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Abstract. We study the continuous as well as the discontinuous solutions of
Hamilton—Jacobi equation u, + H(u,Du) = g in R" x Ry with u(x,0) = up(x). The
Hamiltonian H (s, p) is assumed to be convex and positively homogeneous of degree
one in p for each s in R. If H is non increasing in s, in general, this problem need not
admit a continuous viscosity solution. Even in this case we obtain a formula for
discontinuous viscosity solutions.
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1. Introduction

Let H : R x R" — R be a continuous function. Let ug € W (R"),g € Wh*(R" x R,)
and consider the Hamilton—Jacobi equation

u,+H(u,Du) =g in R" x Ry,
u(x,0) = up(x) for x € R", (1.1)

where Du = (g—;, e ,5)7”) This problem has been studied extensively using the method

of viscosity solutions developed by Crandall, Evans and Lions [7,10]. An excellent
reference for this is the lecture notes of Evans [7]. It has been shown ([10], Ch. 9, Remark
9.1) that apart from the usual hypothesis on H, if there exist a v € R such that for all
(s,p) € R x R,

OH

then (1.1) admits a viscosity solution u € W1*(R" x R, ). The question is to obtain a
formula for the solution of (1.1).

Under the conditions (1.2), p+— H(s,p) being convex and positively homogeneous of
degree one and g = 0, Barron, Jenssen and Liu [5] have obtained an explicit formula for
the viscosity solution. In general for g # 0, one cannot expect an explicit formula in the
sense of Hopf and Lax, but one can hope to get an infinite dimensional representation in
terms of a control problem. This has been carried out by Barron and Ishii [3] (representa-
tion formula) and Barron and Liu [4] (existence of a minimizer).

If H does not satisfy (1.2), in general (1.1) need not admit a continuous viscosity
solution [1,10]. In this paper we study this problem under the hypothesis, s+— H(s, p) is
non-increasing and p — H(s, p) is convex and positively homogeneous of degree one. As
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far as our knowledge goes this problem has not been tackled in the literature. But in [1],
the authors considered this problem with g = 0 and obtained explicit formula for solu-
tions. Here we extend this result for g # O (see Theorem 2.2). The main ingredients in the
proof of this are to prove semicontinuity property for the constraints (Corollary 4.1) and
the dynamic programming principle (Lemmas 4.7 and 4.8). The same idea allows us to
study problem (1.1) when H satisfies (1.2) (see Theorem 2.1) and of course this result can
be obtained also from the results of [3] and [4] with proper modifications.

2. Main results
Letx € Rt > 0,0 <s <t,M >0 and define
Clx,t,5) = {& € Wh([s, 1], R"); £(1) = x}, (2.1)

Cu(x,t,5) = {£ € C(x,1,9); €], <M},
C(x,t) = C(x,1,0), Cy(x, 1) = Cp(x,1,0),

where £(0) = d¢/df(6). Let h: R" — RU {400} and u: R" x Ry — R be functions
and g € WH(R" x Ry). Let 0 < s < 0 <t, £ € C(x,t,s), define

lu|, = sup {|u(y,0)]; y € R",0 € [0,1]},

0 0
[ e@= [ stennan (2.3)
0
pi(&1,5,h,g) = ezziltlp { / g(§ } (2.4)
0
p—(&t,8,h,8) = egs[mf { / g(¢ } (2.5)
pi(§7 t’hag) = pi(fa Z O’h’g)' (26)

Then we have the following results.

Theorem 2.1. Let ug € WH*(R"), g € WI(R" x R,). Assume that H satisfies,

(Hy) s+ H(s,p) is non decreasing for all p € R".
(Hy) p— H(s,p) is convex, positively homogeneous of degree one for each s € R.

Let & denote the quasi convex dual of H defined by

h(g) = inf{y : H(v,p) > (p,q) V|p| = 1}. (2.7)
For (x,t) € R" x R, , define
)= int LuoleO) Vo) + [ @)}, 23)

Then for each T >0, u € WH°(R" x [0,T]) and is a viscosity solution of (1.1).
Furthermore infimum is achieved in (2.8).

Theorem 2.2. Let ug € Wh*(R"),g € W (R" x R,). Assume that H satisfies

(H3) s+~ H(s,p) is non-increasing for all p € R",
(Hy) p— H(s,p) is convex, positively homogeneous of degree one, for each s € R.
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Let h denote the quasi concave dual of H defined by
h(q) = sup{y: H(v,p) = (p,q) ¥V |p| = 1}. (2.9)
For (x,1) € R" x R, define

u(,t) = inf {uo(E(O))+ / g(6): uo@(o»sf)_(f,r,h,g)}, (2.10)

£eC(x,t)
A(e) = inf {Mo(f(o))+ / ' g(0); uo(f(o))<P(§J,h,8)}~ 2.11)

§eC(x,1)

Then u is a lower semicontinuous viscosity solution of (1.1) and % is an upper semi-
continuous viscosity solution of (1.1). Also infimum is achieved in (2.10). Furthermore if
g(x,1) = g1(x,1) + g2(t), t — tg; is non-increasing in ¢, g>(f) < 0 and H(u,p) > 0 for all
p # 0,u € R, then u* =7 and u, = u. In this case the two solutions coincide.

Remark 2.3. For g = 0, using Jenssen’s inequality as in Lemma 3.3 of [5], Theorem 2.1
reduces to Theorem 3.1 of [5]. Also Theorem 2.2 reduces to Theorem 2.1 of [1].

3. Preliminaries

In this section we recall the definitions and known results from [9, 6, 5] and [4] without
proofs.

DEFINITION 3.1

Let Q C R" be a domain and V be a locally bounded function. For x € Q define
V*(x) =limsup{V(2) : |z — x| < r},
r—0

Vi(x) = iminf{V(z) : |z — x| < r}.

Then V* is an upper semicontinuous and V, is a lower semicontinuous functions and
V. <V <V
As in [6] and [9], we have the following:

DEFINITION 3.2
Let U be a locally bounded function in R" x Rj.

1. U is said to be a subsolution of (1.1) if for any (xo,%) € R" x R, € C'(R" x R,)
such that (x, fp) is a local maximum for U* — ¢ with U*(xo, 1)) = @(x0, %), then at
(x0,%0), @r + H(o,Dp) < g and U*(x,0) < up(x).

2. U is said to be a super solution of (1.1) if for any (xo, ) €R" x Ry, € C'(R" x Ry)
such that (xo, ) is a local minimum for U, — ¢ with U, (xo, fy) = ¢(xo, ), then at
(Xo,t()), Pr +H((paD<p) > g and U*(.X, 0) 2 M()(.X).

3. U is said to be a viscosity solution of (1.1) if U is both a sub and a super solution.

Now recall some properties of quasi convex (concave) dual of H.
Let H satisfy (H;) and (H>). Then

(A1) his alower semicontinuous quasi convex function i.e, for any g;,¢, € R", 7 € [0, 1],
h(tqy + (1 —1)q2) < max{h(q1),h(q2)},
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(Az) infh = —oo,limy, .. h(g) = oo,
(As) H(s,p) = sup{(p,q); h(q) < s}.
Proofs of (A) to (As) follow from lemmas (2.1) and (2.2) of [5].

Let H satisfy (H3) and (Hy) of Theorem 2.2 and let & be the quasi concave dual of H.
Then

(A4) his an upper semicontinuous quasi concave function i.e, for ¢ € [0, 1], ¢1,¢> € R”,

h(tqy + (1 = 1)g2) = min{h(q1), h(q2)},
(As) suph = +o00,limy, . h(q) = —oo,

(As) H(s,p) = sup{(p,q) : s < h(q)}.
(A4) to (Ag) follow from (A;) to (Asz) applied to the Hamiltonian H(s,p) = H(—s,p).

4. Proof of theorems

Before going to the proof of the theorems, we need the following lemma for proving the
existence of a minimizer and the semicontinuity of u and u.

Let 0 <s<tand 1 <p<oo. Let b,b,:LP([s,t]) X [s,f] — R be continuous func-
tions. Assume that b, b, satisfies the following hypothesis: For &, &, € LP([s,1]), 0,
0, € [s,1] such that &, — & strongly in I” and 0, — 6 as k — oo, then

lim by (&, 6,) = b(&,0).

Lemma 4.1. Let h : R" — R U {400} be a function and b, b, satisfying the above hypo-
thesis and n,m, € LF([s, 1], R") such that n, — n weakly. Then

(a) Assume that h is a lower semicontinuous quasi convex function. Then

lim ess sup {h(n:(0)) + b,.(&4,0)} > ezz[sltllp {h(n(0)) + (&, 0)} (4.1)

I{*?OO 0 [

(b) Assume that h is an upper semicontinuous quasi concave function. Then

lim ess 1nf {h(n:(0)) + by (&, 0) ) < eosesé?]f {h(n(6)) +b(&,0)} (4.2)

K—00 96[

Proof. Observe that (a) follows from (b) by changing h to —h, b, to —b,,. Hence it is
enough to prove (b). Let
= lim essinf {h(n,(0)) + b. (&, 0)}.

K—00  Pefs,1]

If C = —o0, then there is nothing to prove. Let m > 0 and choose «(m) such that
k(m) — oo as m — oo and for any x > k(m)

1

C — — <essinf {h(ns(0)) + b.(&,0)}.
m Oe(s,1]

Since 7, — n as kK — oo, hence there exist 0 < ay < 1, X5 (myanr = 1, o for all

but a finitely many « such that fj = X.> (nyn — n strongly in L as [ — oo, ([11],

theorem 3.13). Hence extracting a subsequence still denoted by f; and a null set N C [s, ]
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such that for all ¢ N, f1(6) — n(f). Let @ ¢ N and choose a x; > k(m) such that
min (h(n,(0))} = (1 (0)).

Then by quasi concavity we have

H0)) + b (6 0) = i {h(1.(6)) + by (6, 0)}

— h(1(8)) + b (€4, 0) > c_%.

Since 4 is upper semicontinuous, now letting / — oo and m — oo, we obtain for all § ¢ N
C < h(n(8)) + b(&,0)

and this proves (4.2).

As a consequence of this lemma we have the following result. Let 0 < 5, < #,,,0< s < ¢
such that (s, ) — (s,1) as k — oo. Let {£,} € WH([s, 1], R") be a bounded sequence
andg € CO(R" x R,)NL>®. Let o, : [s,, te] — [s, 1] bedeflnedby () = 1= 0 4 b=l

€x(0) = &0 (0)) and by (&, 0) = %= [T g(€:(N), ' (A)dA,

COROLLARY 4.1

Assume that as k — oo, & — & in CO-topology for some & € W'>([s, 1], R"). Let
h:R"— RU {400} be a function. Then

(a) Assume that h is a lower semicontinuous and quasi convex function, then

i esssup {4(6,(0) - / _Hg@)} > esssup {(6(0) - | gg@)}. (43)

K09 0es, 1] 0<(s,1]

(b) Assume that h is an upper semicontinuous and quasi concave function, then

fim essinf {h(&(e))— / fg(g,@)} < essinf {h(éw»— / 6g<£>}. (4.4)

K00 Oels,. 1] 0cls,1]

Proof. (a) follows from (b) by changing & to —h and g to —g. Hence it is enough to prove
(b). By change of variables we have

essinf {(6,(6)) - /:g@ﬁ)}

= essint {h((f - ‘)&(9)) + bl 0)}.

Since {{,{} 1s~a bounded sequence in L*([s, 7], R") and £, — & strongly in L2, hence if
N:(0) = 7=5-€,.(0), then n,, — ¢ weakly in L?. Now (4.4) follows from (4.2). This proves
the corollory

Theorem 2.1.

In order to prove Theorem 2.1, we will first establish the dynamic programming
principle. In order to do this we need some information on the bounds of the cost function.
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Lemma 4.2. Let W be a function on R" x Ry. Assume that for every T >0, |W|; =
sup{|W(x,?)|; (x,7) € R" x [0,T]} < c0. For 0 < s <t < T and x € R", define
t
Ve = ot (W9 volershg + [ 6@}, 5)
Then there exist a constant M(T) > O such that
VOl < [Wlp + Tlgl (4.6)
t
Ve = it SWeo s volenshg [0} @7
E€Cy(r) (x,1,5) s

Furthermore if W is a continuous function, then there exist a § € Cyr)(x,t,s) such that
t
Vi) = W(E)o) Vo €t + [ o(6) (48)

Proof. Let M\(T) = |W|; + T|g|.. Since inf h = —oo, there exist a ¢ € R" such that
h(g) + Tlgl. <— Wl Let £(8) = x -+ (6 — 1) € C(x, 1,5) and hence p. (€,1,5,h,g) <
h(q) + T|g|,, < —|W|y. Therefore V(x,t) < |W|; + T|g|,, < M;i(T). Also for any & €
C(x1,5),

W@@»»mA@axmw+/}@nawamw+/}@nz|Whnmw

Hence |V (x,t)| < M;(T). This proves (4.6).
Since limj_ (p) = 0o, we can choose a M(T) > 0 such that whenever |p| > M(T)
then h(p) > 3(|W|; + T|gl..)- Let £ € C(x,t,s) such that ||, > M(T). Then we have

0
wmw&@w»—/g@}>wwww@@»—Tmm

ocls,1 ocls,1
> 3(IWlr + Tlglo) — Tlglw
>2|Wl;.

Hence from (4.6) we have

W(f(s)as> \/p+(£>t7s>h?g> +/ g(g) = p+<£7t7svh7g) +/ g(g)
> 3(IWlr + Tlglo) — 2718l
> [V(x,1)].

This proves (4.7).
Let W be a continuous function. Since V is bounded, from (4.7) we can choose a
sequence &, € Cy(r)(x,t,s) such that

vwn=m{W@@wvm@mmm9+[am}

—00
K—00 s

Since |£,.| < M(T) and £,.(r) = x, hence by Arzela—Ascoli, for a subsequence still denoted
by &, such that {,; — £ uniformly in [s, #]. Since |¢,[ < M(T) implies that £ € Cyy(7)(x, 1, 5).
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Again by going to a subsequence we can assume that £, — ¢ weakly in W!'2([s, 7], R").
Hence by (4.3) and continuity of W and g it follows that

Vi) = lim {W(E.9.9) v oGt + [ o6}

—
K—00 s

> WV 6 sig) + [ )

Since £ € C(x,t,s) and therefore by definition of V and the above inequality implies
(4.8). This proves the lemma.

Lemma 4.3 (Dynamic programming principle). Let u be as in (2.8) and 0 <s < t and
x € R", then

w(e) = inf {u@(s),s) Voiensha+ [ tg@)}. (4.9)

£eC(x,t,s)

Proof. Let v(x,) denote the right hand side of (4.9). Let £ € C(x,1). Then & = €| €
C(&(s),s) and & = €|, € C(x,t,s). Hence

) < (& (0).9) V pr (€ tisihg) + [ e

N

< (up(£1(0)) V p (€15, g)+ / SE))V pe (G5, g)+ / g(
)

st 2)
/ tg(f)

= MO(S(O)) \ ,0+(£]7S,h,g) v (p+(§27t7s7h7g) - /0 g(fl +

(=}

t
—w(€O) Vo (et hig) + [ ()
By taking infimum over &, this implies that v(x,#) < u(x, t).

Since ug € W, by Lemma (4.2), for any T > 0, |u|; < oo and hence |v]; < oo.
Hence for € > 0, choose & € C(x,t,s) and & € C(&(s),s) such that

) > (€ (0):9)V pr €t hg) + [ g(6) -«

u(€a(s), ) > uo(E1(0) V p (€1,5.h, ) + / g6

Let £ € C(x,t) be defined by §|[M = fl,f\M =&. Then

U(X, t) > (”0(6(0)) Vp+(§asahag) + /Osg(f) - E) \/p+(£7 Z‘,S,h,g)

+/Stg(€)—€

= (uo(f(O)) \ p+(£7sa hag) - 6) \ <p+(£7 t,s,h,g) - /Osg(£)>

+/Otg(£)—€
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> wl6O) V p-(65:m0) v pulensg) - [ )+ [ st0-2e

0

0
= up(&£(0)) V ess sup {h(f(@)) - /0 8(5)}

0€[0,s]

v <e32[§3]p {h(éw)) -/ 9g<§>} - Sg@) - e(6) — 2

= up(£(0)) V ess sup {h({(ﬁ)) - /00 g(f)}

0<0,s]

% ess sup {h(é) - /Oeg(f)} + /Olg(ﬁ) —2e

. 0 t
= (€(0) v essaup {h(f(e» - g(f)} + [0 -2
> u(x, 1) — 3e.

Letting ¢ — 0 to obtain v(x, ) > u(x,t) and hence v = u. This proves the lemma.

Lemma 4.4. Let u be as in (2.8). Then for every T >0, u € Wh*°(R" x [0,T]) and
lim,_, o u(x, 1) = up(x).

Proof. LetT > 0,0 <t < T, x;,x € R". Since uy € WH>*(R"), hence by Lemma (4.2),
there exist a constant M( ) >0, & € Cyry(x1,1) such that [u[; < oo and u(x;,t) =

M()(fl( )) Vp+(51,l‘ h , 8 +f0 f] Now define 52(9) = 61(9) + x, — x1, then 52 S
C(xp,1) with & = 52 Let M denote the maximum of the Lipschitz constants for u

and g. Then

0 0 0 0
h(éx(68)) - / ¢(62) = h(&r(0)) — / g(6) + / s(6) - / 5(&2)

. 6
< h(é(9)) - /O g(60) + MTIE, — &l

Hence
p+(£27t7h7g) S er(flvtahag) +MT|X2 —X1|.

Therefore

azst) &)V prlEthg) + [ 66
< (u0(&1(0)) + uo(£2(0)) — uo(&1(0))) V (p+ (&1, 1,1, 8)
+MT)o — x|) / /
< (uo(&1(0)) + Mlxo — x1]) V (p+ (&1, 1, h, 8) + MT|x2 — x1])

t
+/ 8(&1) + MT|xy — x|
0
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< (uo(§1(0)) + M1+ Tz —xa]) V (p+ (&1, 1, h, 8)

t
+M(1+T>|xz—xl|>+/ g(62) + MT|x — x|
0

<up(&1(0)) V pi(&1,1,h,8) + /Otg(fl) +2M(1 +T)|xy — xy
=u(xy,t) + 2M (1 + T)|x — x1].
Since x; and x;, are arbitrary, the above implies that
lu(xi,1) — u(xa, )| < 2M(1 + T)lxa — x1]. (4.10)

Let 0 <s <t <Tandx € R" Since inf h = —oco and hence there exist a ¢ € R" such
that i(q) + T|g|; < —|ul;. Let £(0) = x + q(0 — t) € C(x,t,s). Then |x — &(s)|= |q]|t — s]
and py(&,t,5,h,8) < h(q) + Tlgly <—luly < u(&(s),s). Hence from (4.9) and (4.10)

u(x,1) — u(,s) < u(E(s),5) V py (€, 1,5,h,8) + / 2(6) — u(x,s)
(e(s

u(§(s),s) —ulx,s) + glylt — s (4.11)
2M(1 +T)[E(s) — x][gl7lt — s
M (1 +T)lq| + lgly)lt — 5.

IAINCIA

Since |u|; < oo and hence from (4.9), (4.7) and (4.10) there exist an M(T) > 0 such that

)= _ it Sue.9vontersing + [ o6

E€Cy(r) (x,t,5)

> £ecMi(r;)fW{u<5<s>,s> + [ g@)}

> inf {u(&(s),s) —u(x,s) — Mt — s|} + u(x,s)
E€Cy(ry (x,,5)

> inf  {-2M(1 +T)|&(s) — x|} — M|t — s| + u(x, s)
E€Cy(ry (x,1,5)

2M(1 + T)M(T)|s — t| — M|t — s| + u(x, s)
M (T)|s —t] + u(x,s),

V

Z_
2_

where M(T) =2M(1 4+ T)M(T) + M. Combining this with (4.11) implies |u(x,t)—
u(x,s)| <M (T)|t — s|. By taking s = 0, we obtain lim,_ou(x, ) = up(x) and hence the
lemma.

Proof of Theorem 2.1. First we prove that u is a subsolution. Suppose not, then there exist
a (xo,70) € R" x Ry, €>0, a ball B around (xg,%) and a C' function ¢ such that
©(x0, %) = u(xo, 1), u — ¢ has maximum at (xo, fp) in B and ¢, + H(p, Dp) — g > 4€ at
(x0, ). By continuity we can choose a § > 0 such that at (xo, %), + H(p — 26, Dp)—
g > 3e. Hence from (Aj) of §3 there exist g such that at (xo, %), ¢; + (g, Dp)— g > 2e,
h(g) < (xo,t0) — 26. Now by continuity, there exist a ball B; C B around (xo,#) such
that in B,

h(g) < o — 6,0+ (q,Dp) — g > €. (4.12)
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Let so < #op be such that the curve £(0) = xo + (0 — 1p) for 6 € [so, %] is in By and
sup{| f:; g(&)[; 0 € [s0,10]} < 6 from (4.9) and (4.12) we have

QO()C(),I()) = M(Xo,t()) < M(g(S()),S()) \ p+(€7 t()vSOvhvg) + / 0 g(f)

S0

= u(&(s0), ) V {h(CI) — inf /3096'(5)} +/:g(£)

Oe [S(),tu]

< u(elo0)-30) v {hla) + )} + [ " 5() (4.13)

So

< u(&(s0),50) V @(&(s0),50) + /’0 g(§)

50

< oltoohn) + [ " 5(0).

Also from (4.12)
Iy d
Pl 10) = p(€lsu)s0) = [ o(€(6),0)d8

-/ (o4 (0, Dp)db) > / " ¢(©) + <lto — )

which contradicts (4.13). This proves that u is a subsolution.

Next we prove that u is a supersolution. Suppose not, then there exists (xo,%) €
R" x Ry,e> 0, a ball B around (xo,%) and a C!-function ¢ such that u(xp,t9) =
o(x0,20), u — @ > 01in B, ¢, + H(p,Dyp) — g < —3¢ in B. Hence from (Aj) of §3, for
(x,1) € B,q € R"

: +(q, Do) — g)(x,t) < =3e,
{ v Whi(fleve?h(qé;)(g g?(x, t). (4.14)

From Lemma (4.4), u is continuous and |u|; < oo, for any 7 > 0. Hence from (4.9) and
(4.8) for every s < t, there exist a { € Cy(r)(xo, fo, ) such that

1o
u('x07t0) = M(g(s)ﬂg) vp+(€S7t07sahag) +/ g(é-s) (415)
Since |&,| <M(T) and hence by choosing s, sufficiently close to 7y, & € B for all s € [so, 7).

Claim. There exist 51 € [so, %) such that for a.e. 6 € [s, 1]
@&, (0),0) + (£, (0), Dp(&, (0),6)) — 8(4,(6),0) < —e.
Suppose not, then there exist a sequence s, — fo, 0 € (sm, o) with &, = &;,,

(1 + (Em, DD) — &) (Em(Om), 0) > —€.

Let for a subsequence, fm(Gm) — g as m — o0. Since 0, — to, {n(0m) — X0, We obtain
from the above inequality

(¢r +(q,Dp) — 8)(x0,10) > —e. (4.16)
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On the other hand from (4.15) and lower semicontinuity of .z we have

to
(x0,70) = u(xo,10) > W}glolo {P+(§m7l0,&n7h78) +/ 8(§m)}

> tim [{i@aton) - [ sten} + [ ste)]

> h(q).

Hence from (4.14), (¢, + (g, Do) — g)(x0,10) < —3€, contradicting (4.16). This proves
the claim. From the above claim we have

Pl 1) = 9(6 1)) = [

S1

40 d

-/ "ot (6. DE) (€ (0),0)d0 (4.17)

51

< ["st6) et - )

51

From (4.15) we have

@(xo,10) = u(xo,t0) > u(&, (s1),81) + /tog(fsl)

Z ()D(é.ﬂ (Sl)asl) + /to g(551)7

which contradicts (4.17). This proves that u is a super solution. Furthermore from (4.8)
infimum is achieved and this proves the theorem.

Theorem 2.2.
From now on we assume that H satisfies (H3) and (Hy4) of Theorem 2.2 and % be its quasi

concave dual. Let p_ be defined as in (2.5).

Lemma 4.5. Let W be a function on R" x Ry. Assume that for every T > 0,|W|, =
sup{|W(x,?)| : (x,1) € R" x [0,T]} < 00. Let 0 < s <t < T and x € R". Define

v = int W0+ [ QW0 <p-(Enshelf. @18)
V(x,t) = inf {W(f(s)“v)—i—/ g(&); W(&(s),s) < p-(&, t,s,h,g)}7 (4.19)

EeC(xt,s)

then there exist a constant M(T) > 0 such that

Ve )1V 705,01 < Wiy + Tlgl (4.20)

v = it (Wiew.9+ [ @i < p-ersho .
(4.21)

Vi = it W09+ [ w0 < p-ershg

(4.22)
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Furthermore if W is lower semicontinuous function, then there exist a & € Cyyr)(x,1,5)
such that

W(Es),s) < p (615 ), Vixt) = W(E(s),s) + /’g@). (423)

If W is continuous, then there exist {n.} C Cyr)(x,1,5),m € Cyyr)(x,1,5) such that
Ne — 1 in C° and

Vo) = Wials)os) + [ g, (4.24)
W(n.(s),s) < p-(ne, 1,5, h,8). (4.25)

Proof. Since —(|W|; + Tlg| ) < W(E(s),s) + [} g(€) <(|W|; + T|gl,.) and hence (4.20)
follows. Since lim | o./1(p) = —oo0, there exist M(T)> 0 such that if | p| > M(T), then
h(p) < =2(|W|; + T|g|,.)- Let £ € C(x,t,s) such that |¢| > M(T). Then for 6 in a set of
positive measure in [s, 7]

[
n(é(0) - / ¢(6) < —2(Wly + Tlgl) + Tlgl < —2/Wl..,

and hence p_(&,t,5,h,8) < W(&(s),s). This proves (4.21) and (4.22).

Let {&,} be a minimizing sequence in (4.18). By going to a subsquence we can assume
that &, — ¢ in C° and &, — & weakly in W'2([s, 7], R"). Hence from (Ay), (As) of §3,
from (4.4) and by lower semicontinuity of W we have

W(f(S),S) < 1l>_m W(fn(S)J) < 1Lm pf(é-mtvsahag) < p*(§7 t,s,h,g).

Hence
W(ess)+ [ 66 2 Vi) = lim {wew+ [ tg@)}
> Wiels)o) + [ ().

This proves (4.23). Any minimizing sequence {n,.} C Cyr)(x,1,5) of V, we can extract a
subsequence and still denote it by {n,} converging strongly to 7 in C°-topology. Now
from continuity of W, (4.24) and (4.25) follow.

Lemma 4.6. Let g(x,t) = g1(x,1) + g2(r). Assume that 7g,(x,7) is non-increasing in
t,82(t) <0and H(u,p) >0 for all u € R, |p| = 1. Then u* =7, u. =u.

Proof. The proof is divided into three steps.

Step 1. Let > 1 and {gx} be a bounded sequence. Then lim_, o A(agy) < limy_ooh(gx)-
Suppose not, then let for a subsequence still denoted by {g;} such that

qk — qo, lim h(agy) = lim h(gy) = 7.
k—00 k—o0
Choose |pr| = |pr| = 1 such that for all |p| =1

(i)  H(h(qr),px) = (gx,px),  H(h(qw),pr) = {qx,p)
(i)  H(h(agk),pr) = alqe,px),  H(h(aqe),p) > o{qi.p)-
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Again going to a subsequence, one can assume that py — po pr — po as k — oco. Then by

continuity of H, (g0, po) = H (1, po) = lims—.0c H(h(aqx), po) > {qo, po). Since H(1, po)
> (), it follows that o < 1 which is a contradiction. This proves step 1.

Step 2. Let t; > t, then u(x,t) > #u(x, ;). Let & € Cy(x,1) such that

) = w(60) + [ 6(6: w(e(0) < epins {néen- [ eg@}.

0€[0,1]

Let & (0) = f(%)) for 6 € [0,1,]. Then & € C(x,1;) and & (0) = £(0). Choose a sequence
0 € [0,1,] and from step (1) to obtain

e {h(& - [ (’/Z‘wg(s)} = lim {h(&(ek)) - 8(5)}
> I}LHOIO{}ZCTIE'I(Gk)) - /O(t/h)gkg(@}
mef60)- [}

> essinf {h(é(@)) - /Oeg(é“)}

0€0,1]

Hence from g, non-increasing in 7 and g,(7) < 0 we have that

e - [ gg@)}

< essinf {h(fl 0) — /O(t/tl)eg(fl)}

0€(0,1]

s
up(£1(0)) < eges[é{tl]f

) ) 0 (t/n)0
essinf{h(&(@))—/o g1(§1)+/0 gl(fl)—/o g1(§)

0<[0,1]
(t/11)0 0 0
—/ gz(s)ds—i—/ gz(s)ds—/ g2(s)ds
0 0 0

<esint {160 - [ ae)- [ woa)

s {néion - [[ao)

since [7g1(61) — [ g1 (€) = [V (L g) (¢(s),25) — g1(£(s),5))ds <0 and g5 < 0,
this implies that

) = w60) + [ 5(0)
~ (@) + [ "ele) + / e - / " o6

> ﬁ(x, tl)'
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Step 3. Let B,(x,1) be a ball centered at (x,#) with radius r. Let 7 > 0 and let # < ¢ and
tr — t. Then from step 2,

u'(x,1) = lim sup u(z)
> klim u(x, t) > u(x,1).

On the other hand u <% and hence u*(x,t) <u(x,r), implies that u*(x,7) = u(x,1).
Similarly u, = u. This proves the Lemma.

In order to prove, the representation formula for a solution in the sense of viscosity, one
has to establish a dynamic programming principle. This has been carried out for standard
control problems and differential games in [2, 8] and [10]. We will next provide a proof of
this fact for our problem.

Lemma 4.7 (Dynamic programming principle). For every T > 0, there exist M(T) > 0
such that |u|; < oo, u is lower semicontinuous and for 0 < s <t < T,x € R",

u(i) = inf {u<5<s>,s> +f 9(6) : u(E(s).s) < (€. r,s,h,g>},

Ch(r) (x,1,5)
(4.26)
v < int L@+ [ oo €. <o enshol
(4.27)

Proof. Since uy € W'*°(R") and hence by taking s = 0 in (4.18), |u|; < oo follows from
(4.20). Let (xp,4,) — (x,1) as m — oo. Since up is continuous, from (4.23), for each
m, there exist a &, € Cy(7)(Xm,tm) such that u(x,,t,) = uo(&n(0)) + fo'” &n) and
uo(§n(0)) < p_(&n,tm, 1, g). From Arzela—Ascoli we can extract a subsequence still
denoted by &, such that &, — & € Cy7)(x,1). Now from (4.4) we have

u(£(0)) < im p_ (&t h, 8) < p-(&,1,h,8),

therefore,

fim u(om, ) = uo(€(0)) + / 2(6) > ulx,1).

m—o00

This proves u is lower semicontinuous. Let

(o) = inf {u<g<s>,s>+ / g<5>;u<s<s>,s><p<m,s7h7g>}. (4.28)

C(x,t,5)

Since |u|; < oo and u is lower semicontinuous, hence from (4.23), there exist a & €
C(x,t,s) such that u(&(s),s) < p_(&,t,8,h,g) and vy (x, t) = u(fz s) + [l g(&).
Choose a & € C(&(s),s) such that u(&(s),s) = uo(& (0 +f0 uo(fl( ) <
p—(&1,8,h,8). Let n € C(x,t) defined by n(0) = & () for 6 € [0, s] and n(0) = &(0)
for 6 € [s,1]. Then we have

wo(1(0)) = (€ (5), ) — / o(6)



Hamilton—Jacobi equation 407
<p*(£27tasahag)7/ g(él)
0

= essint {610~ [t}

Since up(n(0)) < p_(n,s,h,g), it follows that uy(n(0)) < p_(n,t,h,g). Therefore we
have

vi(x,1) = u(n(s),s) + rg(??)
/S (4.29)

~ (o) + [ g() > ux.1).

Let £ € C(x, 1) be such that u(x 1) = up(£(0)) + f[;g(f) and uo(ﬁ(O)) p—(&t,h,g) =
inf{ess infgepo {2 (£( fo €)}. essinfyer, {R(£(0)) — fo 1} Hence

W(E(s), ) < up(€(0)) + / 5(0)

< epint {h(f'(e) - "0+ / Sg(f)}
=p_(&t,5,h,8).

This implies that u(x, ) = uo(£(0)) + Jo &(€) + [ 8() > u(&(s),5) + [; 8(6) > vi(x,1).
Therefore from (4.29) u(x, ) = v;(x,) and since |u|; < co and hence from (4.21), (4.26)
follows.

Let

t

n(ei)= inf {u*(é(S),SH / g<5>;u*<5<s>,s><p(a,t,s,h,g>}.

£eC(x,t,5) s
(4.30)

Choose a sequence (xy,?,) — (x,7) such that u*(x,r) =lim,_.ou(xs,?,). For &€
C(x,t,s), let s,=s+1t, — r and define &, € C(x,t,,5:) by & (0)=&(0— 1, +1)+x, — x.
Then by change of variables o = 6 — ¢,, + ¢, we obtain

essnt {1(&.0) - [ w60} = essnr {iéta) - ["ste)} 5.
(4.31)

where (3, = O(sup,e(s ( [re(¢ fa T 0(€,))) — 0 as k — oo

Let £ € C(x,t,s) such that u (f( ) s) < p-(&, 1,5, h,g). Hence from (4.29) and upper
semicontinuity of u* we can find a kg > 0 such that for k > kg, u*(§:(sx),56) <
P— (&, by Sy by g) and hence u(&,(5x), k) < u*(Ex(8k)s k) < p—(&xs iy Siy 1, g). Therefore
from (4.28) we have

u*(x,7) = lim wu(x, ;) < Um v (xg, 1)

K—00 K—00

< tim {ute5.50 + [ ste0}
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< lim {ﬂmm,m + / g(m}

K—00

< (€09 + | '4(0).

Since it is true for all € and hence u*(x, ) < v,(x, ). Combining this with |u*|; < co and
(4.22) we obtain (4.27). This proves the Lemma.

Lemma 4.8 (Dynamic programming principle). For every T > 0, ||, < 0o, u is upper
semicontinuous and there exist M(T) > 0 such that for 0 <s <t <T,x € R",

B(i)=  inf {u<5<s>,s>+ / ' g(0); (E(s),5) < (6, r,s,h,g>}, (4.32)

Ch(ry (x,,8)

U.(x,7) > inf {ﬁ*(f(s),s) —|—/ g(&); ui(&(s),s) < p_(&, t,s,h,g)}.

CM(T) (X,Z,S)
(4.33)

Proof. Since uy € W'°(R"), by taking s = 0 in (4.18), [u]; < oo follows from (4.20).
Let (xXm,tm) — (x,1) as m — o0. Since ug is continuous, by (4.24) and (4.25) there exist
1,71 € Cyry(x,2) such that 7, — n uniformly and @(x,) = uo(n(0)) + [;g(n) and
uo(n:(0)) < p—(nx,t,h, g). Now for each r, define n,,, € C(x, 1) as follows:

Ne(@ —tw+1)+xy—x if €0V (tyy—1), 1),

i, (6) = { 5e(0) +xm —x  if 0€[0,0V (1 —1)]. (4.34)

Clearly 7,,, — 7, uniformly and by change of variables it follows that
P~ (s tms B 8) = p— (11,1, 1, 8) + (1), (4.35)

where o(1) — 0 as m — oo. Since uy is continuous, from (4.35) we can find a m(x) > 0
such that for m > m(x), uo(Mm,(0)) < p—(Mm, tm, h, ). This implies that #(xy,t,) <
1o (Mm, (0)) + f3" &(1m, ). Now letting m — oo, k — 00, we conclude that

m—oo

Him_ #(xn, tn) < IJEI;C{MO(UK(O)) + /Otg(m)} = u(x,1).

This proves u is upper semicontinuous. Define

) = _int a9+ [ 4@ - w(€0).9) <p-(Ersh) ),

£eC(x,t,8)
then
=it | it L)+ [ e+ [ 69 wtao)
<o-tnsgfi it Luo)+ [ e w(no)

< /L(% S, hag)} < p*(f? t,s,h,g)}



Hamilton—Jacobi equation 409

< inf {uo@(o» + / g0 u0(A0)) < (A5 b, 8). 10(A(0))

AEC(x,1) 0

- g < p (A5, g)}
= inf {uo(,\(o))+/0tg(A):uo(A(O))<p(A,t7h7g)}

AeC(x,1)
— T(x, 1), (4.36)

Since ||y < 00, hence from (4.22), there exist a M;(T) > 0 such that

n(of)= inf {ms(s),s) +f ' g(6); W(E(s).s) < p_(Etas.h g>}.

EECH, (1) (x,1,5)
(4.37)

Let € > 0,7 >0 and ¢ € C(x,t,5) such that v;(x,1) > @({(s),s) + [; g(€) — ¢ and
u(&(s),s) +r < p_(§,t,5,h, g). From (4.24), (4.25) and (4.4) there exist an 1) € C({(s), )
such that u(¢(s), s) > uo(n(0)) + [y g(n) —r, uo(n(0)) < p—(n,s,h,g). Let A € C(x,1)
be defined by Al = 1, Al = & Then ug(A(0)) = uo(n(0)) and

uo()\(O)) :ﬁ({(s),s) +r— /Osg(n)
<p_(&t,s,h,g) — /(:8(77)

0
= essinf {h(/\(G)) - / g()\)}.
0<]s,1] 0
Since uo(A(0)) = up(n(0)) < p_(n,s, h, g) and hence combining this with the above inequa-
lity implies that uo(A(0)) < inf{essinfycf;q{A(A fog )}, ess mngOY] {h(X(0 ))

192N} = p_(A 1, h, g). Therefore v;(x, 1) 2 uo( )+ [o8(\) —€e> a(x, 1) —
Since € is arbitrary, we obtain vy (x, ) > u(x, 7). This with (4.36), (4.37) implies (4.32)

v(x,1) = inf {ﬁ*(ﬁ(S),S)Jr/g(é);ﬁ*(é(S),S)SP—(&t,s,h,g)}~

£eC(x,t,5)
(4.38)
Let limyo0(xy, 2:) = (x, 1), limy oo (x, 7)) = Ui (x, 7). Let € > 0. Then from (4.36),
(4.37) and (4.38) we can choose a x(e) > 0 such that for every x > x(e), there exist a
&k € Cupy (1) (X, 1, Sx) such that

ﬁ*(x, t) Z ﬁ<xmtﬁ) _ga (439)
WX, 1) > (Ex(s), 5) + / gl - % (4.40)
U(&(s),5) < p— (&, e, s, 11, 8)- (4.41)

Extract a subsequence still denoted by &,; converging to & uniformly. Then from (4.41),
(4.4), (4.39) and (4.40)

B(€(s),5) < lim @ (6,(5),9) < lim T (6(5),5) < p (61,5 h8),  (442)
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U (x, 1) > lim u(x,, 1) — =

KR—00

> lim {ﬁ(f,ﬂ(s),s) + [t 8(&)} -
> tim {6009+ [ e} -
=u.(&(s),s) + /Stg(ﬁ) —€

> u(x,1) — €,

since (4.42) holds. Now letting € — 0 to conclude that . (x, t) > v, (x, ). Since |G|, < oo
and hence from (4.21) there exist an M(T) > 0 such that (4.33) holds. This proves the
lemma.

Proof of Theorem 2.2. LetT > 0and 0 < t < T and x € R". From (4.23) and (4.24) there
exist M(T) > 0 such that &, 7, € Cyq)(x,) and

) =l 0) + [ g6,
) = w(n(0) + [ g,

Since |(x,x) — (&(0),7:(0))| = \fg &(N),m(N)dA| < M(T)|r — 6] and hence (&,7;) —
(x,x) as t — 0. This 1mphes that hm,_,o( (x 1),u(x,1)) = (up(x), up(x)).

Suppose u is not a sub solution. Then there exist an (xg, %) € R" x R;,e > 0, B a ball
with centre (xg,%) and a p € C'(R" x R, ) such that u* (xo, %) = ¢(xo, %), u* — ¢ < 0in
B, ¢, + H(p,Dyp) — g > 4e€ at (xg, ). By continuity we can choose a § > 0 such that
o+ H(p+ 6,Dp) — g > 3¢ at (xo,1). Therefore from (Ag) of §3, there exist ¢ with
o(x0,20) + 6 < h(g) and ¢+ < q,Dp > —g > 2¢ at (xg, to). By continuity, we can find a
ball By C B around (xo, y) such that for (x,) € By,

6
u'(x,1) < p(x,1) < hiq) — 5 (4.43)
@ +(q,Dp) — g > €. (4.44)
Let f( ) =xo+q(0 —19) and choose a sy < 1o such that for 6 € [so, %], Supyes, ]
501 < and (60,8 <3, Ton om (443, ()20 < i) -4 <
f = p_(&, 10,50, h, g). Hence from (4.26)

Pl 0) =1 0) < ' (Elsw)oso) + [ " 5l
» (4.45)

< etooy) + [ " g(6).

So

From (4.44) we have

Pl 0) — eln)sn) = [ (6600600

S0
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-/ (ot (g, D))(E(0). 0)d0

> / " g(6) + et — o).

which contradicts (4.45). This proves u is a sub solution.

Next we will show that u is a super solution. Suppose not, since u is a lower semi-
continuous function, hence there exist a (xo,%) € R" x R;,e >0 a ball B centered
at (xo,t) and a ¢ € C'(R" x R;) such that u(xo,) = p(xo,t0),u —p >0 in B,
o+ H(p,Dyp) — g < —4e at (xo, fp). Hence by continuity of H and (As) of § 3, we can
find a ball B C B centered at (xg,f) such that u > ¢ in B; and whenever
q € R", (x,1) € By with o(x,t) < h(q), then at (x,7)

@i+ (q,Dp) — g < —2e. (4.46)
For every s < to, from (4.23) and (4.26) choose a & € Cyy(z,) (X0, fo, s) such that u(&(s), s)
< p(&s10,5,h,8) and u(xo, fo) = u(&(s),5) + [ 8(&)- Now [£,(6) — x| < M(To) 10— 0|

and hence we can find a sy < 7y such that for any s € [so, %], (&(6),6) € By for all
6 € (so,1o]. Therefore for s € [so, 1]

Pl 0) = ) = & (0)9) + | " g(e)
s (4.47)

> o609+ | " 5(e)

@(fs(s),s) < H(SS(S)PY) < p*(£S7t0>S7h7g)' (4'48)

Claim. There exist s1 € [so, %) such that for almost every 6 € [sy, fo]

(&, (6),0) + (£,(8), D (&5, (6),0)) — 8(£,,(8),6) < —e. (4.49)

Suppose not, then from (4.48) we can find a sequence s, — fo, 0 € [Sm, %0, En =&,
such that

1(&n(Om), Om) + <ém(0m)aD<P(fm(0m>79m)> — 8(&n(On), 0n) > —¢ (4.50)

. om
PEn (), On) < h(En(O))) — / 8(En). (4.51)

m

Since |§m(9m)| < M(ty), hence for a subsequence still denoted by &,, let ¢ = lim,, .
&n(0,). Now letting m — oo in (4.50) and (4.51) and using upper semicontinuity of 4 to
obtain

@i(x0,70) + (g, Dp(x0, 19)) — g(x0,%0) > —€

oloant) < T {ieaton)) ~ [ sten)} <o)

m

which contradicts (4.46) and hence the claim. From (4.49)

plro,1) = p(& (o0 1) = [ 2 0(6(9),0)00

51
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- / to(wr + (6., D)) (&, (6), 6)d0

S1

</ * g(6) — clto — 1),

S1

which contradicts (4.47). This proves that u is a super solution and hence it is a viscosity
solution. Similarly from Lemma 4.8, it follows that # is a viscosity solution. This together
with Lemma 4.6 completes the proof of the Theorem.

Remark 4.9. In Lemma 4.6, assumptions on g are only sufficient but not necessary. For
example consider the problem

u + e "|uy| = g(1)
u(x,0) = up(x).

Solutions of this problem are given by

= inf< u t s)ds; u —lo idnki
u(x, 1) = yf{ o(y)+/0 g(s)ds; uo(y) < —1 g<f(;exp(_ ﬁ;g(a)de)ds>}

(4.52)

i = inf< u, t s)ds; u - iy
(x, 1) = yf{ o(y) + /0 g(s)ds; uo(y) < 1°g<fgexp<—f5g(9)d9>ds>}'

(4.53)

and

Furthermore u* = % and %, = u. Here g(¢) < 0 is not required.

Proof. By formula

u(x,f)= inf {uo(y)Jr / e(s)ds: uo(y)gessinf{h(g'(s))_ /0 sg(@)d@}},

£eC(xyt) 0 0<s<t

where h(q) = log(lq‘) Let

&(s) = (fé exp(—xjg;w)dﬁ)ds> (/OS eXp<— /Oag(n)dn>d0> +y

Then &(f)=x,£(0)=y and £(s) = ((x — ¥)/(f exp(— [, g(6)d#)ds)) exp(— f; g(n)dn). Also

: ; e =l
HE6) - | staian = —1og (fé exo(— Jy g<9>de>ds> |

Therefore

- ' o(s)ds: 1o =yl
u(x, 1) < IIylf {ug(y) Jr/o g(s)ds; up(y) < —1 g(fé -~ f(;g(@)d@)dv) }
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On the other hand,

. /]
woly) < h(E(B)) — / g(n)dn Vo€ 0,1
implies

exp<—uo<y> - egm)dn) > )]

On integration over [0, ¢], we have since f(; IEO)] > |x — |,

; o x —y|
o) < -1 g( Texp(— [ g(e)de)ds>'

This implies

: ' _ 3 e =y
u(x,t) > 11;f{uo(y) +/0 g(s)ds; up(y) < —log (fé p— fgg(é))de)ds> }

Hence (4.52). Similarly (4.53) follows.
Choose My > 0 be such that fttl g(n)dn < Mo(t — 1) for all #; < . Since [;exp(— [,
g(0) dh)ds is an increasing function of z, it follows that

=inf u " s)ds; u —lo idnb
u(x,t) = yf{ o(y)+/0 g(s)ds; uo(y) < -1 g(f" exp(— fgg(G)d@dS)}

> ir;f{uo(y) + /Otg(S)ds - /lg(S)ds;

; o lx =l
o) < —1 g( Texp(— ¢ g(e)de)ds>}

>u(x,t) — Mo(t — ).

Therefore
u*(x,1) > limu(x, t;)
1 —t
> lim (a(x, 1) — Mo(1 — 11))
Hh—

=T(x,1).

Hence we have u* = u and similarly %, = u.
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