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Mesoscopic Superposition of States with Sub-Planck Structures in Phase Space
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We propose cavity quantum electrodynamics method, using dispersive interaction between atoms
and a high quality cavity to realize the mesoscopic superposition of coherent states which would
exhibit sub-Planck structures in phase space, i.e. the structures at a scale smaller than the Plank’s
constant (). These structures are direct signatures of quantum coherence and are formed as a result
of interference between the two superposed cat states. In particular we focus on a superposition
involving four coherent states. We show interferences in the conditional measurements involving

two atoms.

PACS numbers: 42.50.Gy, 32.80.Qk

I. INTRODUCTION

In recent times mesoscopic superposition of states has
attracted a great deal of attention as these superposi-
tions exhibit very important interference effects |1, 12, 13]
many of which have now been realized experimentally
M, 15, 16, [, €. The simplest superposition would consist
of two coherent states one centered at o and the other
at —a. Such a state is known to be an eigenstate of the
operator a®. It has been known that the passage of a
single mode of the field in a coherent state through a
Kerr medium could produce such a state [9, [10, [L1]. In
an earlier work [d], it was shown that a variety of other
superpositions can be produced by a Kerr medium. In
particular, one can produce eigenstates of the operator
a*. Such eigenstates are superpositions of four coherent
states. However an efficient production of such states
would require large Kerr nonlinearity which is not avail-
able though some proposals for the enhancement of the
Kerr nonlinearity exist [12]. The existence of such super-
positions is closely connected to the occurrence of frac-
tional revivals in the nonlinear dynamics of quantum sys-
tems [8, [13, [14, [15]. In particular, a fractional revival of
order 1/4 can produce a superposition of four coherent
states. However instead of pursuing the production using
Kerr medium, we propose to use cavity QED methods.
We note that Haroche and coworkers [3, 15, 6] showed how
cavity quantum electrodynamics can be used to produce
a superposition of two mesoscopic states. It turns out
that one can have fairly large dispersive interaction in
high quality cavities. This high dispersion has been uti-
lized by several authors |16, [17] to produce a variety of
entangled states and nonclassical superpositions includ-
ing a superposition of four coherent states. In this paper
we show how to prepare superpositions of four coherent
states by using resonant as well as dispersive interaction
in a high quality cavity. This study is motivated by a re-
cent finding of Zurek [1§] that a proper superposition of
four coherent states which he refers to as a compass state,
can exhibit regions in phase space with sub-Planck struc-
tures, 7. e. the area of the variations of the two quadra-
tures can be much smaller than 7. We demonstrate how
the results of conditional measurements on three atoms

passing in succession, through a high Q-cavity, can yield
information on such a compass state.

II. COMPASS STATE FOR THE RADIATION
FIELD

Consider a single mode radiation field specified by the
annihilation and creation operators a and a'. Let |a) be
a coherent state for the field with amplitude . The most
commonly studied superpositions are of the form

%) ~ la) + le” ). (1)

Here 6 is an arbitrary phase. Extensive literature on this
state exists. It is well known [Il, 2] that the quantum
character of this state is reflected in the regions of phase
space where the Wigner function becomes negative. The
area of the negative region is of the order of Planck con-
stant. There are several methods of producing such a
state [3, [, I8, 9]. Zurek [1§] has studied a superposition
state of four Gaussian wave packets
(7 — x0)?
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with one each placed in the east, west, north and south
direction in the phase space and calculated the Wigner
function for such a state, defined by

1 .

W(x,p) = s /emy/hw (:1: — %) ™ (a: + %) dy. (3)
He found that it exhibits negative regions in phase space
as well as structures with areas which could be much
smaller than Planck’s constant. Since coherent states
correspond to Gaussian wave packets, in the following
we consider a superposition of four coherent states of the
form

#) = N (Ja) + i) + | — @) + [ — i), (4)

where N is the normalization constant and « is complex.
The Wigner function for any state |¢) can be obtained
using coherent states as [19]

W) = el [(-alopels)e 20T s (5)
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For the state (@) the Wigner function is found to be
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FIG. 1: (Color online) The Wigner function for mesoscopic
superposition state N (Ja) + | — &) + i) + | — i) for |a| =
1.

FIG. 2: (Color online) The Wigner function for mesoscopic
superposition state N (|a) + | — a) + |ia) + | —i«)) for |a| =
5.

Each cosine term in () arises from the interference of
a pair of coherent states in the superposition state (H).
The sub-Plank structures arise from further interference
of two cosine terms which come from the diagonal pairs.
The first two terms in (@) are such terms coming from
the diagonal pairs |a), | — a) and |ic), | —ia). The first
term is significant for smaller values of || and shows ex-
ponential decrease in the Wigner function away from the
center and the second term which is significant for larger
values of |«, shows the interference pattern in the central
region (y — 0). In Figs[and B we plot the Wigner
function for some typical values of |a|. We found that
for smaller values of |a| (Fidll), the central part has a
continuum and no other structures appear but for larger
values of |a| (Figd), a chess board pattern as noticed ear-
lier by Zurek, appears in the central region. The reason
for the disappearance of the interference pattern in the
central region for smaller values of || is because in this
case the coherent states overlap to a large extent so the
interference effects are not visible.

A natural question is how to produce the state ). In
what follows we show how the methods of cavity quantum
electrodynamics |3, Hjcan be generalized to produce the

state ().

(14 i)ay* — (1 —i)a*y}
(1— oy — (1+)a"y}
(14 i)y + (1 - i)ay}
+ (1= oy + (1 + i)™} (6)

IIT. GENERATION OF THE COMPASS STATE
USING DISPERSIVE INTERACTION BETWEEN
ATOMS AND CAVITY

Consider a single mode high Q-cavity containing a
small amount of a coherent field so that the initial state
of the cavity field is |a). Let w, be the cavity frequency.
Consider the passage of a two level atom with the excited
and ground states |e) and |g) with transition frequency
w. The atom is initially prepared in a superposition state

|®) = cele) + cglg)- (7)

In a frame rotating with the atomic transition frequency
w, the interaction Hamiltonian is given by

H = héata+ hg(le)(gla + [g)(ea’), &= (we—w). (8)

We assume that we are working in the dispersive limit so
that § is large. We can then do a second order perturba-
tion theory and obtain an effective Hamiltonian

H =~ héa'a + ¢oha'alg)(g| — gohaa’le)(e],  (9)

where the parameter ¢g is equal to g2/d. Physically it
gives the shift of the excited state in the absence of any
cavity field. Under the effect of the Hamiltonian (@), the
states evolve as

g, n) — e~ T |g )

|€, n> _ ei("“)‘z’w_i"‘sﬂe, 7’L>, (10)

where 7 is the interaction time. Using (), we easily

obtain the evolution of a field in a coherent state |a)
g, a) — Ig,ae’”””W

|€7 O[> - ei¢|ev ae’ Z67’> d) ¢OT (11)

Therefore the atom field system in the state |®, ) will
evolve into

1D, ) — coe™le, ae®0T) 4 ¢, lg, aeTTOTY. (12)



The probability of detection of the atom in the state
1) = 1be|e) + 1by|g) will be

llecwre™|ae’® ™) + gy lae ™ *=PT)|2 - (13)
= lee?|* + legvyl* +
areal (C;¢gce¢:ei¢<ae—i(¢+6r) |aei(¢—5r)>>(14)

Py

The last term in ([dl) yields the interference fringes. For
the special case of the initial state and the detection state
having equal superposition of the ground and the excited
states |cyigcetpy| = 1/4. The visibility depends on the
scalar product of two coherent states that are shifted in
phase by 2¢. The phase shift is a measure of the cavity
interaction. Haroche and coworkers have used the above
for the production and detection of mesoscopic superposi-
tion of the field states. In the present case the generated
mesoscopic superposition is the state in Eq (3] under
the || || sign.

We next demonstrate how the compass state can be
produced by following similar ideas. Let us write the
state (IZ) in the form

@, ) = fele)|ae) + folg)lag)- (15)

Let us consider the passage of two atoms labeled as A and
B in succession through the cavity. After the passage of
the atom A we get the state (). Clearly the net state of
the system consisting of two atoms A, B and the cavity
field would have the structure

W) = fehelea,ep)lace) + fehgleas gp)laey)
+fgh’8|gA’eB>|age/> +fghg|gA5gB>|agg/>' (16)

The joint detection of the atoms in the state |x) =

Xee'|€4,€B) + Xog lea, 9B) + Xy 194, €B) + X4y 194, 9B)
will project state([@) to (unnormalized state)

<X|\Ij> = |C> = fehexze’ |aee’> + feth:g’ |aeg’>
Flohexyelage ) + fahgXy g logy ). (17)

Clearly such a conditional detection reduces the state
of the cavity field to a state which in general would be
a mesoscopic superposition of four coherent sates |a;;).
The value of a;; can be read from Eq ([[2):

ip—id
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Qe = e OFie Vg = ape T (18)
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Clearly by varying ¢ and ¢/ we can produce a variety
of superpositions. Consider for example ¢ = 7/4 and
¢ = /2, then

e31’7‘r/47

— _ —im/4
Q.. = Qg aeg' = p€ /

O, = aoei”/4,aqq/ = age 34, (19)
so the state ([T_?Z]) is a compass state. The expansion co-
efficients in ([[7]) depend on the initial preparation of the
atoms A and B and the detection of these atoms.This is
usually done by using two Ramsey zones before and after

the cavity. Let us for simplicity assume that
[95) = = (e]e) +¢®l)); 5= A B
V2
X) = [24)[®p), (20)

where |<I>;> is obtained from |®;) by using n; — 77;. and

0; — 9;. Substituting values of a;; from ([[d) we rewrite

@ as

|C) = (ei(m+n2+3w/4)| —a)+ ei(m+92+w/4)|a>

1
4
+ Ot 47/2) o) 4 i01+02)| _ ia)) ; (21)

N =1NA—1NaN2 =18 —1p,01 =04 —04,00 =0p —0p,

we have also set ag = ae’™/*. For 0, = n + m/4 and
02 = 2 + /2 the state ) becomes the compass state

1 .
C) = Zez(m+n2+3w/4) (| — ) + |a) + i) + | —ia)) (22)

It is clear that the probability of joint measurements on
the atoms A and B would be

P =Tre(x|¥)(¢[x) (23)

where T'r. stands for tracing over the cavity field. Using
Eq([[@) and Eq@), we find the result

P= 1 + l7“60Ll (ei<02_n2_w/2)<—a|a> + el Or=m=m/D(_q|iq) 4 e Ortbmm—n2=3m/1) (| _jq)
8

4

+e M=/ (o] — ja) 4 eOrHmzmm=0247/D) (i) 4 i O2mm2mT/2) (| — m>) = (C|C). (24)

In FigBlwe show P as a function of phases of initial atomic

state and the detected atomic state for |o| = 1. These



FIG. 3: (Color online) The probability P for |a|* = 1 is plot-
ted with phases of the initial atomic state and the detected
state. The scale along = axis and y axis is in units of 7.

interferences become less prominent for larger values of
|a|. The exact nature of interferences depends on the
choice of the phase factors 7; and 0;.

In order to explore the characteristics of the state [23),
we have to bring a third atom C and examine the prob-
ability of its detection in a given state. This would be
similar to what was done in the experiment of Brune et.
al. [8] to study the CAT state. Another possibility would
involve a probe atom interacting resonantly with the pre-
pared field in the cavity as the compass state (@) involves
photon number states which are multiples of four. We
discuss in the appendix A, the differences in the excita-
tion probabilities for different states in the cavity.

Following the work of Davidovich et. al |3] we can
examine the effect of detection efficiency on the prepa-

ration of compass state. If one atom passes through the
cavity undetected it will leave the cavity either in its ex-
cited state |e) or in its ground state |g) in both the cases
it will produce phase shift in all the superposed coher-
ent states equally and as a result it can not affect the
compass state except rotating it in phase space. So in
the experimental realization of such mesoscopic super-
position high efficiency detection is not necessary. We
relegate the details to the appendix B. We further note
that more complex homodyne methods like the ones used
in Ref. 4] can be employed to probe the phase space dis-
tributions associated with the compass state.

Next we consider effects of decoherence on the compass
state (@)). This can be done using the master equation

p= —g(aTap — 2apa’ + pa'a), (25)

where « is cavity field decay parameter and we assume
that the cavity is at zero temperature. For initial state
@) we find the density matrix after time ¢

p(t) = INP [lae){ou| + | = ) (=] + iov) (i | + | — o) (—icv| + e~ 2lalf1-e7") (Jar)(—au| + | = ar){au| + licu) (—icu]

+| —day) (iou]) + elelP (- (1—e7") (Jae) (io| + | = dou)(ou| + | = au)(—ias| + lia) (—a])

+eleP D= (liag) oy | + o) (—iawe| + | — d)(—au| + | = at><iat|)} Do =ae "2

The coherence of the superposition decays as
e~20al(1=¢"") which is e~21°*5 in the limit ¢ << 1.
Thus the life time of the compass state will be t./2|a|?,
t. is life time of the cavity field. So the life time for
compass state is same as for a Schrodinger cat state ().

IV. CONCLUSIONS

We discussed the properties of the compass state for
radiation field as well as the methods of generating a

compass state using the dispersive atom cavity interac-
tion. We showed that the central interference pattern
in the Wigner function for mesoscopic superposition of
cat states appears for larger values of |a| and disappears
for smaller values. The conditional measurements enable
one to study some aspects of the mesoscopic superposi-
tion of coherent states. We have also discussed the effects
of decoherence on compass state as well as the effects of
nonunity detection efficiency in the preparation of the
compass state.
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APPENDIX A

The compass state can be detected using the methods
sensitive to its field statistics. For the compass state
photon distribution is very special, it has number states
having photon number in the integral multiple of four.
The state @) can be expressed in terms of number states
as follow

_a2
e 1T 2 ap),

4p

@

# =N (A1)
o/ (4p)!

where p ia an integer. We propose a simple method for

detecting the compass state using a two level atom inter-

acting resonantly with the cavity field as a probe. The

Hamiltonian in the interaction picture is

H = hg(le)(gla+ a'lg){g]), (A2)

where all symbols have their earlier defined meanings.
Using above interaction Hamiltonian we can calculate
the probabilities of detection for the atom in its different
states after passing through the cavity. The probabil-
ities of detection if atom enters the cavity in its lower
state [g) and detected in its state |g) and |e), PJ and Py
respectively are

ngZ| O(‘
=N i

In the Figfll we show the comparison of detection proba-
bilities for cavity field in compass state, Schrodinger cat
state No(Ja) + | — ), and coherent state |a). We ob-
serve that the revival time is larger for cat state than the
revival time for compass state and revival time is larger
for coherent state than the revival time for cat states.
The reduction in revival times is of increasing granular
nature of photon distribution from coherent state to com-
pafs state.

1P cos(2gt )P, (A3)

ol (gt B (Ad)
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APPENDIX B

In this appendix we follow the argument of Davidovich
et. al. [3] to show that the detection efficiency is not a
serious issue. After passing the first atom A through the
cavity, the field state is projected

IC4) = N (ein1+ﬂ/4|aeiﬂ'/4> 4

6i91|0167i7r/4) , (Bl)

where the velocity of atom A is selected such that the
phase change in the cavity field ¢ = w/4. If one atom
similar to atom A passes through the cavity undetected,
the combined state will be

|1/}/> _ Nei(m+7r/4) ( m1+7r/4|a/ m/2> —|—6i91|0/) |6>

L N (ein1+w/4|a/>+ei91|a/eﬂ'w/2> lg), (B2)

where o/ = ae™®". We trace out the atomic state as

the atom passes undetected, the cavity field will be in
the state

(Cla = N [ /4 (/) + [ia')) + € (o) + | — i) [ B)

Now if the second atom B enters the cavity and detected
after passing the cavity in earlier defined states. The
velocity of second atom is chosen such that it changes
phase of cavity field by 7/2. The detection of second
atom will project the cavity field in the state

/
|CB> _ N? [ein1+n2+3w/4(|a//eiw/2>+|ia//ei7r/2)

+ei(01+n2+7r/2)(la//eiw/2> + | _ Za//eiw/2>)

+ein1+92+w/4(|a//e—iw/2> + |ia//e—i7r/2)

+€Z(91+92)(|a// 7177/2> + | _ ,Lo//efiﬂ/2>)}(B4)

where o = o’e %2 For earlier defined conditions on

phases in the method for preparing the compass state (),
01 =m1 + /4 and 0 = 1y + 7/2 the state (B4) becomes
same as state [ZZ). In a similar way one can see that
the prepared state will be a compass state if one atom
similar to atom B passes undetected between the atoms
A and B.
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