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1. Introduction

Let B�1� denote the open unit ball in Rn: We consider the following
problem for k > 0:

ÿDu � u
n�2
nÿ2 ÿ ku in B�1�;

u is positive and radial in B�1�;
@u
@m
� 0 on @B�1�:

�1:1�

Note that problem (1.1) always admits the constant solution u0 � k�nÿ2�=4: In
ADIMURTHIDIMURTHI & YADAVAADAVA [3] and BUDDUDD, KNAAPNAAP & PELETIERELETIER [6] it has been
proved that there exists a constant k0 > 0 such that for 0 < k < k0; (1.1)
admits a nonconstant solution for n � 4; 5; 6 and does not for n � 3:

In this paper we study problem (1.1) when n 3 7: In this case the method
used in [3] and [6] breaks down due to the fact that �n� 2�=�nÿ 2� < 2;
which leads to a drastic change in the behaviour of the associated
Pohozhaev's functionals. In contrast to the case n � 4; 5; 6; we have

Theorem 1.1. Suppose n 3 7. Then there exists a constant k0 > 0 such that for
0 < k < k0; problem (1.1) does not admit any nonconstant solution.

The existence and nonexistence of nonconstant solutions of (1.1) is related
to a conjecture of LININ & NII [7] which we now brie¯y explain. Let X � Rn be a
bounded domain with smooth boundary. For 1 < p <1 and k > 0; consider
the problem

ÿDu � up ÿ ku in X;
u > 0 in X;
@u
@m
� 0 on @X :

�1:2�

Arch. Rational Mech. Anal. 139 (1997) 239±253. Ó Springer-Verlag 1997



In the subcritical case, i.e., when 1 < p < �n� 2�=�nÿ 2�; LININ, NII &
TAKAGIAKAGI [8] have shown that there exist constants k0 and k1 with 0 < k0 2 k1
such that problem (1.2) admits a nonconstant solution if k > k1 and does not
if k < k0: Furthermore, LININ & NII [7] have shown that for p > �n� 2�=�nÿ 2�
and X a ball, this result continues to hold in the class of radial solutions. In
view of these and some other connected results, they made the

Conjecture: Let 1 < p <1: Then there exist constants k0 and k1 with
0 < k0 2 k1 such that
(a) for k 3 k1; problem (1.2) admits a nonconstant solution,
(b) for 0 < k < k0; problem (1.2) does not admit any nonconstant solution.

Recently some progress has been made regarding this conjecture for the
critical case p � �n� 2�=�nÿ 2�: Part (a) of the conjecture has been proved
a�rmatively by ADIMURTHIDIMURTHI & MANCINIANCINI [2] & WANGANG [11]. They obtained a
nonconstant minimal energy solution of (1.2) for k large. As mentioned
earlier, for n � 4; 5 and 6, there is a counterexample to part (b) of the con-
jecture. However, in the class of minimal-energy solutions, it has been shown
by ADIMURTHIDIMURTHI & YADAVAADAVA [4] that part (b) of the conjecture is also true.
Theorem 1.1 shows that for n 3 7; part (b) of the conjecture is true in the
class of radial solutions and hence the conjecture is completely understood in
this class.

Theorem 1.1 can be deduced from the following more general result for
the m-Laplacian.

Theorem 1.2. Let

22 m < n; p � �mÿ 1�n� m
nÿ m

; p ÿ 1 < q < p; k > 0:

Then there exists k0 > 0 such that the problem

ÿdiv ruj jmÿ2ru
� �

� up ÿ kuq in B�1�;
u is positive and radial in B�1�;
@u
@m
� 0 on @B�1�

�1:3�

does not admit any nonconstant solution for 0 < k < k0:

Theorem 1.1 obviously follows from Theorem 1.2 by taking
m � 2; q � 1; n 3 7:

We mention that when m � 2; problem (1.3) has been studied extensively
by BUDDUDD, KNAAPNAAP & PELETIERELETIER [6] for the values q < p ÿ 1 and by ADIMURTHIDIMURTHI,
KNAAPNAAP & YADAVAADAVA [1] for q � p ÿ 1: The case p ÿ 1 < q < p has been open
and Theorem 1.2 covers this range.

2. Proof of Theorem 1.2

In order to prove the theorem, we consider the following initial-value
problem. Suppose that c > 0; c41 and let w � w� � ; c� (see [10]) denote the
unique solution of
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ÿ jw 0jmÿ2w0
� �0

ÿ nÿ1
r jw 0jmÿ2w 0 � w p ÿ w q;

w�0� � c ; w 0�0� � 0 :
�2:1�

Let R1�c� be the ®rst turning point of w � w� � ; c� and let R0�c� < R1�c� be
given by

R1�c� � sup s; w�r; c� > 0; w0�r; c�40 for r 2 �0; s�f g; �2:2�

w�R0�c�; c� � 1: �2:3�
We now recall some facts about the solution w�r; c� of problem (2.1).
�A1� For 0 < c < 1; w� � ; c� is an increasing function in �0;R1�c��: For
1 < c <1; w� � ; c� is a decreasing function in �0;R1�c��:
�A2� R1�c� exists and there exists a positive constant l such that

lim
c!1

R1�c� � l; lim
c!0

R1�c� � 1:

The proofs of �A1� and �A2� are similar to that of Lemma A in [3] and
therefore we omit them here.

Now we make the change of variables

m � nÿ m
mÿ 1

; k � m�nÿ 1�
nÿ m

; t � m
r

� �m
;

T0�c� � m
R0�c�
� �m

; T1�c� � m
R1�c�
� �m

:

Let v�t� � w�r; c�: Then equation (2.1) transforms to

ÿ jv0jmÿ2v0
� �0

� tÿk�vp ÿ vq� in �T1�c�;1�;
v > 0 in �T1�c�;1�;

v�1� � c ; v0�1� � v0�T1�c�� � 0:

�2:4�

De®ne f �s� � �1� s�p ÿ �1� s�q and suppose c > 1: Let y � vÿ 1: Then y
satis®es

ÿ jy0jmÿ2y0
� �0

� tÿkf �y� in �T0�c�;1�;
y > 0 in �T0�c�;1�;

y�1� � cÿ 1; y 0�1� � y�T0�c�� � 0:

�2:5�

Now the proof of Theorem 1.2 relies on the

Main Lemma. Suppose that m 3 2; p � ��mÿ 1�n� m�=�nÿ m�; and
p ÿ 1 < q < p: Then there exist s0 > 0 and s � s�c� > T0�c� such that

s0 2 limc!1y�s�2 limc!1y�s� <1; �2:6�

y0�s�2 mÿ 1

m

� �
y�s�
s
: �2:7�
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Assuming the validity of the Main Lemma, we complete the proof of
Theorem 1.2. The proof of the Main Lemma will be given in Section 3.

Proof of Theorem 1.2. We ®rst establish that

limc!1T0�c� <1: �2:8�

Proof of (2.8). Let s0 and s be as in the Main Lemma. We observe that y0 > 0
in �T0�c�;1�: Now integrating (2.5) twice over �T0�c�; s� we obtain

y�s� �
Zs

T0�c�

�
y0�s�mÿ1 �

Zs

h

sÿkf �y�s��ds
�1=�mÿ1�

dh: �2:9�

Since f �0� � 0 and f is increasing, from (2.6) we can ®nd a constant C > 0
such that for any s 2 T0�c�; s� �,

f �y�s��2 f �y�s��2 Cy�s�: �2:10�
Therefore from (2.7), (2.9), (2.10) and from the fact that m 3 2 we have

y�s�2
Zs

T0�c�

�
y0�s� �

�
Cy�s�

�k ÿ 1�hkÿ1

�1=�mÿ1��
dh

� y0�s��sÿ T0�c�� � C1y�s�1=�mÿ1�
T0�c��kÿm�=�mÿ1�

2
mÿ 1

m

� �
y�s� � C1y�s�1=�mÿ1�

T0�c��kÿm�=�mÿ1� ;

where �k ÿ m�C1 � �mÿ 1� C=�k ÿ 1�� �1=�mÿ1�: Therefore from (2.6) and this
inequality we get

T0�c�2 C1m� ��mÿ1�=�kÿm�

s�mÿ2�=�kÿm�
0

:

This proves (2.8)
Since R0�c� < R1�c�; from (2.8) it follows that

limc!1R1�c� > 0 : �2:11�
Let u be a nonconstant solution of (1.3). Let

r � jxj; g�r� � 1

k1=�pÿ1�
u

x

k�p�1ÿm�=�m�pÿq��

� �
; Rk � k�p�1ÿm�=�m�pÿq�� :

Then g satis®es
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ÿ jg0jmÿ2g0
� �0

ÿ nÿ 1

r
jg0jmÿ2g0 � gp ÿ gq in �0;Rk�;

g > 0; g0�0� � g0�Rk� � 0:
�2:12�

By the uniqueness of the solution of the initial-value problem (2.1), and from
�A1� and �A2�; there exists ~R > 0 such that forRk < ~R and c � g�0� > 1we have

R1�c� � Rk; g�r� � w�r; c�: �2:13�
Also from (2.11) and (2.13), we can ®nd some �R with 0 < �R < ~R such that

Rk 3 �R ifRk 2 ~R:This implies that there exists a k0 > 0 such that for 0 < k < k0;
problem (1.3) has no nonconstant solution. This proves the theorem.

3. Proof of the Main Lemma

Let c > 1 and let v; y; T0�c�; T1�c�; f be as described in Section 2. For s 3 0
and t 3 T0�c�; de®ne

G�s� � sp�1

p � 1
ÿ sq�1

q� 1
;

h�s� � sf 0�s� ÿ pf �s� �3:1�
� �p ÿ q��1� s�q ÿ p�1� s�pÿ1 � q�1� s�qÿ1;

H�t� � t�v0�m ÿ v�v0�mÿ1 � mG�v�
�mÿ 1�tkÿ1 ; �3:2�

H1�t� � t�y0�m ÿ y�y0�mÿ1 � yf �y�
�k ÿ 1�tkÿ1 : �3:3�

By (2.4) and (2.5), it follows that

lim
t!1H�t� � lim

t!1H1�t� � 0; �3:4�

H 0�t� � p ÿ q
q� 1

tÿkvq�1; �3:5�

H 01�t� �
t1ÿky0

�k ÿ 1� yf 0�y� ÿ pf �y�� � � t1ÿky0

�k ÿ 1� h�y�; �3:6�

�y0�mÿ1y1ÿktkÿ1
� �0

� ÿ�k ÿ 1�tkÿ2yÿkH1�t�: �3:7�
Since p ÿ 1 < q < p; from (3.1), we see that h�s� ! 1 as s!1 and that h is
negative near zero. Hence there exists a s0 > 0 such that

h�s�3 0 for s 3 s0; h�s�2 0 for 02 s 2 s0: �3:8�
Now also require that c > max s0; �p � 1�=�q� 1�� �1=�pÿq�

n o
� 1 and choose

s0 � s0�c� > T0�c� such that

y�s0� � max s0;
p � 1

q� 1

� �1=�pÿq�( )
: �3:9�
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Then we have

Lemma 3.1. Let s 3 s0 and de®ne

a�s�mÿ1 � �y0�mÿ1y1ÿkt kÿ1
� �

�s�; �3:10�

b�s� � yÿ�kÿm�=�mÿ1� ÿ tÿ�kÿm�=�mÿ1�a�s�
� �

�s�; �3:11�

fs�t� � t a�s� � b�s�t�kÿm�=�mÿ1�
� �ÿ�mÿ1�=�kÿm�

: �3:12�
Then for all t 2 �s0; s�,

fs�t�2 y�t�: �3:13�
Moreover a; b and fs satisfy

ÿ f0s
ÿ �mÿ1� �0

� �k ÿ 1�a�s��mÿ1�b�s�tÿkfp
s ;

fs�s� � y�s�; f0s�s� � y0�s�: �3:14�
Furthermore, if y�s�3 2; then

�k ÿ 1�a�s�mÿ1b�s� ÿ 1

� O

 
skÿ1y0�s�mÿ1

y�s�p�1 � 1

y�s�pÿq �
skÿ1

y�s�p�1
Z1
s

sÿky�s�q�1ds

!
: �3:15�

Proof. From the choice of s0 and from (3.8) and (3.6) we get H 01�t�3 0 for
t 3 s0: Therefore, from (3.7) and (3.4) we conclude that �y0�mÿ1y1ÿkt kÿ1

� �
is

an increasing function for t 3 s0: Hence for t 2 s0; s� �;
�y0�mÿ1y1ÿkt kÿ1 2 �y 0�mÿ1y1ÿkt kÿ1

� �
�s� � a�s�mÿ1:

This gives

yÿ�kÿm�=�mÿ1� ÿ tÿ�kÿm�=�mÿ1�a�s�
� �0

3 0:

Hence for t 2 �s0; s�;

y�t��mÿk�=�mÿ1�ÿy�t��mÿk�=�mÿ1�a�s�2 y�mÿk�=�mÿ1�ÿt�mÿk�=�mÿ1�a�s�
� �

�s� � b�s�;

which gives

y�t�3 t a�s� � b�s�t�kÿm�=��mÿ1��
� �ÿ�mÿ1�=�kÿm�

� fs�t�:
This proves (3.13). A direct veri®cation gives (3.14).

To simplify the notation, we let y � y�s� and y0 � y0�s�: Then from (3.10)
and (3.11),
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�k ÿ 1�a�s�mÿ1b�s�ÿ1� �k ÿ 1��y0�mÿ1 s
y

� �kÿ1
1

y�kÿm�=�mÿ1� ÿ
sy0

y�kÿ1�=�mÿ1�

� �
ÿ 1

� �k ÿ 1��y0�mÿ1skÿ1�y ÿ sy0�
ym�kÿ1�=�mÿ1� ÿ 1 �3:16�

� �k ÿ 1�skÿ1�y�y0�mÿ1 ÿ s�y0�m� ÿ yp�1

yp�1 :

Integrating (3.5) from s to 1 yields

ÿs�y0�m � �1� y��y 0�mÿ1 ÿ mG�1� y�
�mÿ 1�skÿ1 �

p ÿ q
q� 1

Z1
s

sÿk�1� y�s��q�1ds;

that is,

y�y 0�mÿ1 ÿ s�y0�m � ÿ�y0�mÿ1 � mG�1� y�
�mÿ 1�skÿ1 �

p ÿ q
q� 1

Z1
s

sÿk�1� y�s��q�1ds:

Hence from (3.16) we have

�k ÿ 1�a�s�mÿ1b�s� ÿ 1 � 1

yp�1

(
ÿ �k ÿ 1�skÿ1�y0�mÿ1

� �p � 1� �1� y�p�1
p � 1

ÿ �1� y�q�1
q� 1

 !

ÿ y p�1 � p ÿ q
q� 1

� �
�k ÿ 1�skÿ1

Z1
s

sÿk�1� y�s��q�1ds

)

� 1

yp�1

(
ÿ �k ÿ 1�skÿ1�y0�mÿ1 � yp�1 � 0 yq�1ÿ �ÿ yp�1

� p ÿ q
q� 1

� �
�k ÿ 1�skÿ1

Z1
s

sÿk�1� y�s��q�1ds

)

� O

 
skÿ1�y0�mÿ1

yp�1 � 1

ypÿq �
skÿ1

yp�1

Z1
s

sÿky�s�q�1ds

!
:

This proves (3.15) and hence the lemma.

Lemma 3.2. There exists a positive constant C such that for, t 3 s0,

y02 y=t ; �3:17�

ym=�mÿ1�2 Ct: �3:18�

A Quasilinear Neumann Problem 245



Proof. Integrating (3.6) from t to 1; we obtain

t�y0�m ÿ y�y0�mÿ1 � yf �y�
�k ÿ 1�tkÿ1 �

1

�k ÿ 1�
Z1
t

s�1ÿk�y0h�y�ds � 0: �3:19�

Since h�y�t��3 0 for t 3 s0; it follows from (3.19) that

t�y0�m ÿ y�y0�mÿ1 2 0 :

This proves (3.17).
Let t 3 s0 be ®xed, and for X 3 0 de®ne

q�X � � X m ÿ yX mÿ1 � yf �y�
�k ÿ 1�tkÿm �

tmÿ1

�k ÿ 1�
Z1
t

s�1ÿk�y0h�y�ds:

Then q�0� > 0; q�1� � 1, and from (3.19) we see that q�ty0�t�� � 0: Hence q
has a minimum at some point X0, with q�X0�2 0; q0�X0� � 0: This implies
that

mX mÿ1
0 ÿ �mÿ 1�yX mÿ2

0 � 0;

and so

X0 � mÿ 1

m
y:

Hence

03 q�X0� � mÿ 1

m

� �m

ym ÿ mÿ 1

m

� �mÿ1
ym

� yf �y�
�k ÿ 1�tkÿm �

tmÿ1

k ÿ 1

Z1
t

s�1ÿk�y0h�y�ds:

Since h�y�s��3 0 for s 3 t 3 s0; from this inequality follows

1

m
mÿ 1

m

� ��mÿ1�
ym 3

yf �y�
�k ÿ 1�tkÿm :

Hence we can ®nd a positive constant C such that ym=�mÿ1�2 Ct: This proves
(3.18).

Proof of the Main Lemma. Let h�t� � ym=�mÿ1�

t
: Then,

h0�t� � y1=�mÿ1�

t2
m

mÿ 1
ty0 ÿ y

� �
; �3:20�

h00�t� � y1=�mÿ1�

t2

� �0
m

mÿ 1
ty0 ÿ y

� �
� y1=�mÿ1�

�mÿ 1�t2 mty00 � y0� � �3:21�

� y1=�mÿ1�

t2

� �0
m

mÿ 1
ty0 ÿ y

� �
ÿ y1=�mÿ1�

�mÿ 1�t2
mtÿk�1f �y�
�mÿ 1��y0�mÿ2 ÿ y0
 !

:
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Now one of the following two cases holds:

Case (i): limc!1h0�s0�2 0:
Case (ii): There exists a sequence cl !1 such that h0�s0� > 0:

In case (i), from (3.20) and (3.9) we get s0y0�s0�2 �mÿ 1�=m� �y�s0� and
y�s0� � s0: This proves the lemma.

In case (ii), since h0�s0� > 0 and h�1� � 0; the function h has a local
maximum in �s0;1�: Let s � s�cl� > s0 be the ®rst such point. Hence from
(3.20) and (3.21), together with h00�s�2 0; we have

�mÿ 1�
m

y
t

2 y0 for t 2 �s0; s�; �3:22�

�mÿ 1�
m

y�s�
s
� y0�s�; �3:23�

mÿ 1

m

� ��mÿ1�y�s�mÿ1
smÿ1 � y0�s�mÿ1 2

mf �y�s��
�mÿ 1�skÿ1 :

From the last inequality we can ®nd a positive constant C such that

y�s�m=�mÿ1�3 Cs: �3:24�
Before going to the next lemma we introduce the following notation. For

two functions f and g de®ned on a set S; we write f � g if there exist positive
constants C1 and C2 such that C1g 2 f 2 C2g uniformly on S:

The Main Lemma now relies on

Lemma 3.3.

limcl!1y�s� <1: �3:25�

Proof. We argue by contradiction. Suppose the lemma were not true. Then
for a subsequence, still denoted by cl, we would have

lim
cl!1

y�s� � 1: �3:26�

Notice that from (3.18), s!1 as cl !1:
In the sequel, C and Ci denote positive constants independent of the

sequence fclg, which may however vary from one inequality to the next.
In view of (3.18) and (3.24) we can ®nd positive constants C1 and C2 such

that

C1s 2 y�s�m=�mÿ1�2 C2s:

Now from this inequality and (3.23) we obtain

mÿ 1

m

� �
C�mÿ1�=m
1 sÿ1=m 2 y0�s�2 mÿ 1

m

� �
C�mÿ1�=m
2 sÿ1=m:
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Therefore for all cl, the functions y�s� and y0�s� satisfy
y�s� � s1ÿ1=m ; �3:27�
y0�s� � sÿ1=m : �3:28�

We now divide the proof of the lemma into four steps.

Step 1. Let s1 2 �s0; s� be such that

y0�s1�2 Csÿ1=m: �3:29�
Then

y�s1�3 Cs�mÿ1��qÿp�1�=m: �3:30�

Proof of Step 1. By the choice of s1; we have G�y�s1��3 0: Hence integrating
(3.5) from s1 to 1 and using (3.4), (3.27) and (3.29), we have

C1s
ÿk�1��mÿ1��q�1�=m 2

p ÿ q
q� 1

� �Z1
s

tÿkyq�1�t�dt

2
p ÿ q
q� 1

� � Z1
s1

tÿk 1� y�t�� �q�1dt

� ÿH�s1�2 �1� y�s1��
s�mÿ1�=m

:

This implies (3.30), since

mÿ 1

m
�q� 1� ÿ k � 1� mÿ 1

m
� mÿ 1

m
�qÿ p � 1�

and s!1 as cl !1: This proves Step 1.

Step 2. For d < 1; de®ne

q�d� � p dÿ 1
m

ÿ �� mÿ1
m

�k ÿ 1� : �3:31�

Then q�d� < d: Let d0 < 1; if we now de®ne a sequence fdigi 3 0 by
di�1 � q�di� for i 3 0; then

lim
i!1

di � ÿ1 : �3:32�

Proof of Step 2. Since p � 1 � nm=�nÿ m� > m and d < 1; from (3.31) we have

q�d� ÿ d � p�dÿ 1� � mÿ1
m �p � 1�

mÿ1
m �p � 1� ÿ d � �1ÿ d��mÿ 1ÿ p�

�mÿ 1��p � 1� < 0:

This proves that q�d� < d; and also implies that fdig is a decreasing sequence.
Let ~d � limi!1 di: If ~d > ÿ1; then
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~d � lim
i!1

di�1 � q�~d� < ~d;

which is a contradiction. This proves Step 2.

Step 3. Let 1=m < d < 1: Assume that

y�sd� � sdÿ1=m; �3:33�
y0�sd� � sÿ1=m: �3:34�

Then q�d� > 1=m and

s0 < sq�d� < sd; �3:35�
y0�sq�d�� � sÿ1=m; �3:36�
y�sq�d�� � sq�d�ÿ1=m; �3:37�
y�sq�d��3 Cs�mÿ1��qÿp�1�=m: �3:38�

Proof of Step 3. From Step 2, we have q�d� < d < 1: Let max sq�d�; s0
� 	

2 t 2 sd: Integrating (2.5) from t to sd and using (3.33) and (3.34), we have

y0�t�mÿ1 � y0�sd�mÿ1 �
Zsd

t

sÿkf �y�s��ds

� O sÿ�mÿ1�=m � t1ÿky�sd�p
� �

�3:39�

� O sÿ�mÿ1�=m � s�1ÿk�q�d�s dÿ1=m� �p
� �

� O sÿ�mÿ1�=m
� �

:

Suppose that sq�d�2 s0: From (3.9), (3.39) and Step 1, we get

Cs0 � Cy�s0� � lim
cl!1

Cy�s0�3 lim
cl!1

s�mÿ1��qÿp�1�=m � 1;

which is a contradiction. Hence sq�d� > s0: Thus from Step 1 and (3.39) we get
y sq�d�ÿ �

3 Cs�mÿ1��qÿp�1�=m: This proves (3.35) and (3.38). Furthermore, from
(3.39) and (3.34), we have

C1s
ÿ1=m 2 y0�sd�2 y0 sq�d�

� �
2 C2s

ÿ1=m:

This proves (3.36). Next from (3.17), (3.22) and (3.36),

y sq�d�
� �

� sq�d�y0 sq�d�
� �

� sq�d�ÿ1=m;

proving (3.37). Since s!1 as cl !1; and qÿ p � 1 > 0; we conclude from
(3.37) and (3.38) that q�d� > 1=m: This proves Step 3.

Step 4. We assert that

y s�qÿp�m�=m
� �

� s�qÿp�mÿ1�=m; �3:40�

y0 s�qÿp�m�=m
� �

� sÿ1=m: �3:41�
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Proof of Step 4. Let a�s�; b�s� and fs be as in Lemma 3.1. Then from (3.27),
(3.28) and (3.23) we have

a�s��mÿ1� � s�kÿm�=m; b�s� � sÿ�kÿm�=m; a�s�mÿ1b�s� � 1: �3:42�
Next by (3.15), (3.27), (3.28) and (3.18), we get

�k ÿ 1�a�s�mÿ1b�s� ÿ 1

� O

 
skÿ1

s�mÿ1�s�mÿ1��p�1�=m
� 1

s�pÿq��mÿ1�=m
� skÿ1

s�mÿ1��p�1�=m

Z1
s

sÿk��mÿ1��q�1�m ds

!

� O sÿ�pÿq��mÿ1�=m
� �

: �3:43�

From (3.42), for t 2 s we have

fs�t� �
t

s1=m
1� t

s

� ��kÿm�=�mÿ1�� �ÿ�mÿ1�=�kÿm�
: �3:44�

HenceZs

t

 Zs

h

sÿkfs�s�qds

!1=�mÿ1�
dh 2

1

sq=m�mÿ1�

Zs

t

 Zs

h

sÿk�qds

!1=�mÿ1�
dh

� O
s1��ÿk�q�1�=�mÿ1�

sq=m�mÿ1�

� �
� O s�qÿp�mÿ1�=m

� �
:

�3:45�

Since mÿ 13 1; we have for a 3 b 3 0; that

�aÿ b�1=�mÿ1�3 a1=�mÿ1� ÿ b1=�mÿ1�: �3:46�
Let g � �k ÿ 1�a�s�mÿ1b�s�: For t 2 �s0; s�; by integrating equation (2.5) from
t to s and using (3.13) and (3.14), we obtain

y�t� � y�s� ÿ
Zs

t

�
y0�s�mÿ1 �

Zs

h

sÿkf �y�s��ds
�1=�mÿ1�

dh

2 y�s� ÿ
Zs

t

�
y0�s�mÿ1 �

Zs

h

sÿkf �fs�s��ds
�1=�mÿ1�

dh

2 y�s� ÿ
Zs

t

�
y0�s�mÿ1 �

Zs

h

sÿkfp
s�s�ds�

Zs

h

sÿk�f �fs� ÿ fp
s�ds

�1=�mÿ1�
dh

� y�s� ÿ
Zs

t

�
1ÿ 1

g

� �
y0�s�mÿ1 � f0s�h�mÿ1

g
ÿ
Zs

h

sÿk f �fs� ÿ fp
s

�� ��ds
�1=�mÿ1�

dh:

Now f �fs� ÿ fp
s � ÿfq

s for t 3 s0. Therefore using (3.46), (3.45) and (3.42), we
have
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y�t�2 y�s� ÿ
Zs

t

1ÿ 1

g

� �
y0�s�mÿ1 � f0s�h�mÿ1

g

" #1=�mÿ1�
dh

� O

 Zs

t

"Zs

h

sÿkfq
sds

#1=�mÿ1�
dh

!

2

y�s� � fs�t� ÿ fs�s�� �gÿ1=�mÿ1� � O s�qÿp�mÿ1�=m
ÿ �

if g 3 1;

y�s� � 1ÿ 1

g

���� ����1=�mÿ1�y0�s��sÿ t� � fs�t� ÿ fs�s�� �gÿ1=�mÿ1�

� O s�qÿp�mÿ1�=m
� �

if g 2 1:

8>>>>><>>>>>:
Since fs�s� � y�s�; we ®nd from (3.42), (3.43), (3.27) and (3.28) that

y�t�2 1ÿ gÿ1=�mÿ1�
�� ��y�s� � 1ÿ 1

g

���� ����1=�mÿ1�y0�s�s� gÿ1=�mÿ1�fs�t�

� O s�qÿp�mÿ1�=m
� �

� O fs�t� � s�qÿp�mÿ1�=m
� �

:

�3:47�

Also fs s�qÿp�m�=m
ÿ � � s�qÿp�mÿ1�=m !1 as cl !1; so that s�qÿp�m�=m 3 s0:

Therefore from (3.13), (3.47) and (3.17) it follows that

C1s
�qÿp�mÿ1�=m 2 fs s�qÿp�m�=m

� �
2 y s�qÿp�m�=m

� �
2 C2s

�qÿp�mÿ1�=m ;

C1s
ÿ1=m 2 y0�s�2 y0 s�qÿp�m�=m

� �
2 y s�qÿp�m�=m

� �
sÿ�qÿp�m�=m 2 C2s

ÿ1=m :

This proves Step 4.
Now de®ne the sequence fdig by d0 � �qÿ p � m�=m, di � q�diÿ1� for

i 3 1: Since

qÿ p � m
m

ÿ 1 � qÿ p
m

< 0;

qÿ p � m
m

ÿ 1

m
� qÿ p � mÿ 1

m
3

qÿ p � 1

m
> 0;

we have 1=m < d0 < 1: Therefore from Steps 2, 3 and 4 we have
1=m < di�1 < di < 1: Hence 1=m 2 ~d � limi!1 di; which contradicts Step 2.
This proves the lemma and hence the Main Lemma.

Remark 1. In the case n 3 7;m � 2; q � 1; by using similar arguments, it is
possible to show that for every positive integer l; there exists cl > 0 such that,
for c 3 cl;

y c2�2ÿp�l
� �

� c�2ÿp�l ; y0 c2�2ÿp�l
� �

� cÿ�2ÿp�l:

Since 0 < 2ÿ p < 1; we see that T0�c� � 0�ce� for every e > 0. Further-
more, if we de®ne
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Z�s� � cÿ�2ÿp�l y c2�2ÿp�l s
� �

;

then Z satis®es

ÿZ 00 � tÿkfc;l�Z�; Z�1� � 1; Z 0�1� � 1;

where fc;l�s� ! sp as c!1: Hence Z converges to a ground state solution f
of the equation ÿf0 � tÿkf: Such a point tl � c2�2ÿp�l is called a blowup point
for y. This implies that the solution y exhibits an unbounded number of blow
ups as c!1:

By a similar analysis, it can be shown for c large that

y c�3ÿp��2ÿp�l
� �

� c�2ÿp�l�1 ; y0 c�3ÿp��2ÿp�l
� �

� cÿ�2ÿp�l :

Hence y remains constant in
�
c2�2ÿp�l�1 ; c�3ÿp��2ÿp�l� while at the point c2�2ÿp�l�1

the derivative y0 changes drastically. This phenomenon was noticed in [9] for
similar problems in n � 2 with supercritical growth.

Remark 2. Consider the problem

ÿDu � �u� 1�n�2nÿ2 ÿ �u� 1� in B�R� ;
u > 0 in B�R� ;
u � 0 on @B�R�

where B�R� � Rn is a ball of radius R: From the analysis in [3, 5 and 6], it
follows that for n 2 f3; 4; 5; 6g; this above problem admits a solution for R
near zero, whereas for n 3 7; from (2.8), it follows that no solution exists for
R near zero. Thus the existence of a solution in the critical Sobolev exponent
problem can be extremely sensitive to perturbations.
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