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ABSTRACT. For Q C R™,n > 2, a bounded domain, and for 1 < p < n, we
improve the Hardy-Sobolev inequality by adding a term with a singular weight
of the type (m)g. We show that this weight function is optimal in the
sense that the inequality fails for any other weight function more singular
than this one. Moreover, we show that a series of finite terms can be added
to improve the Hardy-Sobolev inequality, which answers a question of Brezis-
Vazquez. Finally, we use this result to analyze the behaviour of the first
eigenvalue of the operator Lyu := —(div(|Vu|P~2Vu) + ﬁ|u\p’2u) as p

_p\P
increases to (%) for 1 <p<n.

1. INTRODUCTION AND RESULTS

Let Q be a bounded domain in R™,n > 2, with 0 € Q. For any 1 < p < n, the
well-known Hardy-Sobolev inequality

(1.1) Q/Wu'pdx > (n;p)pﬂ lu(z)[P "

||
holds for u € W,*(2), where Wy?(Q) is the completion of C§°(Q) in the norm

1/p
llullip0 = (f |u(x)|Pdx + f |VulPdz ) . It is known that there is no function

n— p

u € WyP(Q) for which the best constant £, := ( is achieved. So, one

anticipates to have an estimate of the error term on the right-hand side of the
inequality (LI)). For the case p = 2, such improved Hardy-Sobolev inequalities are
known. For example, Brezis-Vazquez [BV] have proved that there exists a constant
C > 0 depending only on n, ¢ and  such that

(1.2) /|Vu|d >< )/'“ @l o /|u )| da
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2
holds for any u € Hg(2) and 1 < ¢ < _712 Chaudhuri and Ramaswamy |CR]
n—

have improved the above inequality by introducing a weight function f(z) = |z|="
for0< B <2:

(1.3) Q/|V |%d >< > d +C /

2n —
Lf). Recently, Cabre and Martel
n—

have considered critical potentials in their study of existence versus instantaneous
explosion for the heat equation with singular potentials [CM2], where they have an
improved inequality similar to (L4]) below for the case n =2 =p

Our aim in this article is to achieve an “optimal” improvement of the inequality
(CI) by adding a second term involving the singular weight (W)Q, in the
sense that the improved inequality holds for this weight but fails for any weight
more singular than this one. The improvement of inequality (L)) for the case
1 < p < 2 is more delicate than for the case p > 2. As far as our understanding
goes, it is because of the fact that for 1 < p < 2, (1 + x)?, x > —1, does not have
a global estimate in terms of either 2% or |z|P.

Finally, we use our improved inequality to determine exactly when the first
eigenvalue of the weighted eigenvalue problem for the operator

Lyu = —(div(|Vul[P~2Vu) + [ulP~2u)

2/q

for any u € H}(Q) and 1 < ¢ < 25 =

II”

will tend to 0 as p increases to 3, ,. Note that the operator L, is a positive operator
for 0 < pp < By p, thanks to the Hardy-Sobolev inequality, and is unbounded from
below for 1 > £, , (see [GP], Lemma 3.1). Before stating our main results let us
introduce the following notations: log™)(.) := log(.) and log®(.) := log (1ogk_1(.))

for £ > 2. Our main results are

Theorem 1.1. Let R > sup, (|z| €2/?) and 1 < p < n. Then there exists C > 0,
depending on n, p and R such that

) Q/'V“'pd”< ) / ke +C/|| G

for any u € WP (Q) if and only if
(i) y>2 when 1<p<mn,
(ii) vy > n when p=n.

More generally, for 2 < p <mn and for any 1 < q < Ph = IM, 0< B <p,
n—p

there exists Ch > 0 depending on n, p, q, R and 2 such that, for any u € Wol’p(Q),

P -2
n—p |u(z)[? / |u() P
P >
Q/|VU| dx_( . ) | T do+C [ S g|x| dz

p/q

u@

(1.5) +C T’
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One can show using this theorem

‘e (k-times) 2/p
Corollary 1.1. Let 1 < p <n and R = (supg |z|) (eee ) . Then there

exists C > 0 depending on n, p and R such that

, -2
k J
n—op |u(z o B
|[VulPdx > < ) d + / log"" — dx
Q/ v ) p e [R5

for any u € WP (Q).

Remark 1.1. One of the open problems mentioned in [BV] (Problem 2) is whether
the two terms on the RHS of inequality (I.2]) for ¢ = 2 are just the first two terms
of a series or not. Corollary 1.1 for the particular case p = 2 shows that indeed the
series continues until a certain k-th term, which depends only on the choice of R.

Remark 1.2. Adimurthi and Sandeep in [AS] have shown that the best constant for
the n-dimensional Hardy inequality (inequality (I.4)), for the case p = n) is (" 1) .
As a consequence of this, the best constant in inequality ([4) for the case p = 2 is

i

Corollary 1.2. Let 1 < p <n and let

|z|—0

2
F, = {f Q— Rt ‘ ferLys (Q\{0}) with limsup |z|Pf(z) (logﬁ> <oo}.

If f € F,, then there exists A(f) > 0 such that for all u € Wol’p(Q)

(1.6) /|Vu|pdx> (” p) |“|( |2)|p dz + A(f /|u )

2
If f ¢ F, andif |z?f(x) (log ﬁ) tends to oo as |x| — 0, then no inequality of
type ([LG) can hold.

Consider the weighted eigenvalue problem with a singular weight,

— (div(|Vu|p2Vu)+ ’ |p|u|p 2 ) =AMulPu f  in Q,
(1.7) u=0 on 09,

where f € 3,

Sy = {f Q- RT lim0|x|pf( x) =0 with f € LjS. (Q\{O})},

||
1<p<n, 0< < By and A € R. We look for a weak solution u € Wol’p(Q)
of this problem and study the asymptotic behaviour of the first eigenvalues for
different singular weights as i increases to 3, , after which the operator L, is no
more bounded from below.
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Theorem 1.2. The above problem admits a positive weak solution u € Wol’p(Q)
for all 1 < p < n, corresponding to the first eigenvalue A = At(f) > 0. Moreover,
as (i increases to Bnp, AL (f) = A(f) > 0 for all f € Sy, and the limit A(f) > 0

2
if f € Fp. If f ¢ F, and if |z|?f(x) (log ﬁ) tends to oo as |x| — 0, then the
limit A(f) = 0.
For the case p = 2, problem (7)) has been studied with singular weights f like
(1/|z|%),0 < B < 2, in [CR] and for the radial problem with f = 1 in [CMI].
2. PROOF OF THEOREM 1.1

For the proof of the theorem we will need the following lemmas. Lemma 2.2 is an
improved 2-dimensional Hardy inequality and a similar one for the case k = 1 ap-
pears in [BrM] (inequality (A.4)) Lemma 2.3 is an n-dimensional Hardy inequality.
The proof of Lemma 2.1 is deferred to the appendix.

Lemma 2.1. If p > 2, then there exist positive constants B and C' such that
(2.1) (1+x)?>1+px+Cx®+Blz|P Va>-1.
Ifl<p<2and M > 1,
1 2P~ 4p(p — 1) MP~2 22 —1<z<M
(2.2) (14+x)P > Tt 3(p ) v Jor =& =5
14 pz+ 2P plp—1)a? for x> M.

Lemma 2.2 (2-dimensional Hardy inequality). For any h € C[a,T], 0 < a < T
and for R > T, the following inequality holds for k = k(R):

/ |B/ (r)|?r dr > —Z/ (r)f* 5 rdr

log(’) R/r)

k -1 !
(2.3) +%Z h2(a) (Hlog“)R/a) — h(T <Hlog R/T)

j=1 i=1

where k(R) is the first positive integer for which 0 < log® R/T < 1.

Proof. Let h be in C'[a,T]. For r € [a,T], define ¢ (r) := (logR/r)~/2h(r).
Then

T T 2 T
/ W ()2 dr = 1/ (7}%12/7”) r—f—/ 1 ()| (log B /r) 7 dr

—/wl )y (r)dr

1 TMT r ! “(r)2(lo r)rdr
B 4/a (r log R/r)? d +/a [91(r)|"(log R/7)rd
45 {U3a) D)}

To estimate the middle term on the RHS, we introduce the iterative function

Ya(r) =11 (r) (log(z) R/r)_1/2 .
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A simple calculation shows that
2

T T 2
/ |B' (r)|?r dr = EZ/ ' |h(r)| 5 rdr
@ j=1"a (r I_, logt® R/r)

T
+ [ 140 o /) Qog log /)

2 -1 -1

+2§j h*(a (Hlog(z) R/a> —h}(T (Hlog‘“ R/T)

We can again estimate the middle term on the RHS by introducing

P3(r) = a(r) (log(3) R/r)_1/2 .

This process can be continued until we reach k = k(R) for which 0 < log®® R/T < 1
—1/2
and by defining 1 () := ¥r_1(r) <log(k) R/r) , ignoring the integral involving
the term |1/}, (r)|> we obtain the inequality 23). O
By the standard approximation argument we have the following corollary.
Corollary 2.1. Given any T > 0 and for R > T, the inequality
OIE

H]ﬂ log” R/r)

27"d7"

(2.4) /OTW( 2p dr > Z/O

holds for any radial function h in H}(B), where B is the ball of radius T centered
at origin, and where k = k(R) is the first integer for which 0 < log™® R/T < 1.

‘e (k-times)

Remark 2.1. In fact (Z4) holds for any h in H}(B) with R = e T by
using a symmetrization argument as in the proof of Theorem 1.1 below. This choice

, , -2
of R enables one to conclude that the singular weights (r §=1 log(’) R/ r) are
decreasing functions of r for 1 < j < k.

Lemma 2.3 (n-dimensional Hardy inequality). Let n > 2, Q@ = B(0,T) C R", be
the open ball of radius T, centered at origin and R > T. Then

(2.4') Q/|Vh|”dx > <

for all radial h € Wy (52).

[

) 1" tog R /laf) ™ da
Q



494 ADIMURTHI, NIRMALENDU CHAUDHURI, AND MYTHILY RAMASWAMY

Proof. For any h € C}(Q), h > 0, radially nonincreasing, we define ¥ (r) =
(log R/r)~(=1/"n(r), for r € [0, T]. Then

W (r) =4/ (r)log B/)" =D/ — "= s(r) log R/r) /"

__n—]_ Mo Tfl/n _MO T
= — ——u(r)(log R/r) (1 (n—l)w(ﬂlgR/)'

nry'(r)

Since h'(r) < 0, we have (1 C(n—1)9(r)

) > (0 and hence

o = (222) wrotos rm (1= 5 vog )
> (”n_;)n 4" (r)(log R/7)~ (1 —n (17)%) log R/r>
- (%8) oo rmt—n (1) v

Since ¥(r) — 0 as r — 0 and ¥ (T") = 0, we obtain

T
V| da = wn/ B ()"
0

> (1) [ o g ey

()L (o)

_ <”_ 1>n RO 100 B /1) da.
Q

n [

For any radial function h in VVO1 "(£2), approximate h by smooth radial h,,. Then
using strong convergence of h,, to h in the gradient norm and also Fatou’s lemma,
the above inequality holds for all radial & in W, (£2). O

Now we are in a position to give a proof of Theorem 1.1 and we organize the
proof in following manner: First we prove the validity of inequality (IA4) for the
cases 2 < p < mnand 1 < p < 2 separately and finally we show the optimality of
inequality (4.

Proof of Theorem 1.1. Let us assume 1 < p < n and 7 > 2. Since the function
v — (log R/r)~7 is monotonically decreasing on [2,00), it is enough to prove the
inequality (:4)), only for v = 2. For both cases p > 2 and p < 2, we shall first prove
the inequalities for smooth positive radially nonincreasing functions defined on a
ball B, centered at 0 and of radius T'. For u € C3(B), u > 0, radially nonincreasing,
we define

(2.5) o(r) == u(r) r PP = |z,
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Here without loss of generality we as well assume u/(r) < 0 (replacing u by u +
e(T —r) for € > 0, sufficiently small). Now we observe that

T
P _ p
J19urde =, [ B0 s < [|2Ee i) = oot )|
B B 0 b
T .p
_Bn,pwn/ vP(r) dr
0 T
T / P
pv'(r)r dr
2.6 = P 1—- 27 | 1V
20 o R e R
Since u is a decreasing function, we have from (ZH) v'(r) — (n—pp% < 0 and
/
e call xz(r ::—&sot at z(r) > —1. Now we consider the following
we call (np_;))v(r) h 1. N ider the followi

cases:
Case p > 2: By inequality (2.0)) in Lemma 2.1, and from (2.6)), we obtain

|u(z)[”
|VulPde — B, / dx
B/ pB fel?

_ p—2 T
> Cuwy <u> / VP2 ()| () [P dr
0

p

T T
+ Bw, / [ (r)[PrP~t dr—pwn/ VP () (r) dr
0

0
_ 4Cw, (n—p>p2 /T
p? p 0

rdr

()|

T
(2.7) +Bwn/ [o (r)[PrP~ "t dr,
0

since v € C3(0,T). Now by Corollary 2.1,

/

2

1 /7 vp/2(r)
> N7
rdr_4/0 (rlogR/r) rdr

2

(o)

1 T U'p(r) -2 n-1
= Z/o — (log R/r)" " r" dr
(2.8) = E/B |“|§”|i|p (log R/|z|) "2 dx .

Now for 0 < 8 < p, we have

[

T
dr = wn/ |v(r)|qr”_ﬁ_1_qm_p)/pdr.
0
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Notice that for C! radial function v(r) vanishing at T,

T T
/U'(t)dt / (’Ul(t)t(p_l)/p)t_(p_l)/pdt

T
( T) (p—1)/p
log —
r

T
< ( / |v'<t>|pt“dt>
and hence,
T T ar 7\ 4P=1)/p
/|v(r)|qr"_1dr§ /|v'(r)|prp_1dr /r"_l <log—> dr
0 0 0 r

T alp
= </ |v'(r)|prp1dr> / e rpa(P=1/p gy,
0 0

where 0 :=n — 3 — q(n — p)/p. Now the second integral on the right-hand side is
M. Call

o(r)] =

1/p

convergent iff o > 0ie., 1 <g<

00 -p/q
Cy = B(w,)' 7/ < / e“rq@l)/Pdr) .
0

r/q

T
Then from these we get B wn/ |v' (r)|[PrP~tdr > C4 / |u|;x|23|qu . Com-

0

B

bining this with (Z8) and (Z7) we get inequality (CH) and hence (4] for radially
decreasing, smooth positive functions. Now by density arguments, inequality (L)
is valid for any u € VVO1 P(B), v > 0, and radially nonincreasing. For a gen-
eral domain {2, we use symmetrization arguments. Let Bp be a ball having the
same volume as Q with T = (n|Q|/¢un)1/n7 where w, = |S"7!| and let |u|* be
the symmetric decreasing rearrangement of the function |u|. Now observe that,
for any u € W, P(Q), |ul* € WyP(Br) and |u[* > 0 and radially nonincreasing
and hence inequality ([LH) holds for |u|*. Tt is well known that the symmetrization
does not change the LP- norm, decreases gradient norm and increases the integrals

|z |z ]

creasing functions of |z| under our assumption on R, thanks to Hardy’s inequality
for rearrangements. Hence (ICH) also holds for any u € Wy ().

Case 1 < p < 2: Since for the case 1 < p < 2, (1 + z)? does not have global
estimate in terms of either z2 or |z|P, we do the following decomposition of the in-

-2
P P
[u(@)] dx and / [u(@)] (log £> dx, since both the singular weights are de-
Q

1 n—op
terval [0,T]. Take M > max < 1, and denote o := ———. Now
o1 o) ;
. pv'(r)r
we define the following sets, A:=<re[0,T]:2(r) = — ——<——= < M ¢, B :=
NN
{rel0,T):2(r) > M} and T := {r € 1[0,7]: ”((7")) = —O‘—}, so that [0,7] =
v(r T
V(1) aM

AUBUT. Now observe that on the set A, > — —— ie., iff (logv(r) r® M)/ >
T

v(r)
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0, i.e., iff the function vr*™ is monotonically increasing. So, if we define the func-

tion g(r) to be vr*M for 0 < r < T, then
A= {r €]0,T]: g(r)is monotonically increasing}
and
B={re[0,T]:g(r) is monotonically decreasing}.
We now prove the theorem through following steps:

W) e
) } fi

a M

Step I: Let us assume that I' = {r €1[0,T]

nite set. Now observe that the critical point of the function vr is precisely
I’ and hence its cardinality will be odd. So let, I' = {a1,a2,,,,a2m+1} with
ap := 0 < a1 < ...agm+1 < Gamy2 = T. Hence [0,T] can be decomposed as
[O,T] =AUBU I', with A = U:io(agi, a27;+1) and B = U:io(agzq_l, a27;+2). We de-
note C1(p) := 2P~4p(p — 1). Hence from (26) and by inequality (Z:2) in Lemma
2.1, we get,

(2.9)
X (1) = wnBop A/ Um){‘l_ v <(>) _1}77“
foo -l )
2 wnlnp %QWA/UP_Q(T) (U'(T))Qrdr+%1@3/|vl(7“)|p rP~tdr

+2C, (p) f: /a2i+2 |’Ul('r)|p rp_ldT]
oGS [ ()

+2C1(p) Y / . [’ (r)|P rp—ldr] .

—0 Y a2i+1

rdr

~.

For r € [0,T)], define w(r) := v?(r) (log R/r)~". Now by Lemma 2.2, we have for
0<:<m

(2.10)

/a27:+1
az;

2 azit1 vP(r) 1
rdr > — ————rdr — = {w(ay; —w(ag)}.
L e g ) — ()

(o)
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Therefore from (Z3) and (ZI0), we obtain

(2.11)
X(u)> wnCI Z/%H 7rdr—2§m:{w(a ir1) —w(az)}
2 p s 7“ log R/T)2 yars 2141 21
a21+2
+ 2w, C1 (p Z )P rP~tdr
a2i41
Wn Cl /1121+1
= 77“ dr
2 b [Z asi (7 log R/r)*
m—1
+2 { Z [w(azit2) — w(azit1)] — w(a2m+1)}]
i=0
m azit2
+ 2w, C1(p) Z/ [v' (r)|P rP~dr.
i=0 /a2

Let us observe that
w'(r) = po*~ ' (r)v' (r) (log R/r) ™" + %vp(r) (log R/r)~2,

and hence for 0 < i <m, (w(agm+2) = w(T') = 0) we have

azi42

w(agita) — wlagiyr) = / w'(r) dr

2041

az;+2
= / oP(r)(r log R/r) " *rdr

a2i4+1

(2.12) +p / S ) () (log Rr)

az2i+1

Hence from (2I]) and (ZI2) we have

(2.13)

m a2i41 a2i+2
X@)>L1(§) Z/ vP(r) 2rdr+22/ 72””
> (Ma) azi (1 log R/r) azir: (rlog R/r)

m azit+2 B (Ma) B , 1
+ 2w, C1(p "(r)|PrP Ty 71}73 1(7“)11 (r) (log R/r) } dr
DY { z ‘

wn Cl /T ST dr
P Jo (rlog R/r
m aziy2 M p—2
+ 2w, Ch (p Z { r)Pre=t %w L)' (r) (log R/r)~ } .
i= a2i41
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_aMo(r)

Now, since v'(r) < , on (agit1,a24+2) for each 0 < i < m, we have

0" (1) (r) (log R/r)~"

p—2
M~ o1 (! (1) (log R/r)"!

() r\P )P ™2 _
—(—v'(r))vp*(r)[( ) - B g ) ]

p—2
> (~0/(r) () [(Ma)’” - B og )

(Ma)"*

>0, iff (Ma)”™'— (log R/T)"" > 0.

Since M > (log R/T) " = p% (log R/T)™", Y (v) > 0 on each of the intervals
n—p
(a2i41,a2i42), 0 < i < m, from ZI3) we get

(Ma)" 2 Ci(p) [T vP(r)
X(u) >w /
0

n rdr
N p? (r log R/7)?

WP e [P (B
(2.14) A A <1g|x|) e

Step II: If the set I' is not finite, we proceed as follows. Define the function
o(r) :==ru'(r) + du(r) for r € [0,T], § :== a (M + 1). Observe that ¢ € C[0,T],
#(0) = du(0) > 0, ¢(T) = Tu/(T) < 0 and T' = ¢~1{0}. By Sards Theorem
we know that regular values of ¢ are dense in R, so there exists €, > 0, reg-
ular values of ¢ such that ¢, — 0, as k — oo. Thus for € < u(0), the set

I
¢ Hep 6} = {r €[0,7]: (ulr) =)' _ 0 is finite. Denoting ug(r) := u(r) —
u(r) — €k r

€k, then there exists Ty > 0 such that u}, < 0 on [0,T%], ux(Tk) = 0 and Ty, — T
as k — oo. Now by Step I, we have inequality [ZI4) for us on [0,Tk]. Since the
constant in ([ZI4) does not depend on k, passing through the limit as k — co we get
inequality (ZI4) for any smooth, positive and strictly radially decreasing functions
in Wy ?(Q).

Step III: Now the remaining proof of inequality (Z4) will follow from (2.14)
together with the symmetrization arguments as in the case of p > 2.

Case p = n: In this case inequality (I4) follows immediately from Lemma 2.3
together with symmetization arguments. O

Optimality. Now suppose 1 < p < n and 0 <y < 2. Since (3, , is the best constant
for inequality (I]), the theorem follows for the case v = 0. So we assume 0 < v < 2.
The theorem will follow if we can prove for the unit ball B that

f (|vu|p — Bnp %) dx
(2.15) inf I(u):= 2 =0

N JHEE (log R/ )™ da
B
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Now, our aim is to construct a family u, € Wol’p(B), € > 0, such that
(2.16) lim I, (u.) =0

e—0

and then (ZTH) will follow. For € > 0 sufficiently small, let us define

0, for r < €2,
log /€2 )
ue(r) = T log 1je T E STS6
log 1/r

B <r<
=)/ log 1/6, fore<r<1.

Clearly, u. is continuous and differentiable a.e. and its derivative is given by

0, for 0 < r < €2,
1 |y_nzp
u(r) =< rn/rlog 1/e

log r/e2], for €2 <r <,

n—p
_ <r<Il.
T log 1/ 1+ , log 1/7“}, fore<r<i1

Then we have

(2.17)
R o= iz [ e o [ tomrer ]
B

€

=7 1)‘:1?% o7 {/ﬁ: dir (log 7'/52)1)+1 dr — /1 dir (log 1/r)P*! dr}

2w, ‘
= Pt D) (log 1/¢) .

Since € > 0 is sufficiently small, we have the following estimates, after a change of
variables and the use of Neumann series:

€ 1
Py — — 1 2 _qpdr / 1+ alog 1/rP &
/B|VUE| dx (log 1/ {/62 lalog r/e | " + i |14 alog 1/r| "

w 1 alog 1/e—1 alog 1/e+1
=" p[/ r”dr—i—/ rpdr—i—/ r”dr]
a (log 1/€) 0 0 1

6npwn 1 p+1 1 p+1
= Pnp®n e /e (1 - ———— 14—
(p+1) og 1/¢ alog 1/e + +alog 1/e

_ 2B, pwn, 1

Therefore from ([ZI7) and (ZIF), we conclude that

p
po. (n—D |ue(x)|P _ 1
(2.19) /|Vue| dx ( , ) PR dx =0 oz 1/c)
B B
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Finally, for sufficiently small € > 0, let us estimate the following integral:

|u€

(log R/|x|)” " dx

- <1ogwf/e>p [/ (laggz/%/)) s | | %d]

[(log R/ : (log 7/€*)" dr

2 Tog 1/

(2.20) ! .
+ (log R/e)_v/ (log 1/7)* d7]

w _:1) log 1/ [(10g R/€*)7 + (log R/e)_v]
( ) log 1/6[(210g 1/€*) " + (log 1/E)A/:|

=C(log 1/€e)'~

Since 0 < v < 2, I, (u.) — 0, as € — 0 and hence the theorem for the case 1 < p < n.
For the case p = n, by taking the same test functions u. with p = n, it is easy

to verify that £|Vu6|"dx = (ii’”l (log 1/€)'™" and f ‘";T)l (log R/|z|) " dz >

C (log 1/€)' ™7 and hence the optimality. O

Proof of Corollary 1.1. In the proof of Theorem 1.1, we have used only the first
term of the series in 2-dimensional Hardy inequality. By making use of Lemma 2.2
and Corollary 2.1 in its full generality, the Corollary will follow. In particular, in
[28), we use inequality (24)) for the case 2 < p < n and in (ZI0), we use inequality
[23) for the case 1 < p < 2. But in this case, the proof is a bit more cumbersome
because of the presence of more boundary terms in (ZI0), which can be again
handled by considering iterative functions similar to the ones defined in the proof
of Lemma 2.2 and following the same line of the proof of Theorem 1.1. O

Proof of Corollary 1.2. If f € F,,, then

lim sup f(x)|z|(log(1/|2])* < oo
rEB.

and hence for sufficiently small €, in B,

C

=) < 2o (iog 1/la])?

Outside B¢, both are bounded functions and hence C can be chosen so that this
inequality holds in Q. Then (LH) will follow from (4).

2
If f ¢ F,andif [z|Pf(z) (1og ‘71‘) tends to co as |z| — 0, then we can write
f(z) = h(x)/|z[P(log 1/|z])?, where h(z) tends to infinity as = tends to 0. Then
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from the calculations of Theorem 1.1, for € > 0 sufficiently small

jue(z)P” hiz) o[ L 2l/)” ha)

J TePlos(1/l])?) ™ (log 1767 " (log R/|z])’

[ og Ylal)” hie)
-/ el (log Rjal? |

Bi\B
Wy, infBe\BE2 h(x)
(log 1/¢)"
wn, m(e)log 1/
~ (p+1) (log R/e2)?
wy, m(€)log 1/e
T (p+1) (2log 1/€2)?

€

(log R/e2)_2/ (log 7/€*)” %

€2

_ . mle)

~ Tlog 1/e
Here m,. stands for infBE\Be2 h(z). Since m. tends to co as € — 0, we conclude
that I¢(ue) — 0 as € — 0 and inequality ([[.6) cannot hold for such f ¢ F),. O

3. PROOF OF THEOREM 1.2

P
||
given domain 2 C R"™, we interpret the first equation in (I.7) in the following weak
sense:

(3.1) /Q|Vu|p_2<Vu, Vo)dr = /\/Q|u|p_2uqbdx

whenever ¢ € W, (Q).

In order to prove the theorem we need the following two lemmas; the first one
is due to Boccardo and Murat [BM] and the second one is a standard result from
measure theory (see for example, [§], Chapter 1, section 4). The use of Lemma 3.1
here is inspired by the arguments in [GP].

In defining the eigenvalues for the operator (div(|Vu[P~2Vu) + [u[P~2u) in a

Lemma 3.1 (see Theorem 2.1 in [BM]). Let (i )men C WyP(Q) be such that as
k — 00, Upy — u  weakly in Wol’p(Q) and satisfies

— (div(|Vum[P?Vun)) = fim + gm
in D'(Q) where f,, — 0 strongly in W1 (Q) and g, is bounded in M (), the
space of Radon measures, i.e.

[( gm: 9)] < Ck 9|0

for all ¢ € D(Q) with supp(¢) C K. Then there exists a subsequence, $ay Um,,,
such that

U, — u strongly in Wyl(Q) Y q<p.

Lemma 3.2. Let (gm)men C LP(R2), 1 < p < o0, be such that, as m — oo, (i)
gm — g weakly in LP(Q) and (ii) gm(x) — g(x) a.e. in Q. Then

lim [llgmll} = llgm — glip] = llgll}-

m—0o0



AN IMPROVED HARDY-SOBOLEV INEQUALITY AND ITS APPLICATION 503

Proof of Theorem 1.2. We look for the critical points of the functional

) —Q/IVuI”—uQ/ |u|f|3)|pd

which is continuous, Gateaux differentiable and coercive on W,"*(Q) thanks to
Hardy-Sobolev inequality. We minimize this functional J,, over the manifold M =

{u € Wol’p(Q)‘ Jo lu(@) P f(x)de = 1} and let A, be the infimum. It is clear that
)\Iﬂ > 0. By standard arguments, we can choose a special minimizing sequence
(Um)men C M with J,,(uy) — A}, and the component of D.J,, (u,) restricted to M,

tends to 0 strongly in W‘LI’I(Q). The coercivity of J,, implies that (wm,)men is a
bounded sequence and hence we have for a subsequence, as k — oo,

Um, —u  weakly in W, P(Q),
Um, — u weakly in LP(Q,|z|™P),
(3.2) Um,, — uw strongly in LP(€2).

Since W, (Q) is compactly embedded in LP(Q, f(x)) (see Proposition 2.1 in [CR]),
it follows that M is weakly closed and hence u € M. Further u,, satisfies in D’(2)

(Tt 2] il 2 ) = AP0 )5

where fm — 0 strongly in W’l’p'((l) and A\, — XA asm — oo. Calling

gm = [t [P~ 2 m + An (|m [P~ 2um, f), one can check that g, is bounded in

[]P I”
M (). Then we can use Lemma 3.1 to conclude a.e. convergence of Viu,,, to Vu
in © and then apply Lemma 3.2 to u,,, and also to Vu,,, to obtain
)‘;11 = IV (um,, — U)lli — 1|ty — UJHIEP(Q,\I\—IJ) + ||VUJH£ - N”U”ip(g,\z\—p) +o(1)
> (ﬂn,p — ) Humk - u”ip(g@ﬁp) + >\;1L +o(1)
where o(1) - 0 as k — co. As 1 < 3, p, we conclude that

”(UMk - u)l|’£p(g,|x|—p) —0

as k — oo and also ||V(upm, — u)||’£p(m — 0 as k — oo and hence we have
Ju(u) = A} and A = X}, . Since J,,(|u]) = J,(u), we can take u > 0 in Q. Then
using Lemma 3.1, u is a distribution solution of (I7) and since u € W, (%),
it is a weak solution to the eigenvalue problem (L), corresponding to A = )\}L.
Moreover, if f € F,, by Corollary 1.2 we have

A= Af) = inf 2
g wEWL (@)\{0} f lu(z) [P f(z

> 0 as pu— Bup.

If f ¢ F),, then again by Corollary 1.2, inequality of the type (LH) cannot hold and
hence A(f) = 0. O
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4. APPENDIX
Lemma 2.1. If p > 2, then there exist positive constants B and C' such that
(4.1) (1+x)?>1+px+Ca? +Blz|P Va>-1.
Ifl<p<2and M > 1,

1+ px + 227 p(p — 1)MP 222, for -1 <ax < M,
1+ pz + 27 3p(p — 1) a?, for x> M.

(4.2) 1+ ) > {

Proof. First let us assume p > 2, for x > —1, and define h,(t) := (1 + tz)P, for all
0 <t <1. Then h € C?[0,1] and hence by Taylors expansion we have

hy(t) = by (0) + t BL(0) + ¢ /1 hY(6t)(1 — 6)do;
0

therefore

ha (1)

1
1+ pz + plp— 1):52/ (1+tx)P~2(1 — t)dt
0

Vv

1

1+ px + plp— 1):52/ (1—t)yrtat
0

(4.3) =1+pz+ (p—1)a°

Let 0 < a < 1 and choose M > 1, such that for x > M, aaz? > 1 + px + (a/2)x?.
Then for —1 <ax < M

A+x)P>1+pr+ (p—1)a?
=14 pr + (a/2)2* + (p—1—a/2) 2?
> 1+ po + (/22 + MEP (p—1—a/2) |af?

and for © > M, (1+z)? > 2P = az? + (1 — a)z? > 14 pz + (a/2)2® + (1 — a)aP.
Combining these inequalities by replacing C' = «/2 and

B = min{l —a,M*P(p—1 —a)},
we obtain ([ZT).

Let us consider the case 1 < p < 2 and take the function h, for x > —1, as
above. Notice that 1 4 ¢tz # 0 and hence h! exists and we have

(4.4) (1+2)? =1+ pr + p(p— 1)302/01(1 + tx)P72(1 — t)dt.

Now for the case —1 < x < M, from (£4) we get
1/2
(1+2)? > 1+ pr + p(p— 1)x2/ (1 +tx)P~2(1 — t)dt
0

1/2
>1+pr+pp-1) x2/ (2M)P~2(1 — t)dt
0

(p—1)
4

=1+ pr+ b (2M)P~ 222

(4.5) =1+ px + 22 p(p — 1)MP 2 22,
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Since M > 1, for the case x > M, we have from ([@4)

(1+2)?>1+px+pp—1)2? /01(29c)p2(1 —t)dt

(4.6) =1+ px + 2P 3p(p — 1) aP.

Observe that for x = —1, inequalities (L5) and ([@6) are trivially true and hence

the lemma. O
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