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Équipes-Projets Estime

Rapport de recherche n° 6787 — Décembre 2008 — 18 pages
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Monotonisation de flux, entropie et schémas
numeriques pour les lois de conservation

Résumé : En utilisant le concept de monotonisation, on construit et on analyse
des familles de schémas volume finis à deux ou k pas pour les lois de conservation
scalaires hyperboliques. Ces familles contiennent le schéma Force et offrent une
alternative au schéma Musta. Ces sché,as peuvent être étendus aux systèmes
de lois de conservation.

Mots-clés : Volumes finis, différences finies, solveurs de Riemann, lois de
conservation, monotonisation.
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Monotonization of flux 3

1 Introduction

Let f : R → R be a Lipschitz continuous function and consider the scalar
conservation law

ut + f(u)x = 0 t > 0, x ∈ R (1.1)

u(x, 0) = u0(x) x ∈ R. (1.2)

where u0 ∈ BV (R)∩L1
loc(R). This problem has been extensively studied in the

last decade. In general problem (1.1) and (1.2) does not admit regular solutions
because of two reasons:
(i) The characteristics do not fill the entire space, giving raise to empty regions
where the solutions cannot be determined by the initial data.
(ii) The characteristics intersect and lead to multivalued solutions.

In order to overcome these difficulties, the concept of weak solutions is in-
troduced. To construct such solutions with simple data, one faces difficulties (i)
and (ii). In order to overcome (i), one make use of the invariance property of
Equation (1.1), that is it is invariant under the transformation x → αx, t → αt
for any α > 0. This leads to a self similar solution in the variable ξ = x/t called
the rarefaction wave. This solution is not determined by the initial data and is
used to determine the solution in the empty space.

In order to overcome (ii), discontinuities are introduced in the regions where
the characteristics intersect. Now using the definition of weak solutions, it is
possible to determine the lines of discontinuity called shocks. Shocks must
satisfy the Rankine Hugoniot condition connecting the tangent to the line of
discontinuity with the jumps of the solution across it.

The next problem is the nonuniqueness of weak solutions. This nonunique-
ness basically comes from the way one fills the empty region by a solution. Now
by looking at the underlying physical phenomena a concept of an ”Entropy” cri-
terion is introduced which uniquely defines the solution in the empty region for
simple data. Using the above concepts, existence of a unique entropy solution
is proved for arbitrary data.

There are three fundamental methods used to obtain existence and unique-
ness of an entropy solution.
(1) The Hamilton-Jacobi Method. Here one assumes that the flux f is C2

and strictly convex and considers the Hamilton-Jacobi equation:

vt + f(vx) = 0, x ∈ R, t > 0, (1.3)

v(x, 0) = v0(x), x ∈ R (1.4)

where v0(x) =
x
∫

0

u0(θ)dθ. This equation has a unique viscosity solution and an

explicit formula was given by Hopf [2]. Then letting u =
∂v

∂x
, Lax and Oleinik

proved that u is the unique entropy solution of Equations (1.1), (1.2) [2].
(2) The vanishing viscosity method. Here one looks at the nonlinear
parabolic equation

ut + f(u)x = ε uxx, x ∈ R, t > 0, (1.5)

u(x, 0) = u0(x), x ∈ R. (1.6)
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4 Adimurthi & G. D. Veerappa Gowda & J. Jaffré

Kruzkov [4] proves that there exists a unique solution uε of Equations (1.5),
(1.6) converging in L1

loc to a unique entropy solution of Equations (1.1), (1.2)
as ε → 0.
(3) Numerical schemes. In this method numerical schemes are derived using
space and time discretizations of Equations (1.1), (1.2). These scheme calcu-
late an approximation solution which converges to the unique entropy solution.
Lax-Friedrichs, Godunov, Enquist-Osher, Roe and others contributed to this
approach.

In this paper we concentrate on numerical schemes to solve Equations (1.1),
(1.2) and we will construct schemes whose numerical fluxes can be evaluated by
point evaluations of the flux function f contrarily to many numerical schemes
in which numerical flux evaluations involve calculations of integrals, maxima or
minima of f . This property of using only point evaluations of the numerical
flux is crucial for extending without too much complexity a numerical scheme
to systems.

In section 2 we introduce the concept of monotonization which leads us to
a new definition of entropy solution. This approach can lead to the concept of
entropy for systems. In section 3 we construct a first two step monotonization
scheme which is actually the Force scheme [5, 6]. In 4 this scheme is generalized
to a family of two-step monotonization schemes and analyzed. In section 5 these
numerical schemes are extended to a family of k-step monotonization schemes
which gives an alternative to the the MUSTA scheme [7]. These schemes are
easy to extend to systems (section 6).

2 Monotonization and entropy

A basic ingredient in studying a numerical scheme is the study of the Riemann
problem. Let a, b, x0 ∈ R and let

u0(x) =

{

a if x < x0

b if x ≥ x0

(2.1)

and the solution set R(a, b, x0) associated to (2.1) is given by

R(a, b, x0) = {u; u is a weak solution of Eq. (1.1), (2.1)}.

In general R(a, b, x0) can have more than one solution. This set R(a, b, x0) turns
out to be an important tool in deriving finite volume schemes. This is a well
studied method (for details see [3]).

Let h > 0, ∆t > 0, λ = ∆t/h and discretize the domain into disjoint rectan-
gles Rin with length h and breadth ∆t. That is for i ∈ Z, x ≥ 0 let Rin = Ii×Jn

where

xi+1/2 = ih, tn = n∆t, Ii = [xi+1/2, xi+3/2), Jn = [n∆t, (n + 1)∆t)

.
λ must satisfy the CFL condition: Let

λ sup
θ∈[−M,M ]

|f ′(θ)| ≤ 1. (2.2)
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Monotonization of flux 5

where M = ‖u0‖∞.
We discretize u0 by {u0

i }i∈Z defined as

u0
i =

1

h

∫

Ii

u0(x)dx.

and we assume that for 0 ≤ j ≤ n, {uj
i}i∈Z are known. In order to define

{un+1
i }i∈Z, we choose a solution wn

i ∈ R(un
i , un

i+1, xi+3/2) for each i ∈ Z and
define

w(x, t) = wn
i (x, t) for (x, t) ∈ Rin.

Then from the CFL condition, w is well defined and is a solution of Eq. (1.1)
for x ∈ R, n∆t < t < (n + 1)∆t with initial condition w(x, tn) = un

i for x ∈ Ii.
Now we define {un+1

i }i∈Z as

un+1
i =

1

h

∫

Ii

w(x, tn+1)dx.

Since w satisfies (1.1) in R × (n∆t, (n + 1)∆t) and hence integrating (1.1) over
Rin to obtain the following formula

un+1
i = un

i −λ

(

1

∆t

∫ (n+1)∆t

n∆t

f(w(xi+3/2, t))dt −
1

∆t

∫ (n+1)∆t

n∆t

f(w(xi+1/2, t))dt

)

.

(2.3)
The evaluation of un+1

i from (2.3) depends heavily on the choice of the
Rieman problem solution {wn

i }. Hence in general different choices of {wn
i } give

raise to different sets of {un
i }.

In fact one can generate infinitely many L1-contractive convergent schemes
provided f has both increasing as well as decreasing parts [1].

If the flux f is strictly monotone then the characteristics of Eq. (1.1) do
not intersect the lines x = xi+1/2 for n∆t ≤ t < (n + 1)∆t. Hence for any
wn

i ∈ R(un
i , un

i+1, xi+3/2)

wn
i (xi+3/2, t) =

{

un
i if f ′ > 0

un
i+1 if f ′ < 0.

and scheme (2.3) reduces to the standard upstream scheme

un+1
i =

{

un
i − λ(f(un

i+1) − f(un
i )) if f ′ < 0,

un
i − λ(f(un

i ) − f(un
i+1)) if f ′ > 0.

(2.4)

As a consequence of this, the scheme is independent of the choice of the Rie-
mann data solution {wn

i } and converges in L1
loc to the unique entropy solution.

If f is strictly convex and the {wn
i } are chosen so that they satisfy the

Lax-Oleinik, Kruzkov entropy condition, then scheme (2.3) reduces to the finite
volume scheme

un+1
i = un

i − λ(FG(un
i , un

i+1) − FG(un
i−1, u

n
i )). (2.5)

where FG(a, b) is the Godunov flux defined by

FG(a, b) =







min
θ∈(a,b)

f(θ) if a ≤ b

max
θ∈(a,b)

f(θ) if a ≥ b
(2.6)
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6 Adimurthi & G. D. Veerappa Gowda & J. Jaffré

In fact from a theorem of Oleinik (see [3]), even if f is not convex, the Godunov
scheme (2.5), (2.6) converges in L1

loc to the unique entropy solution of problem
(1.1), (1.2).

Besides its optimal properties in terms of numerical diffusion, a drawback of
the Godunov scheme is that its numerical flux (2.6) cannot be written in terms
of point values of the function f , a point which becomes critical when extending
the method to systems.

On the other hand we notice from scheme (2.4) that if the flux is monotone,
then the choice of the Riemann problem solution is irrelevant and the flux can
be calculated in terms of point values of f . Therefore we convert problem
(1.1) to a problem having a monotone flux function. This procedure is called
monotonization.

Given M > 0, α ∈ R denote fα(u) by fα(u) = f(u)−u/α and choose α such
that

sup
u∈[−M,M ]

|f ′(u)| < |α|. (2.7)

Let u be a solution of Eqs (1.1), (1.2) with ‖u0‖∞ ≤ M and consider the
change of variables

x = X + ατ, t = τ, u(x, t) = v(X, τ).

Then v satisfies

vτ + f1/α(v)X = 0 for X ∈ R, τ > 0, (2.8)

v(X, 0) = u0(X) for X ∈ R. (2.9)

Furthermore |v(x, 0)| = |u0(x)| ≤ M and from (2.7), f 1
α
(v) = f(v) − αv is a

strictly monotone function for v ∈ [−M, M ]. Hence the finite volume scheme for
Eqs. (2.8), (2.9) does not depend on the choice of the Riemann data solution.
Furthermore it produces a solution vh which converges in L1

loc to the unique
entropy solution v of problem (2.8), (2.9). Therfore u(x, t) = v(x − αt, t) is the
unique entropy solution for problem (1.1), (1.2).

Consequently we can state the following alternative definition of the entropy
solution.
Definition (Entropy Solution). Let u ∈ L1

loc ∩ L∞ be a weak solution of
problem (1.1), (1.2). Then u is said to be an entropy solution to this prob-
lem, if u(x, t) = v(x − αt, t) for all α such that f1/α is strictly monotone in
[−‖u0‖∞, ‖u0‖∞] and v is the unique solution of problem (2.8), (2.9) obtained
after convergence of the solution of the upstream finite volume scheme (2.4)
applied to problem (2.8), (2.9).

In the above analysis we change the variables so that in the new variables,
the flux function becomes strictly monotone. This allows us to reduce the
finite volume scheme on rectangular space-time meshes to a simple upstream
numerical scheme. Now in the next section we reverse the order, namely we keep
the equation as it is but change the rectangular mesh to parallelogram meshes
to obtain a numerical scheme which lies between Godunov and Lax-Friedrichs
schemes in terms of numerical viscosity.
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Monotonization of flux 7

3 A first two step monotonization scheme.

3.1 Formulation of the two step monotonization scheme

We assume again that the initial data satisfies u0
i ∈ [−M, M ] for some M > 0

and we introduce some more notation

xi = (i + 1/2)h, tn+1/2 = (n + 1/2)∆t,

pn
i = (xi+1/2, n∆t), p

n+1/2
i = (xi, (n + 1/2)∆t),

P
n+1/2
i = parallelogram with vertices pn

i , pn
i+1, p

n+1/2
i+1 , p

n+1/2
i ,

Pn
i = parallelogram with vertices p

n+1/2
i , pn+1

i+1 , pn+1
i , p

n+1/2
i−1 ,

as shown in Fig. 3.1.

xi− 1
2

xi+ 1
2

xi+ 3
2

tn

tn+ 1
2

tn+1

un
i−1 un

i un
i+1

pn
i−1 pn

i pn
i+1

1
2∆t

1
2∆t

pn+1
i

pn+1
i+1 pn+1

i+2

p
n+ 1

2

i−1 p
n+ 1

2

i
p

n+ 1
2

i+1

u
n+ 1

2

i
u

n+ 1
2

i+1

P
n+ 1

2

i−1 P
n+ 1

2

i

Pn
i+1Pn

i

un+1
i−1 un+1

i
un+1

i+1

Figure 3.1: Notation for the two step monotonization scheme.

We assume that all the characteristics emanating from pn
i , (respectively

p
n+1/2
i ) do not intersect the line segments [pn

i , p
n+1/2
i ], [pn

i−1, p
n+1/2
i−1 ] (respec-

tively

[p
n+1/2
i , pn+1

i+1 ], [p
n+1/2
i−1 , pn+1

i ]). This implies the following condition

λ sup
u∈[−M,M ]

|f ′(u)| ≤ 1. (3.1)
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8 Adimurthi & G. D. Veerappa Gowda & J. Jaffré

With the above notation and assumption, we can now derive the two step
monotonization scheme.

Assume that {uk
i }i∈Z for 0 ≤ k ≤ n are given with uk

i ∈ [−M, M ]. As in
section 2 let wn

i ∈ R(un
i , un

i+1, xi+3/2) (which need not be an entropy solution)
be any solution and define

w(x, t) = wn
i (x, t) for (x, t) ∈ P

n+1/2
i .

Then from condition (3.1), w is a well defined weak solution and let

u
n+1/2
i =

1

h

∫ xi+1

xi

w(x, (n + 1/2)∆t)dx.

Mass conservation in the cells gives

0 =

∫

P
n+1/2

i

(wt + f(w)x)dxdt =

∫

∂P
n+1/2

i

(wνt + f(w)νx)ds.

Evaluating the integral on the boundary of P
n+1/2
i and using the CFL condition

(3.1) (characteristics do not intersect the line segments, see Fig. 3.1) we obtain

u
n+1/2
i = un

i −
λ

2

[ 1

∆t

∫ p
n+1/2

i+1

pn
i+1

(

f(w) −
1

λ
w
)

dt −
1

∆t

∫ p
n+1/2

i

pn
i

(

f(w) −
1

λ
w
)

dt
]

= un
i −

λ

2

[(

f(un
i+1) −

1

λ
un

i+1

)

−
(

f(un
i ) −

1

λ
un

i

)]

=
un

i + un
i+1

2
−

λ

2

[

f(un
i+1) − f(un

i )
]

.

Now repeating the argument with data {u
n+1/2
i } at tn+1/2 and

un+1
i =

1

h

∫ xi+3/2

xi+1/2

w(x, (n + 1)∆t)dx we have

un+1
i = u

n+1/2
i−1 −

λ

2

[(

f(u
n+1/2
i ) −

u
n+1/2
i

λ

)

−
(

f(u
n+1/2
i−1 ) −

u
n+1/2
i−1

λ

)]

,

=
u

n+1/2
i−1 + u

n+1/2
i

2
−

λ

2

[

f(u
n+1/2
i ) − f(u

n+1/2
i−1 )

]

.

Thus the two step monotonization scheme reads

u
n+1/2
i =

un
i + un

i+1

2
−

λ

2

[

f(un
i+1) − f(un

i )
]

,

un+1
i =

u
n+1/2
i−1 + u

n+1/2
i

2
−

λ

2

[

f(u
n+1/2
i ) − f(u

n+1/2
i−1 )

]

.

(3.2)

Observe that there is a backward shift in evaluating un+1
i and that it needs

only point evaluations of the flux function f .
The two step scheme (3.2) was already introduced and analyzed in [5, 6] and

it can be written in a compact form as follows.
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Monotonization of flux 9

For a, b in R let

H(a, b) = a −
λ

2
(fλ(b) − fλ(a)) =

a + b

2
−

λ

2
(f(b) − f(a)). (3.3)

Then scheme (3.2) can be rewritten as

u
n+1/2
i = un

i −
λ

2

[

fλ(un
i+1) − fλ(un

i )
]

,

un+1
i = u

n+1/2
i−1 −

λ

2

[

fλ(u
n+1/2
i ) − fλ(u

n+1/2
i−1 )

]

,

(3.4)

or
u

n+1/2
i = H(un

i , un
i+1), un+1

i = H(u
n+1/2
i−1 , u

n+1/2
i ),

so we formulate the two step monotonization scheme in the compact form

un+1
i = H(H(un

i−1, u
n
i ), H(un

i , un
i+1)). (3.5)

3.2 Convergence of the two step monotonization scheme

Concerning convergence we have the main result.

Theorem 3.1 Let u0 ∈ BV (R) and ‖u0‖∞ ≤ M . Then under the CFL con-
dition (3.1) the two step finite volume scheme {un

i } given in (3.5) converges to
the unique entropy solution.

Proof. Let a, b ∈ [−M, M ], then from (3.1) we have

∂H

∂a
(a, b) =

1

2
(1 + λf ′(a)) ≥ 0,

∂H

∂b
(a, b) =

1

2
(1 − λf ′(b)) ≥ 0. (3.6)

and hence H is a non decreasing function in each of its argument. Therefore
from (3.5) the scheme is a three point monotone scheme. Let g(X, Y, Z) =
H(H(X, Y ), H(Y, Z)), then

g(X, X, X) = H(H(X, X), H(X, X)) = H(X, X) = X. (3.7)

The scheme is L∞-stable, since, when assuming un
i ∈ [−M, M ] for all i ∈ Z,

from (3.6) we can write

−M = g(−M,−M,−M) ≤ g(un
i−1, u

n
i , un

i+1) = un+1
i ≤ g(M, M, M) = M.

Finally let us write the scheme in conservative form. Expanding (3.5) we obtain

un+1
i = H(un

i−1, u
n
i ) −

λ

2
(fλ(H(un

i , un
i+1)) − fλ(H(un

i−1, u
n
i ))

= un
i−1 −

λ

2

[

fλ(un
i ) + fλ(H(un

i , un
i+1)) − fλ(un

i−1) − fλ(H(un
i−1, u

n
i ))
]

,

= un
i −

λ

2

[

fλ(un
i ) + fλ(H(un

i , un
i+1)) +

2un
i

λ

−fλ(un
i−1) − fλ(H(un

i−1, u
n
i )) −

2un
i−1

λ
)
]

.
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10 Adimurthi & G. D. Veerappa Gowda & J. Jaffré

Therefore
un+1

i = un
i − λ

[

Fλ(un
i , un

i+1) − Fλ(un
i−1, u

n
i )
]

(3.8)

where the numerical flux Fλ(a, b) is given by

Fλ(a, b) =
1

2

[

fλ(a) + fλ(H(a, b)) +
2a

λ

]

,

=
1

2

[

f(a) + f(H(a, b)) −
H(a, b)

λ
+

a

λ

]

,

=
1

2

[

f(a) + f(H(a, b)) −
b − a

2λ
+

1

2
(f(b) − f(a))

]

,

or

Fλ(a, b) =
1

4

[

f(a) + f(b) + 2f(H(a, b)) +
a − b

λ

]

. (3.9)

¿From (3.7) Fλ(a, a) = f(a) so the flux is consistent and consequently the
solution of the two step monotonization scheme (3.2) (which can be written al-
ternatively as (3.3),(3.5) or (3.8),(3.9)) converges to the unique entropy solution
of problem (1.1),(1.2). This proves the theorem.

3.3 Comparison with the Lax-Friedrichs (LF) and the two
step Lax-Wendroff-Richtnzer (LWR) scheme

On one hand the two step monotonization scheme (3.8), (3.9) gives

un+1
i =

un
i−1 + 2un

i + un
i+1

4
−

λ

4

[

f(un
i+1) + 2f(H(un

i , un
i+1)) −

f(un
i−1) − 2f(H(un

i−1, u
n
i ))
]

.(3.10)

On the other hand the two step LWR scheme (put α = β = 1/2 in Eq. (2.19)
of [3]) is given by

wn+1
i = un

i − λ(f(H(un
i , un

i+1)) − f(H(un
i−1, u

n
i ))),

while the LF scheme reads

vn+1
i =

un
i−1 + un

i+1

2
−

λ

2
(f(un

i+1) − f(un
i−1)).

It follows that

un+1
i =

wn+1
i + vn+1

i

2
.

Hence the solution given by scheme (3.8), (3.9) is the average of that given by
the LF and LWR schemes. This remark was already made by Toro [5]. Therefore
even though the LWR scheme is not L∞-stable, by taking its average with the
L∞-stable LF scheme we obtain a L∞- stable convergent scheme.

In terms of numerical viscosity, the numerical viscosity coefficient Qi+1/2 of
the two step monotonization scheme (3.8), (3.9) is determined by

Fλ(a, b) =
1

2
(f(a) + f(b) −

Qi+1/2

λ
(b − a)).
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Monotonization of flux 11

Hence

(b − a)

λ
Qi+1/2 = f(a) + f(b) − 2Fλ(a, b),

= f(a) + f(b) −
1

2

(

f(a) + f(b) + 2f(H(a, b)) +
a − b

λ

)

,

=
1

2
(f(a) + f(b)) − f(H(a, b)) −

a − b

2λ
,

=
1

2
(f(a) + f(b)) − f

(

a −
λ

2
(fλ(b) − fλ(a))

)

−
a − b

2λ
,

=
1

2
(f(a) + f(b)) − f(a) +

λ

2
f ′(ξ)(fλ(b) − fλ(a)) −

a − b

2λ
,

=
1

2
(f(b) − f(a)) +

λ

2
f ′(ξ)(f(b) − f(a)) −

b − a

2
f ′(ξ) +

b − a

2λ
,

=
1

2
(1 + λf ′(ξ))(f(b) − f(a)) +

1

2λ
(1 − λf ′(ξ))(b − a).

Therefore

Qi+1/2 =
λ

2
(1 + λf ′(ξ))

f(b) − f(a)

b − a
+

1

2
(1 − λf ′(ξ)).

Let f(u) = u and denote by QG
i+1/2 and QLF

i+1/2 the numerical viscosity coefficient
of the Godunov and the Lax-Friedrichs schemes respectively. Then we have

QG
i+1/2 = λ ≤

1 + λ2

2
= Qi+1/2 ≤ 1 = QLF

i+1/2.

This shows that the performance of scheme (3.8), (3.9) is better than the Lax-
Friedrichs scheme in terms of numerical viscosity.

4 Generalized two step monotonization schemes

There are many ways to generalize the two step monotonization presented in
the previous section. In this section we generalize it to a family of two step
schemes.

Let γ1, γ2 ∈ [0, 1] satisfying γ1 + γ2 = 1 and β1, β2 ∈ [−1, 1]. Given the
discretization steps h, ∆t of space and time, we further discretize time by di-
viding the time step into two substeps γ1∆t, γ2∆t, and we move the space

discretization point pn
i to p

n+1/2
i by length β1h at time tn + γ1∆t and fur-

ther move p
n+1/2
i by length β2h back to one of the discretization points at time

tn+(γ1+γ2)∆t = tn+1. See Fig. 4.1 for γ1 = 1/3, γ2 = 2/3, β1 = 1/2, β2 = −1/2
and Fig. 3.1 for γ1 = γ2 = 1/2, β1 = β2 = 1/2. In this way we build line seg-
ments which, in addition of the lines t = tn, t = γ1∆t, t = tn+1 will form the
boundaries of the control volumes for the two step finite volume sheme.

γl, βl, l = 1, 2 are chosen also in order to satisfy the CFL condition

γlλ sup
u∈[−M,M ]

|f ′(u)| ≤ min(|βl|, (1 − |βl|), l = 1, 2. (4.1)
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12 Adimurthi & G. D. Veerappa Gowda & J. Jaffré

in order to ensure that, for l = 1, the characteristics leaving pn
i , and for l = 2,

that leaving p
n+1/2
i do not intersect the line segments.

xi− 1
2

xi+ 1
2

xi+ 3
2

tn

tn+ 1
2

tn+1

un
i−1 un

i un
i+1

pn
i−1 pn

i pn
i+1

γ1∆t = 1
3∆t

γ2∆t = 2
3∆t

p
n+ 1

2

i−1 p
n+ 1

2

i
p

n+ 1
2

i+1

u
n+ 1

2

i−1 u
n+ 1

2

i

pn+1
i

pn+1
i+1pn+1

i

un+1
i−1 un+1

i
un+1

i+1

slope δ1 slope δ1 slope δ1

slope δ2 slope δ2 slope δ2

Figure 4.1: Control volumes for a generalized two step monotonization scheme
with γ1 = 1/3, γ2 = 2/3, β1 = 1/2, β2 = −1/2.

For l = 1, 2 let δl =
γlλ

βl
. δ1 is the slope of the segment [pn

i , p
n+1/2
i ] and δ2

is the slope of the segment connecting p
n+1/2
i to one of the discretization points

at time tn+1.
For a, b ∈ R define

Hδl
(a, b) =

{

a − γlλ(fδl
(b) − fδl

(a)) if δl > 0

b − γlλ(fδl
(b) − fδl

(a)) if δl < 0
, l = 1, 2. (4.2)

We can generate four different families of convergent schemes, depending on the
signs of the β’s.
Scheme 1. β1 ≥ 0, β2 ≥ 0, β1 + β2 = 1.
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Monotonization of flux 13

If |un
i | ≤ M , from the CFL condition (4.1), scheme 1 reads

u
n+1/2
i = Hδ1

(un
i , un

i+1) = un
i − γ1λ(fδ1

(un
i+1) − fδ1

(un
i )),

un+1
i = Hδ2

(u
n+1/2
i−1 , u

n+1/2
i ) = u

n+1/2
i−1 − γ2λ(fδ2

(u
n+1/2
i ) − fδ2

(u
n+1/2
i−1 )).

Note that the case βl = γl = 1/2, l = 1, 2 corresponds to the two step scheme
presented in the previous section.
Scheme 2. β1 > 0, β2 < 0 with β1 = |β2|.
If |un

i | ≤ M , under the CFL condition (4.1), scheme 2 reads

u
n+1/2
i = Hδ1

(un
i , un

i+1) = un
i − γ1λ(fδ1

(un
i+1) − fδ1

(un
i )),

un+1
i = Hδ2

(u
n+1/2
i−1 , u

n+1/2
i ) = u

n+1/2
i − γ2λ(fδ2

(u
n+1/2
i ) − fδ2

(u
n+1/2
i−1 )).

This case corresponds to the situation shown in Fig. 4.1.
The other two cases are β1 ≤ 0, β2 ≤ 0, β1 + β2 = −1 and β1 < 0, β2 >

0, β2 = |β1| and they can be dealt exactly as above.

5 Generalized k-step monotonization schemes

We now generalize the method to k− steps.
Let k ≥ 1 be an integer and for l = 1, . . . , k, let 0 ≤ γl ≤ 1 satisfying

k
∑

l=1

γl = 1. We introduce subintervals of tn, tn+1 denoted by [tn+ l
k
, tn+ l+1

k
], l =

0, . . . , k − 1 with tn+ l
k

= tn +
l
∑

ℓ=1

γℓ∆t, l = 1, . . . , k − 1.

Let X1 < X2 < X3 be any three consecutive space discretization points.
Thus they satisfy X3 − X2 = X2 − X1 = h.

We now introduce admissible curves. ρ : [tn, tn+1] → R is said to be an
admissible curve if
(1) ρ is continuous and ρ(tn) = X2,

(2) ρ
∣

∣

[tn+ l
k , tn+ l+1

k ]
is a line segment for 0 ≤ l ≤ k − 1,

(3) ρ(tn+1) ∈ {X1, X2, X3}.
Examples of admissible curves are shown in Figs. 3.1, 4.1, 5.1, 5.2.

Denote
Γ(X1, X2, X3, γ1, . . . , γk, λ) = {ρ : [tn, tn+1, ] → [X1, X3]; ρ is admissible}.

Γ+(X1, X2, X3, γ1, . . . , γk, λ)={ρ ∈ Γ(X1, X2, X3, γ1, . . . , γk, λ); ρ(tn+1) =X3}.

Γ0(X1, X2, X3, γ1, . . . , γk, λ) ={ρ ∈ Γ(X1, X2, X3, γ1, . . . , γk, λ); ρ(tn+1) =X2}.

Γ−(X1, X2, X3, γ1, . . . , γk, λ)={ρ ∈ Γ(X1, X2, X3, γ1, . . . , γk, λ); ρ(tn+1) =X1}.
For ρ ∈ Γ(X1, X2, X3, γ1, . . . , γk, λ) we denote by δl, l = 1, . . . , k the slopes

of the line segments of ρ on the interval [tn+ l
k
, tn+ l+1

k
], l = 0, . . . , k − 1 and the

associated βl are defined by βl =
λγl

δl
.

For each i ∈ Z let ρi ∈ Γ(xi−1/2, xi+1/2, xi+3/2, γ1, . . . , γk, λ) satisfying
(i) ∃ j ∈ {−, 0, +} such that ρi ∈ Γj(xi−1/2, xi+1/2, xi+3/2, γ1, . . . , γk, λ) ∀i ∈ Z
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14 Adimurthi & G. D. Veerappa Gowda & J. Jaffré

γ1∆t = 1
3∆t

γ2∆t = 1
3∆t

γ3∆t = 1
3∆t

tn

tn+ 1
3

tn+ 2
3

tn+1

xi− 1
2

xi+ 1
2

xi+ 3
2

un
i−1 un

i un
i+1

ρi ρi+1

ρi ρi+1

ρi ρi+1

slope δ1

slope δ2

slope δ3

slope δ1

slope δ2

slope δ3

un+1
i−1 un+1

i

u
n+ 1

3

i

u
n+ 2

3

i

Figure 5.1: Control volumes for a 3-step monotonization scheme, γ1 = γ2 = γ3 =
1
3 , β1 = 1

3 , β2 = − 5
6 , β3 = − 1

2 . ρi ∈ Γ−(xi−1/2, xi+1/2, xi+3/2, γ1, γ2, γ3, λ).
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Monotonization of flux 15

γ1∆t = 1
3∆t

γ2∆t = 1
3∆t

γ3∆t = 1
3∆t

tn

tn+ 1
3

tn+ 2
3

tn+1

xi− 1
2

xi+ 1
2

xi+ 3
2

un
i−1 un

i un
i+1

ρi ρi+1

ρi ρi+1

ρi ρi+1

slope δ1

slope δ2

slope δ3

slope δ1

slope δ2

slope δ3

un+1
i−1 un+1

i
un+1

i+1

u
n+ 1

3

i

u
n+ 2

3

i

Figure 5.2: Control volumes for a 3-step monotonization scheme, γ1 = γ2 =
γ3 = 1

3 , β1 = 1
2 , β2 = − 1

3 , β3 = 5
6 . ρi ∈ Γ+(xi−1/2, xi+1/2, xi+3/2, γ1, γ2, γ3, λ).

(ii) The slopes of the ρi’s are the same for all i’s and are denoted by δ1, . . . , δk.
The ρi’s will be the lateral boundaries of the control volumes used to define the
finite volume scheme.

We assume that {ρi}i∈Z satisfy the CFL condition

γl sup
u∈[−M,M ]|

|f ′(u)| ≤ min(|βl|, (1 − |βl)) for 1 ≤ l ≤ k. (5.1)

With the notations as in (4.2) we can now define the k-step scheme as follows.
Given {un

i } with |un
i | ≤ M , define inductively for 1 ≤ l ≤ k − 1

u
n+ l

k

i =







Hδl

(

u
n+ l−1

k
i , u

n+ l−1

k
i+1

)

if δl > 0

Hδl

(

u
n+ l−1

k

i−1 , u
n+ l−1

k

i

)

if δl < 0

, l = 1, . . . , k − 1. (5.2)
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16 Adimurthi & G. D. Veerappa Gowda & J. Jaffré

Then

un+1
i =







































Hδk

(

u
n+k−1

k

i−1 , u
n+k−1

k

i

)

if ρi(tn+1) = xi+3/2

Hδk

(

u
n+k−1

k
i , u

n+k−1

k
i+1

)

if ρi(tn+1) = xi−1/2

Hδk

(

u
n+k−1

k

i−1 , u
n+k−1

k

i

)

if ρi(tn+1) = xi+1/2 and δk < 0

Hδk

(

u
n+k−1

k

i , u
n+k−1

k

i+1

)

if ρi(tn+1) = xi+1/2 and δk > 0.

(5.3)

As in Theorem 3.1, under the CFL condition (5.1), it follows easily that Hδl
(a, b)

is monotone in each of its variable and Hδl
(a, a) = a. Hence the scheme (5.2) and

(5.3) converges to a unique entropy solution of problem (1.1), (1.2) if ‖u0‖ ≤ M
and u0 ∈ BV (R).
Examples.
1. If δl ≥ 0, l = 1, . . . , k, then scheme (5.2), (5.3) can be written as follows.

Define for l ≥ 3,

H2(X1, X2, X3) = Hδ2
(Hδ1

(X1, X2), Hδ1
(X2, X3)),

H l(X1, X2, . . .Xl+1) = Hδl
(H l−1(X1, . . .Xl), Hl−1(X2, . . . Xl+1)),

and

F (X1, . . . , Xk) = γ1fδ1
(X1) + γ2fδ2

(H1(X1, X2)) −
X1

λ
+

k−1
∑

l=2

γl+1fδl+1

(

H l(X1, . . . , Xl+1)
)

.(5.4)

Then

un+1
i = un

i − λ(F (un
i , un

i+1, . . . u
n
i+k−1) − F (un

i−1, . . . u
n
i+k−2)). (5.5)

If k = 2, βl = γl = 1
2 then scheme (5.5) coincides with scheme (3.8), (3.9).

If βl = γl = 1
k for 1 ≤ l ≤ k, then the CFL condition (5.1) gives

λ

k
sup

u∈[−M,M ]

|f ′(u)| ≤ min(
1

k
, (1 −

1

k
) =

1

k
.

Hence the CFL condition reads now λ sup
u∈[−M,M ]

|f ′(u)| ≤ 1

If k = 2, δl > 0, l = 1, 2 then scheme (5.5) can be written as

u
n+1/2
i = Hδ1

(un
i , un

i+1) = un
i − γ1λ

(

fδ1
(un

i+1) − fδ1
(un

i )
)

,

= (1 − β1)u
n
i + β1u

n
i+1 − γ1λ(f(un

i+1) − f(un
i )),

un+1
i = (1 − β2)u

n+1/2
i−1 + β2u

n+1/2
i − γ2λ(f(u

n+1/2
i ) − f(u

n+1/2
i−1 )).

Furthermore if we let β1 = β2 = 1
2 , γ1 = 3

4 , γ2 = 1
4 , then the CFL condition

(5.1) becomes
λ sup

u∈[−M,M ]

|f ′(u)| ≤ 2/3.

INRIA

in
ria

-0
03

49
63

7,
 v

er
si

on
 1

 - 
3 

Ja
n 

20
09



Monotonization of flux 17

2. We consider now the case when the slopes δl’s change sign. Let k =
3, γ1 + γ2 + γ3 = 1, β1 = |β2| + |β3| with β2 ≤ 0, β3 ≤≤ 0 then

u
n+1/3
i = un

i − γ1λ(fδ1
(un

i+1) − fδ1
(un

i )),

u
n+2/3
i = u

n+1/3
i − γ2λ(fδ2

(u
n+1/3
i ) − fδ2

(u
n+1/3
i−1 )),

un+1
i = u

n+2/3
i − γ3λ(fδ3

(u
n+2/3
i ) − fδ3

(u
n+2/3
i−1 )).

Let

F (X1, X2, X3) = γ1fδ1
(X3) + γ2fδ2

(Hδ1
(X2, X3))

+γ3fδ3
(Hδ2

(Hδ1
(X1, X2), Hδ1

(X2, X3))),

then the scheme reads

un+1
i = un

i − λ(F (un
i−1, u

n
i , un

i+1) − F (un
i−2, u

n
i−1, u

n
i )).

6 Extension to systems

Consider a hyperbolic system of conservation laws

Ut + F (U)x = 0 x ∈ R, t > 0 (6.1)

U(x, 0) = U0 x ∈ R (6.2)

where U is a n-vector and F : R
n → R

n a C1−map.
For α ∈ R let X = x + αt, τ = t, V (X, τ) = U(x, t). Then V satisfies

Vτ + (F (V ) − αV )X = 0 X ∈ R, τ > 0 (6.3)

V (X, 0) = U0(X) X ∈ R. (6.4)

If λ(U) is an eigenvalue of F ′(U), then (λ(U) − α) is an eigenvalue of F ′(U) −
αI. Hence if the eigenvalues of F ′(U) are bounded, then we can choose |α|
large enough such that all the eigenvalues corresponding to (6.3) are positive.
Therefore, if we have an L∞-bound for a solution of (6.1), (6.2) then we can
convert it to a solution of (6.3), (6.4) with all eigenvalues positive.

Furthermore if we define Fα(U) = F (U)−
U

α
for α 6= 0, then we can define the

scheme (3.4) for the system (6.1), (6.2) provided that all the waves are trapped
as before. In the same way k− step schemes can be defined for systems. Their
advantage is that they are point evaluation schemes. One can expect a better
accuracy by going to k-step schemes and choosing proper γl’s and δl’s.

This may also extend to the multidimensional case and with a diffusion term
on the right hand side.

7 Conclusion

Using the technique of monotonization we showed how to construct a family of
multistep schemes with only point value evaluations of the flux function. This
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18 Adimurthi & G. D. Veerappa Gowda & J. Jaffré

family includes the Force and proposes an alternative for the Musta schemes.
For all these schemes we proved convergence of the approximate solution to
the entropy solution of the continuous problem. We also gave hints on how to
extend them to systems and high resolution schemes. In forthcoming papers we
will extend these schemes to higher resolution schemes and to the discontinuous
flux case. We will also give an example of application to a 2 × 2 system of
conservation laws representing a problem of polymer flooding.
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