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1. INTRODUCTION

Let © be a bounded domain of R* and let u; be solutions to the equation

(1) APy, = Vie*™ in Q,

where

(2) Vi — 1 uniformly in Q,

as k — oo. Throughout the paper we denote as A = —Y.(52)? the Laplacian

with the geometers’ sign convention. Continuing the analysis of [18], here we study
the compactness properties of equation (1).

Equation (1) is the fourth order analogue of Liouville’s equation. Thus, for
problem (1), (2) we may expect similar results to hold as have been obtained by
Brezis-Merle [3] in the two-dimensional case. Recall the following result from [3]
(we also refer to Li-Shafrir [11]).

Theorem 1.1. Let ¥ be a bounded domain of R? and let (ux)ren be a sequence of
solutions to the equation

(3) Auy, = Vie?™  in ¥,
where Vi, — 1 uniformly in ¥ as k — oo, and satisfying the uniform bound
(4) / Vie?™ dz < A

b

for some A > 0.

Then either i) (ux)ren is locally bounded in C* on ¥ for every a < 1, or ii)
there ezists a subsequence K C N such that uy, — —oo locally uniformly in Q as
k — oo, k € K, or iii) there exist a subsequence K C N and at most finitely
many points D € Q, 1 < i < I, with corresponding numbers §; > 4n such that
Viee2ts do — Zle Bid,y weakly in the sense of measures while ur — —oo locally
uniformly in Q\ {z®; 1 < i < I} when k — oo, k € K. Moreover, near any
concentration point V), after rescaling

(5) v (x) = u(z) + 132) +logry, Wi(z) = Vi(zk + riz)

with suitable sequences xp — x(i), r, — 0 as k — oo a subsequence vy — v
uniformly locally in CY on R?, where v is a solution of Liouville’s equation

(6) Au = e* on R%
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Geometrically speaking, the solutions u to equation (3) correspond to conformal
metrics g = e?“*gg> on ¥ with Gauss curvature Vj. The fact that all solutions u
of equation (6) by a result of Chen-Li [5] are induced by conformal metrics e?*gg:
on R? that are obtained by stereographic projection of the standard sphere then
gives rise to the observed quantization. Multiple blow-up at a point is possible, as
shown by X. Chen [6]

Similarly, the solutions uy, to (1) induce conformal metrics g; = e*“*ggs on
having @-curvature proportional to V. In contrast to the two-dimensional case,
however, there is a much greater abundance of solutions to the corresponding limit
equation

(7) A2y = ™ on R%.

In fact, by a result of Chang-Chen [4] for any « €]0, 1672] there exists a solution
uq of (7) of total volume [p, e*“> dz = o which for a < 167 fundamentally differs

from the solution u(z) = log%?gﬁ|2 corresponding to the metric obtained by

pull-back of the spherical metric on S* under stereographic projection. Only the
latter solution (and any solution obtained from u by rescaling as in (5)) achieves
the maximal volume fR4 et dr = 1672, If we then consider a suitable sequence
Uk = Uq,, With ag, — 0 as k — oo, normalized as in (5) so that uy < ui(0) =k, we
can even achieve that (uy)ren blows up at (1) = 0 in the sense that uy(0) — oo
while uy(z) — —oo for all z # 0 as k — co.

As shown in Example 3.1, solutions to equation (1) with a similar concentration
behavior exist even in the radially symmetric case.

There is a further complication in the four-dimensional case, illustrated by the
following simple example. Consider the sequence (vz) on R*, defined by letting
v(z) = wi(|x!]), where for k € N we let wy, solve the initial value problem for the
ordinary differential equation w}” = e*“* on 0 < s < oo with initial data w(0) =
wy,(0) = wy’(0) = 0, wy/(0) = —k. Given A > 0, we can then find a sequence of
radii R > 0 such that fBRk ) et dx = A. Observe that R — oo as k — oo.
Scaling as in (5), we then obtain a sequence of solutions uy(x) = vi(Rikx) + log Ry
to (7) on Q = B1(0) such that ux(z) — oo for all z € Sy = {z € Q; 2! = 0}
and ug(x) — —oo away from Sy as k — oo. Scaling back as in (5), from (uy) we
reobtain the normalized functions vj which fail to converge to a solution of the limit
problem (7) and develop an interior layer on the hypersurface {x € R*; z! = 0},
instead.

These comments illustrate that the conclusions i), ii) and iii) of Theorem 1.1 do
not exhaustively describe all the possible concentration phenomena for (1). In fact,
the following concentration-compactness result seems best possible.

Theorem 1.2. Let 2 be a bounded domain of R* and let (ux)ren be a sequence of
solutions to (1), (2) as above. Assume that there exists A > 0 such that

(8) / Vet dx < A
Q

for all k.

Then either i) a subsequence (uy) is relatively compact in 01303 (Q), or ii) there

exist a subsequence (ug) and a closed nowhere dense set Sy of vanishing measure
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and at most finitely many points ) € Q, 1 < i < I < CA, such that, letting
S=Su{z®; 1<i<I},

we have uy, — —oo uniformly locally away from S as k — oo. Moreover, there is a

sequence of numbers B, — oo such that

Sk pin CPUQN S),
B

where ¢ € CHQ\ {z; 1 <i < T}) is such that
A’ =0,0<0,0#0,

and
So ={z € Q; p(x) =0}
Finally, near any point zo € S where supp (. ur — 00 for everyr >0 as k — oo,

in particular, near any concentration point x(i), there exist points xp — o and
suitable radii vy, — O such that after normalizing we have

(9) vg(x) = ug(xg + rex) +logry < 0 <log?2 + vi(0).

As k — oo then either a subsequence vy, — v in Cf’ag(R‘*), where v solves the limit
equation (7), or there holds vy, — —oo almost everywhere and there is a sequence
of numbers v, — 0o such that a subsequence

= g in Ol (RY),

Yk
where 1 < 0 is a non-constant quadratic polynomial.

We regard Theorem 1.2 as a first step towards a more complete description of
the possible concentration behavior of sequences of solutions to problem (1), (2).

Considering (1) as a system of second order equations for u; and Auyg, respec-
tively, it is possible to obtain some partial results in this regard from the observation
that (2) provides uniform integral bounds for Auy up to a remainder given by a
harmonic function. The latter component may be controlled if one imposes, for
instance, Navier boundary conditions u; = Aug = 0 on 02. In fact, in this case
J. Wei [20] has shown (in the notation of Theorem 1.2) that Sy = () and that at
any concentration point 2(*) the rescaled functions vy — v in Cl?’ oY (R*), where v is
the profile induced by stereographic projection.

As shown by Robert [17], the same result holds if for some open subset ) # w C
we have the a-priori bounds

1(Aur) [ L1 () < O, [[(Aur) L1y < C,

for all k € N, where s = +max{0,+s}. Also in the radially symmetric case there
is a complete description of the possible concentration patterns; see [17].

In the geometric context similar results hold for the related problem of describing
the possible concentration behavior of solutions to the equation of prescribed Q-
curvature on a closed 4-manifold M. Here the bi-Laplacian in equation (1) is
replaced by the Paneitz-Branson operator and Vi again may be interpreted as
being proportional to the @Q-curvature of the metric g, = e?“*gj;. In the case
when M = S*, Malchiodi-Struwe [14] have shown that any such sequence (gi) of
metrics when Vj, — 1 uniformly either is relatively compact or blows up at a single
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concentration-point where a round spherical metric forms after rescaling. Further
compactness results and references can be found in the papers of Druet-Robert [§]
and Malchiodi [13].

Related results on compactness issues for fourth order equations can be found in
Hebey-Robert-Wen [10], C.S.Lin [12] and Robert [16]; concentration-compactness
issues for problems with exponential nonlinearities in two dimensions have been
treated in Adimurthi-Druet [1], Adimurthi-Struwe [2] and Druet [7].

In the following the letter C' denotes a generic constant independent of k which
may change from line to line and even within the same line.

2. PROOF OF THEOREM 1.2

Recall the following result, obtained independently by C. S. Lin [12], Lemma
2.3, and J. Wei [20], Lemma 2.3, which generalizes Theorem 1 from [3] to higher
dimensions.

Theorem 2.1. Let v be a solution to the equation

(10) A?v = f in Bp(zo) C R?*
with
(11) v=Av =0 on OBg(xg),

where f € LY(Br(xo)) satisfies
||f”L1 =< 87T2.

Then for any p < % we have e*?I’l € LY (Bg(xg)) with

/ eIVl gy < C(p)R4.
Br(zo)

The following characterization of biharmonic functions, due to Pizetti, can be
found in [15]. Denote asjfBR(y) hdz the average of h over Br(y), etc.

Lemma 2.2. For any n € N, any solution h of
(12) A%h =0 in Br(y) C R"
there holds

2
(13) h(y) - ]{3 PRCEE Q(fMAh(y).

Proof. For convenience, we indicate the short proof. We may assume Bg(y) =
Bgr(0) = Bgr. For 0 < r < R let G, be the fundamental solution of the operator
A? on B, satisfying G, = AG, = 0 on 0B,. Note that G,.(z) = r* "Gy (z/r). (If

72— |o|?

n = 4, we have G, (z) = ¢ (log ﬁ — —=—).) Applying the mean value formula to
the harmonic function Ah, then with constants ¢, co we have
0 0
0= G,A*hdz = h(0 —G,.Ah+ —AG,h)d
/BT v ( )+/33T(5n +8n ) do

= h(0) — ][ (172 Ah + cah) do = h(0) — 172 Ah(0) — ¢y ][ h do;
OB, 9B,
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that is, with constants c3, c4 we find

nr" 1 h(0) = c3r™ T AR(0) + 04/ hdo.
OB,

Integrating over 0 < r < R and dividing by R™, we obtain the identity

h(0) = cs RZAh(0) + 06][ hdx
Br
with uniform constants cs,cg for all biharmonic functions h on Bg. Inserting a
harmonic function h, we obtain the value cg = 1, whereas the choice h(x) = |z|?
. _ 1

ylelds Cs — m

Lemma 2.2 gives rise to a Liouville property for biharmonic functions on R™. To
see this first recall the following result for harmonic functions.

Theorem 2.3. Suppose that the function H is harmonic on R™ with H(zx) <
C(1 + |z|') for somel € N. Then d*'H = 0; that is, H is a polynomial of degree
at most .

Proof. From the mean value property of the harmonic function d'*'H, where d¥
now denotes any partial derivative of order k, for any x and R > 0 we have

(1) @) < R ()| dy

Br(z)
see for instance Evans [9], Theorem 2.2.7, p.29. But if we assume that H(z) <
C(1+4|z|"), the right hand side up to an error of order R~! and up to a multiplicative
constant equals

(15) RO [ By = B ),
Br(z)
and the latter tends to 0 as R — oo for any fixed z. O

Together with Lemma 2.2 now we obtain the following result.

Theorem 2.4. Suppose that the function h is biharmonic on R™ with h(z) <
C(1+ |z|) for some C € R. Then Ah = const. > 0 and h either is a constant or h
s a quadratic polynomaial.

Proof. From Lemma 2.2 and the assumption h(y) < C(1 + |y|) we obtain the
equation

Ah(z) =2(n+2) lim R? |h(y)| dy
R—oo BR(I)
(16)
=2(n+2) lim R? |h(y)| dy = AR(0) =: 2na
R—o00 Br(0)
for every # € R™, where a > 0. The function H(x) = h(z) + a|z|? then is harmonic
with H(x) < Clx|? and the claim follows from Theorem 2.3. O
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Proof of Theorem 1.2. Choose a subsequence k — co and a maximal number of
points (9 € Q, 1 < i < I such that for each i and any R > 0 there holds

lim inf Vet dx > 8.

k—o0 BR(LEU))
By (8) then we have I < C'A. Moreover, given o € Q\ {z(¥; 1 <i < I}), we can
choose a radius R > 0 such that

(17) lim sup/ Vel dox < 872,
BR(wo)

k—oc0
For such ¢ and R > 0 decompose
ug = v + hg on Br(zg),
where vy, satisfies
A2y, = Ve  in Br(xo), vp = Avg = 0 on 0Bg(x0),
and with A?hy = 0 in Br(zo).
By (8) and Theorem 2.1 we then have
(18) W N2t (Br@oy < Ut 1L (Bao)) + 10kl L1 (Ba(ze)) < O,
uniformly in k.
We now distinguish the following cases.

Case 1: Suppose that |[hk||L1(By s (x0)) < C, uniformly in k. Then Lemma 2.2
shows that for all x € Br/g(xo) we can bound

Ahy(z)] = | Ahi(y) dy < 03—2][ h(z)] dz < C,
Br/s(x) Bry2(z0)

uniformly in k and z, and (hy) is locally bounded in C* on Bp/s(zo). But then
from Lemma 2.2 and (18) we also obtain

1
][ |h(z)|dx < C — h(z)dz = C 4+ — R*Ahy(z0) — hy(z0) < C.
Br(zo) Br(zo) 12

By repeating the first step of the argument on any ball contained in Bgr(xg) we
then obtain that (hy) is locally bounded in C* on Bgr(zo).

But then by Theorem 2.1 and (17) we see that
A27)k — Vke4uk _ (Vk€4hk)e4vk

is locally bounded in L? on Br(z) for some uniform number p > 1. Since Theorem
2.1 also yields uniform L!-bounds for v, we may conclude that (vy) is locally
bounded in C*% on Bg(xg) for any o < 1, and hence so is (ug).

Case 2: Now assume that 3y, := |[hk|[1(Bg 5 (2)) — 00 a8 k — co. Normalize
_ hy,
o 1Pkl | L1 (B o (x0))
so that H(pkHLl(BR/2($O)) =1 for all k. By arguing as in Case 1, we then find that
(o) is locally bounded in C* on Br(zg). A subsequence as k — oo therefore con-

verges in Cl?’o’? (Br(p)) to a limit ¢ satisfying the equation A%p = 0 in Bg(zg) and
with |[¢[|L1(Bg s (xe)) = 1. Clearly, the function ¢ then cannot vanish identically.
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By (18), moreover, we have ||¢*||11(By(zy)) = 0, and therefore ¢ < 0. It then
follows from Lemma 2.2 that Ap(z) # 0 at any point « where p(x) = 0. The set
So = {x € Br(xo);¢(x) = 0} hence is of codimension > 1 and therefore also has
vanishing measure; moreover, Sy is closed and nowhere dense. Thus, we conclude
that ¢ < 0 almost everywhere and hence hy = Bipr — —oo almost everywhere and
uniformly locally away from Sy as k — co. Again observing that

AQUk — Vk€4uk — (Vk€4hk)€4vk

is locally bounded in LP on Bgr(xo) \ Sp for some uniform number p > 1, as before
we conclude that (vy) is locally bounded in C%¢ for any o < 1 on Br(x) \ So. It
follows that uyp = vg + hy — —oo almost everywhere and uniformly locally away
from Sy as k — oo and ug /B — ¢.

Since the cases 1 and 2 are mutually exclusive and since the region Q\ {x(i); 1<
i < I} is connected, upon covering this region with balls Br(zg) as above we see that
either a subsequence (uy) is locally bounded in C*® away from {2z(; 1 <i < I})
for any a < 1, and hence (ug) is relatively compact in C*% on this domain for
any a < 1, or up — —oo almost everywhere and uniformly locally away from
S = Sou{z®; 1 <i<T}), with (ug/Bx) converging to a nontrivial biharmonic
limit ¢ < 0 away from {w(i); 1<i<1I}).

Finally, we show that whenever there is concentration only the second case can
occur, that is, uy — —oo almost everywhere as k — oo if {x(i); 1<i<1T})#0.
Indeed, suppose by contradiction that there is at least one concentration point and
that up — u in C’lgo’g(Q \ {z®; 1 <i < T}) as k — co. By Robert’s result [16], or
by the reasoning of Wei [20] then we have convergence

I
Vet dy — e*dx + Z M0 i)

i=1
weakly in the sense of measures, where m; > 1672, 1 < i < I. But near each z(®
the leading term in the Green’s function G for the bi-Laplacian is given by

1 1
Gla) = gzloe (|x_x<>> :

By arguing as in Brezis-Merle [3], p. 1242 f.; then we conclude that

1

near (¥, and with a constant ¢y > 0 we find
") > olz — 2|78 ¢ L1(Q),

thus contradicting the hypothesis (8). This completes the proof of the asserted
macroscopic concentration behavior of (uy).

In order to analyze the asymptotic behavior of (ug) near concentration points
we adapt an argument of Schoen to our setting; see [19], proof of Theorem 2.2. Let
zo € S with suppg (5,)ur — oo for every r > 0 as k — oo. For r > 0 denote as
K, (x0) = {z; |z — 20| < r} the closed r-ball centered at zg. For R < dist(zg, )
then choose 0 < 7, < R, x, € K, () such that

(19) (R —rp)e™*@) = (R—ry) sup e“ = max (R—r) sup e“) =: L.
Kr, (o) 0<r<R K, (z0)
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R*""k
2Ly

Note that Ly — oo as k — oo. Define s = and similar to (5) let

vg(x) = ug(xg + spx) + log s,

satisfying
sup e’ = sg sup et < s sup el'k
K, (0) K(r—ry)/2(Tk) K(R+ry)/2(%0)
_ R + T
=L "(R- su etk
k ( 2 ) P

K% (o)
< LY (R —rp)es @) = 1 = 2¢(0)
in view of (19), which is equivalent to the assertion (9).
Observe that vy solves the equation
A2y, = WpetVx
in By, (0), where the sequence of balls By, (0) exhausts all of R* and
Wi(z) = Vi(x1, + spx) — 1 locally uniformly in R*;

moreover,

/ Wiet? do < A
BLk(O)

for all k. By applying the previous result to the sequence of blown-up functions
v, we then obtain the microscopic description of blow-up asserted in Theorem 1.2.
The characterization of the limit function ¢ follows from Theorem 2.4. ]

3. AN EXAMPLE

We demonstrate the absence of quantization also in the radially symmetric case
by means of the following example.

Example 3.1. Consider the radially symmetric function @ with

A2p = e in R*, »(0) = Ap(0) = 0.

This function can be computed explicitly. In fact, for any x € R* we have

o(z) = /Om 53 {/Ost?’ Uotag </0(, PBe T dT) da} dt} ds.

Fork e N and z € R* let

Then (ug) satisfies equation (1), that is,
A2uk = Vke4uk,
where
—8 3
Vi(z) = e 2(K2) 1 in Y (RY) as k — oo.

Thus, also (2) is satisfied. Finally, we compute that Vie*"s — 0 in the sense of
measures when k — co.
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