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Abstract. We study the continuous as well as the discontinuous solutions of
Hamilton±Jacobi equation ut � H�u;Du� � g in Rn � R� with u�x; 0� � u0�x�: The
Hamiltonian H�s; p� is assumed to be convex and positively homogeneous of degree
one in p for each s in R. If H is non increasing in s, in general, this problem need not
admit a continuous viscosity solution. Even in this case we obtain a formula for
discontinuous viscosity solutions.
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1. Introduction

Let H : R� Rn ! R be a continuous function. Let u0 2 W1;1�Rn�; g 2 W1;1�Rn � R��
and consider the Hamilton±Jacobi equation

ut � H�u;Du� � g in Rn � R�;
u�x; 0� � u0�x� for x 2 Rn; �1:1�

where Du � @u
@x1
; . . . ; @u

@xn

� �
: This problem has been studied extensively using the method

of viscosity solutions developed by Crandall, Evans and Lions [7, 10]. An excellent

reference for this is the lecture notes of Evans [7]. It has been shown ([10], Ch. 9, Remark

9.1) that apart from the usual hypothesis on H, if there exist a 
 2 R such that for all

�s; p� 2 R� Rn,

@H

@s
�s; p� � 
; �1:2�

then (1.1) admits a viscosity solution u 2 W1;1�Rn � R��: The question is to obtain a

formula for the solution of (1.1).

Under the conditions (1.2), p 7!H�s; p� being convex and positively homogeneous of

degree one and g � 0; Barron, Jenssen and Liu [5] have obtained an explicit formula for

the viscosity solution. In general for g 6� 0; one cannot expect an explicit formula in the

sense of Hopf and Lax, but one can hope to get an infinite dimensional representation in

terms of a control problem. This has been carried out by Barron and Ishii [3] (representa-

tion formula) and Barron and Liu [4] (existence of a minimizer).

If H does not satisfy (1.2), in general (1.1) need not admit a continuous viscosity

solution [1,10]. In this paper we study this problem under the hypothesis, s 7!H�s; p� is

non-increasing and p 7!H�s; p� is convex and positively homogeneous of degree one. As
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far as our knowledge goes this problem has not been tackled in the literature. But in [1],

the authors considered this problem with g � 0 and obtained explicit formula for solu-

tions. Here we extend this result for g 6� 0 (see Theorem 2.2). The main ingredients in the

proof of this are to prove semicontinuity property for the constraints (Corollary 4.1) and

the dynamic programming principle (Lemmas 4.7 and 4.8). The same idea allows us to

study problem (1.1) when H satisfies (1.2) (see Theorem 2.1) and of course this result can

be obtained also from the results of [3] and [4] with proper modifications.

2. Main results

Let x 2 Rn; t > 0; 0 � s < t;M > 0 and define

C�x; t; s� � f� 2 W1;1��s; t�;Rn�; ��t� � xg; �2:1�
CM�x; t; s� � f� 2 C�x; t; s�; j _�j1 � Mg; �2:2�

C�x; t� � C�x; t; 0�;CM�x; t� � CM�x; t; 0�;
where _���� � d�=d����: Let h : Rn ! R [ f�1g and u : Rn � R� ! R be functions

and g 2 W1;1�Rn � R��: Let 0 � s � � � t, � 2 C�x; t; s�; define

jujt � sup fju�y; ��j; y 2 Rn; � 2 �0; t�g;Z �

s

g��� �
Z �

s

g�����; �� d�; �2:3�

����; t; s; h; g� � ess sup
�2�s;t�

h� _����� ÿ
Z �

s

g���
� �

; �2:4�

�ÿ��; t; s; h; g� � ess inf
�2�s;t�

h� _����� ÿ
Z �

s

g���
� �

; �2:5�

����; t; h; g� � ����; t; 0; h; g�: �2:6�
Then we have the following results.

Theorem 2.1. Let u0 2 W1;1�Rn�, g 2 W1;1�Rn � R��: Assume that H satisfies,

�H1� s 7!H�s; p� is non decreasing for all p 2 Rn.

�H2� p 7!H�s; p� is convex, positively homogeneous of degree one for each s 2 R:

Let h denote the quasi convex dual of H defined by

h�q� � inff
 : H�
; p� � h p; qi 8 j pj � 1g: �2:7�
For �x; t� 2 Rn � R� , define

u�x; t� � inf
�2C�x;t�

u0���0�� _ ����; t; h; g� �
Z t

0

g���
� �

: �2:8�

Then for each T > 0; u 2 W1;1�Rn � �0; T�� and is a viscosity solution of (1.1).

Furthermore infimum is achieved in (2.8).

Theorem 2.2. Let u0 2 W1;1�Rn�; g 2 W1;1�Rn � R��: Assume that H satisfies

�H3� s 7!H�s; p� is non-increasing for all p 2 Rn,

�H4� p 7!H�s; p� is convex, positively homogeneous of degree one, for each s 2 R:
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Let h denote the quasi concave dual of H defined by

h�q� � supf
 : H�
; p� � h p; qi 8 j pj � 1g: �2:9�
For �x; t� 2 Rn � R�; define

u�x; t� � inf
�2C�x;t�

u0���0�� �
Z t

0

g���; u0���0�� � �ÿ��; t; h; g�
� �

; �2:10�

u�x; t� � inf
�2C�x;t�

u0���0�� �
Z t

0

g���; u0���0�� < �ÿ��; t; h; g�
� �

: �2:11�

Then u is a lower semicontinuous viscosity solution of (1.1) and u is an upper semi-

continuous viscosity solution of (1.1). Also infimum is achieved in (2.10). Furthermore if

g�x; t� � g1�x; t� � g2�t�, t! tg1 is non-increasing in t, g2�t� � 0 and H�u; p� > 0 for all

p 6� 0; u 2 R, then u� � u and u� � u: In this case the two solutions coincide.

Remark 2.3. For g � 0; using Jenssen's inequality as in Lemma 3.3 of [5], Theorem 2.1

reduces to Theorem 3.1 of [5]. Also Theorem 2.2 reduces to Theorem 2.1 of [1].

3. Preliminaries

In this section we recall the definitions and known results from [9, 6, 5] and [4] without

proofs.

DEFINITION 3.1

Let 
 � Rn be a domain and V be a locally bounded function. For x 2 
 define

V��x� � lim sup
r!0

fV�z� : jzÿ xj � rg;

V��x� � lim inf
r!0

fV�z� : jzÿ xj � rg:

Then V� is an upper semicontinuous and V� is a lower semicontinuous functions and

V� � V � V�:
As in [6] and [9], we have the following:

DEFINITION 3.2

Let U be a locally bounded function in Rn � R�:

1. U is said to be a subsolution of (1.1) if for any �x0; t0� 2 Rn � R�; ' 2 C1�Rn � R��
such that �x0; t0� is a local maximum for U� ÿ ' with U��x0; t0� � '�x0; t0�; then at

�x0; t0�; 't � H�';D'� � g and U��x; 0� � u0�x�:
2. U is said to be a super solution of (1.1) if for any �x0; t0�2Rn � R�; ' 2 C1�Rn � R��

such that �x0; t0� is a local minimum for U� ÿ ' with U��x0; t0� � '�x0; t0�; then at

�x0; t0�; 't � H�';D'� � g and U��x; 0� � u0�x�:
3. U is said to be a viscosity solution of (1.1) if U is both a sub and a super solution.

Now recall some properties of quasi convex (concave) dual of H:
Let H satisfy �H1� and �H2�: Then

�A1� h is a lower semicontinuous quasi convex function i.e, for any q1; q2 2 Rn, t 2 �0; 1�,
h�tq1 � �1ÿ t�q2� � maxfh�q1�; h�q2�g,
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�A2� inf h � ÿ1; limjqj!1h�q� � 1,

�A3� H�s; p� � supfh p; qi; h�q� � sg.
Proofs of �A1� to �A3� follow from lemmas (2.1) and (2.2) of [5].

Let H satisfy �H3� and �H4� of Theorem 2.2 and let h be the quasi concave dual of H:
Then

�A4� h is an upper semicontinuous quasi concave function i.e, for t 2 �0; 1�; q1; q2 2 Rn,

h�tq1 � �1ÿ t�q2� � minfh�q1�; h�q2�g,
�A5� sup h � �1; limjqj!1 h�q� � ÿ1,

�A6� H�s; p� � supfh p; qi : s � h�q�g.
�A4� to �A6� follow from �A1� to �A3� applied to the Hamiltonian ~H�s; p� � H�ÿs; p�.

4. Proof of theorems

Before going to the proof of the theorems, we need the following lemma for proving the

existence of a minimizer and the semicontinuity of u and u.

Let 0 � s < t and 1 � p � 1: Let b; b� : Lp��s; t�� � �s; t� ! R be continuous func-

tions. Assume that b; b� satisfies the following hypothesis: For �; �� 2 Lp��s; t��; �,
�� 2 �s; t� such that �� ! � strongly in Lp and �� ! � as �!1; then

lim
�!1 b����; ��� � b��; ��:

Lemma 4.1. Let h : Rn ! R [ f�1g be a function and b; b� satisfying the above hypo-

thesis and �; �� 2 Lp��s; t�;Rn� such that �� * � weakly. Then

(a) Assume that h is a lower semicontinuous quasi convex function. Then

lim
�!1

ess sup
�2�s;t�

fh������� � b����; ��g � ess sup
�2�s;t�

fh������ � b��; ��g �4:1�

(b) Assume that h is an upper semicontinuous quasi concave function. Then

lim
�!1 ess inf

�2�s;t�
fh������� � b����; ��g � ess inf

�2�s;t�
fh������ � b��; ��g �4:2�

Proof. Observe that (a) follows from (b) by changing h to ÿh; b� to ÿb�: Hence it is

enough to prove (b). Let

C � lim
�!1 ess inf

�2�s;t�
fh������� � b����; ��g:

If C � ÿ1; then there is nothing to prove. Let m > 0 and choose ��m� such that

��m� ! 1 as m!1 and for any � � ��m�

C ÿ 1

m
� ess inf

�2�s;t�
fh������� � b����; ��g:

Since �� * � as �!1; hence there exist 0 � ��l � 1;�����m���l � 1; ��l 6�0 for all

but a finitely many � such that fl � �����m���l�� ! � strongly in Lp as l!1; ([11],

theorem 3.13). Hence extracting a subsequence still denoted by fl and a null set N � �s; t�
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such that for all � 62 N; fl��� ! ����: Let � 62 N and choose a �l � ��m� such that

min
��l 6� 0

fh�������g � h���l
����:

Then by quasi concavity we have

h� fl���� � b�l
���l

; �� � min
��l
6�0
fh������� � b�l

���l
; ��g

� h���l
���� � b�l

���l
; �� � C ÿ 1

m
:

Since h is upper semicontinuous, now letting l!1 and m!1; we obtain for all � 62 N

C � h������ � b��; ��
and this proves (4.2).

As a consequence of this lemma we have the following result. Let 0� s�< t�; 0� s< t

such that �s�; t�� ! �s; t� as �!1: Let f��g 2 W1;1��s�; t��;Rn� be a bounded sequence

and g 2 C0�Rn � R�� \ L1: Let �� : �s�; t��!�s; t� be defined by ����� � tÿs
t�ÿs�

�� t�sÿts�
t�ÿs�

,

~����� � ����ÿ1
� ���� and b��~��; �� � s�ÿt�

tÿs

R �
s

g�~�����; �ÿ1
� ����d�.

COROLLARY 4.1

Assume that as �!1, ~�� ! � in C0-topology for some � 2 W1;1��s; t�;Rn�: Let

h : Rn ! R [ f�1g be a function. Then

(a) Assume that h is a lower semicontinuous and quasi convex function, then

lim
�!1

ess sup
�2�s�;t��

h� _������ÿ
Z �

s�

g����
� �

� ess sup
�2�s;t�

h� _�����ÿ
Z �

s

g���
� �

: �4:3�

(b) Assume that h is an upper semicontinuous and quasi concave function, then

lim
�!1 ess inf

�2�s�;t��
h� _������ÿ

Z �

s�

g����
� �

� ess inf
�2�s;t�

h� _�����ÿ
Z �

s

g���
� �

: �4:4�

Proof. (a) follows from (b) by changing h to ÿh and g to ÿg: Hence it is enough to prove

(b). By change of variables we have

ess inf
�2�s�;t��

h� _������ ÿ
Z �

s�

g����
� �

� ess inf
�2�s;t�

h
t ÿ s

t� ÿ s�

� �
_~�����

� �
� b��~��; ��

� �
:

Since f _~��g is a bounded sequence in L2��s; t�;Rn� and ~�� ! � strongly in L2; hence if

����� � tÿs
t�ÿs�

_~�����; then �� * _� weakly in L2: Now (4.4) follows from (4.2). This proves

the corollory.

Theorem 2.1.

In order to prove Theorem 2.1, we will first establish the dynamic programming

principle. In order to do this we need some information on the bounds of the cost function.
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Lemma 4.2. Let W be a function on Rn � R�: Assume that for every T > 0, jW jT �
supfjW�x; t�j; �x; t� 2 Rn � �0;T �g <1: For 0 � s < t � T and x 2 Rn; define

V�x; t� � inf
�2C�x;t;s�

W���s�; s� _ ����; t; s; h; g� �
Z t

s

g���
� �

: �4:5�

Then there exist a constant M�T� > 0 such that

jV�x; t�j � jW jT � Tjgj1; �4:6�

V�x; t� � inf
�2CM�T��x;t;s�

W���s�; s� _ ����; t; s; h; g� �
Z t

s

g���
� �

: �4:7�

Furthermore if W is a continuous function, then there exist a � 2 CM�T��x; t; s� such that

V�x; t� � W���s�; s� _ ����; t; s; h; g� �
Z t

s

g���: �4:8�

Proof. Let M1�T� � jW jT � Tjgj1: Since inf h � ÿ1, there exist a q 2 Rn such that

h�q� � Tjgj1<ÿjW jT . Let ���� � x� q��ÿ t� 2 C�x; t; s� and hence ����; t; s; h; g��
h�q� � Tjgj1 < ÿjW jT . Therefore V�x; t� � jW jT � T jgj1 � M1�T�. Also for any � 2
C�x; t; s�,

W���s�; s� _����; t; s; h; g��
Z t

s

g����W���s�; s��
Z t

s

g����ÿjW jTÿTjgj1:

Hence jV�x; t�j � M1�T�: This proves (4.6).

Since limjpj!1 h� p� � 1; we can choose a M�T� > 0 such that whenever jpj � M�T�
then h� p� � 3�jW jT � Tjgj1�: Let � 2 C�x; t; s� such that j _�j1 � M�T�: Then we have

ess sup
�2�s;t�

h� _����� ÿ
Z �

s

g���
� �

� ess sup
�2�s;t�

fh� _�����g ÿ T jgj1
� 3�jW jT � T jgj1� ÿ T jgj1
� 2jW jT :

Hence from (4.6) we have

W���s�; s� _ ����; t; s; h; g� �
Z t

s

g��� � ����; t; s; h; g� �
Z t

s

g���
� 3�jW jT � T jgj1� ÿ 2T jgj1
> jV�x; t�j:

This proves (4.7).

Let W be a continuous function. Since V is bounded, from (4.7) we can choose a

sequence �� 2 CM�T��x; t; s� such that

V�x; t� � lim
�!1 W����s�; s� _ �����; t; s; h; g� �

Z t

s

g����
� �

:

Since j _��j � M�T� and ���t� � x; hence by Arzela±Ascoli, for a subsequence still denoted

by �� such that ��! � uniformly in �s; t�: Since j _��j� M�T� implies that �2CM�T��x; t; s�:
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Again by going to a subsequence we can assume that �� * � weakly in W1;2��s; t�;Rn�.
Hence by (4.3) and continuity of W and g it follows that

V�x; t� � lim
�!1 W����s�; s� _ �����; t; s; h; g� �

Z t

s

g����
� �

� W���s�; s� _ ����; t; s; h; g� �
Z t

s

g���:

Since � 2 C�x; t; s� and therefore by definition of V and the above inequality implies

(4.8). This proves the lemma.

Lemma 4.3 (Dynamic programming principle). Let u be as in �2:8� and 0 � s < t and

x 2 Rn; then

u�x; t� � inf
�2C�x;t;s�

u���s�; s� _ ����; t; s; h; g� �
Z t

s

g���
� �

: �4:9�

Proof. Let v�x; t� denote the right hand side of (4.9). Let � 2 C�x; t�: Then �1 � �j�0;s� 2
C���s�; s� and �2 � �j�s;t� 2 C�x; t; s�: Hence

v�x; t� � u��2�s�; s� _ ����2; t; s; h; g� �
Z t

s

g��2�

��u0��1�0�� _ ����1; s; h; g��
Z s

0

g��1�� _ ����2; t; s; h; g��
Z t

s

g��2�

� u0���0�� _ ����1; s; h; g� _ �����2; t; s; h; g� ÿ
Z s

0

g��1�� �
Z t

0

g���

� u0���0�� _ ����; t; h; g� �
Z t

0

g���:

By taking infimum over �, this implies that v�x; t� � u�x; t�.
Since u0 2 W1;1, by Lemma (4.2), for any T > 0; jujT <1 and hence jvjT <1:

Hence for � > 0; choose �2 2 C�x; t; s� and �1 2 C��2�s�; s� such that

v�x; t� � u��2�s�; s� _ ����2; t; s; h; g� �
Z t

s

g��2� ÿ �;

u��2�s�; s� � u0��1�0�� _ ����1; s; h; g� �
Z s

0

g��1� ÿ �:

Let � 2 C�x; t� be defined by �j�0;s� � �1; �j�s;t� � �2: Then

v�x; t� � u0���0�� _ ����; s; h; g� �
Z s

0

g��� ÿ �
� �

_ ����; t; s; h; g�

�
Z t

s

g��� ÿ �

� �u0���0�� _ ����; s; h; g� ÿ �� _ ����; t; s; h; g� ÿ
Z s

0

g���
� �

�
Z t

0

g��� ÿ �
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� u0���0�� _ ����; s; h; g� _ ����; t; s; h; g�ÿ
Z s

0

g���
� �

�
Z t

0

g���ÿ2�

� u0���0�� _ ess sup
�2�0;s�

h� _����� ÿ
Z �

0

g���
� �

_ ess sup
�2�s;t�

h� _����� ÿ
Z �

s

g���
� �

ÿ
Z s

0

g���
 !

�
Z t

0

g��� ÿ 2�

� u0���0�� _ ess sup
�2�0;s�

h� _����� ÿ
Z �

0

g���
� �

_ ess sup
�2�s;t�

h� _�� ÿ
Z �

0

g���
� �

�
Z t

0

g��� ÿ 2�

� u0���0�� _ ess sup
�2�0;t�

h� _����� ÿ
Z �

0

g���
� �

�
Z t

0

g��� ÿ 2�

� u�x; t� ÿ 3�:

Letting �! 0 to obtain v�x; t� � u�x; t� and hence v � u: This proves the lemma.

Lemma 4.4. Let u be as in �2:8�. Then for every T > 0 , u 2 W1;1�Rn � �0; T�� and

limt!0 u�x; t� � u0�x�.

Proof. Let T > 0, 0 < t � T; x1; x2 2 Rn: Since u0 2 W1;1�Rn�; hence by Lemma (4.2),

there exist a constant M�T� > 0; �1 2 CM�T��x1; t� such that jujT <1 and u�x1; t� �
u0��1�0�� _ ����1; t; h; g� �

R t

0
g��1�: Now define �2��� � �1��� � x2 ÿ x1; then �2 2

C�x2; t� with _�1 � _�2: Let M denote the maximum of the Lipschitz constants for u0

and g: Then

h� _�2���� ÿ
Z �

0

g��2� � h� _�1���� ÿ
Z �

0

g��1� �
Z �

0

g��1� ÿ
Z �

0

g��2�

� h� _�1���� ÿ
Z �

0

g��1� �MT j�1 ÿ �2j1:

Hence

����2; t; h; g� � ����1; t; h; g� �MT jx2 ÿ x1j:
Therefore

u�x2; t� � u0��2�0�� _ ����2; t; h; g� �
Z t

0

g��2�
� �u0��1�0�� � u0��2�0�� ÿ u0��1�0��� _ �����1; t; h; g�

�MT jx2 ÿ x1j� �
Z t

0

g��1� �
Z t

0

�g��2� ÿ g��1��
� �u0��1�0�� �Mjx2 ÿ x1j� _ �����1; t; h; g� �MT jx2 ÿ x1j�

�
Z t

0

g��1� �MT jx2 ÿ x1j
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� �u0��1�0�� �M�1� T�jx2 ÿ x1j� _ �����1; t; h; g�

�M�1� T�jx2 ÿ x1j� �
Z t

0

g��1� �MT jx2 ÿ x1j

� u0��1�0�� _ ����1; t; h; g� �
Z t

0

g��1� � 2M�1� T�jx2 ÿ x1j
� u�x1; t� � 2M�1� T�jx2 ÿ x1j:

Since x1 and x2 are arbitrary, the above implies that

ju�x1; t� ÿ u�x2; t�j � 2M�1� T�jx2 ÿ x1j: �4:10�
Let 0 � s < t � T and x 2 Rn: Since inf h � ÿ1 and hence there exist a q 2 Rn such

that h�q� � T jgjT <ÿjujT . Let ����� x� q��ÿ t�2 C�x; t; s�. Then jxÿ ��s�j� jqjjt ÿ sj
and ����; t; s; h; g� � h�q� � TjgjT <ÿjujT � u���s�; s�: Hence from (4.9) and (4.10)

u�x; t� ÿ u�x; s� � u���s�; s� _ ����; t; s; h; g� �
Z t

s

g��� ÿ u�x; s�
� u���s�; s� ÿ u�x; s� � jgjT jt ÿ sj
� 2M�1� T�j��s� ÿ xjjgjT jt ÿ sj
� �2M�1� T�jqj � jgjT�jt ÿ sj:

�4:11�

Since jujT <1 and hence from (4.9), (4.7) and (4.10) there exist an M�T� > 0 such that

u�x; t� � inf
�2CM�T��x;t;s�

u���s�; s� _ ����; t; s; h; g� �
Z t

s

g���
� �

� inf
�2CM�T��x;t;s�

u���s�; s� �
Z t

s

g���
� �

� inf
�2CM�T��x;t;s�

fu���s�; s� ÿ u�x; s� ÿMjt ÿ sjg � u�x; s�

� inf
�2CM�T��x;t;s�

fÿ2M�1� T�j��s� ÿ xjg ÿMjt ÿ sj � u�x; s�

� ÿ2M�1� T�M�T�jsÿ tj ÿMjt ÿ sj � u�x; s�
� ÿM1�T�jsÿ tj � u�x; s�;

where M1�T� � 2M�1� T�M�T� �M: Combining this with (4.11) implies ju�x; t�ÿ
u�x; s�j � M1�T�jt ÿ sj: By taking s � 0; we obtain limt!0u�x; t� � u0�x� and hence the

lemma.

Proof of Theorem 2.1. First we prove that u is a subsolution. Suppose not, then there exist

a �x0; t0� 2 Rn � R�; � > 0; a ball B around �x0; t0� and a C1 function ' such that

'�x0; t0� � u�x0; t0�; uÿ ' has maximum at �x0; t0� in B and 't � H�';D'� ÿ g � 4� at

�x0; t0�: By continuity we can choose a � > 0 such that at �x0; t0�; 't � H�'ÿ 2�;D'�ÿ
g � 3�: Hence from �A3� of x 3 there exist q such that at �x0; t0�; 't � hq;D'iÿ g � 2�,
h�q� � '�x0; t0� ÿ 2�: Now by continuity, there exist a ball B1 � B around �x0; t0� such

that in B1

h�q� � 'ÿ �; 't � hq;D'i ÿ g � �: �4:12�
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Let s0 < t0 be such that the curve ���� � x0 � q��ÿ t0� for � 2 �s0; t0� is in B1 and

supfj R �
s0

g���j; � 2 �s0; t0�g< � from (4.9) and (4.12) we have

'�x0; t0� � u�x0; t0� � u���s0�; s0� _ ����; t0; s0; h; g� �
Z t0

s0

g���

� u���s0�; s0� _ h�q� ÿ inf
�2�s0;t0�

Z �

s0

g���
� �

�
Z t0

s0

g���

� u���s0�; s0� _ fh�q� � �g �
Z t0

s0

g��� �4:13�

� u���s0�; s0� _ '���s0�; s0� �
Z t0

s0

g���

� '���s0�; s0� �
Z t0

s0

g���:

Also from (4.12)

'�x0; t0� ÿ '���s0�; s0� �
Z t0

s0

d

d�
'�����; ��d�

�
Z t0

s0

�'t � hq;D'id�� �
Z t0

s0

g��� � ��t0 ÿ s0�

which contradicts (4.13). This proves that u is a subsolution.

Next we prove that u is a supersolution. Suppose not, then there exists �x0; t0� 2
Rn � R�; � > 0; a ball B around �x0; t0� and a C1-function ' such that u�x0; t0� �
'�x0; t0�, uÿ ' � 0 in B; 't � H�';D'� ÿ g � ÿ3� in B. Hence from �A3� of x 3, for

�x; t� 2 B; q 2 Rn

�'t � hq;D'i ÿ g��x; t� � ÿ3�;
whenever h�q� � '�x; t�:

�
�4:14�

From Lemma (4.4), u is continuous and jujT <1; for any T > 0: Hence from (4.9) and

(4.8) for every s < t; there exist a �s 2 CM�T��x0; t0; s� such that

u�x0; t0� � u���s�; s� _ ����s; t0; s; h; g� �
Z t0

s

g��s�: �4:15�

Since j _�sj�M�T� and hence by choosing s0 sufficiently close to t0, �s2B for all s2�s0; t0�:

Claim. There exist s1 2 �s0; t0� such that for a.e. � 2 �s1; t0�
't��s1

���; �� � h _�s1
���;D'��s1

���; ��i ÿ g��s1
���; �� � ÿ�:

Suppose not, then there exist a sequence sm ! t0; �m 2 �sm; t0� with �m � �sm
,

�'t � h _�m;D'i ÿ g���m��m�; �m� > ÿ�:
Let for a subsequence, _�m��m� ! q as m!1: Since �m ! t0; �m��m� ! x0; we obtain

from the above inequality

�'t � hq;D'i ÿ g��x0; t0� � ÿ�: �4:16�
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On the other hand from (4.15) and lower semicontinuity of h we have

'�x0; t0� � u�x0; t0� � lim
m!1 ����m; t0; sm; h; g� �

Z t0

sm

g��m�
� �

� lim
m!1 h� _�m��m�� ÿ

Z �m

sm

g��m�
� �

�
Z t0

sm

g��m�
� �

� h�q�:
Hence from (4.14), �'t � hq;D'i ÿ g��x0; t0� � ÿ3�; contradicting (4.16). This proves

the claim. From the above claim we have

'�x0; t0� ÿ '��s1
�s1�; s1� �

Z t0

s1

d

d�
'��s1

���; ��d�

�
Z t0

s1

�'t � h _�s1
;D'i��s1

���; ��d�

�
Z t0

s1

g��s1
� ÿ ��t0 ÿ s1�:

�4:17�

From (4.15) we have

'�x0; t0� � u�x0; t0� � u��s1
�s1�; s1� �

Z t0

s1

g��s1
�

� '��s1
�s1�; s1� �

Z t0

s1

g��s1
�;

which contradicts (4.17). This proves that u is a super solution. Furthermore from (4.8)

infimum is achieved and this proves the theorem.

Theorem 2.2.

From now on we assume that H satisfies �H3� and �H4� of Theorem 2.2 and h be its quasi

concave dual. Let �ÿ be defined as in (2.5).

Lemma 4.5. Let W be a function on Rn � R�: Assume that for every T > 0; jW jT �
supfjW�x; t�j : �x; t� 2 Rn � �0; T�g <1: Let 0 � s < t � T and x 2 Rn: Define

V�x; t� � inf
�2C�x;t;s�

W���s�; s��
Z t

s

g���; W���s�; s���ÿ��; t; s; h; g�
� �

; �4:18�

V�x; t� � inf
�2C�x;t;s�

W���s�; s��
Z t

s

g���; W���s�; s�< �ÿ��; t; s; h; g�
� �

; �4:19�

then there exist a constant M�T� > 0 such that

jV�x; t�j _ jV�x; t�j � jW jT � T jgj1; �4:20�

V�x; t� � inf
�2CM�T��x;t;s�

W���s�; s� �
Z t

s

g���; W���s�; s� � �ÿ��; t; s; h; g�
� �

;

�4:21�

V�x; t� � inf
�2CM�T��x;t;s�

W���s�; s� �
Z t

s

g���; W���s�; s� < �ÿ��; t; s; h; g�
� �

:

�4:22�
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Furthermore if W is lower semicontinuous function, then there exist a � 2 CM�T��x; t; s�
such that

W���s�; s� � �ÿ��; t; s; h; g�; V�x; t� � W���s�; s� �
Z t

s

g���: �4:23�

If W is continuous, then there exist f��g � CM�T��x; t; s�; � 2 CM�T��x; t; s� such that

�� ! � in C0 and

V�x; t� � W���s�; s� �
Z t

s

g���; �4:24�
W����s�; s� < �ÿ���; t; s; h; g�: �4:25�

Proof. Sinceÿ�jW jT � Tjgj1�� W���s�; s� � R t

s
g�����jW jT � Tjgj1� and hence (4.20)

follows. Since limj pj!1h�p� � ÿ1; there exist M�T�> 0 such that if j pj > M�T�; then

h�p�<ÿ2�jW jT � Tjgj1�: Let � 2 C�x; t; s� such that j _�j1> M�T�: Then for � in a set of

positive measure in �s; t�

h� _����� ÿ
Z �

s

g��� � ÿ2�jW jT � Tjgj1� � Tjgj1 � ÿ2jW j1;

and hence �ÿ��; t; s; h; g� < W���s�; s�: This proves (4.21) and (4.22).

Let f��g be a minimizing sequence in (4.18). By going to a subsquence we can assume

that �� ! � in C0 and �� ! � weakly in W1;2��s; t�;Rn�: Hence from �A4�; �A5� of x 3,

from (4.4) and by lower semicontinuity of W we have

W���s�; s� � lim
�!1

W����s�; s� � lim
�!1 �ÿ���; t; s; h; g� � �ÿ��; t; s; h; g�:

Hence

W���s�; s� �
Z t

0

g��� � V�x; t� � lim W����s�; s� �
Z t

0

g����
� �

� W���s�; s� �
Z t

0

g���:

This proves (4.23). Any minimizing sequence f��g � CM�T��x; t; s� of V ; we can extract a

subsequence and still denote it by f��g converging strongly to � in C0-topology. Now

from continuity of W ; (4.24) and (4.25) follow.

Lemma 4.6. Let g�x; t� � g1�x; t� � g2�t�. Assume that tg1�x; t� is non-increasing in

t; g2�t� � 0 and H�u; p� > 0 for all u 2 R; j pj � 1. Then u� � u; u� � u.

Proof. The proof is divided into three steps.

Step 1. Let �> 1 and fqkg be a bounded sequence. Then limk!1h��qk�< lim k!1h�qk�:
Suppose not, then let for a subsequence still denoted by fqkg such that

qk ! q0; lim
k!1

h��qk� � lim
k!1

h�qk� � �:

Choose jpkj � j~pkj � 1 such that for all jpj � 1

�i� H�h�qk�; pk� � hqk; pki; H�h�qk�; p� � hqk; pi
�ii� H�h��qk�; ~pk� � �hqk; ~pki; H�h��qk�; p� � �hqk; pi:
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Again going to a subsequence, one can assume that pk ! p0 ~pk ! ~p0 as k!1. Then by

continuity of H, hq0; p0i � H��; p0�� limk!1 H�h��qk�; p0�� �hq0; p0i. Since H��; p0�
> 0, it follows that � � 1 which is a contradiction. This proves step 1.

Step 2. Let t1 > t; then u�x; t� � u�x; t1�. Let � 2 CM�x; t� such that

u�x; t� � u0���0�� �
Z t

0

g���; u0���0�� � ess inf
�2�0;t�

h� _����� ÿ
Z �

0

g���
� �

:

Let �1��� � ��t�t1� for � 2 �0; t1�. Then �1 2 C�x; t1� and �1�0� � ��0�: Choose a sequence

�k 2 �0; t1� and from step (1) to obtain

ess inf
�2�0;t1�

h� _�1���� ÿ
Z �t=t1��

0

g���
( )

� lim
k!1

h� _�1��k�� ÿ
Z �t=t1��k

0

g���
( )

> lim
k!1

h
t1

t
_�1��k�

� �
ÿ
Z �t=t1��k

0

g���
( )

� lim
k!1

h _�
t

t1
�k

� �� �
ÿ
Z �t=t1��k

0

g���
( )

� ess inf
�2�0;t�

h� _����� ÿ
Z �

0

g���
� �

:

Hence from tg1 non-increasing in t and g2�t� � 0 we have that

u0��1�0�� � ess inf
�2�0;t�

h� _����� ÿ
Z �

0

g���
� �

< ess inf
�2�0;t1�

h� _�1���� ÿ
Z �t=t1��

0

g��1�
( )

� ess inf
�2�0;t1�

h� _�1���� ÿ
Z �

0

g1��1� �
Z �

0

g1��1� ÿ
Z �t=t1��

0

g1���
(

ÿ
Z �t=t1��

0

g2�s�ds�
Z �

0

g2�s�dsÿ
Z �

0

g2�s�ds

)

� ess inf
�2�0;t1�

h� _�1���� ÿ
Z �

0

g1��1� ÿ
Z �

0

g2�s�ds

� �
� ess inf

�2�0;t1�
h� _�1���� ÿ

Z �

0

g��1�
� �

:

Since
R �

0
g1��1� ÿ

R �t=t1��
0

g1��� �
R �t=t1��

0
�t1

t
g1���s�; t1

t
s� ÿ g1���s�; s��ds � 0 and g2 � 0;

this implies that

u�x; t� � u0���0�� �
Z t

0

g���

� u0��1�0�� �
Z t1

0

g��1� �
Z t

0

g��� ÿ
Z t1

0

g��1�
� u�x; t1�:
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Step 3. Let Br�x; t� be a ball centered at �x; t� with radius r. Let t > 0 and let tk < t and

tk ! t. Then from step 2,

u��x; t� � lim
r!0

sup
Br

u�z�

� lim
k!1

u�x; tk� � u�x; t�:

On the other hand u � u and hence u��x; t� � u�x; t�, implies that u��x; t� � u�x; t�.
Similarly u� � u. This proves the Lemma.

In order to prove, the representation formula for a solution in the sense of viscosity, one

has to establish a dynamic programming principle. This has been carried out for standard

control problems and differential games in [2, 8] and [10]. We will next provide a proof of

this fact for our problem.

Lemma 4.7 (Dynamic programming principle). For every T > 0; there exist M�T� > 0

such that jujT <1; u is lower semicontinuous and for 0 � s < t � T ; x 2 Rn,

u�x; t� � inf
CM�t��x;t;s�

u���s�; s� �
Z t

s

g��� : u���s�; s� � �ÿ��; t; s; h; g�
� �

;

�4:26�

u��x; t� � inf
CM�T��x;t;s�

u����s�; s� �
Z t

0

g���; u����s�; s� < �ÿ��; t; s; h; g�
� �

:

�4:27�

Proof. Since u0 2 W1;1�Rn� and hence by taking s � 0 in (4.18), jujT <1 follows from

(4.20). Let �xm; tm� ! �x; t� as m!1: Since u0 is continuous, from (4.23), for each

m; there exist a �m 2 CM�T��xm; tm� such that u�xm; tm� � u0��m�0�� �
R tm

0
g��m� and

u0��m�0�� � �ÿ��m; tm; h; g�: From Arzela±Ascoli we can extract a subsequence still

denoted by �m such that �m ! � 2 CM�T��x; t�: Now from (4.4) we have

u0���0�� � lim
m!1 �ÿ��m; tm; h; g� � �ÿ��; t; h; g�;

therefore,

lim
m!1

u�xm; tm� � u0���0�� �
Z t

0

g��� � u�x; t�:

This proves u is lower semicontinuous. Let

v1�x; t� � inf
C�x;t;s�

u���s�; s� �
Z t

s

g���; u���s�; s� � �ÿ��; t; s; h; g�
� �

: �4:28�

Since jujT <1 and u is lower semicontinuous, hence from (4.23), there exist a �2 2
C�x; t; s� such that u��2�s�; s� � �ÿ��2; t; s; h; g� and v1�x; t� � u��2�s�; s� �

R t

s
g��2�:

Choose a �1 2 C��2�s�; s� such that u��2�s�; s� � u0��1�0�� �
R s

0
g��1�, u0��1�0�� �

�ÿ��1; s; h; g�: Let � 2 C�x; t� defined by ���� � �1��� for � 2 �0; s� and ���� � �2���
for � 2 �s; t�: Then we have

u0���0�� � u��1�s�; s� ÿ
Z s

0

g��1�
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� �ÿ��2; t; s; h; g� ÿ
Z s

0

g��1�

� ess inf
�2�s;t�

h� _����� ÿ
Z �

0

g���
� �

:

Since u0���0�� � �ÿ��; s; h; g�; it follows that u0���0�� � �ÿ��; t; h; g�: Therefore we

have

v1�x; t� � u���s�; s� �
Z t

s

g���

� u0���0�� �
Z t

0

g��� � u�x; t�:
�4:29�

Let � 2 C�x; t� be such that u�x; t� � u0���0�� �
R t

0
g��� and u0���0�� � �ÿ��; t; h; g� �

inffess inf�2�0;s�fh� _����� ÿ R �
0

g���g, ess inf�2�s;t�fh� _����� ÿ
R �

0
g���gg. Hence

u���s�; s� � u0���0�� �
Z s

0

g���

� ess inf
�2�s;t�

h� _���� ÿ
Z �

0

g��� �
Z s

0

g���
� �

� �ÿ��; t; s; h; g�:
This implies that u�x; t� � u0���0�� �

R s

0
g��� � R t

s
g��� � u���s�; s� � R t

s
g��� � v1�x; t�:

Therefore from (4.29) u�x; t� � v1�x; t� and since jujT <1 and hence from (4.21), (4.26)

follows.

Let

v2�x; t� � inf
�2C�x;t;s�

u����s�; s� �
Z t

s

g���; u����s�; s� < �ÿ��; t; s; h; g�
� �

:

�4:30�
Choose a sequence �x�; t�� ! �x; t� such that u��x; t� � lim�!1u�x�; t��: For � 2
C�x; t; s�; let s��s� t� ÿ t and define ��2C�x�; t�; s�� by ���������ÿ t� �t��x� ÿ x:
Then by change of variables � � �ÿ t� � t; we obtain

ess inf
�2�s�;t��

h� _������ ÿ
Z �

s�

g����
� �

� ess inf
�2�s;t�

h� _����� ÿ
Z �

s

g���
� �

� ��;

�4:31�
where �� � O�sup�2�s;t��

R �
s

g��� ÿ R �ÿt�t�
s�

g������ ! 0 as �!1:
Let � 2 C�x; t; s� such that u����s�; s� < �ÿ��; t; s; h; g�: Hence from (4.29) and upper

semicontinuity of u� we can find a �0 > 0 such that for � � �0, u�����s��; s�� <
�ÿ���; t�; s�; h; g� and hence u����s��; s��� u�����s��; s��< �ÿ���; t�; s�; h; g�: Therefore

from (4.28) we have

u��x; t� � lim
�!1 u�x�; t�� � lim

�!1 v1�x�; t��

� lim
�!1 u����s��; s�� �

Z t�

s�

g����
� �
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� lim
�!1 u�����s��; s�� �

Z t�

s�

g����
� �

� u����s�; s� �
Z t

s

g���:

Since it is true for all � and hence u��x; t� � v2�x; t�: Combining this with ju�jT <1 and

(4.22) we obtain (4.27). This proves the Lemma.

Lemma 4.8 (Dynamic programming principle). For every T > 0; jujT <1; u is upper

semicontinuous and there exist M�T� > 0 such that for 0 � s < t � T ; x 2 Rn;

u�x; t�� inf
CM�T��x;t;s�

u���s�; s��
Z t

s

g���; u���s�; s�< �ÿ��; t; s; h; g�
� �

; �4:32�

u��x; t� � inf
CM�T��x;t;s�

u����s�; s� �
Z t

s

g���; u����s�; s� � �ÿ��; t; s; h; g�
� �

:

�4:33�

Proof. Since u0 2 W1;1�Rn�; by taking s � 0 in (4.18), jujT <1 follows from (4.20).

Let �xm; tm� ! �x; t� as m!1: Since u0 is continuous, by (4.24) and (4.25) there exist

�; �� 2 CM�T��x; t� such that �� ! � uniformly and u�x; t� � u0���0�� �
R t

0
g��� and

u0����0�� < �ÿ���; t; h; g�: Now for each �; define �m�
2 C�xm; tm� as follows:

�m�
��� � ����ÿ tm � t� � xm ÿ x if � 2 �0 _ �tm ÿ t�; tm�;

���0� � xm ÿ x if � 2 �0; 0 _ �tm ÿ t��:

�
�4:34�

Clearly �m�
! �� uniformly and by change of variables it follows that

�ÿ��m�
; tm; h; g� � �ÿ���; t; h; g� � o�1�; �4:35�

where o�1� ! 0 as m!1: Since u0 is continuous, from (4.35) we can find a m��� > 0

such that for m > m���; u0��m�
�0�� < �ÿ��m�

; tm; h; g�: This implies that u�xm; tm� �
u0��m�

�0�� � R tm
0

g��m�
�: Now letting m!1; �!1; we conclude that

lim
m!1 u�xm; tm� � lim

�!1 u0����0�� �
Z t

0

g����
� �

� u�x; t�:

This proves u is upper semicontinuous. Define

v1�x; t� � inf
�2C�x;t;s�

u���s�; s� �
Z t

s

g��� : u���s�; s� < �ÿ��; t; s; h; g�
� �

;

then

v1�x; t� � inf
�2C�x;t;s�

inf
�2C���s�;s�

u0���0�� �
Z s

0

g��� �
Z t

s

g���; u0���0��
��

< �ÿ��; s; h; g�
�

; inf
�2C���s�;s�

u0���0�� �
Z s

0

g��� : u0���0��
�

< �ÿ��; s; h; g�
�
< �ÿ��; t; s; h; g�

�
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� inf
�2C�x;t�

u0���0�� �
Z t

0

g���; u0���0�� < �ÿ��; s; h; g�; u0���0��
�
�
Z s

0

g��� < �ÿ��; t; s; h; g�
�

� inf
�2C�x;t�

u0���0�� �
Z t

0

g��� : u0���0�� < �ÿ��; t; h; g�
� �

� u�x; t�: �4:36�
Since jujT <1; hence from (4.22), there exist a M1�T� > 0 such that

v1�x; t� � inf
�2CM1�T��x;t;s�

u���s�; s� �
Z t

s

g���; u���s�; s� < �ÿ��; t; s; h; g�
� �

:

�4:37�
Let " > 0; r > 0 and � 2 C�x; t; s� such that v1�x; t� � u���s�; s� � R t

s
g��� ÿ " and

u���s�; s� � r < �ÿ��; t; s; h; g�. From (4.24), (4.25) and (4.4) there exist an � 2 C���s�; s�
such that u���s�; s� > u0���0�� �

R s

0
g��� ÿ r; u0���0�� < �ÿ��; s; h; g�. Let � 2 C�x; t�

be defined by �j�0;s� � �; �j�s;t� � �. Then u0���0�� � u0���0�� and

u0���0�� � u���s�; s� � r ÿ
Z s

0

g���

< �ÿ��; t; s; h; g� ÿ
Z s

0

g���

� ess inf
�2�s;t�

h� _����� ÿ
Z �

0

g���
� �

:

Since u0���0�� � u0���0��< �ÿ��; s; h; g� and hence combining this with the above inequa-

lity implies that u0���0�� < inffess inf�2�s;t�fh� _����� ÿ R �
0
g���g, ess inf�2�0;s� fh� _�����ÿR �

0
g���gg � �ÿ��; t; h; g�. Therefore v1�x; t� � u0���0�� �

R t

0
g��� ÿ � � u�x; t� ÿ �.

Since � is arbitrary, we obtain v1�x; t� � u�x; t�. This with (4.36), (4.37) implies (4.32)

v2�x; t� � inf
�2C�x;t;s�

u����s�; s� �
Z t

s

g���; u����s�; s� � �ÿ��; t; s; h; g�
� �

:

�4:38�
Let lim�!1�x�; t�� � �x; t�; lim�!1u�x�; t�� � u��x; t�: Let � > 0: Then from (4.36),

(4.37) and (4.38) we can choose a ���� > 0 such that for every � > ����; there exist a

�� 2 CM1�T��x�; t�; s�� such that

u��x; t� � u�x�; t�� ÿ �
2
; �4:39�

u�x�; t�� > u����s�; s� �
Z t�

s

g���� ÿ �
2
; �4:40�

u����s�; s� < �ÿ���; t�; s; h; g�: �4:41�
Extract a subsequence still denoted by �� converging to � uniformly. Then from (4.41),

(4.4), (4.39) and (4.40)

u����s�; s� � lim
�!1

u�����s�; s� � lim
�!1 u�����s�; s� � �ÿ��; t; s; h; g�; �4:42�
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u��x; t� � lim
�!1 u�x�; t�� ÿ �

2

� lim
�!1

u����s�; s� �
Z t�

s

g����
� �

ÿ �

� lim
�!1

u�����s�; s� �
Z t�

s

g����
� �

ÿ �

� u����s�; s� �
Z t

s

g��� ÿ �
� v2�x; t� ÿ �;

since (4.42) holds. Now letting �! 0 to conclude that u��x; t� � v2�x; t�: Since ju�jT <1
and hence from (4.21) there exist an M�T� > 0 such that (4.33) holds. This proves the

lemma.

Proof of Theorem 2.2. Let T > 0 and 0 < t � T and x 2 Rn: From (4.23) and (4.24) there

exist M�T� > 0 such that �t; �t 2 CM�T��x; t� and

u�x; t� � u0��t�0�� �
Z t

0

g��t�;

u�x; t� � u0��t�0�� �
Z t

0

g��t�:

Since j�x; x� ÿ ��t���; �t����j � j
R t

�� _�t���; _�t����d�j � M�T�jt ÿ �j and hence ��t; �t� !
�x; x� as t! 0: This implies that limt!0�u�x; t�; u�x; t�� � �u0�x�; u0�x��:

Suppose u is not a sub solution. Then there exist an �x0; t0� 2 Rn � R�; � > 0;B a ball

with centre �x0; t0� and a ' 2 C1�Rn � R�� such that u��x0; t0� � '�x0; t0�; u� ÿ ' � 0 in

B; 't � H�';D'� ÿ g � 4� at �x0; t0�. By continuity we can choose a � > 0 such that

't � H�'� �;D'� ÿ g � 3� at �x0; t0�. Therefore from �A6� of x 3, there exist q with

'�x0; t0� � � � h�q� and 't� < q;D' > ÿg � 2� at �x0; t0�. By continuity, we can find a

ball B1 � B around �x0; t0� such that for �x; t� 2 B1;

u��x; t� � '�x; t� < h�q� ÿ �
2
; �4:43�

't � hq;D'i ÿ g � �: �4:44�
Let ���� � x0 � q��ÿ t0� and choose a s0 < t0 such that for � 2 �s0; t0�, sup�2�s0;t0�j R �

s0
g���j < �

2
and �����; �� 2 B1: Then from (4.43), u����s0�; s0� < h�q� ÿ �

2
� inf�2�s0;t0�

fh� _����� ÿ R �
s0

g���g � �ÿ��; t0; s0; h; g�: Hence from (4.26)

'�x0; t0� � u��x0; t0� � u����s0�; s0� �
Z t0

s0

g���

� '���s0�; s0� �
Z t0

s0

g���:
�4:45�

From (4.44) we have

'�x0; t0� ÿ '���s0�; s0� �
Z t0

s0

d

d�
�'�����; ���d�
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�
Z t0

s0

�'t � hq;D'i������; ��d�

�
Z t0

s0

g��� � ��t0 ÿ s0�;

which contradicts (4.45). This proves u is a sub solution.

Next we will show that u is a super solution. Suppose not, since u is a lower semi-

continuous function, hence there exist a �x0; t0� 2 Rn � R�; � > 0 a ball B centered

at �x0; t0� and a ' 2 C1�Rn � R�� such that u�x0; t0� � '�x0; t0�; uÿ ' � 0 in B,

't � H�';D'� ÿ g � ÿ4� at �x0; t0�. Hence by continuity of H and �A6� of x 3, we can

find a ball B1 � B centered at �x0; t0� such that u � ' in B1 and whenever

q 2 Rn; �x; t� 2 B1 with '�x; t� � h�q�; then at �x; t�
't � hq;D'i ÿ g � ÿ2�: �4:46�

For every s � t0, from (4.23) and (4.26) choose a �s 2 CM�T0��x0; t0; s� such that u��s�s�; s�
� �ÿ��s; t0; s; h; g� and u�x0; t0�� u��s�s�; s� �

R t0
s

g��s�. Now j�s���ÿ x0j� M�T0�jt0ÿ �j
and hence we can find a s0 < t0 such that for any s 2 �s0; t0�; ��s���; �� 2 B1 for all

� 2 �s0; t0�. Therefore for s 2 �s0; t0�

'�x0; t0� � u�x0; t0� � u��s�s�; s� �
Z t0

s

g��s�

� '��s�s�; s� �
Z t0

s

g��s�
�4:47�

'��s�s�; s� � u��s�s�; s� � �ÿ��s; t0; s; h; g�: �4:48�

Claim. There exist s1 2 �s0; t0� such that for almost every � 2 �s1; t0�
't��s1

���; �� � h _�s1
���;D'��s1

���; ��i ÿ g��s1
���; �� � ÿ�: �4:49�

Suppose not, then from (4.48) we can find a sequence sm ! t0; �m 2 �sm; t0�, �m � �sm

such that

't��m��m�; �m� � h _�m��m�;D'��m��m�; �m�i ÿ g��m��m�; �m� � ÿ� �4:50�

'��m��m�; �m� � h� _�m��m��� ÿ
Z �m

sm

g��m�: �4:51�

Since j _�m��m�j � M�t0�; hence for a subsequence still denoted by �m, let q � limm!1
_�m��m�. Now letting m!1 in (4.50) and (4.51) and using upper semicontinuity of h to

obtain

't�x0; t0� � hq;D'�x0; t0�i ÿ g�x0; t0� � ÿ�

'�x0; t0� � lim
m!1 h� _�m��m�� ÿ

Z �m

sm

g��m�
� �

� h�q�;

which contradicts (4.46) and hence the claim. From (4.49)

'�x0; t0� ÿ '��s1
�s1�; s1� �

Z t0

s1

d

d�
'� _�s1

���; ��d�
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�
Z t0

s1

�'t � h _�s1
;D'i���s1

���; ��d�

�
Z t0

s1

g��s1
� ÿ ��t0 ÿ s1�;

which contradicts (4.47). This proves that u is a super solution and hence it is a viscosity

solution. Similarly from Lemma 4.8, it follows that u is a viscosity solution. This together

with Lemma 4.6 completes the proof of the Theorem.

Remark 4.9. In Lemma 4.6, assumptions on g are only sufficient but not necessary. For

example consider the problem

ut � eÿujuxj � g�t�
u�x; 0� � u0�x�:

Solutions of this problem are given by

u�x; t� � inf
y

u0�y� �
Z t

0

g�s�ds; u0�y� � ÿ log
jxÿ yjR t

0
exp�ÿ R s

0
g���d��ds

 !( )
�4:52�

and

u�x; t� � inf
y

u0�y� �
Z t

0

g�s�ds; u0�y� < ÿ log
jxÿ yjR t

0
exp�ÿ R s

0
g���d��ds

 !( )
:

�4:53�
Furthermore u� � u and u� � u: Here g�t� � 0 is not required.

Proof. By formula

u�x; t�� inf
�2C�x;t�

u0�y��
Z t

0

g�s�ds; u0�y�� ess inf
0�s�t

h� _��s��ÿ
Z s

0

g���d�
� �� �

;

where h�q� � log 1
jqj
� �

. Let

��s� � xÿ yR t

0
exp�ÿ R s

0
g���d��ds

 ! Z s

0

exp ÿ
Z �

0

g���d�
� �

d�

� �
� y:

Then ��t��x; ��0��y and _��s����xÿ y�=�R t

0
exp�ÿR s

0
g���d��ds�� exp�ÿR s

0
g���d��. Also

h� _��s�� ÿ
Z s

0

g���d� � ÿ log
jxÿ yjR t

0
exp�ÿ R s

0
g���d��ds

 !
:

Therefore

u�x; t� � inf
y

u0�y� �
Z t

0

g�s�ds; u0�y� � ÿ log
jxÿ yjR t

0
exp�ÿ R s

0
g���d��ds

 !( )
:
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On the other hand,

u0�y� � h� _����� ÿ
Z �

0

g���d� 8 � 2 �0; t�

implies

exp ÿu0�y� ÿ
Z �

0

g���d�
� �

� j _����j:

On integration over �0; t�; we have since
R t

0
j _����j � jxÿ yj;

u0�y� � ÿ log
jxÿ yjR t

0
exp�ÿ R s

0
g���d��ds

 !
:

This implies

u�x; t� � inf
y

u0�y� �
Z t

0

g�s�ds; u0�y� � ÿ log
jxÿ yjR t

0
exp�ÿ R s

0
g���d��ds

 !( )
:

Hence (4.52). Similarly (4.53) follows.

Choose M0 > 0 be such that
R t

t1
g���d� � M0�t ÿ t1� for all t1 < t. Since

R t

0
exp�ÿ R s

0

g��� d��ds is an increasing function of t, it follows that

u�x; t1� � inf
y

u0�y� �
Z t1

0

g�s�ds; u0�y��ÿ log
jxÿ yjR t1

o
exp�ÿ R s

0
g���d��ds

 !( )

� inf
y

u0�y� �
Z t

0

g�s�dsÿ
Z t

t1

g�s�ds;

(

u0�y� < ÿ log
jxÿ yjR t

0
exp�ÿ R s

0
g���d��ds

 !)
� u�x; t� ÿM0�t ÿ t1�:

Therefore

u��x; t� � lim
t1!t

u�x; t1�
� lim

t1!t
�u�x; t� ÿM0�t ÿ t1��

� u�x; t�:
Hence we have u� � u and similarly u� � u:

Acknowledgement

The authors would like to thank the referee for his critical comments and for pointing out

a mistake and improvement of Theorem 2.2 of an earlier version of this paper. The

authors acknowledge funding from Indo-French Centre for Promotion of Advanced

Research under Project 1901±2.

Hamilton±Jacobi equation 413



References

[1] Adimurthi and Veerappa Gowda G D, Hopf Lax type formula for sub and supersolutions, Adv.
Diff. Eq. 5 (2000) 97±119

[2] Barron E N, Evans L C and Jensen R, Viscosity solutions of Isaacs equations and differential
games with Lipschitz controls, J. Diff. Eq. 53 (1984) 213±233

[3] Barron E N and Ishii H, The Bellman equation for minimizing maximum cost, Nonlinear
Analysis TMA 13(9) (1989) 1067±1090

[4] Barron E N and Liu W, Calculus of variations in L1; Appl. Math. Opt. 35 (1997) 237±263
[5] Barron E N, Jensen R and Liu W, Hopf-Lax type formula for ut � H�u;Du� � 0; J. Diff. Eq.

126 (1996) 48±64
[6] Barles G and Perthame B, Discontinuous solutions of deterministic optimal stopping time

problems, Math. Modelling Numer. Anal. 21 (1987) 57±579
[7] Evans L C, Partial differential equations, Berkeley Mathematics Lecture Notes, (1994) Vols

3A, 3B
[8] Evans L C and Souganidis P, Differential games and representation formulas for Hamilton

Jacobi equations, Indiana Univ. Math. J. 33 (1984) 773±795
[9] Hitoshi Ishii, Perron's method for Hamilton Jacobi equations, Duke. Math. J. 55 (1987) 369±

364
[10] Lions P L, Generalized solutions of Hamilton Jacobi equations, Research notes in Mathe-

matics (Pitmann) (1982)
[11] Rudin W, Functional Analysis (Tata McGraw Hill Pub.) (1974)

414 Adimurthi and G D Veerappa Gowda


