y = B. » .
Noting that DVI//eHTL‘M and D“‘“”cj?eH"TL'k'"'l we need to show

2

” J IsP=t1=sl" 1 f((1—9))g(sc)ds

<l f g —all gl —p

n+1

provideda+b < and f(0) = 0if a = 0. In fact it is sufficient to prove thisfora+b

n+1

and a = 0, b = k and the proof given in [3] goes without any change.

n+1

Case 2. is not an integer.

In this case the H V=% horm is equivalent to

CLE (fiosei-prop i)

l___g__k \x_yln*-l

In this case we neced to obtain estimates of the form

2 dxdy
n+1

[x—y]

H\ J [sp 1|1 —s A (L —9)x)g(sx) = £ ~s)y)g(sy)] ds

<ellfllE—allgl

again with a+b = n/2 and f (0) = 0if a = 0. The proof of this goes along similar lines
with that of Theorem 2.6 of [3]. :

mh b

Q.E.D.
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4. Remarks and comments

(1) Having obtained the above estimates, now we see that A4 with ¢, y € B, defines a
singular integral operator S(A4, ¢, +¢,). But what about A;’s? The conditions A,
belongs to By is equivalent to the condition that the restriction of the kernel

|20 |5, e, ¥ Aulzo ' 2)
to the unit sphere S” is square integrable. A close look at the proof of the boundedness

of the convolutions with Riesz potentials in [2] reveals that with the condition 4,
belongs B, the kernels

]ZO Ie’l +—szl++kk Ay(z5'2)
indeed defines bounded linear operators between L? and L? for appropriate p and g.
Again for the convolution with G, the above conditions on ¢ and  do imply that
G +1 * f 1s bounded from L? into L2 Thus our composition formula is valid even when
¢s l// € BO'
(2) The same theorem holds even if we replace the kernels by more general kernels of
the form |z, |;7"~*®(x,, x, z5 !z) where @ satisfies the following conditions.

(i) | D ®(xp, X, 2)| S | Ppu(z)| for |o*|<m= [n-;— 1],

(ii) | D ®(xo, X, 2)| S ¢| e (2) | (1 + | X0 |2 +|x|*)™! for |a*|=m+1,

~ with the functions ¢,. belonging to D(R").

3. The estimates we got are not optimal. Further, we have to go in the Taylor expansion
n+1

of b upto derivatives of order m + 1. We do not know Whether 1+ [ :Iis optimal or

not.
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