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1. Introduction

Let Ω be a bounded domain of R4 and let uk be solutions to the equation

(1) ∆2uk = Vke
4uk in Ω,

where

(2) Vk → 1 uniformly in Ω,

as k → ∞. Throughout the paper we denote as ∆ = −
∑

i(
∂

∂xi )2 the Laplacian
with the geometers’ sign convention. Continuing the analysis of [18], here we study
the compactness properties of equation (1).

Equation (1) is the fourth order analogue of Liouville’s equation. Thus, for
problem (1), (2) we may expect similar results to hold as have been obtained by
Brezis-Merle [3] in the two-dimensional case. Recall the following result from [3]
(we also refer to Li-Shafrir [11]).

Theorem 1.1. Let Σ be a bounded domain of R2 and let (uk)k∈N be a sequence of
solutions to the equation

(3) ∆uk = Vke
2uk in Σ,

where Vk → 1 uniformly in Σ as k →∞, and satisfying the uniform bound

(4)
∫

Σ

Vke
2uk dx ≤ Λ

for some Λ > 0.

Then either i) (uk)k∈N is locally bounded in C1,α on Σ for every α < 1, or ii)
there exists a subsequence K ⊂ N such that uk → −∞ locally uniformly in Ω as
k → ∞, k ∈ K, or iii) there exist a subsequence K ⊂ N and at most finitely
many points x(i) ∈ Ω, 1 ≤ i ≤ I, with corresponding numbers βi ≥ 4π such that
Vke

2uk dx ⇀
∑I

i=1 βiδx(i) weakly in the sense of measures while uk → −∞ locally
uniformly in Ω \ {x(i); 1 ≤ i ≤ I} when k → ∞, k ∈ K. Moreover, near any
concentration point x(i), after rescaling

(5) vk(x) = uk(xk + rkx) + log rk, Wk(x) = Vk(xk + rkx)

with suitable sequences xk → x(i), rk → 0 as k → ∞ a subsequence vk → v
uniformly locally in C1,α on R2, where v is a solution of Liouville’s equation

(6) ∆u = e2u on R2.
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Geometrically speaking, the solutions uk to equation (3) correspond to conformal
metrics gk = e2ukgR2 on Σ with Gauss curvature Vk. The fact that all solutions u
of equation (6) by a result of Chen-Li [5] are induced by conformal metrics e2ugR2

on R2 that are obtained by stereographic projection of the standard sphere then
gives rise to the observed quantization. Multiple blow-up at a point is possible, as
shown by X. Chen [6]

Similarly, the solutions uk to (1) induce conformal metrics gk = e2ukgR4 on Ω
having Q-curvature proportional to Vk. In contrast to the two-dimensional case,
however, there is a much greater abundance of solutions to the corresponding limit
equation

(7) ∆2u = e4u on R4.

In fact, by a result of Chang-Chen [4] for any α ∈]0, 16π2] there exists a solution
uα of (7) of total volume

∫
R4 e

4uα dx = α which for α < 16π2 fundamentally differs
from the solution u(x) = log

√
96√

96+|x|2 corresponding to the metric obtained by

pull-back of the spherical metric on S4 under stereographic projection. Only the
latter solution (and any solution obtained from u by rescaling as in (5)) achieves
the maximal volume

∫
R4 e

4u dx = 16π2. If we then consider a suitable sequence
uk = uαk

with αk → 0 as k →∞, normalized as in (5) so that uk ≤ uk(0) = k, we
can even achieve that (uk)k∈N blows up at x(1) = 0 in the sense that uk(0) → ∞
while uk(x) → −∞ for all x 6= 0 as k →∞.

As shown in Example 3.1, solutions to equation (1) with a similar concentration
behavior exist even in the radially symmetric case.

There is a further complication in the four-dimensional case, illustrated by the
following simple example. Consider the sequence (vk) on R4, defined by letting
vk(x) = wk(|x1|), where for k ∈ N we let wk solve the initial value problem for the
ordinary differential equation w′′′′k = e4wk on 0 < s <∞ with initial data wk(0) =
w′k(0) = w′′′k (0) = 0, w′′k(0) = −k. Given Λ > 0, we can then find a sequence of
radii Rk > 0 such that

∫
BRk

(0)
e4vk dx = Λ. Observe that Rk → ∞ as k → ∞.

Scaling as in (5), we then obtain a sequence of solutions uk(x) = vk(Rkx) + logRk

to (7) on Ω = B1(0) such that uk(x) → ∞ for all x ∈ S0 = {x ∈ Ω; x1 = 0}
and uk(x) → −∞ away from S0 as k → ∞. Scaling back as in (5), from (uk) we
reobtain the normalized functions vk which fail to converge to a solution of the limit
problem (7) and develop an interior layer on the hypersurface {x ∈ R4; x1 = 0},
instead.

These comments illustrate that the conclusions i), ii) and iii) of Theorem 1.1 do
not exhaustively describe all the possible concentration phenomena for (1). In fact,
the following concentration-compactness result seems best possible.

Theorem 1.2. Let Ω be a bounded domain of R4 and let (uk)k∈N be a sequence of
solutions to (1), (2) as above. Assume that there exists Λ > 0 such that

(8)
∫

Ω

Vke
4uk dx ≤ Λ

for all k.

Then either i) a subsequence (uk) is relatively compact in C3,α
loc (Ω), or ii) there

exist a subsequence (uk) and a closed nowhere dense set S0 of vanishing measure
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and at most finitely many points x(i) ∈ Ω, 1 ≤ i ≤ I ≤ CΛ, such that, letting

S = S0 ∪ {x(i); 1 ≤ i ≤ I},
we have uk → −∞ uniformly locally away from S as k →∞. Moreover, there is a
sequence of numbers βk →∞ such that

uk

βk
→ ϕ in C3,α

loc (Ω \ S),

where ϕ ∈ C4(Ω \ {x(i); 1 ≤ i ≤ I}) is such that

∆2ϕ = 0, ϕ ≤ 0, ϕ 6= 0,

and
S0 = {x ∈ Ω; ϕ(x) = 0}.

Finally, near any point x0 ∈ S where supBr(x0) uk →∞ for every r > 0 as k →∞,
in particular, near any concentration point x(i), there exist points xk → x0 and
suitable radii rk → 0 such that after normalizing we have

(9) vk(x) = uk(xk + rkx) + log rk ≤ 0 ≤ log 2 + vk(0).

As k →∞ then either a subsequence vk → v in C3,α
loc (R4), where v solves the limit

equation (7), or there holds vk → −∞ almost everywhere and there is a sequence
of numbers γk →∞ such that a subsequence

vk

γk
→ ψ in C3,α

loc (R4),

where ψ ≤ 0 is a non-constant quadratic polynomial.

We regard Theorem 1.2 as a first step towards a more complete description of
the possible concentration behavior of sequences of solutions to problem (1), (2).

Considering (1) as a system of second order equations for uk and ∆uk, respec-
tively, it is possible to obtain some partial results in this regard from the observation
that (2) provides uniform integral bounds for ∆uk up to a remainder given by a
harmonic function. The latter component may be controlled if one imposes, for
instance, Navier boundary conditions uk = ∆uk = 0 on ∂Ω. In fact, in this case
J. Wei [20] has shown (in the notation of Theorem 1.2) that S0 = ∅ and that at
any concentration point x(i) the rescaled functions vk → v in C3,α

loc (R4), where v is
the profile induced by stereographic projection.

As shown by Robert [17], the same result holds if for some open subset ∅ 6= ω ⊂ Ω
we have the a-priori bounds

||(∆uk)−||L1(Ω) ≤ C, ||(∆uk)+||L1(ω) ≤ C,

for all k ∈ N, where s± = ±max{0,±s}. Also in the radially symmetric case there
is a complete description of the possible concentration patterns; see [17].

In the geometric context similar results hold for the related problem of describing
the possible concentration behavior of solutions to the equation of prescribed Q-
curvature on a closed 4-manifold M . Here the bi-Laplacian in equation (1) is
replaced by the Paneitz-Branson operator and Vk again may be interpreted as
being proportional to the Q-curvature of the metric gk = e2ukgM . In the case
when M = S4, Malchiodi-Struwe [14] have shown that any such sequence (gk) of
metrics when Vk → 1 uniformly either is relatively compact or blows up at a single
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concentration-point where a round spherical metric forms after rescaling. Further
compactness results and references can be found in the papers of Druet-Robert [8]
and Malchiodi [13].

Related results on compactness issues for fourth order equations can be found in
Hebey-Robert-Wen [10], C.S.Lin [12] and Robert [16]; concentration-compactness
issues for problems with exponential nonlinearities in two dimensions have been
treated in Adimurthi-Druet [1], Adimurthi-Struwe [2] and Druet [7].

In the following the letter C denotes a generic constant independent of k which
may change from line to line and even within the same line.

2. Proof of Theorem 1.2

Recall the following result, obtained independently by C. S. Lin [12], Lemma
2.3, and J. Wei [20], Lemma 2.3, which generalizes Theorem 1 from [3] to higher
dimensions.

Theorem 2.1. Let v be a solution to the equation

(10) ∆2v = f in BR(x0) ⊂ R4

with

(11) v = ∆v = 0 on ∂BR(x0),

where f ∈ L1(BR(x0)) satisfies

||f ||L1 = α < 8π2.

Then for any p < 8π2

α we have e4p|v| ∈ L1(BR(x0)) with∫
BR(x0)

e4p|v| dx ≤ C(p)R4.

The following characterization of biharmonic functions, due to Pizetti, can be
found in [15]. Denote as

∫
BR(y)

h dx the average of h over BR(y), etc.

Lemma 2.2. For any n ∈ N, any solution h of

(12) ∆2h = 0 in BR(y) ⊂ Rn

there holds

(13) h(y)−
∫

BR(y)

h(z) dz =
R2

2(n+ 2)
∆h(y).

Proof. For convenience, we indicate the short proof. We may assume BR(y) =
BR(0) = BR. For 0 < r < R let Gr be the fundamental solution of the operator
∆2 on Br satisfying Gr = ∆Gr = 0 on ∂Br. Note that Gr(x) = r4−nG1(x/r). (If
n = 4, we have Gr(x) = c0(log r

|x| −
r2−|x|2

4r2 ).) Applying the mean value formula to
the harmonic function ∆h, then with constants c1, c2 we have

0 =
∫

Br

Gr∆2h dx = h(0) +
∫

∂Br

(
∂

∂n
Gr∆h+

∂

∂n
∆Grh) do

= h(0)−
∫

∂Br

(c1r2∆h+ c2h) do = h(0)− c1r
2∆h(0)− c2

∫
∂Br

h do;
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that is, with constants c3, c4 we find

nrn−1h(0) = c3r
n+1∆h(0) + c4

∫
∂Br

h do.

Integrating over 0 < r < R and dividing by Rn, we obtain the identity

h(0) = c5R
2∆h(0) + c6

∫
BR

h dx

with uniform constants c5, c6 for all biharmonic functions h on BR. Inserting a
harmonic function h, we obtain the value c6 = 1, whereas the choice h(x) = |x|2
yields c5 = 1

2(n+2) . �

Lemma 2.2 gives rise to a Liouville property for biharmonic functions on Rn. To
see this first recall the following result for harmonic functions.

Theorem 2.3. Suppose that the function H is harmonic on Rn with H(x) ≤
C(1 + |x|l) for some l ∈ N. Then dl+1H ≡ 0; that is, H is a polynomial of degree
at most l.

Proof. From the mean value property of the harmonic function dl+1H, where dk

now denotes any partial derivative of order k, for any x and R > 0 we have

(14) |dl+1H(x)| ≤ CR−(l+1)

∫
BR(x)

|H(y)| dy;

see for instance Evans [9], Theorem 2.2.7, p.29. But if we assume that H(x) ≤
C(1+|x|l), the right hand side up to an error of order R−1 and up to a multiplicative
constant equals

(15) R−(l+1)

∫
BR(x)

H(y) dy = R−(l+1)H(x),

and the latter tends to 0 as R→∞ for any fixed x. �

Together with Lemma 2.2 now we obtain the following result.

Theorem 2.4. Suppose that the function h is biharmonic on Rn with h(x) ≤
C(1 + |x|) for some C ∈ R. Then ∆h ≡ const. ≥ 0 and h either is a constant or h
is a quadratic polynomial.

Proof. From Lemma 2.2 and the assumption h(y) ≤ C(1 + |y|) we obtain the
equation

∆h(x) = 2(n+ 2) lim
R→∞

R−2

∫
BR(x)

|h(y)| dy

= 2(n+ 2) lim
R→∞

R−2

∫
BR(0)

|h(y)| dy = ∆h(0) =: 2na
(16)

for every x ∈ Rn, where a ≥ 0. The function H(x) = h(x) + a|x|2 then is harmonic
with H(x) ≤ C|x|2 and the claim follows from Theorem 2.3. �
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Proof of Theorem 1.2. Choose a subsequence k →∞ and a maximal number of
points x(i) ∈ Ω, 1 ≤ i ≤ I such that for each i and any R > 0 there holds

lim inf
k→∞

∫
BR(x(i))

Vke
4uk dx ≥ 8π2.

By (8) then we have I ≤ CΛ. Moreover, given x0 ∈ Ω \ {x(i); 1 ≤ i ≤ I}), we can
choose a radius R > 0 such that

(17) lim sup
k→∞

∫
BR(x0)

Vke
4uk dx < 8π2.

For such x0 and R > 0 decompose

uk = vk + hk on BR(x0),

where vk satisfies

∆2vk = Vke
4uk in BR(x0), vk = ∆vk = 0 on ∂BR(x0),

and with ∆2hk = 0 in BR(x0).

By (8) and Theorem 2.1 we then have

(18) ||h+
k ||L1(BR(x0)) ≤ ||u+

k ||L1(BR(x0)) + ||vk||L1(BR(x0)) ≤ C,

uniformly in k.

We now distinguish the following cases.

Case 1: Suppose that ||hk||L1(BR/2(x0)) ≤ C, uniformly in k. Then Lemma 2.2
shows that for all x ∈ BR/8(x0) we can bound

|∆hk(x)| = |
∫

BR/8(x)

∆hk(y) dy| ≤ CR−2

∫
BR/2(x0)

|h(z)| dz ≤ C,

uniformly in k and x, and (hk) is locally bounded in C4 on BR/8(x0). But then
from Lemma 2.2 and (18) we also obtain∫

BR(x0)

|h(x)| dx ≤ C −
∫

BR(x0)

h(x) dx = C +
1
12
R2∆hk(x0)− hk(x0) ≤ C.

By repeating the first step of the argument on any ball contained in BR(x0) we
then obtain that (hk) is locally bounded in C4 on BR(x0).

But then by Theorem 2.1 and (17) we see that

∆2vk = Vke
4uk = (Vke

4hk)e4vk

is locally bounded in Lp on BR(x0) for some uniform number p > 1. Since Theorem
2.1 also yields uniform L1-bounds for vk, we may conclude that (vk) is locally
bounded in C3,α on BR(x0) for any α < 1, and hence so is (uk).

Case 2: Now assume that βk := ||hk||L1(BR/2(x0)) →∞ as k →∞. Normalize

ϕk =
hk

||hk||L1(BR/2(x0))
,

so that ||ϕk||L1(BR/2(x0)) = 1 for all k. By arguing as in Case 1, we then find that
(ϕk) is locally bounded in C4 on BR(x0). A subsequence as k →∞ therefore con-
verges in C3,α

loc (BR(x0)) to a limit ϕ satisfying the equation ∆2ϕ = 0 in BR(x0) and
with ||ϕ||L1(BR/2(x0)) = 1. Clearly, the function ϕ then cannot vanish identically.
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By (18), moreover, we have ||ϕ+||L1(BR(x0)) = 0, and therefore ϕ ≤ 0. It then
follows from Lemma 2.2 that ∆ϕ(x) 6= 0 at any point x where ϕ(x) = 0. The set
S0 = {x ∈ BR(x0);ϕ(x) = 0} hence is of codimension ≥ 1 and therefore also has
vanishing measure; moreover, S0 is closed and nowhere dense. Thus, we conclude
that ϕ < 0 almost everywhere and hence hk = βkϕk → −∞ almost everywhere and
uniformly locally away from S0 as k →∞. Again observing that

∆2vk = Vke
4uk = (Vke

4hk)e4vk

is locally bounded in Lp on BR(x0) \ S0 for some uniform number p > 1, as before
we conclude that (vk) is locally bounded in C3,α for any α < 1 on BR(x0) \ S0. It
follows that uk = vk + hk → −∞ almost everywhere and uniformly locally away
from S0 as k →∞ and uk/βk → ϕ.

Since the cases 1 and 2 are mutually exclusive and since the region Ω\{x(i); 1 ≤
i ≤ I} is connected, upon covering this region with ballsBR(x0) as above we see that
either a subsequence (uk) is locally bounded in C3,α away from {x(i); 1 ≤ i ≤ I})
for any α < 1, and hence (uk) is relatively compact in C3,α on this domain for
any α < 1, or uk → −∞ almost everywhere and uniformly locally away from
S = S0 ∪ {x(i); 1 ≤ i ≤ I}), with (uk/βk) converging to a nontrivial biharmonic
limit ϕ ≤ 0 away from {x(i); 1 ≤ i ≤ I}).

Finally, we show that whenever there is concentration only the second case can
occur, that is, uk → −∞ almost everywhere as k → ∞ if {x(i); 1 ≤ i ≤ I}) 6= ∅.
Indeed, suppose by contradiction that there is at least one concentration point and
that uk → u in C3,α

loc (Ω \ {x(i); 1 ≤ i ≤ I}) as k → ∞. By Robert’s result [16], or
by the reasoning of Wei [20] then we have convergence

Vke
4ukdx ⇁ e4udx+

I∑
i=1

miδx(i)

weakly in the sense of measures, where mi ≥ 16π2, 1 ≤ i ≤ I. But near each x(i)

the leading term in the Green’s function G for the bi-Laplacian is given by

G(x) =
1

8π2
log

(
1

|x− x(i)|

)
.

By arguing as in Brezis-Merle [3], p. 1242 f., then we conclude that

u(x) ≥ 2 log
(

1
|x− x(i)|

)
− C

near x(i), and with a constant c0 > 0 we find

e4u(x) ≥ c0|x− x(i)|−8 /∈ L1(Ω),

thus contradicting the hypothesis (8). This completes the proof of the asserted
macroscopic concentration behavior of (uk).

In order to analyze the asymptotic behavior of (uk) near concentration points
we adapt an argument of Schoen to our setting; see [19], proof of Theorem 2.2. Let
x0 ∈ S with supBr(x0) uk → ∞ for every r > 0 as k → ∞. For r ≥ 0 denote as
Kr(x0) = {x; |x − x0| ≤ r} the closed r-ball centered at x0. For R < dist(x0, ∂Ω)
then choose 0 ≤ rk < R, xk ∈ Krk

(x0) such that

(19) (R− rk)euk(xk) = (R− rk) sup
Krk

(x0)

euk = max
0≤r<R

(
(R− r) sup

Kr(x0)

euk
)

=: Lk.
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Note that Lk →∞ as k →∞. Define sk = R−rk

2Lk
and similar to (5) let

vk(x) = uk(xk + skx) + log sk,

satisfying

sup
KLk

(0)

evk = sk sup
K(R−rk)/2(xk)

euk ≤ sk sup
K(R+rk)/2(x0)

euk

= L−1
k

(
R− R+ rk

2
)

sup
K R+rk

2
(x0)

euk

≤ L−1
k (R− rk)euk(xk) = 1 = 2evk(0)

in view of (19), which is equivalent to the assertion (9).

Observe that vk solves the equation

∆2vk = Wke
4vk

in BLk
(0), where the sequence of balls BLk

(0) exhausts all of R4 and

Wk(x) = Vk(xk + skx) → 1 locally uniformly in R4;

moreover, ∫
BLk

(0)

Wke
4vk dx ≤ Λ

for all k. By applying the previous result to the sequence of blown-up functions
vk, we then obtain the microscopic description of blow-up asserted in Theorem 1.2.
The characterization of the limit function ψ follows from Theorem 2.4. �

3. An Example

We demonstrate the absence of quantization also in the radially symmetric case
by means of the following example.

Example 3.1. Consider the radially symmetric function ϕ with

∆2ϕ = e−
|x|2
2 in R4, ϕ(0) = ∆ϕ(0) = 0.

This function can be computed explicitly. In fact, for any x ∈ R4 we have

ϕ(x) =
∫ |x|

0

s−3

{∫ s

0

t3
[∫ t

0

σ−3

(∫ σ

0

τ3e−
τ2
2 dτ

)
dσ

]
dt

}
ds.

For k ∈ N and x ∈ R4 let

uk(x) = ln k − k6|x|2

8
+ k−8ϕ

(
k3x

)
.

Then (uk) satisfies equation (1), that is,

∆2uk = Vke
4uk ,

where
Vk(x) = e−4k−8ϕ(k3x) → 1 in C0

loc(R4) as k →∞.

Thus, also (2) is satisfied. Finally, we compute that Vke
4uk ⇁ 0 in the sense of

measures when k →∞.
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rose, 06108 Nice Cedex 2, France

(M. Struwe) Mathematik, ETH-Zentrum, CH-8092 Zürich
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