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Alfsﬁract. In this paper we study the existence and non existence of positive solution for the
critical Sobolev exponent problem

—Au= e 4 dp(x)u inQ
du

—=0 ondB,
av

where Q is a bounded domain in R*(n > 4).
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1. Introduction

Let O R"(n>3) be a bounded domain with smooth boundary. Let «aeC*(Q) and
consider the following problem:

L Au = u@t =2 4 gy in Q

u>0
ou
Z =0 ondQ, (1)
ov

where 1eR. Problem (1) with Drichlet boundary condition instead of Neumann, has
been studied by Brezis-Nirenberg [5] in detail. For the Neumann boundary condition,
namely, for problem (1), Brezis [3] raised the following question:

“Under what conditions on « and Q, problem (1) admits a solution?”.

When n=2, and the nonlinearity u+2I0=2) jg replaced by u*exp(bu®), b>0,
problem (1) has been studied by authors in [1]. More precisely, in [1] it has been
shown that, under suitable assumptions on o, there exists a A(c) > 0 such that

— Au = u?exp(bu?) + Aa(x)u inQ

u>0
Ju
=0 ondQ 2
av

admits a solution if and only if 2€(0, A(a)).
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276 Adimurthi and S L Yadava

In this paper we have made an attempt to answer the question of Brezis (see also
Cherrier [9] for some partial results for the problem similar to (1)). Obviously if
Aa >0, then (1) does not admit any solution. Here we consider problem (1) when «
changes sign in Q. If {qo(x) dx =0, then (1) does not admit any solution (see remark 2
in §4).

Let o change sign in Q and [qo(x)dx < 0. Let A(x)> 0 be the unique real number
such that

—Ap=A)a(x)p inQ

>0
gﬂ=0 on 0Q 3)
v

admits a solution. For the existence of such 4(a), we refer Brown-Lin [6] and
Senn-Hess [12]. Now by exploiting the techniques used in Brezis-Nirenberg [5] and
Adimurthi-Yadava [1], we prove the following

Theorem. Let n >4 and &ssume that
(i) o changes sign in Q and [qo(x)dx < 0. Let () be given by (3).
(it) There exists a x,€0Q such «(x,) >0 and 8Q is flat of order k>3 at x,.

Then problem (1) admits a solution ue C*(Q) if and only if Ae(0, A(s)).
For the meaning of flatness of 9Q of order k at x,, see definition (2.1). Here we
remark that the flatness condition in the theorem is not satisfied for the ball.

2. Preliminaries
Let H'(Q) denote the usual Sobolev space. For ue H'(Q) and 1 < p<2n/(n—2), let

Vull o= j {Vu|2dx
Q

i/p
e [ o)
Q

To prove the theorem, we need the following

PROPOSITION 2.

Let aeC™(Q) be such that « changes sign in Q and faa(x)dx <0. Let A(a) be given by
(3). Then we have

(i) for all 2e(0, A(e)),

12
{J |Vu|2dx—lf a(x)uzdx}
Q b

defines an equivalent norm on H'(Q).
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(i) Let ue H*(Q)N C(Q) be such that
A¢(0, A(2))
Au+ dou#0

Au+ dau <0, a—u=0,
v

then u cannot be positive.
For the proof of above proposition we refer Brown-Lin [6] (Theorems 3.10 and
3.11) and Senn—Hess [12] (Proposition 6).

Flatness condition

Let x,e0Q. After a translation and rotation, we assume that x, =0 and there exist
R >0 and p:B(0,R)n{x,=0} - R a smooth function such that

p(0)=0,Vp(0)=0
QA B(O,R) = {xeB(0, R);x, > p(x')}
dQNB(0, R) = {xeB(0,R); x, = p(x')}

where x' = (x;...%,-,,0).

DEFINITION 2.1.
We say that 0Q is flat of order k at 0 if p(x") = 0(|x'[¥) as |x'| = 0.

3. Proof of the theorem

Let Q = R"(n > 3) be a bounded domain with smooth boundary. Let I'y, I'; be disjoint
submanifolds of dQ such that #Q =T, uT"; and let’

HY(Ty) = {ueH (Q);u=0 on I'y}. (@)
Let ae L*(Q), be L®(I';) be such that

12
{'[ qulzdx—J auzdx+J. buzdx} (5)
Q Q ry

defines an equivalent norm on H(T,). We denote this norm by |ull. For ueH*(I'y)
and p = (n +2)/(n—2), define

J(u)=%nu||2—p—i—1Llu|P“dx ©
2
0=t ™)
( |u|"“dx>
S(To,a,b) = inf {Q() ue H MM\ {0}}- ®)
Let .
S =inf{ |Vul? dx; ue H3(Q), J |u| 2"~ dx = 1} 9)
JQ Q

be the best Sobolev constant. Then by Cherrier [7, 8] we have




278 Adimurthi and S L Yadava

Lemma 3.1. For every ¢ >0, there exists C(¢) >0 such that for all ue H(Q),

2/(p+1) 22/n
(J |u|"“dx> s(—%—s)J |Vu|2dx+C(s)J u?dx.
Q S Q Q

For the proof of this lemma we also refer Aubin [2] (Theorem 2.30).
Now by using the above mentioned Cherrier’s result and Brezis-Lieb lemma [4],
we have

Lemma 3.2.

(i) S(To,a,b)>0
(i) Assume S(Tg,a,b)<S/2%™), then there exists a v >0 such that S(Ty,a,b) = Q(v).
Further if we define ug=S(Tq,a,b)" 2/ v, then u, satisfies

— Aug =ul =D 4 a(x)u, in Q

1y >0
dugy
ug=00nT,, 6_v+bu°=0 onT (10)
and J(uy) < (S"2)/2n.

Proof. (i) By Sobolev imbedding theorem, there exists a constant C > 0 such that for
all ueH(T'y),

2p+1)
(J‘ |u|”“dx) <Clul?.
ﬂ . '

Now (i) follows from the definition of S(I'y, 4, b). (ii) Let {1, } be a minimizing sequence

in (8) with [o|u, |P** dx = 1. Let for a subsequence, u, —v weakly in H*(T',) and almost
everywhere,

Claim 1. v#£0.

Suppose v =0. Then by Rellich lemma and lemma (3.1) we have

lim J |Vi[2dx = lim [u,||?
Q k= w

k=0

=8y, a,b)

22/n
SS(I‘O,a,b)( -I—a) lim .[ IVu,|*dx
S k=w JO

for every £> 0. Hence we have,

22/n
lsS(l"o,a,b)<—S—+a).

This contradicts S(T'y, a,b) < §/2%". Hence v #0.
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Claim 2. Q(v)=S(T,,a,b).
Let v, =u,—v. Then v, -0 weakly and almost everywhere. Now by Rellich lemma

el = lol® + o l1* +o(1)

=lv]I* + Vo, [3,0+ (1)

which gives

STo»a,0) = 0] + Vo[, 0 + o(1). (11)
By Brezis-Lieb lemma [4] and lemma 3.1, we have

T=u2h10=100+ 0+ 0210+ 0(1)
) 22/n
< |U|p+ Lot ("5‘.‘ + 8)|Vvk|§,9+0(1)
for every e > 0. Hence

2/n

2
S(To,a,b) < ST, a,b)|vf24 1,0+ ST, 4, b)<_S— + 8)|Vvk[%.ﬂ +o(1)
<S(To,a,b)[vl24 1,0+ [V0il3,0 + 0(1). (12)
Now from (11) and (12), we get
lo]?

|U|;+ LR

< 8Ty, a,b).

Hence v is a minimizer in (8).

Since Q(v) = Q(|v]), we may assume v > 0. Finally if we take uy =S(T¢, 4, p)in—204
v, then it is easy to check that u, satisfies (10) and J(uo) < S"?/2n. This completes
the proof of the lemma.

Lemma 3.3. Let aeC(Q). Assume that there exists some x,€0Q such that a(xq) >0 and
8Q is flat of order k>3 at xo. Then for every 4>0.

s :
S(h0) <375 (13)

where (1) = S(¢, A, 0).

Proof. Without loss of generality we may assume Xo = 0. Hence 0e0Q, «(0)>0 and
aQis flat at 0 of order k which is strictly greater than 3. Let p:B(0, Rn{x:x,=0}-R
be the function appeared in the definition of flatness.

For ue H' (), we have

J [Vu)? — lj a(x)u*dx
Q Q ) (14)

|u|§+1.n

Qu)=
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Let peC(B(0, R/2)) be such that ¢ is radial and ¢ =1 on B(0, R/4) and for &> 0,

o(x)
(e + |x|?)m-ar2’

then we claim that there exists a constant C = C(n) >0 such that as ¢—0,

Ux)=

i~ Ao 0% ifn> 5

v 15
UUPAS I | 15)
57— *Cellogel +0() ifn=4

and this implies the lemma.
Proof of (15) follows in several steps. For simplicity we can assume that p > 0. For
non-positive p’s the estimate (15) follows exactly as in the case of positive p. Define

Y ={xeB(0,R/2); 0<x,<p(x)}.

Step 1. Let [ 20, then
,0(1)+0(5‘”+"’1‘2“/2) ifn+k—1-21#0

d
- 16
L(e+IXI2)I 0<log%) fn+k—1-21=0: (16)

Since 0Q is flat of order k at 0, there exists a constant ¢ >0 such that p(x') < c|x'|".
Therefore we have

B T L T P
sle+Ix) - g o E+rr+x3)

R yn—z crkf(e+r2)1/2 1
= W,- ———— ———dt |d
Wy zjo (8+r2)l—112 (J.O (l-l-lz)l ) ¥

R n—-2+k
¥
<cw,,_2j ———r

o e+
= k120 f A, (17)
; o (47
Now Rie2 n=2+4k 1 =24k Risil? n=2+k
L TET J TR j ETa

RJel/2
=0(1)+0(J r"*“"‘z‘dr)
1

0(1)+ 0(e " F+H1+2072) if 4 k— 1 —2] %0

=0(1) + 1 .
0 logg fn+k—-1-21=0

18
Hence from (18) and (17) we have (16). 19

w
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Step 2. Since k > 3, without loss of generality we can assume that k=13 + 5,0<d<1.
Then

m

|U8|2dx=0(1)+0(£("+3"‘”2) (19)
JI
"

|VU£|2dx=0(1)+0(8(k+1_")/2) (20)
JE

|UE|2"’("'2)dx=0(1)+0(a""1'")/2), (21)
JI

Since

VU Vo (n—2)x

e = (e + |xl2)(”~2”2 _(5+lx|2)"/2’
hence we have

1 oL
o =o{ i) 0= )

and

1
U 2n/n—2=0 .
v ((sﬂxw)

Therefore from step (1), by taking [=n— 2, n— 1 and n, we obtain (19), (20) and (21)
respectively.

‘Step 3. From Brezis—Nirenberg [5] (see page 144, egs (L.11), (1.12) and (L1.13)), there
exist positive constants ky, k, and k; such that k, /k, =S and -

k
IVUBI%,B(O,R) =e(n__1m+0(1) (22)
2 K, 27
\Ue| 20— 20,80, 01 =E(,,—_m+0(1) (23)

k3 .
—— + 0(1 ifn Z 5
U380, = g w (24)
ki|loge| +0(1) if n=4.
Now from (19) to (24) we have
1
WU;B.Q":EWUJ%.B(O.R)—|VUal72',z
=28(—"k_15)/—2[1 +0(e" ) + 0(e*~12)] (25)
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2 1 2 2
|Us|2,n = 5|Uz|2,a(o.x) - [Ua|z,):
E(Tk_’—z)/—ﬁ [1+0@E* Y2) 4+ 0" )] ifnx5
N ) (26)
—ziuogel +0(1) + 0 +3-mi2) ifn=4
1 } .
|Ua|%:f(1n—-zz).n = ‘2‘| Us‘%:;E:—%%.B(O,R) - [Uz@%—%;.z
1 kz = 2) k—1)/2
=§(W) [1 +0(8"/2)+0(8( i )]
Hence
k " -
|Uul3a-20= 5=smmaya L1+ 0" + 06 2)] @)
Now choose R >0 and «, > 0 such that a(x) > «, for all x in B(0, R)nQ, then
2 _ 2
UALS VU, |30~ 42U,z 0 . (28)

IUa‘.z'Zn/(n—Z),Q
From (25) to (28) we have
__f__@o_kae +0(e* "2 ifn>5
2 /n 22/nk2
(U, < Sk (29)
a .
X0 —Ezﬁ,—kZ!sllogal +0) ifn=4.

Let C = dagks/22"k,, then (15) follows from (29), This proves the claim and hence
the lemma.

Proof of the Theorem. Let Ag(0, A(x). By (i) of proposition 2,

/2
Q Q

defines an equivalent norm on H*(€). From lemma 3.3, S(Ax) < (S/22/"). Hence from
(ii) of lemma 3.2, there exists a uqe H*(Q), uo >0 which solves (1). By Cherrier [8],
ueeC®(Q) and by maximum principle 4, > 0 in Q. On the other hand, if ¢(0, A(«)),
then by (i) of proposition 2, (1) does not admit any solution. This completes the proof
of the theorem.

4. Concluding remarks

L. Similar construction as in Brezis [3] (See page 21 ¢xample (2)), it is possible to
construct a o(x) < 0 such that (1) admits a solution for A= 1. We do not know how
to deal (1) when Aa(x)<0.

e e e N — _ﬁ {
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2. By a result of Senn—Hess [2] (See page 462, proposition (6)), it follows that if
fau(x)dx =0, then for any A€R, (1) does not admit a solution.

3. Following the method of this paper and using a recent result of Escobar [10],
it is possible to show that under suitable flatness assumptions at a boundary point,

— Au=Aa(x)u in Q
u>0

0
U in=2 on 60
ov

admits a solution for all 1e(0, 4(«))-
4.LetdQ=T,ul,, TNl =¢,pand I'; the smooth submanifolds of dimension

n— 1. Consider the following mixed boundary value problem

—Au =yt 0=D 4 g(x)u+ pu in Q

u>0

u=0 onTl,

ou

5=0 on Fl' (30)

Let x, be in the interior of I'y and assume that 8Q is flat at x, of order k strictly
greater than 3 and a(x,) = 0. Further assume that — A — o is positive on H'(['o). Let
1, be the first eigenvalue of —A —aon H 1(T,). Then by similar method used in this
paper it follows that for n> 4, 10,y ), (30) admits a weak solution.

However, it should be noted that under a stronger assumption on &, viz a(xo ) >0,
(30) admits a solution even for p= 0.

When & =0, 1 =0, Lions—Pacella-Tricarico [11] have proved that, under suitable
assumption on Iy and 'y, with I’y # ¢, problem (30) admits a solution.
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