Proc. Indian Acad. Sci. (Math. Sci.), Vol. 100, No. 3, December 1990, pp. 275-284. © Printed in India.

# Critical Sobolev exponent problem in $\mathbb{R}^n (n \ge 4)$ with Neumann boundary condition

### ADIMURTHI and S L YADAVA

TIFR Centre, P. B. 1234, Bangalore 560 012, India

MS received 4 August 1989; revised 23 June 1990

Abstract. In this paper we study the existence and non existence of positive solution for the critical Sobolev exponent problem

$$-\Delta u = u^{(n+2)/(n-2)} + \lambda \alpha(x)u \quad \text{in } \Omega$$
$$\frac{\partial u}{\partial v} = 0 \quad \text{on } \partial B,$$

where  $\Omega$  is a bounded domain in  $\mathbb{R}^n (n \ge 4)$ .

Keywords. Critical exponent; flatness condition; Neumann boundary.

## 1. Introduction

Let  $\Omega \subset \mathbb{R}^n (n \ge 3)$  be a bounded domain with smooth boundary. Let  $\alpha \in C^{\infty}(\overline{\Omega})$  and consider the following problem:

$$-\frac{\Delta u}{\Delta u} = u^{(n+2)/(n-2)} + \lambda \alpha(x)u \quad \text{in } \Omega$$

$$u > 0$$

$$\frac{\partial u}{\partial v} = 0 \quad \text{on } \partial\Omega,$$
(1)

where  $\lambda \in \mathbb{R}$ . Problem (1) with Drichlet boundary condition instead of Neumann, has been studied by Brezis-Nirenberg [5] in detail. For the Neumann boundary condition, namely, for problem (1), Brezis [3] raised the following question:

"Under what conditions on  $\alpha$  and  $\Omega$ , problem (1) admits a solution?".

When n=2, and the nonlinearity  $u^{(n+2)/(n-2)}$  is replaced by  $u^2 \exp(bu^2)$ , b>0, problem (1) has been studied by authors in [1]. More precisely, in [1] it has been shown that, under suitable assumptions on  $\alpha$ , there exists a  $\lambda(\alpha)>0$  such that

$$-\Delta u = u^2 \exp(bu^2) + \lambda \alpha(x)u \quad \text{in } \Omega$$

$$u > 0$$

$$\frac{\partial u}{\partial v} = 0 \quad \text{on } \partial \Omega$$
(2)

admits a solution if and only if  $\lambda \in (0, \lambda(\alpha))$ .

In this paper we have made an attempt to answer the question of Brezis (see also Cherrier [9] for some partial results for the problem similar to (1)). Obviously if  $\lambda \alpha \ge 0$ , then (1) does not admit any solution. Here we consider problem (1) when  $\alpha$  changes sign in  $\Omega$ . If  $\int_{\Omega} \alpha(x) dx = 0$ , then (1) does not admit any solution (see remark 2 in §4).

Let  $\alpha$  change sign in  $\Omega$  and  $\int_{\Omega} \alpha(x) dx < 0$ . Let  $\lambda(\alpha) > 0$  be the unique real number such that

$$-\Delta \varphi = \lambda(\alpha)\alpha(x)\varphi \quad \text{in } \Omega$$

$$\varphi > 0$$

$$\frac{\partial \varphi}{\partial y} = 0 \quad \text{on } \partial \Omega$$
(3)

admits a solution. For the existence of such  $\lambda(\alpha)$ , we refer Brown-Lin [6] and Senn-Hess [12]. Now by exploiting the techniques used in Brezis-Nirenberg [5] and Adimurthi-Yadava [1], we prove the following

**Theorem.** Let  $n \ge 4$  and assume that

- (i)  $\alpha$  changes sign in  $\Omega$  and  $\int_{\Omega} \alpha(x) dx < 0$ . Let  $\lambda(\alpha)$  be given by (3).
- (ii) There exists a  $x_0 \in \partial \Omega$  such  $\alpha(x_0) > 0$  and  $\partial \Omega$  is flat of order k > 3 at  $x_0$ .

Then problem (1) admits a solution  $u \in C^2(\overline{\Omega})$  if and only if  $\lambda \in (0, \lambda(\alpha))$ .

For the meaning of flatness of  $\partial\Omega$  of order k at  $x_0$ , see definition (2.1). Here we remark that the flatness condition in the theorem is not satisfied for the ball.

#### 2. Preliminaries

Let  $H^1(\Omega)$  denote the usual Sobolev space. For  $u \in H^1(\Omega)$  and  $1 \le p \le 2n/(n-2)$ , let

$$|\nabla u|_{2,\Omega}^2 = \int_{\Omega} |\nabla u|^2 dx$$
$$|u|_{p,\Omega} = \left(\int_{\Omega} |u|^p dx\right)^{1/p}.$$

To prove the theorem, we need the following

## PROPOSITION 2.

Let  $\alpha \in C^{\infty}(\overline{\Omega})$  be such that  $\alpha$  changes sign in  $\Omega$  and  $\int_{\Omega} \alpha(x) dx < 0$ . Let  $\lambda(\alpha)$  be given by (3). Then we have

(i) for all  $\lambda \in (0, \lambda(\alpha))$ ,

$$\left\{ \int_{\Omega} |\nabla u|^2 \, \mathrm{d}x - \lambda \int_{\Omega} \alpha(x) u^2 \, \mathrm{d}x \right\}^{1/2}$$

defines an equivalent norm on  $H^1(\Omega)$ .



277

(ii) Let  $u \in H^2(\Omega) \cap C(\overline{\Omega})$  be such that

$$\lambda \notin (0, \lambda(\alpha))$$

$$\Delta u + \lambda \alpha u \neq 0$$

$$\Delta u + \lambda \alpha u \leq 0, \ \frac{\partial u}{\partial v} = 0,$$

then u cannot be positive.

For the proof of above proposition we refer Brown-Lin [6] (Theorems 3.10 and 3.11) and Senn-Hess [12] (Proposition 6).

# Flatness condition

3

Let  $x_0 \in \partial \Omega$ . After a translation and rotation, we assume that  $x_0 = 0$  and there exist R > 0 and  $\rho: B(0, R) \cap \{x_n = 0\} \to \mathbb{R}$  a smooth function such that

$$\rho(0) = 0, \nabla \rho(0) = 0$$

$$\Omega \cap B(0, R) = \{x \in B(0, R); x_n > \rho(x')\}$$

$$\partial\Omega\cap B(0,R) = \{x \in B(0,R); x_n = \rho(x')\}$$

where  $x' = (x_1 \dots x_{n-1}, 0)$ .

#### **DEFINITION 2.1.**

We say that  $\partial \Omega$  is flat of order k at 0 if  $\rho(x') = 0(|x'|^k)$  as  $|x'| \to 0$ .

# 3. Proof of the theorem

Let  $\Omega \subset \mathbb{R}^n (n \ge 3)$  be a bounded domain with smooth boundary. Let  $\Gamma_0$ ,  $\Gamma_1$  be disjoint submanifolds of  $\partial \Omega$  such that  $\partial \Omega = \Gamma_0 \cup \Gamma_1$  and let

$$H^1(\Gamma_0) = \{ u \in H^1(\Omega); u = 0 \text{ on } \Gamma_0 \}.$$

$$\tag{4}$$

Let  $a \in L^{\infty}(\Omega)$ ,  $b \in L^{\infty}(\Gamma_1)$  be such that

$$\left\{ \int_{\Omega} |\nabla u|^2 \, \mathrm{d}x - \int_{\Omega} au^2 \, \mathrm{d}x + \int_{\Gamma_1} bu^2 \, \mathrm{d}x \right\}^{1/2} \tag{5}$$

defines an equivalent norm on  $H^1(\Gamma_0)$ . We denote this norm by ||u||. For  $u \in H^1(\Gamma_0)$  and p = (n+2)/(n-2), define

$$J(u) = \frac{1}{2} ||u||^2 - \frac{1}{p+1} \int_{\Omega} |u|^{p+1} dx$$
 (6)

$$Q(u) = \frac{\|u\|^2}{\left(\int_{0}^{\infty} |u|^{p+1} dx\right)^{2/p+1}}$$
 (7)

$$S(\Gamma_0, a, b) = \inf\{Q(u): u \in H^1(\Gamma_0) \setminus \{0\}\}.$$
(8)

Let

$$S = \inf \left\{ \int_{\Omega} |\nabla u|^2 \, \mathrm{d}x; u \in H_0^1(\Omega), \int_{\Omega} |u|^{2n/(n-2)} \, \mathrm{d}x = 1 \right\}$$
 (9)

be the best Sobolev constant. Then by Cherrier [7, 8] we have

Lemma 3.1. For every  $\varepsilon > 0$ , there exists  $C(\varepsilon) > 0$  such that for all  $u \in H^1(\Omega)$ ,

$$\left(\int_{\Omega} |u|^{p+1} dx\right)^{2/(p+1)} \leq \left(\frac{2^{2/n}}{S} + \varepsilon\right) \int_{\Omega} |\nabla u|^2 dx + C(\varepsilon) \int_{\Omega} u^2 dx.$$

For the proof of this lemma we also refer Aubin [2] (Theorem 2.30).

Now by using the above mentioned Cherrier's result and Brezis-Lieb lemma [4], we have

Lemma 3.2.

(i)  $S(\Gamma_0, a, b) > 0$ 

(ii) Assume  $S(\Gamma_0, a, b) < S/(2^{2/n})$ , then there exists a  $v \ge 0$  such that  $S(\Gamma_0, a, b) = Q(v)$ . Further if we define  $u_0 = S(\Gamma_0, a, b)^{(n-2)/4} v$ , then  $u_0$  satisfies

$$-\Delta u_0 = u_0^{(n+2)/(n-2)} + a(x)u_0 \text{ in } \Omega$$

$$u_0 > 0$$

$$u_0 = 0 \text{ on } \Gamma_0, \frac{\partial u_0}{\partial v} + bu_0 = 0 \text{ on } \Gamma_1$$
(10)

and  $J(u_0) < (S^{n/2})/2n$ .

*Proof.* (i) By Sobolev imbedding theorem, there exists a constant C > 0 such that for all  $u \in H^1(\Gamma_0)$ ,

$$\left(\int_{\Omega} |u|^{p+1} \,\mathrm{d}x\right)^{2/(p+1)} \leqslant C \|u\|^2.$$

Now (i) follows from the definition of  $S(\Gamma_0, a, b)$ . (ii) Let  $\{u_k\}$  be a minimizing sequence in (8) with  $\int_{\Omega} |u_k|^{p+1} dx = 1$ . Let for a subsequence,  $u_k \to v$  weakly in  $H^1(\Gamma_0)$  and almost everywhere.

Claim 1.  $v \neq 0$ .

Suppose  $v \equiv 0$ . Then by Rellich lemma and lemma (3.1) we have

$$\begin{split} \lim_{k \to \infty} \int_{\Omega} |\nabla u_k|^2 \, \mathrm{d}x &= \lim_{k \to \infty} \|u_k\|^2 \\ &= S(\Gamma_0, a, b) \\ &\leq S(\Gamma_0, a, b) \bigg( \frac{2^{2/n}}{S} + \varepsilon \bigg) \lim_{k \to \infty} \int_{\Omega} |\nabla u_k|^2 \, \mathrm{d}x \end{split}$$

for every  $\varepsilon > 0$ . Hence we have,

$$1 \leqslant S(\Gamma_0, a, b) \left( \frac{2^{2/n}}{S} + \varepsilon \right).$$

This contradicts  $S(\Gamma_0, a, b) < S/2^{2/n}$ . Hence  $v \neq 0$ .

Claim 2.  $Q(v) = S(\Gamma_0, a, b)$ .

Let  $v_k = u_k - v$ . Then  $v_k \rightarrow 0$  weakly and almost everywhere. Now by Rellich lemma

$$||u_k||^2 = ||v||^2 + ||v_k||^2 + \mathbf{o}(1)$$
  
=  $||v||^2 + |\nabla v_k|_2^2 + \mathbf{o}(1)$ 

which gives

, is 3

$$S(\Gamma_0, a, b) = ||v||^2 + |\nabla v_k|_{2, \Omega}^2 + o(1).$$
(11)

By Brezis-Lieb lemma [4] and lemma 3.1, we have

$$1 = |u_k|_{p+1,\Omega}^2 = |v|_{p+1,\Omega}^2 + |v_k|_{p+1,\Omega}^2 + \mathbf{o}(1)$$

$$\leq |v|_{p+1,\Omega}^2 + \left(\frac{2^{2/n}}{S} + \varepsilon\right) |\nabla v_k|_{2,\Omega}^2 + \mathbf{o}(1)$$

for every  $\varepsilon > 0$ . Hence

$$S(\Gamma_0, a, b) \leqslant S(\Gamma_0, a, b) |v|_{p+1,\Omega}^2 + S(\Gamma_0, a, b) \left(\frac{2^{2/n}}{S} + \varepsilon\right) |\nabla v_k|_{2,\Omega}^2 + \mathbf{o}(1)$$

$$\leqslant S(\Gamma_0, a, b) |v|_{p+1,\Omega}^2 + |\nabla v_k|_{2,\Omega}^2 + \mathbf{o}(1). \tag{12}$$

Now from (11) and (12), we get

$$\frac{\|v\|^2}{|v|_{n+1,0}^2} \leqslant S(\Gamma_0, a, b).$$

Hence v is a minimizer in (8).

Since Q(v) = Q(|v|), we may assume  $v \ge 0$ . Finally if we take  $u_0 = S(\Gamma_0, a, b)^{(n-2)/4}$  v, then it is easy to check that  $u_0$  satisfies (10) and  $J(u_0) < S^{n/2}/2n$ . This completes the proof of the lemma.

Lemma 3.3. Let  $\alpha \in C(\overline{\Omega})$ . Assume that there exists some  $x_0 \in \partial \Omega$  such that  $\alpha(x_0) > 0$  and  $\partial \Omega$  is flat of order k > 3 at  $x_0$ . Then for every  $\lambda > 0$ .

$$S(\lambda \alpha) < \frac{S}{2^{2/n}} \tag{13}$$

where  $S(\lambda \alpha) = S(\phi, \lambda \alpha, 0)$ .

*Proof.* Without loss of generality we may assume  $x_0 = 0$ . Hence  $0 \in \partial \Omega$ ,  $\alpha(0) > 0$  and  $\partial \Omega$  is flat at 0 of order k which is strictly greater than 3. Let  $\rho: B(0,R) \cap \{x: x_n = 0\} \to \mathbb{R}$  be the function appeared in the definition of flatness.

For  $u \in H^1(\Omega)$ , we have

$$Q(u) = \frac{\int_{\Omega} |\nabla u|^2 - \lambda \int_{\Omega'} \alpha(x) u^2 dx}{|u|_{p+1,\Omega}^2}.$$
 (14)

Let  $\varphi \in C_c^{\infty}(B(0, R/2))$  be such that  $\varphi$  is radial and  $\varphi \equiv 1$  on B(0, R/4) and for  $\varepsilon > 0$ ,

$$U_{\varepsilon}(x) = \frac{\varphi(x)}{(\varepsilon + |x|^2)^{(n-2)/2}},$$

then we claim that there exists a constant C = C(n) > 0 such that as  $\varepsilon \to 0$ ,

$$Q(U_{\varepsilon}) \leq \begin{cases} \frac{S}{2^{2/n}} - \lambda C\varepsilon + 0(\varepsilon^{(k-1)/2}) & \text{if } n \geq 5\\ \frac{S}{2^{2/n}} - \lambda C\varepsilon |\log \varepsilon| + 0(\varepsilon) & \text{if } n = 4 \end{cases}$$
 (15)

and this implies the lemma.

Proof of (15) follows in several steps. For simplicity we can assume that  $\rho \ge 0$ . For non-positive  $\rho$ 's the estimate (15) follows exactly as in the case of positive  $\rho$ . Define

$$\sum = \{ x \in B(0, R/2); \ 0 < x_n < \rho(x') \}.$$

Step 1. Let  $l \ge 0$ , then

$$\int_{\Sigma} \frac{\mathrm{d}x}{(\varepsilon + |x|^2)^l} = \begin{cases} |0(1) + 0(\varepsilon^{(n+k-1-2l)/2}) & \text{if } n+k-1-2l \neq 0\\ 0\left(\log\frac{1}{\varepsilon}\right) & \text{if } n+k-1-2l = 0. \end{cases}$$
 (16)

Since  $\partial\Omega$  is flat of order k at 0, there exists a constant c>0 such that  $\rho(x') \leq c|x'|^k$ . Therefore we have

$$\int_{\Sigma} \frac{\mathrm{d}x}{(\varepsilon + |x|^{2})^{l}} \leq \omega_{n-2} \int_{0}^{R} r^{n-2} \left( \int_{0}^{cr^{k}} \frac{\mathrm{d}x_{n}}{(\varepsilon + r^{2} + x_{n}^{2})^{l}} \right) \mathrm{d}r$$

$$= \omega_{n-2} \int_{0}^{R} \frac{\gamma^{n-2}}{(\varepsilon + r^{2})^{l-1/2}} \left( \int_{0}^{cr^{k}/(\varepsilon + r^{2})^{1/2}} \frac{1}{(1 + t^{2})^{l}} \mathrm{d}t \right) \mathrm{d}r$$

$$\leq c \omega_{n-2} \int_{0}^{R} \frac{r^{n-2+k}}{(\varepsilon + r^{2})^{l}} \mathrm{d}r$$

$$= c \omega_{n-2} \varepsilon^{(n+k-1-2l)/2} \int_{0}^{R/\varepsilon^{1/2}} \frac{r^{n-2+k}}{(1 + r^{2})^{l}} \mathrm{d}r. \tag{17}$$

Now

$$\int_{0}^{R/\varepsilon^{1/2}} \frac{r^{n-2+k}}{(1+r^{2})^{l}} dr = \int_{0}^{1} \frac{r^{n-2+k}}{(1+r^{2})^{l}} dr + \int_{1}^{R/\varepsilon^{1/2}} \frac{r^{n-2+k}}{(1+r^{2})^{l}} dr$$

$$= 0(1) + 0 \left( \int_{1}^{R/\varepsilon^{1/2}} r^{n-2+k-2l} dr \right)$$

$$= 0(1) + \begin{cases} 0(1) + 0(\varepsilon^{(-n-k+1+2l)/2}) & \text{if } n+k-1-2l \neq 0 \\ 0\left(\log \frac{1}{\varepsilon}\right) & \text{if } n+k-1-2l = 0 \end{cases}$$
(18)

Hence from (18) and (17) we have (16).

Step 2. Since k > 3, without loss of generality we can assume that  $k = 3 + \delta, 0 < \delta < 1$ . Then

$$\int_{\Sigma} |U_{\varepsilon}|^2 dx = 0(1) + 0(\varepsilon^{(k+3-n)/2})$$
(19)

$$\int_{\Sigma} |\nabla U_{\varepsilon}|^2 \, \mathrm{d}x = 0(1) + 0(\varepsilon^{(k+1-n)/2}) \tag{20}$$

$$\int_{\Sigma} |U_{\varepsilon}|^{2n/(n-2)} dx = 0(1) + 0(\varepsilon^{(k-1-n)/2}).$$
(21)

Since

$$\nabla U_{\varepsilon} = \frac{\nabla \varphi}{(\varepsilon + |x|^2)^{(n-2)/2}} - \frac{(n-2)x}{(\varepsilon + |x|^2)^{n/2}},$$

hence we have

$$|U_{\varepsilon}|^2 = 0 \left(\frac{1}{(\varepsilon + |x|^2)^{n-2}}\right), \ |\nabla U_{\varepsilon}|^2 = 0 \left(\frac{1}{(\varepsilon + |x|^2)^{n-1}}\right)$$

and

$$|U_{\varepsilon}|^{2n/n-2} = 0 \left( \frac{1}{(\varepsilon + |x|^2)^n} \right).$$

Therefore from step (1), by taking l = n - 2, n - 1 and n, we obtain (19), (20) and (21) respectively.

Step 3. From Brezis-Nirenberg [5] (see page 144, eqs (1.11), (1.12) and (1.13)), there exist positive constants  $k_1, k_2$  and  $k_3$  such that  $k_1/k_2 = S$  and

$$|\nabla U_{\varepsilon}|_{2,B(0,R)}^{2} = \frac{k_{1}}{\varepsilon^{(n-2)/2}} + 0(1)$$
 (22)

$$|U_{\varepsilon}|_{2n/(n-2),B(0,R)}^{2} = \frac{K_{2}}{\varepsilon^{(n-2)/2}} + 0(1)$$
(23)

$$|U_{\varepsilon}|_{2,B(0,R)}^{2} = \begin{cases} \frac{k_{3}}{\varepsilon^{(n-4)/2}} + 0(1) & \text{if } n \geqslant 5\\ k_{3}|\log \varepsilon| + 0(1) & \text{if } n = 4. \end{cases}$$
 (24)

Now from (19) to (24) we have

$$|\nabla U_{\varepsilon}|_{2,\Omega}^{2} = \frac{1}{2} |\nabla U_{\varepsilon}|_{2,B(0,R)}^{2} - |\nabla U_{\varepsilon}|_{2,\Sigma}^{2}$$

$$= \frac{k_{1}}{2\varepsilon^{(n-2)/2}} \left[ 1 + 0(\varepsilon^{(n-2)/2}) + 0(\varepsilon^{(k-1)/2}) \right]$$
(25)

$$|U_{\varepsilon}|_{2,\Omega}^{2} = \frac{1}{2} |U_{\varepsilon}|_{2,B(0,R)}^{2} - |U_{\varepsilon}|_{2,\Sigma}^{2}$$

$$= \begin{cases} \frac{k_{3}}{2\varepsilon^{(n-4)/2}} + \left[1 + 0(\varepsilon^{(k-1)/2}) + 0(\varepsilon^{(n-4)/2})\right] & \text{if } n \geq 5\\ \frac{k_{3}}{2} |\log \varepsilon| + 0(1) + 0(\varepsilon^{(k+3-n)/2}) & \text{if } n = 4 \end{cases}$$
(26)

$$\begin{split} |U_{\varepsilon}|_{2n/(n-2),\Omega}^{2n/(n-2)} &= \frac{1}{2} |U_{\varepsilon}|_{2n/(n-2),B(0,R)}^{2n/(n-2)} - |U_{\varepsilon}|_{2n/(n-2),\Sigma}^{2n/(n-2)} \\ &= \frac{1}{2} \bigg( \frac{k_2}{\varepsilon^{(n-2)/2}} \bigg)^{n/(n-2)} \big[ 1 + 0(\varepsilon^{n/2}) + 0(\varepsilon^{(k-1)/2}) \big]. \end{split}$$

Hence

$$|U_{\varepsilon}|_{2n/(n-2),\Omega}^{2} = \frac{k_{2}}{\frac{1}{2(n-2)/n} \left[(n-2)/2\right]} \left[1 + 0(\varepsilon^{n/2}) + 0(\varepsilon^{(k-1)/2})\right]. \tag{27}$$

Now choose R > 0 and  $\alpha_0 > 0$  such that  $\alpha(x) \ge \alpha_0$  for all x in  $B(0, R) \cap \overline{\Omega}$ , then

$$Q(U_{\varepsilon}) \leqslant \frac{|\nabla U_{\varepsilon}|_{2,\Omega}^{2} - \lambda \alpha_{0} |U_{\varepsilon}|_{2,\Omega}^{2}}{|U_{\varepsilon}|_{2n/(n-2),\Omega}^{2}}.$$
(28)

From (25) to (28) we have

$$Q(U_{\varepsilon}) \leqslant \begin{cases} \frac{S}{2^{2/n}} - \frac{\lambda \alpha_0 k_3}{2^{2/n} k_2} \varepsilon + 0(\varepsilon^{(k-1)/2}) & \text{if } n \geqslant 5\\ \frac{S}{2^{2/n}} - \frac{\lambda \alpha_0 k_3}{2^{2/n} k_2} \varepsilon |\log \varepsilon| + 0(\varepsilon) & \text{if } n = 4. \end{cases}$$

$$(29)$$

Let  $C = \lambda \alpha_0 k_3 / 2^{2/n} k_2$ , then (15) follows from (29). This proves the claim and hence the lemma.

*Proof of the Theorem.* Let  $\lambda \in (0, \lambda(\alpha))$ . By (i) of proposition 2,

$$\left\{ \int_{\Omega} |\nabla u|^2 - \lambda \int_{\Omega} \alpha(x) u^2 \, \mathrm{d}x \right\}^{1/2}$$

defines an equivalent norm on  $H^1(\Omega)$ . From lemma 3.3,  $S(\lambda\alpha) < (S/2^{2/n})$ . Hence from (ii) of lemma 3.2, there exists a  $u_0 \in H^1(\Omega)$ ,  $u_0 \ge 0$  which solves (1). By Cherrier [8],  $u_0 \in C^{\infty}(\overline{\Omega})$  and by maximum principle  $u_0 > 0$  in  $\overline{\Omega}$ . On the other hand, if  $\lambda \notin (0, \lambda(\alpha))$ , then by (ii) of proposition 2, (1) does not admit any solution. This completes the proof of the theorem.

# 4. Concluding remarks

1. Similar construction as in Brezis [3] (See page 21 example (2)), it is possible to construct a  $\alpha(x) < 0$  such that (1) admits a solution for  $\lambda = 1$ . We do not know how to deal (1) when  $\lambda \alpha(x) \le 0$ .



2. By a result of Senn-Hess [2] (See page 462, proposition (6)), it follows that if  $\int_{\Omega} \alpha(x) dx = 0$ , then for any  $\lambda \in \mathbb{R}$ , (1) does not admit a solution.

3. Following the method of this paper and using a recent result of Escobar [10], it is possible to show that under suitable flatness assumptions at a boundary point,

$$-\Delta u = \lambda \alpha(x)u \text{ in } \Omega$$

$$u > 0$$

$$\frac{\partial u}{\partial v} = u^{n/n-2} \text{ on } \partial \Omega$$

admits a solution for all  $\lambda \in (0, \lambda(\alpha))$ .

4. Let  $\partial\Omega = \Gamma_0 \cup \Gamma_1$ ,  $\Gamma_0 \cap \Gamma_1 = \phi$ ,  $\Gamma_0$  and  $\Gamma_1$  the smooth submanifolds of dimension n-1. Consider the following mixed boundary value problem

$$-\Delta u = u^{(n+2)/(n-2)} + \alpha(x)u + \mu u \text{ in } \Omega$$

$$u > 0$$

$$u = 0 \text{ on } \Gamma_0$$

$$\frac{\partial u}{\partial y} = 0 \text{ on } \Gamma_1.$$
(30)

Let  $x_0$  be in the interior of  $\Gamma_1$  and assume that  $\partial\Omega$  is flat at  $x_0$  of order k strictly greater than 3 and  $\alpha(x_0) \ge 0$ . Further assume that  $-\Delta - \alpha$  is positive on  $H^1(\Gamma_0)$ . Let  $\mu_1$  be the first eigenvalue of  $-\Delta - \alpha$  on  $H^1(\Gamma_0)$ . Then by similar method used in this paper it follows that for  $n \ge 4$ ,  $\mu \in (0, \mu_1)$ , (30) admits a weak solution.

However, it should be noted that under a stronger assumption on  $\alpha$ , viz  $\alpha(x_0) > 0$ , (30) admits a solution even for  $\mu = 0$ .

When  $\alpha \equiv 0$ ,  $\mu = 0$ , Lions-Pacella-Tricarico [11] have proved that, under suitable assumption on  $\Gamma_0$  and  $\Gamma_1$ , with  $\Gamma_0 \neq \phi$ , problem (30) admits a solution.

## Acknowledgement

We would like to thank the referee for his valuable suggestions.

#### References

- [1] Adimurthi and Yadava S L, Critical exponent problem in  $\mathbb{R}^2$  with Neumann boundary condition, Comm. Part. Diff. Eq. 15 (1990) 461-501
- [2] Aubin T, Nonlinear analysis on manifold in Monge-Ampere equations (New York: Springer-Verlag) (1982)
- [3] Brezis H, Nonlinear elliptic equations involving the Critical Sobolev Exponent—Survey and Perspectives in Directions in partial differential equations (eds) G Crandall, P H Rabinowitz and R E L Turner pp. 17-36 (1987)
- [4] Brezis H and Lieb E, A relation between pointwise convergence of functions and convergence of functionals, *Proc. Am. Math. Soc.* 88 (1983) 486-490
- [5] Brezis H and Nirenberg L, Positive solutions of nonlinear elliptic equations involving critical exponents, Comm. Pure Appl. Maths. 36 (1983) 437-477

- [6] Brown K J and Lin S S, On the existence of positive eigenfunctions for an eigenvalue problem with indefinite weight functions, Math. Anal. Appl. 75 (1980) 112-120
- [7] Cherrier P, Problems de Neumann non lineaires sur les varietes riemanniennes, C R Acad. Sci. Paris A292 (1981) 637-640
- [8] Cherrier P, Meilleures constantes dans des inegalites relatives aux espaces de Sobolev, Bull. Sci. Math. 2 108 (1984) 225-262
- [9] Cherrier P, Problemes de Neumann non lineaires sur les varietes riemanniennes, J. Funct. Anal. 57 (1984) 154-206
- [10] Escobar J F, Sharp constant in a Sobolev trace inequality, Indiana Univ. Math. J. 37 (1988) 687-698
- [11] Lions P L, Pacella F and Tricarico M, Best constants in Sobolev inequalities for functions vanishing on some parts of the boundary and related questions, *Indiana Univ. Math. J.* 37 (1988) 301-324
- [12] Stefan Senn and Peter Hess, On positive solutions of a linear elliptic eigenvalue problem with Neumann boundary conditions, Math. Ann. 258 (1982) 459-470