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(Communicated by David S. Tartakoff)

Abstract. For Ω ⊂ Rn, n ≥ 2, a bounded domain, and for 1 < p < n, we
improve the Hardy-Sobolev inequality by adding a term with a singular weight
of the type ( 1

log(1/|x|) )2. We show that this weight function is optimal in the

sense that the inequality fails for any other weight function more singular
than this one. Moreover, we show that a series of finite terms can be added
to improve the Hardy-Sobolev inequality, which answers a question of Brezis-
Vazquez. Finally, we use this result to analyze the behaviour of the first
eigenvalue of the operator Lµu := −(div(|∇u|p−2∇u) + µ

|x|p |u|
p−2u) as µ

increases to
(
n−p
p

)p
for 1 < p < n.

1. Introduction and results

Let Ω be a bounded domain in Rn, n ≥ 2, with 0 ∈ Ω. For any 1 < p < n, the
well-known Hardy-Sobolev inequality∫

Ω

|∇u|pdx ≥
(
n− p
p

)p ∫
Ω

|u(x)|p
|x|p dx(1.1)

holds for u ∈ W 1,p
0 (Ω), where W 1,p

0 (Ω) is the completion of C∞0 (Ω) in the norm

‖u‖1,p,Ω :=
(∫

Ω

|u(x)|pdx +
∫
Ω

|∇u|pdx
)1/p

. It is known that there is no function

u ∈ W 1,p
0 (Ω) for which the best constant βn,p :=

(
n− p
p

)p
is achieved. So, one

anticipates to have an estimate of the error term on the right-hand side of the
inequality (1.1). For the case p = 2, such improved Hardy-Sobolev inequalities are
known. For example, Brezis-Vazquez [BV] have proved that there exists a constant
C > 0 depending only on n, q and Ω such that∫

Ω

|∇u|2dx ≥
(
n− 2

2

)2 ∫
Ω

|u(x)|2
|x|2 dx+ C

∫
Ω

|u(x)|q dx

2/q

(1.2)
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holds for any u ∈ H1
0 (Ω) and 1 < q <

2n
n− 2

. Chaudhuri and Ramaswamy [CR]

have improved the above inequality by introducing a weight function f(x) = |x|−β
for 0 ≤ β < 2:∫

Ω

|∇u|2dx ≥
(
n− 2

2

)2 ∫
Ω

|u(x)|2
|x|2 dx+ C

∫
Ω

|u(x)|q
|x|β dx

2/q

(1.3)

for any u ∈ H1
0 (Ω) and 1 < q < 2∗β :=

2(n− β)
n− 2

. Recently, Cabre and Martel

have considered critical potentials in their study of existence versus instantaneous
explosion for the heat equation with singular potentials [CM2], where they have an
improved inequality similar to (1.4) below for the case n = 2 = p.

Our aim in this article is to achieve an “optimal” improvement of the inequality
(1.1) by adding a second term involving the singular weight ( 1

log(1/|x|)
2, in the

sense that the improved inequality holds for this weight but fails for any weight
more singular than this one. The improvement of inequality (1.1) for the case
1 < p < 2 is more delicate than for the case p ≥ 2. As far as our understanding
goes, it is because of the fact that for 1 < p < 2, (1 + x)p, x ≥ −1, does not have
a global estimate in terms of either x2 or |x|p.

Finally, we use our improved inequality to determine exactly when the first
eigenvalue of the weighted eigenvalue problem for the operator

Lµu := −(div(|∇u|p−2∇u) +
µ

|x|p |u|
p−2u)

will tend to 0 as µ increases to βn,p. Note that the operator Lµ is a positive operator
for 0 < µ ≤ βn,p, thanks to the Hardy-Sobolev inequality, and is unbounded from
below for µ > βn,p (see [GP], Lemma 3.1). Before stating our main results let us

introduce the following notations: log(1)(.) := log(.) and log(k)(.) := log
(

logk−1(.)
)

for k ≥ 2. Our main results are

Theorem 1.1. Let R ≥ supΩ (|x| e2/p) and 1 < p ≤ n. Then there exists C > 0,
depending on n, p and R such that∫

Ω

|∇u|pdx ≥
(
n− p
p

)p ∫
Ω

|u(x)|p
|x|p dx+ C

∫
Ω

|u(x)|p
|x|p

(
log

R

|x|

)−γ
dx(1.4)

for any u ∈W 1,p
0 (Ω) if and only if

(i) γ ≥ 2 when 1 < p < n,
(ii) γ ≥ n when p = n.

More generally, for 2 ≤ p < n and for any 1 < q < p∗β :=
p(n− β)
n− p , 0 ≤ β < p,

there exists C1 > 0 depending on n, p, q, R and Ω such that, for any u ∈W 1,p
0 (Ω),∫

Ω

|∇u|pdx ≥
(
n− p
p

)p ∫
Ω

|u(x)|p
|x|p dx+ C

∫
Ω

|u(x)|p
|x|p

(
log

R

|x|

)−2

dx

+ C1

∫
Ω

|u(x)|q
|x|β dx

p/q

.(1.5)
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One can show using this theorem

Corollary 1.1. Let 1 < p < n and R = (supΩ |x|)
(
ee
e.
.e (k-times)

)2/p

. Then there

exists C > 0 depending on n, p and R such that∫
Ω

|∇u|pdx ≥
(
n− p
p

)p ∫
Ω

|u(x)|p
|x|p dx+ C

k∑
j=1

∫
Ω

|u(x)|p
|x|p

(
j∏
i=1

log(i) R

|x|

)−2

dx

for any u ∈W 1,p
0 (Ω).

Remark 1.1. One of the open problems mentioned in [BV] (Problem 2) is whether
the two terms on the RHS of inequality (1.2) for q = 2 are just the first two terms
of a series or not. Corollary 1.1 for the particular case p = 2 shows that indeed the
series continues until a certain k-th term, which depends only on the choice of R.

Remark 1.2. Adimurthi and Sandeep in [AS] have shown that the best constant for
the n-dimensional Hardy inequality (inequality (1.4), for the case p = n) is

(
n−1
n

)n.
As a consequence of this, the best constant in inequality (1.4) for the case p = 2 is
1
4 .

Corollary 1.2. Let 1 < p < n and let

Fp :=

{
f : Ω→ R+

∣∣∣ f ∈ L∞loc (Ω \ {0}) with lim sup
|x|→0

|x|pf(x)
(

log
1
|x|

)2

<∞
}
.

If f ∈ Fp, then there exists λ(f) > 0 such that for all u ∈W 1,p
0 (Ω)∫

Ω

|∇u|pdx ≥
(
n− p
p

)p ∫
Ω

|u(x)|p
|x|p dx+ λ(f)

∫
Ω

|u(x)|p f(x) dx .(1.6)

If f /∈ Fp and if |x|pf(x)
(

log 1
|x|

)2

tends to ∞ as |x| → 0, then no inequality of
type (1.6) can hold.

Consider the weighted eigenvalue problem with a singular weight,

−
(

div(|∇u|p−2∇u) +
µ

|x|p |u|
p−2u

)
= λ|u|p−2u f in Ω,

u = 0 on ∂Ω,(1.7)

where f ∈ =p,

=p :=
{
f : Ω→ R+

∣∣∣ lim
|x|→0

|x|pf(x) = 0 with f ∈ L∞loc (Ω \ {0})
}
,

1 < p < n, 0 ≤ µ < βn,p, and λ ∈ R. We look for a weak solution u ∈ W 1,p
0 (Ω)

of this problem and study the asymptotic behaviour of the first eigenvalues for
different singular weights as µ increases to βn,p, after which the operator Lµ is no
more bounded from below.
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Theorem 1.2. The above problem admits a positive weak solution u ∈ W 1,p
0 (Ω)

for all 1 < p < n, corresponding to the first eigenvalue λ = λ1
µ(f) > 0. Moreover,

as µ increases to βn,p, λ1
µ(f)→ λ(f) ≥ 0 for all f ∈ =p and the limit λ(f) > 0

if f ∈ Fp. If f /∈ Fp and if |x|pf(x)
(

log 1
|x|

)2

tends to ∞ as |x| → 0, then the
limit λ(f) = 0.

For the case p = 2, problem (1.7) has been studied with singular weights f like
(1/|x|β), 0 < β < 2, in [CR] and for the radial problem with f = 1 in [CM1].

2. Proof of Theorem 1.1

For the proof of the theorem we will need the following lemmas. Lemma 2.2 is an
improved 2-dimensional Hardy inequality and a similar one for the case k = 1 ap-
pears in [BrM] (inequality (A.4)) Lemma 2.3 is an n-dimensional Hardy inequality.
The proof of Lemma 2.1 is deferred to the appendix.

Lemma 2.1. If p ≥ 2, then there exist positive constants B and C such that

(1 + x)p ≥ 1 + px+ Cx2 +B|x|p ∀ x ≥ −1.(2.1)

If 1 < p < 2 and M ≥ 1,

(1 + x)p ≥
{

1 + px + 2p−4p(p− 1)Mp−2 x2, for −1 ≤ x ≤M,

1 + px + 2p−3p(p− 1)xp, for x ≥M.
(2.2)

Lemma 2.2 (2-dimensional Hardy inequality). For any h ∈ C1[a, T ], 0 ≤ a < T
and for R > T , the following inequality holds for k = k(R):∫ T

a

|h′(r)|2r dr ≥ 1
4

k∑
j=1

∫ T

a

|h(r)|2(
r
∏j
i=1 log(i) R/r

)2 r dr

+
1
2

k∑
j=1

h2(a)

(
j∏
i=1

log(i)R/a

)−1

− h2(T )

(
j∏
i=1

log(i) R/T

)−1
(2.3)

where k(R) is the first positive integer for which 0 < log(k) R/T ≤ 1.

Proof. Let h be in C1[a, T ]. For r ∈ [a, T ], define ψ1(r) := (logR/r)−1/2h(r).
Then ∫ T

a

|h′(r)|2r dr =
1
4

∫ T

a

|ψ1(r)|2
(r logR/r)

dr +
∫ T

a

|ψ′1(r)|2(logR/r) r dr

−
∫ T

a

ψ1(r)ψ′1(r)dr

=
1
4

∫ T

a

|h(r)|2
(r logR/r)2

r dr +
∫ T

a

|ψ′1(r)|2(logR/r) r dr

+
1
2
{
ψ2

1(a)− ψ2
1(T )

}
.

To estimate the middle term on the RHS, we introduce the iterative function

ψ2(r) := ψ1(r)
(

log(2)R/r
)−1/2

.
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A simple calculation shows that

∫ T

a

|h′(r)|2r dr =
1
4

2∑
j=1

∫ T

a

|h(r)|2(
r
∏j
i=1 log(i) R/r

)2 r dr

+
∫ T

a

|ψ′2(r)|2(logR/r) (log logR/r) r dr

+
1
2

2∑
j=1

h2(a)

(
j∏
i=1

log(i) R/a

)−1

− h2(T )

(
j∏
i=1

log(i) R/T

)−1
.

We can again estimate the middle term on the RHS by introducing

ψ3(r) := ψ2(r)
(

log(3)R/r
)−1/2

.

This process can be continued until we reach k = k(R) for which 0 < log(k) R/T ≤ 1

and by defining ψk(r) := ψk−1(r)
(

log(k)R/r
)−1/2

, ignoring the integral involving

the term |ψ′k(r)|2 we obtain the inequality (2.3).

By the standard approximation argument we have the following corollary.

Corollary 2.1. Given any T > 0 and for R > T , the inequality

∫ T

0

|h′(r)|2r dr ≥ 1
4

k∑
j=1

∫ T

0

|h(r)|2(
r
∏j
i=i log(i)R/r

)2 r dr(2.4)

holds for any radial function h in H1
0 (B), where B is the ball of radius T centered

at origin, and where k = k(R) is the first integer for which 0 < log(k)R/T ≤ 1.

Remark 2.1. In fact (2.4) holds for any h in H1
0 (B) with R = ee

e.
.e (k-times)

T by
using a symmetrization argument as in the proof of Theorem 1.1 below. This choice

of R enables one to conclude that the singular weights
(
r
∏j
i=1 log(i)R/r

)−2

are
decreasing functions of r for 1 ≤ j ≤ k.

Lemma 2.3 (n-dimensional Hardy inequality). Let n ≥ 2, Ω = B(0, T ) ⊂ Rn, be
the open ball of radius T , centered at origin and R > T . Then

∫
Ω

|∇h|ndx ≥
(
n− 1
n

)n ∫
Ω

|h|n
|x|n (logR/|x|)−n dx(2.4′)

for all radial h ∈ W 1,n
0 (Ω).
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Proof. For any h ∈ C1
0 (Ω), h > 0, radially nonincreasing, we define ψ(r) :=

(logR/r)−(n−1)/nh(r), for r ∈ [0, T ]. Then

h′(r) = ψ′(r)(logR/r)(n−1)/n − n− 1
n r

ψ(r)(logR/r)−1/n

= − n− 1
n r

ψ(r)(logR/r)−1/n

(
1− n r ψ′(r)

(n− 1)ψ(r)
logR/r

)
.

Since h′(r) ≤ 0, we have
(

1− n r ψ′(r)
(n− 1)ψ(r)

)
≥ 0 and hence

|h′(r)|n =
(
n− 1
n r

)n
ψn(r)(logR/r)−1

(
1− n r ψ′(r)

(n− 1)ψ(r)
logR/r

)n
≥
(
n− 1
n r

)n
ψn(r)(logR/r)−1

(
1− n n r ψ′(r)

(n− 1)ψ(r)
logR/r

)
=
(
n− 1
n r

)n
ψn(r)(logR/r)−1 − n

(
n− 1
n r

)n−1

ψ′(r)ψn−1(r).

Since ψ(r)→ 0 as r → 0 and ψ(T ) = 0, we obtain∫
Ω

|∇h|ndx = ωn

∫ T

0

|h′(r)|nrn−1dr

≥ ωn
(
n− 1
n

)n ∫ T

0

|h(r)|n (logR/r)−n
dr

r

− ωn
(
n− 1
n

)n−1 ∫ T

0

(
d

dr
ψn(r)

)
dr

=
(
n− 1
n

)n ∫
Ω

|h(x)|n
|x|n (logR/r)−n dx.

For any radial function h in W 1,n
0 (Ω), approximate h by smooth radial hm. Then

using strong convergence of hm to h in the gradient norm and also Fatou’s lemma,
the above inequality holds for all radial h in W 1,n

0 (Ω).

Now we are in a position to give a proof of Theorem 1.1 and we organize the
proof in following manner: First we prove the validity of inequality (1.4) for the
cases 2 ≤ p < n and 1 < p < 2 separately and finally we show the optimality of
inequality (1.4).

Proof of Theorem 1.1. Let us assume 1 < p < n and γ ≥ 2. Since the function
γ 7→ (logR/r)−γ is monotonically decreasing on [2,∞), it is enough to prove the
inequality (1.4), only for γ = 2. For both cases p ≥ 2 and p < 2, we shall first prove
the inequalities for smooth positive radially nonincreasing functions defined on a
ball B, centered at 0 and of radius T . For u ∈ C2

0 (B), u > 0, radially nonincreasing,
we define

v(r) := u(r) r(n−p)/p , r = |x|.(2.5)
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Here without loss of generality we as well assume u′(r) < 0 (replacing u by u +
ε(T − r) for ε > 0, sufficiently small). Now we observe that

∫
B

|∇u|pdx − βn,p
∫
B

|u(x)|p
|x|p dx = ωn

T∫
0

∣∣∣∣n− pp r−n/pv(r) − r1−n/pv′(r)
∣∣∣∣p rn−1dr

− βn,p ωn
∫ T

0

vp(r)
r

dr

= ωnβn,p

∫ T

0

vp(r)
{∣∣∣∣1− pv′(r) r

(n− p)v(r)

∣∣∣∣p − 1
}
dr

r
.(2.6)

Since u is a decreasing function, we have from (2.5) v′(r) − (n− p)v(r)
p r

< 0 and

we call x(r) := − pv′(r) r
(n− p)v(r)

so that x(r) > −1. Now we consider the following
cases:

Case p ≥ 2: By inequality (2.1) in Lemma 2.1, and from (2.6), we obtain

∫
B

|∇u|pdx− βn,p
∫
B

|u(x)|p
|x|p dx

≥ C ωn
(
n− p
p

)p−2 ∫ T

0

vp−2(r)|v′(r)|2r dr

+B ωn

∫ T

0

|v′(r)|prp−1 dr − p ωn
∫ T

0

vp−1(r)v′(r) dr

=
4C ωn
p2

(
n− p
p

)p−2 ∫ T

0

∣∣∣∣(vp/2(r)
)′∣∣∣∣2 r dr

+B ωn

∫ T

0

|v′(r)|prp−1 dr,(2.7)

since v ∈ C1
0 (0, T ). Now by Corollary 2.1,

∫ T

0

∣∣∣∣(vp/2(r)
)′∣∣∣∣2 r dr ≥ 1

4

∫ T

0

(
vp/2(r)
r logR/r

)2

r dr

=
1
4

∫ T

0

up(r)
rp

(logR/r)−2
rn−1dr

=
1
4

∫
B

|u(x)|p
|x|p (logR/|x|)−2

dx .(2.8)

Now for 0 ≤ β < p, we have

∫
B

|u(x)|q
|x|β dx = ωn

∫ T

0

|v(r)|qrn−β−1−q(n−p)/pdr.
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Notice that for C1 radial function v(r) vanishing at T ,

|v(r)| =
∣∣∣∣∣
∫ T

r

v′(t)dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ T

r

(
v′(t)t(p−1)/p

)
t−(p−1)/pdt

∣∣∣∣∣
≤
(∫ T

r

|v′(t)|ptp−1dt

)1/p(
log

T

r

)(p−1)/p

and hence,∫ T

0

|v(r)|qrσ−1dr ≤
(∫ T

0

|v′(r)|prp−1dr

)q/p ∫ T

0

rσ−1

(
log

T

r

)q(p−1)/p

dr

=

(∫ T

0

|v′(r)|prp−1dr

)q/p ∫ ∞
0

e−σ rrq(p−1)/pdr,

where σ := n− β − q(n− p)/p. Now the second integral on the right-hand side is

convergent iff σ > 0 i.e., 1 < q <
p(n− β)
n− p . Call

C1 := B(ωn)1−p/q
(∫ ∞

0

e−σ rrq(p−1)/pdr

)−p/q
.

Then from these we get B ωn

∫ T

0

|v′(r)|prp−1dr ≥ C1

∫
B

|u(x)|q
|x|β dx

p/q

. Com-

bining this with (2.8) and (2.7) we get inequality (1.5) and hence (1.4) for radially
decreasing, smooth positive functions. Now by density arguments, inequality (1.5)
is valid for any u ∈ W 1,p

0 (B), u ≥ 0, and radially nonincreasing. For a gen-
eral domain Ω, we use symmetrization arguments. Let BT be a ball having the
same volume as Ω with T = (n|Ω|/ωn)1/n, where ωn = |Sn−1| and let |u|∗ be
the symmetric decreasing rearrangement of the function |u|. Now observe that,
for any u ∈ W 1,p

0 (Ω), |u|∗ ∈ W 1,p
0 (BT ) and |u|∗ > 0 and radially nonincreasing

and hence inequality (1.5) holds for |u|∗. It is well known that the symmetrization
does not change the Lp- norm, decreases gradient norm and increases the integrals∫
Ω

|u(x)|p
|x|p dx and

∫
Ω

|u(x)|p
|x|p

(
log

R

|x|

)−2

dx, since both the singular weights are de-

creasing functions of |x| under our assumption on R, thanks to Hardy’s inequality
for rearrangements. Hence (1.5) also holds for any u ∈W 1,p

0 (Ω).
Case 1 < p < 2: Since for the case 1 < p < 2, (1 + x)p does not have global

estimate in terms of either x2 or |x|p, we do the following decomposition of the in-

terval [0, T ]. Take M ≥ max
{

1,
1

(n− p) (log R/T )

}
and denote α :=

n− p
p

. Now

we define the following sets, A :=
{
r ∈ [0, T ] : x(r) = − pv′(r) r

(n− p)v(r)
< M

}
, B :=

{r ∈ [0, T ] : x(r) > M} and Γ :=
{
r ∈ [0, T ] :

v′(r)
v(r)

= − αM
r

}
, so that [0, T ] =

A ∪B ∪Γ. Now observe that on the set A,
v′(r)
v(r)

> − αM
r

, i.e., iff
(
log v(r) rαM

)′
>
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0, i.e., iff the function v rαM is monotonically increasing. So, if we define the func-
tion g(r) to be v rαM for 0 ≤ r ≤ T , then

A = {r ∈ [0, T ] : g(r) is monotonically increasing}

and

B = {r ∈ [0, T ] : g(r) is monotonically decreasing}.

We now prove the theorem through following steps:

Step I : Let us assume that Γ =
{
r ∈ [0, T ] :

u′(r)
u(r)

= − α(M + 1)
r

}
is a fi-

nite set. Now observe that the critical point of the function v rαM is precisely
Γ and hence its cardinality will be odd. So let, Γ = {a1, a2, , , , a2m+1} with
a0 := 0 < a1 < . . . a2m+1 < a2m+2 := T . Hence [0, T ] can be decomposed as
[0, T ] = A ∪B ∪ Γ, with A =

⋃m
i=0(a2i, a2i+1) and B =

⋃m
i=0(a2i+1, a2i+2). We de-

note C1(p) := 2p−4p(p − 1). Hence from (2.6) and by inequality (2.2) in Lemma
2.1, we get

X(u) = ωnβn,p

∫
A

vp(r)
{∣∣∣∣1− v′(r) r

α v(r)

∣∣∣∣p − 1
}
dr

r

+
∫
B

vp(r)
{∣∣∣∣1− v′(r) r

α v(r)

∣∣∣∣p − 1
}
dr

r


≥ ωnβn,p

C1(p)Mp−2

α2

∫
A

vp−2(r) (v′(r))2
r dr +

2C1(p)
αp

∫
B

|v′(r)|p rp−1dr


= ωn

[
C1(p)

(Mα)2−p

m∑
i=0

∫ a2i+1

a2i

vp−2(r) (v′(r))2
r dr

+2C1(p)
m∑
i=0

∫ a2i+2

a2i+1

|v′(r)|p rp−1dr

]

= ωn

[
4C1(p)

p2 (Mα)2−p

m∑
i=0

∫ a2i+1

a2i

∣∣∣∣(vp/2(r)
)′∣∣∣∣2r dr

+2C1(p)
m∑
i=0

∫ a2i+2

a2i+1

|v′(r)|p rp−1dr

]
.

(2.9)

For r ∈ [0, T ], define w(r) := vp(r) (log R/r)−1. Now by Lemma 2.2, we have for
0 ≤ i ≤ m

∫ a2i+1

a2i

∣∣∣∣(vp/2(r)
)′∣∣∣∣2 r dr ≥ 1

4

∫ a2i+1

a2i

vp(r)
(r log R/r)2 r dr −

1
2
{w(a2i+1)− w(a2i)} .

(2.10)
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Therefore from (2.9) and (2.10), we obtain

X(u) ≥ ωnC1(p)
p2 (Mα)2−p

[
m∑
i=0

∫ a2i+1

a2i

vp(r)
(r log R/r)2 r dr − 2

m∑
i=0

{w(a2i+1)− w(a2i)}
]

+ 2ωnC1(p)
m∑
i=0

∫ a2i+2

a2i+1

|v′(r)|p rp−1dr

=
ωnC1(p)

p2 (Mα)2−p

[
m∑
i=0

∫ a2i+1

a2i

vp(r)
(r log R/r)2 r dr

+2

{
m−1∑
i=0

[w(a2i+2)− w(a2i+1)]− w(a2m+1)

}]

+ 2ωnC1(p)
m∑
i=0

∫ a2i+2

a2i

|v′(r)|p rp−1dr.

(2.11)

Let us observe that

w′(r) = pvp−1(r)v′(r) (log R/r)−1 +
1
r
vp(r) (log R/r)−2

,

and hence for 0 ≤ i ≤ m, (w(a2m+2) = w(T ) = 0) we have

w(a2i+2)− w(a2i+1) =
∫ a2i+2

a2i+1

w′(r) dr

=
∫ a2i+2

a2i+1

vp(r)(r log R/r)−2
r dr

+ p

∫ a2i+2

a2i+1

vp−1(r)v′(r) (log R/r)−1 dr.(2.12)

Hence from (2.11) and (2.12) we have

X(u) ≥ ωnC1(p)
p2 (Mα)2−p

[
m∑
i=0

∫ a2i+1

a2i

vp(r)
(r log R/r)2 r dr + 2

m∑
i=0

∫ a2i+2

a2i+1

vp(r)
(r log R/r)2 r dr

]

+ 2ωnC1(p)
m∑
i=0

∫ a2i+2

a2i+1

{
|v′(r)|prp−1 +

(Mα)p−2

p
vp−1(r)v′(r) (log R/r)−1

}
dr

≥ ωn C1(p)
p2 (Mα)2−p

∫ T

0

vp(r)
(r log R/r)2 r dr

+ 2ωnC1(p)
m∑
i=0

∫ a2i+2

a2i+1

{
|v′(r)|prp−1 +

(Mα)p−2

p
vp−1(r)v′(r) (log R/r)−1

}
dr.

(2.13)
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Now, since v′(r) < − αM v(r)
r

, on (a2i+1, a2i+2) for each 0 ≤ i ≤ m, we have

Y (v) := |v′(r)|prp−1 +
(Mα)p−2

p
vp−1(r)v′(r) (log R/r)−1

= (−v′(r))p rp−1 +
(Mα)p−2

p
vp−1(r)v′(r) (log R/r)−1

= (−v′(r)) vp−1(r)

[(
−v′(r) r
v(r)

)p−1

− (Mα)p−2

p
(log R/r)−1

]

≥ (−v′(r)) vp−1(r)

[
(Mα)p−1 − (Mα)p−2

p
(log R/T )−1

]

≥ 0, iff (Mα)p−1 − (Mα)p−2

p
(log R/T )−1 ≥ 0.

Since M ≥ 1
n− p (log R/T )−1 = 1

pα (log R/T )−1, Y (v) ≥ 0 on each of the intervals

(a2i+1, a2i+2), 0 ≤ i ≤ m, from (2.13) we get

X(u) ≥ ωn
(Mα)p−2

C1(p)
p2

∫ T

0

vp(r)
(r log R/r)2 r dr

=
(Mα)p−2

C1(p)
p2

∫
BT

|u(x)|p
|x|p

(
log

R

|x|

)−2

dx.(2.14)

Step II : If the set Γ is not finite, we proceed as follows. Define the function
φ(r) := r u′(r) + δ u(r) for r ∈ [0, T ], δ := α (M + 1). Observe that φ ∈ C1[0, T ],
φ(0) = δ u(0) > 0, φ(T ) = Tu′(T ) < 0 and Γ = φ−1{0}. By Sards Theorem
we know that regular values of φ are dense in R, so there exists εk δ > 0, reg-
ular values of φ such that εk → 0, as k → ∞. Thus for εk < u(0), the set

φ−1{εk δ} =
{
r ∈ [0, T ] :

(u(r)− εk)′

u(r)− εk
= − δ

r

}
is finite. Denoting uk(r) := u(r) −

εk, then there exists Tk > 0 such that u′k < 0 on [0, Tk], uk(Tk) = 0 and Tk → T
as k → ∞. Now by Step I, we have inequality (2.14) for uk on [0, Tk]. Since the
constant in (2.14) does not depend on k, passing through the limit as k →∞ we get
inequality (2.14) for any smooth, positive and strictly radially decreasing functions
in W 1,p

0 (Ω).
Step III : Now the remaining proof of inequality (1.4) will follow from (2.14)

together with the symmetrization arguments as in the case of p ≥ 2.
Case p = n: In this case inequality (1.4) follows immediately from Lemma 2.3

together with symmetization arguments.

Optimality. Now suppose 1 < p < n and 0 ≤ γ < 2. Since βn,p is the best constant
for inequality (1.1), the theorem follows for the case γ = 0. So we assume 0 < γ < 2.
The theorem will follow if we can prove for the unit ball B that

inf
u∈W 1,p

0 (B)\{0}
Iγ(u) : =

∫
B

(
|∇u|p − βn,p |u(x)|p

|x|p
)
dx∫

B

|u(x)|p
|x|p (logR/|x|)−γ dx

= 0.(2.15)
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Now, our aim is to construct a family uε ∈ W 1,p
0 (B), ε > 0, such that

lim
ε→0

Iγ(uε) = 0(2.16)

and then (2.15) will follow. For ε > 0 sufficiently small, let us define

uε(r) :=


0, for r ≤ ε2,

log r/ε2

r(n−p)/p log 1/ε
, for ε2 ≤ r ≤ ε,

log 1/r
r(n−p)/p log 1/ε

, for ε ≤ r ≤ 1.

Clearly, uε is continuous and differentiable a.e. and its derivative is given by

u′ε(r) =


0, for 0 ≤ r ≤ ε2,

1
rn/p log 1/ε

[
1− n− p

p
log r/ε2

]
, for ε2 ≤ r ≤ ε,

− 1
rn/p log 1/ε

[
1 +

n− p
p

log 1/r
]
, for ε ≤ r ≤ 1.

Then we have

∫
B

|uε(x)|p
|x|p dx =

ωn
(log 1/ε)p

[∫ ε

ε2

(
log r/ε2

)p dr
r

+
∫ 1

ε

(log 1/r)p
dr

r

]

=
ωn

(p+ 1) (log 1/ε)p

[∫ ε

ε2

d

dr

(
log r/ε2

)p+1
dr −

∫ 1

ε

d

dr
(log 1/r)p+1

dr

]
=

2ωn
(p+ 1)

(log 1/ε) .

(2.17)

Since ε > 0 is sufficiently small, we have the following estimates, after a change of
variables and the use of Neumann series:∫

B

|∇uε|pdx =
ωn

(log 1/ε)p

[∫ ε

ε2

∣∣α log r/ε2 − 1
∣∣p dr

r
+
∫ 1

ε

|1 + α log 1/r|p dr
r

]
=

ωn
α (log 1/ε)p

[∫ 1

0

rp dr +
∫ α log 1/ε−1

0

rp dr +
∫ α log 1/ε+1

1

rp dr

]
=
βn,pωn
(p+ 1)

log 1/ε
[(

1− 1
α log 1/ε

)p+1

+
(

1 +
1

α log 1/ε

)p+1]
=

2βn,pωn
(p+ 1)

log 1/ε+O(
1

log 1/ε
).(2.18)

Therefore from (2.17) and (2.18), we conclude that∫
B

|∇uε|pdx −
(
n− p
p

)p ∫
B

|uε(x)|p
|x|p dx = O

(
1

log 1/ε

)
.(2.19)
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Finally, for sufficiently small ε > 0, let us estimate the following integral:∫
B

|uε(x)|p
|x|p (logR/|x|)−γ dx

=
ωn

(log 1/ε)p

[∫ ε

ε2

(
log r/ε2

)p
r (log R/r)γ

dr +
∫ 1

ε

(log 1/r)p

r (log R/r)γ
dr

]
≥ ωn

(log 1/ε)p

[(
log R/ε2

)−γ ∫ ε

ε2

(
log r/ε2

)p dr
r

+ (log R/ε)−γ
∫ 1

ε

(log 1/r)p
dr

r

]
≥ ωn

(p+ 1)
log 1/ε

[(
log R/ε2

)−γ
+ (log R/ε)−γ

]
≥ ωn

(p+ 1)
log 1/ε

[(
2 log 1/ε2

)−γ
+ (log 1/ε)−γ

]
= C (log 1/ε)1−γ

.

(2.20)

Since 0 < γ < 2, Iγ(uε)→ 0, as ε→ 0 and hence the theorem for the case 1 < p < n.
For the case p = n, by taking the same test functions uε with p = n, it is easy

to verify that
∫
B

|∇uε|ndx = 2ωn
(n+1) (log 1/ε)1−n and

∫
B

|uε(x)|n
|x|n (logR/|x|)−γ dx ≥

C (log 1/ε)1−γ and hence the optimality.

Proof of Corollary 1.1. In the proof of Theorem 1.1, we have used only the first
term of the series in 2-dimensional Hardy inequality. By making use of Lemma 2.2
and Corollary 2.1 in its full generality, the Corollary will follow. In particular, in
(2.8), we use inequality (2.4) for the case 2 ≤ p < n and in (2.10), we use inequality
(2.3) for the case 1 < p < 2. But in this case, the proof is a bit more cumbersome
because of the presence of more boundary terms in (2.10), which can be again
handled by considering iterative functions similar to the ones defined in the proof
of Lemma 2.2 and following the same line of the proof of Theorem 1.1.

Proof of Corollary 1.2. If f ∈ Fp, then

lim
ε→0

sup
x∈Bε

f(x)|x|p(log(1/|x|)2 < ∞

and hence for sufficiently small ε, in Bε

f(x) <
C

|x|p(log 1/|x|)2
.

Outside Bε, both are bounded functions and hence C can be chosen so that this
inequality holds in Ω. Then (1.6) will follow from (1.4).

If f /∈ Fp and if |x|pf(x)
(

log 1
|x|

)2

tends to ∞ as |x| → 0, then we can write

f(x) = h(x)/|x|p(log 1/|x|)2, where h(x) tends to infinity as x tends to 0. Then
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from the calculations of Theorem 1.1, for ε > 0 sufficiently small∫
B

|uε(x)|p h(x)
|x|p(log(1/|x|)2)

dx =
ωn

(log 1/ε)p

[ ∫
Bε\Bε2

(
log |x|/ε2

)p
h(x)

|x|n (log R/|x|)2 dx

+
∫

B1\Bε

(log 1/|x|)p h(x)
|x|n (log R/|x|)2 dx

]

≥
ωn infBε\Bε2 h(x)

(log 1/ε)p
(
log R/ε2

)−2
∫ ε

ε2

(
log r/ε2

)p dr
r

≥ ωn m(ε) log 1/ε

(p+ 1) (log R/ε2)2

≥ ωn m(ε) log 1/ε
(p+ 1) (2 log 1/ε2)2

= C
m(ε)

log 1/ε
.

Here mε stands for infBε\Bε2 h(x). Since mε tends to ∞ as ε → 0, we conclude
that If (uε)→ 0 as ε→ 0 and inequality (1.6) cannot hold for such f /∈ Fp.

3. Proof of Theorem 1.2

In defining the eigenvalues for the operator (div(|∇u|p−2∇u) +
µ

|x|p |u|
p−2u) in a

given domain Ω ⊆ Rn, we interpret the first equation in (1.7) in the following weak
sense: ∫

Ω

|∇u|p−2〈∇u,∇φ〉dx = λ

∫
Ω

|u|p−2uφdx(3.1)

whenever φ ∈W 1,p
0 (Ω).

In order to prove the theorem we need the following two lemmas; the first one
is due to Boccardo and Murat [BM] and the second one is a standard result from
measure theory (see for example, [S], Chapter 1, section 4). The use of Lemma 3.1
here is inspired by the arguments in [GP].

Lemma 3.1 (see Theorem 2.1 in [BM]). Let (um)m∈N ⊂ W 1,p
0 (Ω) be such that as

k →∞, um ⇀ u weakly in W 1,p
0 (Ω) and satisfies

−
(
div(|∇um|p−2∇um)

)
= fm + gm

in D′(Ω) where fm → 0 strongly in W−1,p′(Ω) and gm is bounded in M(Ω), the
space of Radon measures, i.e.

|〈 gm, φ〉| ≤ CK ‖φ‖∞
for all φ ∈ D(Ω) with supp(φ) ⊂ K. Then there exists a subsequence, say umk ,
such that

umk → u strongly in W 1,q
0 (Ω) ∀ q < p.

Lemma 3.2. Let (gm)m∈N ⊂ Lp(Ω), 1 ≤ p < ∞, be such that, as m → ∞, (i)
gm ⇀ g weakly in Lp(Ω) and (ii) gm(x)→ g(x) a.e. in Ω. Then

lim
m→∞

[
‖gm‖pp − ‖gm − g‖pp

]
= ‖g‖pp.
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Proof of Theorem 1.2. We look for the critical points of the functional

Jµ(u) :=
∫
Ω

|∇u|p − µ
∫
Ω

|u(x)|p
|x|p dx

which is continuous, Gateaux differentiable and coercive on W 1,p
0 (Ω) thanks to

Hardy-Sobolev inequality. We minimize this functional Jµ over the manifold M ={
u ∈W 1,p

0 (Ω)
∣∣∣ ∫Ω |u(x)|pf(x)dx = 1

}
and let λ1

µ be the infimum. It is clear that

λ1
µ > 0. By standard arguments, we can choose a special minimizing sequence

(um)m∈N ⊂M with Jµ(um)→ λ1
µ and the component of DJµ(um) restricted to M,

tends to 0 strongly in W−1,p′(Ω). The coercivity of Jµ implies that (um)m∈N is a
bounded sequence and hence we have for a subsequence, as k →∞,

umk ⇀ u weakly in W 1,p
0 (Ω),

umk ⇀ u weakly in Lp(Ω, |x|−p),
umk → u strongly in Lp(Ω) .(3.2)

Since W 1,p
0 (Ω) is compactly embedded in Lp(Ω, f(x)) (see Proposition 2.1 in [CR]),

it follows that M is weakly closed and hence u ∈M . Further um satisfies in D′(Ω)

−
(

div(|∇um|p−2∇um) +
µ

|x|p |um|
p−2um

)
= λm(|um|p−2um f ) + fm

where fm → 0 strongly in W−1,p′(Ω) and λm → λ as m → ∞. Calling
gm =

µ

|x|p |um|
p−2um + λm(|um|p−2um f ), one can check that gm is bounded in

M(Ω). Then we can use Lemma 3.1 to conclude a.e. convergence of ∇umk to ∇u
in Ω and then apply Lemma 3.2 to umk and also to ∇umk to obtain

λ1
µ = ‖∇(umk − u)‖pp − µ‖umk − u‖

p
Lp(Ω,|x|−p) + ‖∇u‖pp − µ‖u‖

p
Lp(Ω,|x|−p) + o(1)

≥ (βn,p − µ) ‖umk − u‖
p
Lp(Ω,|x|−p) + λ1

µ + o(1)

where o(1)→ 0 as k →∞. As µ < βn,p, we conclude that

‖(umk − u)‖pLp(Ω,|x|−p) → 0

as k → ∞ and also ‖∇(umk − u)‖pLp(Ω) → 0 as k → ∞ and hence we have
Jµ(u) = λ1

µ and λ = λ1
µ . Since Jµ(|u|) = Jµ(u), we can take u > 0 in Ω. Then

using Lemma 3.1, u is a distribution solution of (1.7) and since u ∈ W 1,p
0 (Ω),

it is a weak solution to the eigenvalue problem (1.7), corresponding to λ = λ1
µ.

Moreover, if f ∈ Fp, by Corollary 1.2 we have

λ1
µ(f)→ λ(f) = inf

u∈W 1,p
0 (Ω)\{0}

∫
Ω

(
|∇u|p − βn,p |u(x)|p

|x|p
)
dx∫

Ω

|u(x)|pf(x)dx
> 0 as µ→ βn,p.

If f /∈ Fp, then again by Corollary 1.2, inequality of the type (1.5) cannot hold and
hence λ(f) = 0.
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4. Appendix

Lemma 2.1. If p ≥ 2, then there exist positive constants B and C such that

(1 + x)p ≥ 1 + px+ Cx2 +B|x|p ∀ x ≥ −1.(4.1)

If 1 < p < 2 and M ≥ 1,

(1 + x)p ≥
{

1 + px + 2p−4p(p− 1)Mp−2 x2, for −1 ≤ x ≤M,

1 + px + 2p−3p(p− 1)xp, for x ≥M.
(4.2)

Proof. First let us assume p ≥ 2, for x ≥ −1, and define hx(t) := (1 + tx)p, for all
0 ≤ t ≤ 1. Then h ∈ C2[0, 1] and hence by Taylors expansion we have

hx(t) = hx(0) + t h′x(0) + t2
∫ 1

0

h′′x(θt)(1 − θ)dθ;

therefore

hx(1) = 1 + px + p(p− 1)x2

∫ 1

0

(1 + tx)p−2(1 − t)dt

≥ 1 + px + p(p− 1)x2

∫ 1

0

(1− t)p−1dt

= 1 + px + (p− 1)x2.(4.3)

Let 0 < α < 1 and choose M > 1, such that for x ≥ M , αxp ≥ 1 + px + (α/2)x2.
Then for −1 ≤ x ≤M

(1 + x)p ≥ 1 + px + (p− 1)x2

= 1 + px + (α/2)x2 + (p− 1− α/2) x2

≥ 1 + px + (α/2)x2 + M2−p (p− 1− α/2) |x|p

and for x ≥ M , (1 + x)p ≥ xp = αxp + (1− α)xp ≥ 1 + px+ (α/2)x2 + (1− α)xp.
Combining these inequalities by replacing C = α/2 and

B = min
{

1− α,M2−p(p− 1− α)
}
,

we obtain (4.1).
Let us consider the case 1 < p < 2 and take the function hx for x > −1, as

above. Notice that 1 + tx 6= 0 and hence h′′x exists and we have

(1 + x)p = 1 + px + p(p− 1)x2

∫ 1

0

(1 + tx)p−2(1− t)dt.(4.4)

Now for the case −1 < x ≤M , from (4.4) we get

(1 + x)p ≥ 1 + px + p(p− 1)x2

∫ 1/2

0

(1 + tx)p−2(1− t)dt

≥ 1 + px + p(p− 1)x2

∫ 1/2

0

(2M)p−2(1 − t)dt

= 1 + px +
p(p− 1)

4
(2M)p−2x2

= 1 + px + 2p−4p(p− 1)Mp−2 x2.(4.5)
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Since M ≥ 1, for the case x ≥M , we have from (4.4)

(1 + x)p ≥ 1 + px + p(p− 1)x2

∫ 1

0

(2x)p−2(1 − t)dt

= 1 + px + 2p−3p(p− 1)xp.(4.6)

Observe that for x = −1, inequalities (4.5) and (4.6) are trivially true and hence
the lemma.
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[CM1] X. Cabré and Y. Martel, Weak eigenfunctions for the linearization of extremal elliptic
problems, J. Funct. Anal. 156 (1998), 30–56. MR 99e:35058
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