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Monotonisation de flux, entropie et schémas
numeriques pour les lois de conservation

Résumé : En utilisant le concept de monotonisation, on construit et on analyse
des familles de schémas volume finis a deux ou k pas pour les lois de conservation
scalaires hyperboliques. Ces familles contiennent le schéma Force et offrent une
alternative au schéma Musta. Ces sché,as peuvent étre étendus aux systéemes
de lois de conservation.

Mots-clés :  Volumes finis, différences finies, solveurs de Riemann, lois de
conservation, monotonisation.
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1 Introduction

Let f : R — R be a Lipschitz continuous function and consider the scalar
conservation law

u+ flu)y, = 0 t>0, z€R (1.1)
u(z,0) = wo(x) z € R. (1.2)
where ug € BV (R) N L}, (R). This problem has been extensively studied in the

loc
last decade. In general problem (1.1) and (1.2) does not admit regular solutions
because of two reasons:
(i) The characteristics do not fill the entire space, giving raise to empty regions
where the solutions cannot be determined by the initial data.
(ii) The characteristics intersect and lead to multivalued solutions.

In order to overcome these difficulties, the concept of weak solutions is in-
troduced. To construct such solutions with simple data, one faces difficulties (i)
and (ii). In order to overcome (i), one make use of the invariance property of
Equation (1.1), that is it is invariant under the transformation z — az, t — ot
for any « > 0. This leads to a self similar solution in the variable £ = 2/t called
the rarefaction wave. This solution is not determined by the initial data and is
used to determine the solution in the empty space.

In order to overcome (ii), discontinuities are introduced in the regions where
the characteristics intersect. Now using the definition of weak solutions, it is
possible to determine the lines of discontinuity called shocks. Shocks must
satisfy the Rankine Hugoniot condition connecting the tangent to the line of
discontinuity with the jumps of the solution across it.

The next problem is the nonuniqueness of weak solutions. This nonunique-
ness basically comes from the way one fills the empty region by a solution. Now
by looking at the underlying physical phenomena a concept of an ” Entropy” cri-
terion is introduced which uniquely defines the solution in the empty region for
simple data. Using the above concepts, existence of a unique entropy solution
is proved for arbitrary data.

There are three fundamental methods used to obtain existence and unique-
ness of an entropy solution.

(1) The Hamilton-Jacobi Method. Here one assumes that the flux f is C?
and strictly convex and considers the Hamilton-Jacobi equation:

v+ f(vg) =0, zeR, t>0, (1.3)

v(z,0) =wvo(x), zeR (1.4)

x
where vo(z) = [ u(#)df. This equation has a unique viscosity solution and an
0

explicit formula was given by Hopf [2]. Then letting u = g—v, Lax and Oleinik

x

proved that u is the unique entropy solution of Equations (1.1), (1.2) [2].

(2) The vanishing viscosity method. Here one looks at the nonlinear
parabolic equation

ur+ f(u)g =€ Uyg, zeR, t>0, (1.5)

u(z,0) = wuo(z), z eR. (1.6)

RR n° 6787
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Kruzkov [4] proves that there exists a unique solution u® of Equations (1.5),
(1.6) converging in Lj, . to a unique entropy solution of Equations (1.1), (1.2)
ase — 0.

(3) Numerical schemes. In this method numerical schemes are derived using
space and time discretizations of Equations (1.1), (1.2). These scheme calcu-
late an approximation solution which converges to the unique entropy solution.
Lax-Friedrichs, Godunov, Enquist-Osher, Roe and others contributed to this
approach.

In this paper we concentrate on numerical schemes to solve Equations (1.1),
(1.2) and we will construct schemes whose numerical fluxes can be evaluated by
point evaluations of the flux function f contrarily to many numerical schemes
in which numerical flux evaluations involve calculations of integrals, maxima or
minima of f. This property of using only point evaluations of the numerical
flux is crucial for extending without too much complexity a numerical scheme
to systems.

In section 2 we introduce the concept of monotonization which leads us to
a new definition of entropy solution. This approach can lead to the concept of
entropy for systems. In section 3 we construct a first two step monotonization
scheme which is actually the Force scheme [5, 6]. In 4 this scheme is generalized
to a family of two-step monotonization schemes and analyzed. In section 5 these
numerical schemes are extended to a family of k-step monotonization schemes
which gives an alternative to the the MUSTA scheme [7]. These schemes are
easy to extend to systems (section 6).

2 Monotonization and entropy

A basic ingredient in studying a numerical scheme is the study of the Riemann
problem. Let a,b,x¢p € R and let

a if =<z
vo(@) = { b if x>0 21)
and the solution set R(a,b, zg) associated to (2.1) is given by
R(a,b,x0) = {u; u is a weak solution of Eq. (1.1), (2.1)}.

In general R(a, b, zp) can have more than one solution. This set R(a, b, zg) turns
out to be an important tool in deriving finite volume schemes. This is a well
studied method (for details see [3]).

Let h > 0, At > 0, A = At/h and discretize the domain into disjoint rectan-
gles R;, with length h and breadth At. That is fori € Z,x > 0let R;, = I; X J,,
where

:Ci+1/2 = Zh, tn = TLAt, Iz = [Ii+1/2,$i+3/2), Jn = [nAt, (TL + 1)At)

A must satisfy the CFL condition: Let

A sup |f(0) < 1. (2.2)
0[—M,M]

INRIA
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where M = ||ug]| o-
We discretize ug by {ul}icz defined as

1
u) 7 /[ uo(z)dz.

7

and we assume that for 0 < j < n, {Ug}iez are known. In order to define
{U?H}iez, we choose a solution wj' € R(uj,uj,,2;43/2) for each i € Z and
define

w(z,t) = w(z,t) for (z,t) € Rip.
Then from the CFL condition, w is well defined and is a solution of Eq. (1.1)

for x € R, nAt <t < (n+ 1)At with initial condition w(z,t,) = u}" for x € ;.
Now we define {uf"*!},cz as

1
uftt = —/ w(x, tyi1)de.
h Jy,
Since w satisfies (1.1) in R x (nAt, (n + 1)At) and hence integrating (1.1) over
R;,, to obtain the following formula

) 1 (n+1)At 1 (n+1)At
U?"' = u?—)\ E / f(’l,U(.’L'i+3/2, t))dt — E / f(w(xzqu/g, t))dt

At nAt
(2.3)

The evaluation of u™' from (2.3) depends heavily on the choice of the
Rieman problem solution {w}. Hence in general different choices of {w} give
raise to different sets of {ul'}.

In fact one can generate infinitely many L'-contractive convergent schemes
provided f has both increasing as well as decreasing parts [1].

If the flux f is strictly monotone then the characteristics of Eq. (1.1) do
not intersect the lines x = x;;1/o for nAt <t < (n + 1)At. Hence for any
wi' € R(ui',uiyy, Tisvs/2)

wi' (Tiq3/2,t) =

ud if f'>0
uty if <0,

and scheme (2.3) reduces to the standard upstream scheme

bl _ { uf = A(f(ufyy) = f)) i <0,
' noA(f(ur) — flury) if f >0,

As a consequence of this, the scheme is independent of the choice of the Rie-
mann data solution {w}} and converges in Llloc to the unique entropy solution.

If f is strictly convex and the {wl} are chosen so that they satisfy the
Lax-Oleinik, Kruzkov entropy condition, then scheme (2.3) reduces to the finite
volume scheme

u

(2.4)

u

Wt = = (O ulyy) — FO (). (2.5)

i—15 Ug
where F%(a,b) is the Godunov flux defined by

min f(0) if a<b

G _ 0€(a,b)
F2ab) =9 "Lk £0) if a>b (2:6)
0€(a,b)
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In fact from a theorem of Oleinik (see [3]), even if f is not convex, the Godunov
scheme (2.5), (2.6) converges in L; . to the unique entropy solution of problem
(1.1), (1.2).

Besides its optimal properties in terms of numerical diffusion, a drawback of
the Godunov scheme is that its numerical flux (2.6) cannot be written in terms
of point values of the function f, a point which becomes critical when extending
the method to systems.

On the other hand we notice from scheme (2.4) that if the flux is monotone,
then the choice of the Riemann problem solution is irrelevant and the flux can
be calculated in terms of point values of f. Therefore we convert problem
(1.1) to a problem having a monotone flux function. This procedure is called
monotonization.

Given M > 0, a € R denote f,(u) by fo(u) = f(u) —u/a and choose a such
that

sup |f(w)] < fa. (2.7)
u€[—M,M]

Let u be a solution of Eqs (1.1), (1.2) with ||up|lec < M and consider the
change of variables

r=X+ar t=1, u(z,t)=0v(X,1).
Then v satisfies

Vr + fl/a(U)X =0 for X e R, 7>0, (28)

v(X,0) = uo(X) for X € R. (2.9)
Furthermore |v(z,0)| = |ug(z)] < M and from (2.7), f1(v) = f(v) —av is a
strictly monotone function for v € [—M, M]. Hence the finite volume scheme for
Egs. (2.8), (2.9) does not depend on the choice of the Riemann data solution.
Furthermore it produces a solution v, which converges in Llloc to the unique
entropy solution v of problem (2.8), (2.9). Therfore u(x,t) = v(z — at,t) is the
unique entropy solution for problem (1.1), (1.2).

Consequently we can state the following alternative definition of the entropy

solution.
Definition (Entropy Solution). Let u € Lj N L™ be a weak solution of
problem (1.1), (1.2). Then u is said to be an entropy solution to this prob-
lem, if u(z,t) = v(z — at,t) for all o such that f;/, is strictly monotone in
[—]|%o]lcos l|40]|co] and v is the unique solution of problem (2.8), (2.9) obtained
after convergence of the solution of the upstream finite volume scheme (2.4)
applied to problem (2.8), (2.9).

In the above analysis we change the variables so that in the new variables,
the flux function becomes strictly monotone. This allows us to reduce the
finite volume scheme on rectangular space-time meshes to a simple upstream
numerical scheme. Now in the next section we reverse the order, namely we keep
the equation as it is but change the rectangular mesh to parallelogram meshes
to obtain a numerical scheme which lies between Godunov and Lax-Friedrichs
schemes in terms of numerical viscosity.

INRIA
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3 A first two step monotonization scheme.

3.1 Formulation of the two step monotonization scheme

We assume again that the initial data satisfies u? € [~M, M] for some M > 0
and we introduce some more notation

;= (i+1/2)h, thi12 = (n+1/2)At,

P’ = (Tiy1/2,nAL), i = (@i (04 1/2)00),

3

PZ."H/2 = parallelogram with vertices p?,plﬁrl,p?:llm, ?H/Z,
P = parallelogram with vertices p?—H/ 2, p?fll, p?“, p?jll/ 2,

as shown in Fig. 3.1.

n+1
tnt1 Pit1
n+1
U -
i+1
lAt P
2 i+1
t +l n+%
n 3 p’L
n+2
u; C
1 n+3
s At P
'l
tn Pita
n
uy Tiys Uit

Figure 3.1: Notation for the two step monotonization scheme.

We assume that all the characteristics emanating from pl, (respectively

?H/Q) do not intersect the line segments [pyvp;ﬂrl/?]v [p?—lap?j11/2] (respec-
tively
[pr2, P, (P72, pr*1]). This implies the following condition
A s [f)] <1 (3.1)
uw€[—M,M]

RR n° 6787
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With the above notation and assumption, we can now derive the two step
monotonization scheme.

Assume that {uf};cz for 0 < k < n are given with u¥ € [-M, M]. As in
section 2 let wi € R(uf,uj, |, 7;43/2) (Which need not be an entropy solution)
be any solution and define

w(x, t) = wi(x,t) for (x,t) € Pin+1/2.

Then from condition (3.1), w is a well defined weak solution and let

S 1 Tit1
U, =7 w(z, (n + 1/2)At)dz.

7

Mass conservation in the cells gives

0= /Pin+1/2(wt + f(w)g)dzdt = /aP["“/Z(wyt + flw)v,)ds.

Evaluating the integral on the boundary of Pin—H/ % and using the CFL condition

(3.1) (characteristics do not intersect the line segments, see Fig. 3.1) we obtain

n+1/2 n Apl Pl 1 1 et 1
u; = w5l /pal (f(w) = Sw)dt - Kt/p? (f(w) = w)dt]
= W 5 [(f(ui-i-l) - XUH.l) — (f(uz ) — Xul )}

f 5 [f(“?ﬂ) - f(u?)]

n+1/2

%

Now repeating the argument with data {u

} at tn+1/2 and
1 1 Tit+3/2
uftt = = / w(z, (n + 1)At)dz we have

h i+1/2
n n+1/2
n nt1j2 A n+1/2 UZ-H/Q n+1/2 Uijl
“i“ = “z‘—Jr1/ _5[(f(“i+ / ) — T) - (f(“ij1/ )_Tl)}’
n+1/2 n+1/2
Ui t Uy A nt1/2 n+1/2
e LA B (et}

Thus the two step monotonization scheme reads

n+1/2 uit + ug A n n
“iJr/ = D) +1_§[f(ui+1)_f(ui)}’
3.2)
n+1/2 n+1/2 (
u’;%‘rl _ uzfl 2 u1 _ 5 I:f(u,b +1/2) _ f(uljll/Q)} )

Observe that there is a backward shift in evaluating u”*" and that it needs
only point evaluations of the flux function f.

The two step scheme (3.2) was already introduced and analyzed in [5, 6] and
it can be written in a compact form as follows.

INRIA
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For a,b in R let

H(ob) =a= 5(00) - fla) = 50 - S00) - f@). ()
Then scheme (3.2) can be rewritten as
A N RN} "
= SR - ), |

or

n+1/2 n o, n n+l _ n+1/2 n+1/2
ui - H(’U,Z auiJrl)a ui - H(ui—l aui )a

so we formulate the two step monotonization scheme in the compact form

wp ™ = H(H (ui_y, uf), H(uf uf ). (3.5)

3

3.2 Convergence of the two step monotonization scheme

Concerning convergence we have the main result.

Theorem 3.1 Let ug € BV(R) and ||uo|loc < M. Then under the CFL con-
dition (3.1) the two step finite volume scheme {ul'} given in (3.5) converges to
the unique entropy solution.

Proof. Let a,b € [-M, M], then from (3.1) we have

Oy = s af@) =0, Dap=1

da o (1= Af'(b)) = 0. (3.6)

and hence H is a non decreasing function in each of its argument. Therefore
from (3.5) the scheme is a three point monotone scheme. Let ¢g(X,Y,Z) =
H(H(X,Y),H(Y, Z)), then

9(X, X, X)=H(H(X,X),H(X X)) =H(X, X)=X. 3.7)

The scheme is L*°-stable, since, when assuming vl € [—M, M] for all i € Z,
from (3.6) we can write

—M =g(—M,—M,—-M) < g(u" y,ul",ul",) = ult < g(M, M, M) = M.
Finally let us write the scheme in conservative form. Expanding (3.5) we obtain

Wt = HO ) — o G ) — S (H Oy, )

A
= wity — 5 ) + AH W ulg) = Aely) = AH )]

A n
= = 2 + A ) + 2
2un
—hay) = AH ) - =],

RR n° 6787
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Therefore
up ™t = — A[Fa(uf, ulyy) — Fa(uig, ufl)] (3.8)

where the numerical flux F)\(a,b) is given by

R = 3 [n@+nen+ ],
= |+ st - T2 45
= S0+ FHB) ~ 2+ 2 (0) ~ Fla))],
) Fi(a,b) = 3 [f(a) + F0) + 27 (H (@, B) + 7). (39)

(From (3.7) Fx(a,a) = f(a) so the flux is consistent and consequently the
solution of the two step monotonization scheme (3.2) (which can be written al-
ternatively as (3.3),(3.5) or (3.8),(3.9)) converges to the unique entropy solution
of problem (1.1),(1.2). This proves the theorem.

3.3 Comparison with the Lax-Friedrichs (LF) and the two
step Lax-Wendroff-Richtnzer (LWR) scheme

On one hand the two step monotonization scheme (3.8), (3.9) gives

§ R R U -
i+1 = 1 1 1 __[f(ui+1)+2f(H(ui’ui+1))_

4
Fluiy) = 2f(H (ui_y,uj -}10)

On the other hand the two step LWR scheme (put @« = 8 =1/2 in Eq. (2.19)
of [3]) is given by

u

wpth = = A(f(H (uf, ui)) = f(H(uf-q,u)),
while the LF scheme reads

n n
prtt = izt +ui,; A

i - 9 —§(f(U?+1)—f(u?_1))-

It follows that
wanrl + U?Jrl
2

Hence the solution given by scheme (3.8), (3.9) is the average of that given by
the LF and LWR schemes. This remark was already made by Toro [5]. Therefore
even though the LWR scheme is not L°°-stable, by taking its average with the
L*>-stable LF scheme we obtain a L°°- stable convergent scheme.

In terms of numerical viscosity, the numerical viscosity coefficient Q;; 1,2 of
the two step monotonization scheme (3.8), (3.9) is determined by

n+1 __
U, =

F(ab) = 270 + ) - T2 ),

INRIA
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Hence
O Qe = Ja)+ 1)~ 2r(a ),
= fla)+ )~ 3 (F(a) + F0) + 2 (H (@ 5) + ),
= U@+ 7)) ~ F(H () - 0
= U@+ 10) ~ fla— S(a0) ~ H@) ~ L.
= U@+ FB) ~ fla) + S FE0) ~ @) — 0,
= SU0) = F@)+ ZFOUO) - f@) - 52 + 50
= SOFAPONFB) — f(a) + 52 (1 - AFE)b—a)
Therefore
J() — f(a)

Quijz = 54 AT(E) + 5= AF©)

b—a

Let f(u) = u and denote by le /2 and fol /2 the numerical viscosity coefficient

of the Godunov and the Lax-Friedrichs schemes respectively. Then we have

14 )2
= Qit12 <1=Q

Qicj,_l/g =A<

This shows that the performance of scheme (3.8), (3.9) is better than the Lax-
Friedrichs scheme in terms of numerical viscosity.

4 Generalized two step monotonization schemes

There are many ways to generalize the two step monotonization presented in
the previous section. In this section we generalize it to a family of two step
schemes.

Let 1,72 € [0,1] satisfying 713 + 72 = 1 and (1,02 € [—1,1]. Given the
discretization steps h, At of space and time, we further discretize time by di-
viding the time step into two substeps 71 At,v2At, and we move the space
discretization point p? to p?ﬂ/ % by length Bih at time t, + y1 At and fur-
ther move p?H/ 2 by length B>h back to one of the discretization points at time
tn+(’)/1+’)/2)At = tn+1. See Flg 4.1 for Y1 = 1/3,’}/2 = 2/3,51 = 1/2,52 = 71/2
and Fig. 3.1 for v = 72 = 1/2,61, = B2 = 1/2. In this way we build line seg-
ments which, in addition of the lines t = t,, t = 11At, t = t,41 will form the
boundaries of the control volumes for the two step finite volume sheme.

Y1, 81,1 = 1,2 are chosen also in order to satisfy the CFL condition

wA sup  [f'(w)] < min(|B], (L= |B]), 1=1,2. (4.1)
we[—M,M)]

RR n° 6787



inria-00349637, version 1 - 3 Jan 2009

12 Adimurthi & G. D. Veerappa Gowda & J. Jaffré

in order to ensure that, for [ = 1, the characteristics leaving p}', and for { = 2,
that leaving p?H/ % do not intersect the line segments.

t n+1 n+1 n+1
n i i Pit1
n+1 n+1 n+1
Ui—q U Uit1
slope ds slope 9 slope 9
_2
’)/QAt = 3At
n+i n+3
bnvs P’ Piy1
n+% n+i
U‘z—l ui 2
At =LA
MAt = gAt slope §; slope 1 slope 8,
' '
ln b1 Y Pita
Tiey ouly Ty uf Titrd U

Figure 4.1: Control volumes for a generalized two step monotonization scheme
with Y1 = 1/3, Yo = 2/37 51 = 1/27 52 = —1/2

A n
Forl =1,21let § = 7;3— 91 is the slope of the segment [pl, p; +1/2] and 07
1

is the slope of the segment connecting p?H/ ? o one of the discretization points
at time ¢,,41.
For a,b € R define

a—nA(fo,(b) = fo,(a)) if 6 >0
Hs, (a,b) = al ) , , =12 (4.2)
b—A(fs,(b) = fo,(a)) if 6 <O
We can generate four different families of convergent schemes, depending on the
signs of the g’s.

Scheme 1. 31 > 0,82 > 0,61 + 32 = 1.

INRIA
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If |u?| < M, from the CFL condition (4.1), scheme 1 reads

W= Hy (ufufyy) = = A o (0) = fou (),
W= Hay ) =l -\ ) S 7).

Note that the case §; = 9, = 1/2,1 = 1,2 corresponds to the two step scheme
presented in the previous section.

Scheme 2. 51 > 0,62 < 0 with 51 = |5a].

If |u?| < M, under the CFL condition (4.1), scheme 2 reads

U?H/Z = Hs (u},uj ;) = ui = A, (ui) — fo, (),
W= Hy ) =l o o () S (7).

This case corresponds to the situation shown in Fig. 4.1.
The other two cases are 31 < 0,82 <0, 1+ 02 = —1and 1 < 0,02 >
0, 82 = |$1] and they can be dealt exactly as above.

5 Generalized k-step monotonization schemes

We now generalize the method to k— steps.
Let £ > 1 be an integer and for [ = 1,...,k, let 0 < v, < 1 satisfying

k
> 7 = 1. We introduce subintervals of ¢,,t,41 denoted by [t 1,t =

)
=1 k
l
0,....k—1witht, . =t,+ STy Atl=1,...,k—1.
’ =1
Let X7 < X2 < X3 be any three consecutive space discretization points.
Thus they satisfy X3 — Xo = X9 — X7 = h.
We now introduce admissible curves. p : [t,,t,+1] — R is said to be an
admissible curve if
(1) p is continuous and p(t,) = X,

n+L+Tl]’

(2) p’[tn+%7 bt L] is a line segment for 0 < <k — 1,

(3) ptnt1) € {X1, X2, X5}
Examples of admissible curves are shown in Figs. 3.1, 4.1, 5.1, 5.2.

Denote
F(Xl,XQ,Xz;,’yl, ey Yk )\) = {p : [tn;tn—i-l;] — [Xl,Xg];p is admissible}.

F+(X17X2;X37715 s a’kaA):{P € F(X17X25X37715 s a’Yk7>\)§P(tn+1) :X3}
FO(XlaXQ;X?n’yla HR 7’yka)‘) :{p € F(XlaXQ;X?n’yla (R 7’yka)‘);p(tn+1) :XQ}

D7 (X1, Xoy X3, 71505 v A) =1{p € D(X1, X2, X571, -+, Yo A)s pEnt1) = Xa )
For p € T'(X1, X2, X5,71, - -, 7, A) we denote by 0;,0 = 1,...,k the slopes
of the line segments of p on the interval [tn+%,tn+l+71],l =0,...,k—1 and the
k

A
associated J; are defined by §; = %
1
For each i € Z let p; € I'(zi-1/2, Tiv1/2, Tits/2: V15 - - -, Vk> A) satisfying
(1) 3] € {_5 O’ +} such that pi € Fj(xifl/Qa Lit1/29 Lid3/25 Y1y -+ o5 Vks )‘) VieZ
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tn+1
u;lel 'LLZ»L+1
WAL= AL Pit1
slope 3 slope 3
Lt 2
2
u?+3
P2At = 3AL Pi Pit1
slope d slope 62
tn+%
Ut
1
1At = At pi Pi+1
slope 61 slope §1
128
Tieg Uy Tivg g Titrd Ul

Figure 5.1: Control volumes for a 3-step monotonization scheme, y1 = v2 = 73 =
%7 51 - %a 62 = _%7 63 = _% Pi S F_(xifl/Qa$i+1/27xi+3/25717725’y35)‘)'
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tn+1
“?f 11 U,T'LH “;Lff
V3At = %At Pi Pit1
slope d3 slope 43
25 2
2
u?+3
_1
720t = gAt pi Pit1
slope d slope d2
tn—i—%
upts
NAL = At pi Pi+1
slope 91 slope d1
128
Ti-g Uiy Tit g ug’ Tit g Uity

Figure 5.2: Control volumes for a 3-step monotonization scheme, v; = 75 =
Y3=2%,01=3%, 0o=—1%, B3 =2. pi € DT (@12, Tit1/2, Tis/2: V1 V2 V35 A)-

(i) The slopes of the p;’s are the same for all i’s and are denoted by 41, ..., 0.
The p;’s will be the lateral boundaries of the control volumes used to define the
finite volume scheme.

We assume that {p;}icz satisfy the CFL condition

v osup  |f'(w)| <min(|G], (1 —13)) for 1 <1< k. (5.1)
we[—M,M]|

With the notations as in (4.2) we can now define the k-step scheme as follows.
Given {ul'} with |u’| < M, define inductively for 1 <1<k —1

Tulh ) i §>0

-1 -1
Hs (% uf™ %) it 6 <0
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Then

n+1l _
U, =

(5.3)

Il
8
+
—
~
[
I
=
jol
>
o
N
S

As in Theorem 3.1, under the CFL condition (5.1), it follows easily that Hs, (a, b)

is monotone in each of its variable and Hys, (a,a) = a. Hence the scheme (5.2) and

(5.3) converges to a unique entropy solution of problem (1.1), (1.2) if |luo|| < M

and uy € BV (R).

Examples.

1. If 6, > 0,1 =1,...,k, then scheme (5.2), (5.3) can be written as follows.
Define for [ > 3,

Hy(X1, X2, X3)

H62 (H51 (XlaXQ)a H61 (XQ; Xg)),

Hl(Xl, Xo, .. .Xl+1) = Hjy (Fl—l(Xl, .. .Xl),ﬁl_l(Xg, .. .Xl+1)),
and
X1

F(X1,...,Xg) =76, (X1) +vafs, (H1 (X1, X2)) — T
k—1
Z Vl+1f5l+1 (Hl(Xla EEEE) Xl+(5)4)
=2

Then

uf = = NF(ufufy g,y ) — Ful g, oulyg o). (5.5)

If k= 2,3 =~ = 3 then scheme (5.5) coincides with scheme (3.8), (3.9).
g == % for 1 < <k, then the CFL condition (5.1) gives

Rt 1 1
Swp ()] < min( (1 - 4= 1
u€[—M,M]

x| >

Hence the CFL condition reads now A sup [f/(u)| <1
we[—M,M)]
If k=2, 6, >0,l=1,2 then scheme (5.5) can be written as

uf TV = Hy (ul uly) = ul = (o () — fo () |
= (=B + fruiy — nA(f(udy) — fud)),
a = (= B o B = (@) - ).

Furthermore if we let 81 = B3 = %, T = %, Yo = i, then the CFL condition
(5.1) becomes
A sup [f'(u)] <2/3.

uw€[—M,M]

INRIA
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2. We consider now the case when the slopes §;’s change sign. Let k =
3, M2ty =1, fi =B+ |83 with B2 <0, 83 << 0 then

ul TR = — A (S (W) — oy (u]),
ul T =Y o N(f () = iy (),
wtt =l A (fa () — ().

Let

F(X1, X2, X3) = 1[5, (X3) + 72 fs5, (Hs, (X2, X3))
+73 fs, (Hs, (Hs, (X1, X2), Hs, (X2, X3))),

then the scheme reads

u?—i_l = u:l - )‘(F(u?—lau?au?—kl) - F(u?—Qvu?—lau?))'

6 Extension to systems
Consider a hyperbolic system of conservation laws
Ui+FU), =0 zeR, t>0 (6.1)
U(z,0) =1Uy zeR (6.2)

where U is a n-vector and F : R — R" a C'' —map.
Fora€eRlet X =z +at,7 =1, V(X,7) = U(x,t). Then V satisfies

Vi+(F(V)—aV)x =0 XeR7t>0 (6.3)
V(X,0) =Uy(X) XEeR. (6.4)

If A(U) is an eigenvalue of F'(U), then (A(U) — «) is an eigenvalue of F'(U) —
al. Hence if the eigenvalues of F'(U) are bounded, then we can choose |«|
large enough such that all the eigenvalues corresponding to (6.3) are positive.
Therefore, if we have an L>-bound for a solution of (6.1), (6.2) then we can
convert it to a solution of (6.3), (6.4) with all eigenvalues positive.

Furthermore if we define F,,(U) = F(U)— v for @ # 0, then we can define the
o

scheme (3.4) for the system (6.1), (6.2) provided that all the waves are trapped
as before. In the same way k— step schemes can be defined for systems. Their
advantage is that they are point evaluation schemes. One can expect a better
accuracy by going to k-step schemes and choosing proper v;’s and §;’s.

This may also extend to the multidimensional case and with a diffusion term
on the right hand side.

7 Conclusion

Using the technique of monotonization we showed how to construct a family of
multistep schemes with only point value evaluations of the flux function. This
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family includes the Force and proposes an alternative for the Musta schemes.
For all these schemes we proved convergence of the approximate solution to
the entropy solution of the continuous problem. We also gave hints on how to
extend them to systems and high resolution schemes. In forthcoming papers we
will extend these schemes to higher resolution schemes and to the discontinuous
flux case. We will also give an example of application to a 2 x 2 system of
conservation laws representing a problem of polymer flooding.
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