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Sequences of positive solutions to semilinear elliptic equations of critical
exponential growth in the plane either are precompact in the Sobolev H 1-topology
or concentrate at isolated points of the domain. For energies allowing at most
single-point blow-up, we establish a universal blow-up pattern near the concentra-
tion point and uniquely characterize the blow-up energy in terms of a geometric
limiting problem. � 2000 Academic Press

1. INTRODUCTION

Let 0 be a smoothly bounded domain in R2. Consider the semilinear
elliptic boundary value problem

&2u= f (u) in 0, u>0 in 0, u=0 on �0, (1)

where f: R � R is smooth and has critical exponential growth. For instance,
let f be given by

f (s)=se4?s 2
(2)

with primitive

F(s)=|
s

0
f (t) dt=

1
8?

(e4?s2
&1).
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Solutions u to (1) may be characterized as critical points of the func-
tional

E(u)= 1
2 |

0
|{u| 2 dx&|

0
F(u) dx (3)

in the Sobolev space H 1
0(0). Indeed, by the Moser�Trudinger inequality

[14, 19] the functional E is well-defined and smooth on H 1
0(0), and critical

points u # H 1
0(0) are classical (smooth) solutions of (1). However, the func-

tional E fails to satisfy the Palais�Smale condition (globally).
The situation is analogous to the case of semilinear elliptic equations of

critical Sobolev growth on domains in Rn, when n�3. A well-studied
model problem is the boundary value problem

&2u=u |u|2*&2 in 0, u>0 in 0, u=0 on �0, (4)

on a domain 0/Rn, where 2*= 2n
n&2 is the Sobolev exponent.

In [4, 6, 16, 17] and elsewhere the compactness properties of the solu-
tion set of (4) and possible concentration phenomena have been analyzed
in minute detail, and failure of the Palais�Smale condition has been traced
to a universal mechanism, the ``bubbling off '' of spheres. Each sphere
carries with it a certain quanta of energy related only to the Sobolev con-
stant for the embedding H 1

0(0)/�L2*(0), which is independent of the
particular domain.

Our aim here is to establish similar results for critical semilinear equa-
tions on planar domains. In particular, analogous to [17] we would like
to obtain a universal ``geometric'' characterization of possible blow-up and
a quantization of the energy levels where blow-up may occur for the func-
tional E in (3) above. First results in this direction were obtained in [18]
in the radial case, and, in somewhat greater generality, but using the
techniques from [18] and still in the radial case, in [2, 15].

However, in view of examples from [2] we cannot expect such results for
arbitrary Palais�Smale sequences; see also Section 2. Therefore in the
present paper we restrict our attention to solutions uk of problems

&2uk= fk(uk) in 0, uk>0 in 0, uk=0 on �0, (5)

where fk are smooth of critical exponential growth with primitive Fk and
associated energy functional Ek , k # N.

More precisely, we study nonlinearities of the form

fk(s)=se.k(s), k # N,
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where .k # C �(R) is convex for s�s0 , with s0�0 a fixed number inde-
pendent of k, and such that

."k(s)�8? for s�s0 . (6)

Moreover, we assume that (.k) converges smoothly locally on R to a
smooth limit ., and, finally that

lim
s � �

.$k(s)�s=8?, uniformly in k. (7)

Examples include suitable approximations (.k) of the function

.(s)=4?s2+: log(1+s2),

giving rise to the nonlinearity

f (s)=s(1+s2): e4?s2
,

for arbitrary :�0.
Then we obtain the following result.

Theorem 1.1. Let (uk)k # N solve (5) with Ek(uk) � ;<1. Also assume
that .k � . smoothly locally on R and ( for simplicity) that Eq. (1) with
f (s)=se.(s) does not admit a solution u>0 with energy less than 1

2 .
Then either the family (uk) accumulates strongly in H 1

0(0) at a solution u
of (1) having energy E(u)=;, or uk ) 0 weakly in H 1

0(0), and for suitable
sequences k � �, rk � 0, xk # 0 there holds

.k(uk(xk+rk x))+2 log(rk uk(xk))+log(8?) � log
1

(1+|x|2�8)2 ,

locally uniformly on R2, as k � �. Moreover, in the latter case necessarily
;= 1

2 .

Theorem 1.1 is a first step toward the universal description of concentra-
tion behavior for Eqs. (5), alluded to above. We expect that similar results
hold for any ; # R and for general nonlinearities of critical exponential
growth as defined in [1, Definition 2.1].

2. PALAIS�SMALE CONDITION

By definition, a C1-functional E on a Banach space V with dual V*
satisfies the Palais�Smale condition at level ; if the following holds.

(P.-S.); Any sequence (uk)k # N in V such that E(uk) � ;, &dE(uk)&V* �
0 as k � � contains a convergent subsequence.
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Critical variational problems are often characterized by the fact that (P.-S.);

does not hold for large levels of ; and that loss of compactness is
associated with the ``bubbling off '' (after rescaling) of solutions to a certain
limit equation. This limit equation often has a geometric interpretation that
leads to a precise characterization of the energy levels ; where (P.S.); fails.
With regard to our problem (1) with associated energy E as a first result
in this direction we have the following local compactness result from [1].

Theorem 2.1 [1, Theorem, part (1), p. 394]. Let f (s)=se.(s), where .
satisfies (6), (7) and let E be the corresponding energy functional. Then any
sequence uk�0 in H 1

0(0) with E(uk) � ;< 1
2 and dE(uk) � 0 in H&1(0) as

k � � is relatively compact in H 1
0(0).

For energies ;� 1
2 , we recall a non-compactness result from [2].

Theorem 2.2 [2, Theorem A]. For E given by (3) and f of critical
exponential growth as in Theorem 2.1 above, (P.-S.); fails for any ; of the
form ;=k�2, k # N.

For ;= 1
2 a Palais�Smale sequence is constructed from the following family

of scaled and truncated Green's functions also considered by Moser [14].
For 0<\<R let

�log \R
\+ 0�|x|�\,

m\, R(x)=
1

- 2? { log \R
r +<�log \R

\+, \�|x|=r<R,

0, R�|x|,

and for x0 # R2 let m\, R, x0
(x)=m\, R(x&x0).

Choose x0 , R>0 such that BR(x0)/0. Shift x0=0. Observe that

|
BR(0)

|{m\, R |2 dx=1

for any 0<\<R. Moreover, for fixed R we have, as \ � 0,

|
BR(0)

m2
\, Re4?m2

\, R dx�|
\

0 \
R
\+

2

log \R
\+ r dr � �,

while for any a<1 there holds

|
BR(0)

m2
\, Re4?a2m2

\, R dx � 0.
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Thus, for small \>0 there exists a\>0 such that the function

u\=a\m\, R

satisfies

|
0

|{u\ |2 dx=|
0

f (u\) u\ dx (8)

and a\ � 1 as \ � 0.
As \ � 0 then u\ ) 0 weakly in H 1

0(0), F(u\) � 0 in L1, and E(u\) � 1
2 .

Moreover, dE(u\) � 0 in H&1(0), and (u\)\>0 is a Palais�Smale sequence
for E at level ;= 1

2 . (For the reader's convenience we give a short proof of
convergence dE(u\) � 0(\ � 0) in Appendix A.) Choosing disjoint balls
BR(xk)/0, 1�k�K, similarly the function

u\= :
K

k=1

a\m\, R, xk

is a (P.-S.)-sequence at level ;= K
2 ; see [2]. We can also stack bubbles on

bubbles, for instance, by letting

u\, _=a\m\, R+a\, _m_, \ ,

for radii 0<_<\<R, where \ � 0, _�\ � 0, with suitable numbers a\ � 1
and a\, _ � 1 as above, to obtain a Palais�Smale sequence (u\, _) blowing
up at energy level ;=1, and similarly at any level ;= K

2 , K # N.
The asymptotic scaling behavior of u\=a\ m\, R , captured in the formula

lim
\ � 0

(4?u2
\(\x)+2a2

\ log \)={2 log R,
2 log R&4 log |x|,

for |x|�1,
else,

is in contrast with Theorem 1.1. This shows that, in contrast to the higher-
dimensional case n�3, we cannot expect a universal characterization of
blow-up for Palais�Smale sequences, in general.

Moreover, from Theorem 2.2 we see that our characterization of the con-
centration behavior of sequences of solutions applies to energy levels which
are large compared to the energy threshold for blow-up.

3. PROOF OF THEOREM 1.1: COMPACTNESS

First recall the Moser�Trudinger inequality [14, 19]. Let �� } } } denote
mean value.
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Theorem 3.1. There exists a constant C such that for any smoothly
bounded domain 0//R2 there holds

sup
u # H1

0(0), &{u&L2
(0)�1

�|
0

e4?u2 dx�C.

Also the following variant of the Moser�Trudinger inequality, due to
Chang and Yang [7], will play a fundamental role in our argument.

Theorem 3.2. There exists a constant C>0 such that for any R>0, any
w # H1(BR(0)) satisfying �BR(0) w dx=0, �BR(0) |{w|2 dx�1 there holds

�|
BR(0)

e2?w2 dx�C.

Let uk # H 1
0(0) solve (5) with Ek(uk) � ;<1. Then, as in [1, p. 404 f.]

with error o(1) � 0 as k � 0 we have

2;+o(1)=2Ek(uk)&(dEk(uk), uk)=|
0

( fk(uk) uk&2Fk(uk)) dx

� 1
2 |

0
fk(uk) uk dx&C= 1

2&uk&2
H1

0(0)&C

with some constant C=C(0) independent of $.
Here we used that

(dEk(uk), uk) =|
0

|{uk | 2 dx&|
0

fk(uk) uk dx=0 (9)

in view of (5), and we used the pointwise estimate

= fk(s) s�Fk(s)&C(=) (10)

for any =>0 and all s>0, implied by exponential growth, with == 1
4 .

Thus (uk)k # N /H 1
0(0) is bounded, and, as k � � suitably, we may

assume that uk ) u weakly in H 1
0(0), and pointwise almost everywhere.

Moreover, by (9), (10) above, also Fk(uk) � F(u), fk(uk) � f (u) in L1(0),
and u # H 1

0(0) solves (1) with

E(u)+ 1
2 |

0
|{(uk&u)|2 dx=Ek(uk)+o(1)�;+o(1)<1,

130 ADIMURTHI AND STRUWE



where o(1) � 0 as k � �. Hence, if we assume that Eq. (1) does not admit
a solution u>0 with E(u)<1�2 it follows that

lim sup
k � �

|
0

|{(uk&u)| 2 dx<2. (11)

The following result, generalizing a result of Lions [12, Theorem I.6],
characterizes the possible loss of compactness macroscopically.

Lemma 3.3. Under the above assumptions, either uk � u strongly in
H 1

0(0), or there is x0 # 0� and a sequence k � � such that

|{uk |2 dx ) +�$x0
(k � �) (12)

weakly in the sense of measures, where $x0 is the Dirac mass distribution
centered at x0 , and uk � u strongly in H 1

loc(0"[x0]).

Proof. Let x0 # 0. Suppose there is rx0
>0 such that

lim sup
k � �

|
Brx0

(x0)
|{uk | 2 dx<1.

For r0�min[rx0
, e&e] define the cut-off function

�(r)=min{1, log log log \1
r+&log log log \ 1

r0+= ,

if r�r0 , �(r)=0 else. Note that �(r)=1 for r�r1=r1(r0). Computing

|�$(r)|2=
1

r2(log(1�r) log log(1�r))2

for r # [r1 , r0], moreover, we easily see that

|
�

0
|�$(r)| 2 (1+log(1+|�$(r)|2)) r dr

�C |
r0

r1

dr
r log(1�r)(log log(1�r))2�

C
log log(1�r0)

� 0

as r0 � 0.
Given x0 # 0, r0>0 as above, then let

vk(x)=�( |x&x0 | ) uk(x) # H 1
0(0).
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Observe that by Young's inequality for any =>0 with a constant C1(=) we
can bound

|{vk | 2�|{uk | 2+2 |{�| � |{uk | uk+u2
k |{�|2

�(1+=) |{uk | 2+C1(=) u2
k |{�|2.

Define

gk(t)=sup
s>0

[s2t&sfk(s)]

and observe that for any t>0 we have

gk(t)= 1
2 .$k(s) s2fk(s) |2st=2 fk(s)+. $k(s) sfk(s)

�s2t |t=(1�2) . $k(s) fk(s)

�Ct log(1+t).

Then, letting s=uk , t==&1C1(=) |{�|2, for any =>0 we can estimate

C1(=) u2
k |{�|2�=uk fk(uk)+C(=) |{�| 2 (1+log(1+|{�|2))

and hence

|
Br0(x0)

|{vk |2 dx�(1+=) |
Br0(x0)

|{uk |2 dx+= |
Br0(x0)

uk fk(uk) dx

+C(=) |
Br0(x0)

|{�| 2 (1+log(1+|{�|2)) dx

�C<1,

if we first choose =>0 and then r0�rx0
sufficiently small.

By the Moser�Trudinger inequality, applied to vk # H 1
0(0), we then con-

clude that the family (e4?v2
k)k # N is bounded in L p(0) for some p>1. Hence

also the functions f (uk) are bounded in Lq(Br1
(x0)) for some q>1, where

r1=exp(&(log(1�r0))e). In particular, if (12) does not holds for any x0 # 0�
and any sequence k � � upon covering 0� with finitely many such balls
Bri (xi), from pointwise convergence uk � u we then conclude that f (uk) �
f (u) strongly in H&1(0), and uk � u in H 1

0(0).
In general, by (11), for any subsequence there can be at most one con-

centration point x0 in the sense of (12). Given \>0 we may then cover
0� "B\(x0) by finitely many balls Bri (xi) as above to see that the sequence
( fk(uk))k # N is bounded in Lq on 0"B\(x0)=: 0\ for some q>1. Fixing a
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cut-off function � # C �
0 (B2\(x0)) such that �#1 on B\(x0) and truncating

vk=(1&�) uk # H 1
0(0\), then we see that

&2vk=(1&�) fk(uk)+2{� {uk+2�uk

is bounded in Lq(0\) and hence precompact in H &1(0\). It follows that a
subsequence vk � v=(1&�) u strongly in H 1

0(0\) and thus uk � u in
H1(0"B2\(x0)). Letting \=\k � 0 (k � �) and choosing a diagonal sub-
sequence (uk) we then obtain that uk � u in H 1

loc(0"[x0]), as desired. K

If uk � u in H 1
0(0) the proof of Theorem 1.1 is complete. For the remain-

der of the proof we may pass to subsequences, whenever necessary. For
ease of notation, these will always be relabelled (uk). We thus may assume
that (uk) satisfies (12). In this case, with error o(1) � 0 as k � �, we can
estimate

E(u)=Ek(uk)& 1
2 |

0
|{(uk&u)|2 dx+o(1)

�;& 1
2+o(1)<1& 1

2= 1
2

for sufficiently large k # N. By hypothesis, then, u=0. Hence in the follow-
ing we may assume that uk ) 0 weakly in H 1

0(0), Fk(uk) � 0, fk(uk) � 0 in
L1(0), and, by Lemma 3.3, that

|{uk |2 dx ) 2;$x0 , uk fk(uk) dx ) 2;$x0 (13)

weakly in the sense of measures as k � �, where 1�2;<2.

4. BLOW-UP ANALYSIS

For a suitable number 0<a<1 determined in Lemmas 4.3 and 4.6
below, we (tentatively) choose rk>0, xk # 0 such that

a
2

�|
Brk(xk)

fk(uk) uk dx= sup
x0 # 0

|
Brk(x0)

fk(uk) uk dx�a.

Observe that rk � 0 as k � � on account of (13).
Scale

0k=[x # R2; xk+rkx # 0],
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and let

vk(x)=uk(xk+rkx) # H 1
0(0k),

satisfying the equation

&2vk=r2
k fk(vk) in 0k (14)

and the normalization condition

a
2

�|
B1(0)

r2
k fk(vk) vk dx= sup

x0 # 0k
|

B1(x0)
r2

k fk(vk) vk dx�a. (15)

We extend vk as vk #0 on R2"0k . Passing to a sub-sequence k � �, we
may assume that 0k � 0� where 0�=R2 or 0� is a half-space.

For y # R2, r>0 decompose

vk=wk+ck on Br( y), (16)

where ck denotes the mean value

ck=ck( y, r)=�|
Br( y)

vk(x) dx.

Observe that

|
Br( y)

|{wk |2 dx=|
Br( y)

|{vk |2 dx�|
0

|{uk | 2 dx�2 (17)

for large k # N.
In fact, for r<1 we have a sharper upper bound.

Lemma 4.1. For any y # R2, any r>0 we have wk ) 0 in H1(Br( y)) as
k � �. Moreover, for any r<1 there holds

lim sup
k � �

|
Br ( y)

|{wk | 2 dx�a.

Proof. Fix y # R2, r>0, ck=ck( y, r). Suppose first that 0�=R2. For
any R>0 consider the function v~ k=vk&ck # H 1(BR( y)). Since the mean
value of v~ k on Br( y) vanishes, by Poincare� 's inequality and (17) the family
(v~ k)k # N is bounded in H1(BR( y)), and, as k � �,

&2v~ k=&2vk=r2
k fk(vk) � 0 in L1(BR( y)).
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Choosing R=R(k) � � suitably, we may assume that v~ k ) v~ weakly
locally in H1, where v~ # H 1

loc(R
2) is harmonic with

|
R2

|{v~ |2 dx�lim inf
k |

BR(k)( y)
|{v~ k |2 dx�2.

It follows that v~ #const.=0 and thus that v~ k ) 0 weakly locally in H1 as
k � �. In particular, wk=v~ k |Br( y) ) 0 weakly in H1(Br( y)).

For any cut-off function � # C �
0 (B1( y)) with 0���1, upon testing

Eq. (14) by �v~ k # H 1
0(B1( y)), moreover, we obtain

|
B1( y)

|{v~ k |2 � dx=|
B1( y)

r2
k fk(vk) v~ k � dx&|

B1( y)
{v~ k {�v~ k dx

�|
B1( y)

r2
k fk(vk) vk dx+o(1)�a+o(1),

where o(1) � 0 as k � �. Given r<1, we may then choose � such that
�#1 on Br( y) to obtain

|
Br( y)

|{wk | 2 dx�|
B1( y)

|{v~ k |2 � dx�a+o(1),

as desired.
If, on the other hand, 0� is a half-space, then for every y # R2 and

R>2 dist( y, �0�) by Poincare� 's inequality (vk)k # N is bounded in H1(BR( y)).
As R=R(k) � � suitably, a diagonal sequence vk ) v weakly in H 1

loc(R
2),

where v is harmonic in 0� with {v # L2(R2) and v=0 on �0� . Hence
v#0. Testing (14) by �vk # H 1

0(0k), where � # C �
0 (B1( y)), as above we

deduce that

lim sup
k � �

|
B1( y)

|{vk |2 � dx�a

and conclude as before. K

The following result is related to the embedding H1/�BMO, the space
of functions on R2 having bounded mean oscillation.

Lemma 4.2. For y1 , y2 # R2, and r1 , r2>0, letting | y1& y2 |+r1+r2=
2r, there holds

|ck( y1 , r1)&ck( y2 , r2)|�C+2 log \ r2

r1r2+ (18)

with an absolute constant C.
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Proof. Choose y on the segment joining y1 and y2 so that Br1
( y1) _

Br2
( y2)/Br( y), and let vk=wk+ck be the decomposition of vk on Br( y),

vk=w i
k+c i

k on Bri ( y i)/Br( y), i=1, 2.
Then, by Jensen's inequality, for each i=1, 2 we obtain

|c i
k&ck |= } �|Bri ( yi)

(wk&w i
k) dx }= } �|Bri ( yi)

wk dx }
��|

Bri ( yi)
|wk | dx�log \�|

Bri ( yi)
e |wk| dx+

�2 log \ r
ri++log \�|

Br ( y)
e |wk| dx+ .

Estimating

|wk |�2?w2
k �&{wk&2

L2(Br ( y))+
1

8?
&{wk&2

L2(Br ( y)) ,

in view of Theorem 3.2 and (17) we have

log \�|
Br ( y)

e |wk| dx+�C

uniformly for all k, y, and r, and thus

|c i
k&ck |�C+2 log \ r

ri+ , i=1, 2.

The claim follows. K

Lemma 4.3. Suppose supk |ck |<�, where ck=ck( y, r) for some y # R2

and some 0<r<1. Then a subsequence vk � v0 in H 1
loc(Br( y)).

Proof. By uniform boundedness of (wk) in H 1(Br( y)), boundedness of
(ck) implies that (vk) is bounded in H 1(Br( y)). Hence we may assume that
vk ) v0 weakly in H 1(Br( y)) as k � �, and strongly in L2(Br( y)).

Moreover, since �Br ( y) wk dx=0, by Lemma 4.1 for a�a1= 1
5 from

Theorem 3.2 we infer that

|
Br ( y)

e10?w2
k dx�|

Br ( y)
e2?w2

k �&{wk&2
L2(Br (y)) dx�C.
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Hence, estimating |vk | 2=|wk+ck |2� 9
8 |wk |2+C and observing that

.k(vk)+log vk� max
0�s�s0

.k(s)+vk(1+.$k(s0))+4?v2
k�5? |wk | 2+C,

we find that

|
Br ( y)

| fk(vk)|2 dx=|
Br ( y)

v2
ke2.k(vk) dx�C |

Br ( y)
e10?w2

k dx�C,

uniformly in k.
Given � # C �

0 (Br( y)), upon multiplying Eq. (14) by �(vk&v0) # H 1
0(0k),

then we obtain

|
Br ( y)

{vk {(�(vk&v0)) dx=r2
k |

Br ( y)
fk(vk)(vk&v0) � dx � 0

as k � �. On the other hand,

|
Br ( y)

{vk {(�(vk&v0)) dx=|
Br ( y)

|{(vk&v0)| 2 � dx+o(1),

where o(1) � 0 as k � �. Letting k � �, we deduce that

|
Br ( y)

|{(vk&v0)| 2 � dx � 0 (k � �)

for any � # C �
0 (Br( y)); that is, vk � v0 in H 1

loc(Br( y)). K

Lemma 4.4. For any y # R2, any r>0 there holds ck( y, r) � � as k �
�. In particular, the sequence (0k) exhausts R2.

Proof. Let

A=[ y # R2; lim inf
k � �

|ck( y, r)|<� for some r>0].

By (18), either A=<, or A=R2; moreover, y # A if and only if
(ck( y, 1�2)) is bounded. Also observe that in the case that the sequence
(0k) only exhausts a half-space R2

+ any point y � R2
+ satisfies ck( y, r)=0

for r<dist( y, R2
+) and sufficiently large k. Hence in this case necessarily

A=R2.
We now show that A=< is the only possibility compatible with the

normalization (15). In particular then, the sequence (0k) will exhaust all of
R2.

137SEMILINEAR ELLIPTIC EQUATIONS



Indeed, suppose by contradiction that A=R2. Then by Lemma 4.3,
applied on a cover of R2 by balls of radius 1�2, a subsequence vk � v0 in
H 1

loc(R
2). In particular,

|
B1(0)

r2
k fk(vk) vk dx � 0,

contradicting (15).
Thus, A=< and ck( y, r) � � as k � � for any y # R2, any r>0. K

Express

r2
k fk(vk)=exp(.k(vk)+log vk+2 log rk).

Fix y # R2, r>0, and decompose vk=wk+ck on Br( y) as above. Note that
vk and wk are superharmonic on Br( y) on account of Eq. (14). Thus, by the
mean value theorem and Lemma 4.2, we conclude that

vk(x)�ck \x,
r
2+�ck( y, r)&C

for all x # Br�2( y) with a constant C independent of y, r, and k. Hence also

wk(x)=vk(x)&ck( y, r)�&C.

Therefore, and since ck � � (k � �), we can uniformly bound

wk

ck
�&

1
2

, vk�ck&C�s0 (19)

on Br�2( y) for large k. Then

log vk=log ck+log \1+
wk

ck +
and

.k(vk)=.k(ck)+.$k(ck) wk+Rk(ck , wk),

where

0�Rk(ck , wk)�4?w2
k

on Br�2( y) for sufficiently large k.
Tentatively define

'k=.k(ck)+.$k(ck) wk+2 log(ckrk).
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Then, 'k satisfies the equation

&2'k=&.$k(ck) 2wk=&.$k(ck) 2vk=.$k(ck) r2
k fk(vk)=Vke'k (20)

on Br( y), where

Vk=
.$k(ck)

ck
exp \Rk(ck , wk)+log \1+

wk

ck ++�0.

Moreover, we have

r2
k fk(vk) vk=Wke'k,

where

Wk=exp \Rk(ck , wk)+2 log \1+
wk

ck ++�\1+
wk

ck +
2

.

Lemma 4.5. lim supk � � �Br�2( y) e'k dx�8.

Proof. By (19) we can estimate Wk� 1
4 on Br�2( y) for large k. Hence,

from (13) we deduce that with error o(1) � 0 as k � � there holds

|
Br�2( y)

e'k dx�4 |
Br�2( y)

Wke'k dx=4 |
Br�2( y)

r2
k fk(vk) vk dx

�4 |
0k

r2
k fk(vk) vk dx=4 |

0
fk(uk) uk dx

=8;+o(1)�8

for large k. K

Lemma 4.6. supBr�4( y) 'k�C, uniformly for sufficiently large k.

Proof. It suffices to consider r=1. The general case then follows by a
covering argument. We verify that the hypotheses of [5, Corollary 4] are
satisfied for Eq. (20). Fix p>1, say p=4, with dual exponent p$= 4

3 . Then,
as in the proof of Lemma 4.3, for 0<a�a1( p) the family

0�Vk�
.$k(ck)

ck
eCw2

k�8?eCw2
k, k�k0 , (21)

is bounded in L p on B1�2( y).
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Moreover, denoting s+=max[s, 0] for s # R, from Jensen's inequality
and Lemma 4.5 we have

�|
B1�2( y)

'+
k dx�log \1+�|

B1�2( y)
e'k dx+�C.

Finally, by (19) for sufficiently large k there holds

.$k(ck)�8?ck�8?(vk+C)�Cvk .

Hence, we can estimate

|
B1�2( y)

Vk e'k dx�C |
B1�2( y)

Wke'k dx

=C |
B1�2( y)

r2
k vk fk(vk) dx�Ca<

4?
p$

,

if 0<a�a1( p) is chosen sufficiently small. The desired conclusion now
follows from [5, Corollary 4]. K

In the following we assume that 0<a<a1 , where a1=a1( p) has been
chosen as in the proof of Lemma 4.6 to guarantee that Vk is bounded in
L p(Br( y)) for some p>2, say, p=4.

Lemma 4.7. wk � 0 in C1(Br�5( y)) as k � �.

Proof. By Lemma 4.1 there holds wk ) 0 weakly in H 1(Br( y)).
Moreover, the uniform bound on 'k from Lemma 4.6 and the uniform
L p-bound for Vk imply that, as k � �,

&2wk=
&2'k

.$k(ck)
� 0 in L p(Br�4( y)).

For any � # C �
0 (Br�4( y)) then the function wk� satisfies

&2(wk�)=&(2wk) �&2{wk {�&wk 2� ) 0 (22)

weakly in L2(Br�4( y)). Hence wk � ) 0 weakly in H2, 2(Br�4( y)) and there-
fore strongly in W1, p(Br�4( y)). Since � is arbitrary, we conclude that
wk � 0 strongly in W 1, p

loc (Br�4( y)).
Going back to (22), then &2(wk �) � 0 in L p

loc(Br�4( y)), and it follows
that wk � 0 in W 2, p

loc (Br�4( y)). Since W2, p /�C1, the claim follows. K
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In particular, Lemma 4.7 implies that for arbitrary fixed x0 # R2 and any
r>0, y # R2 we have

'k =.k(ck)+.$k(ck) wk+2 log(ck rk)

=.k(vk)+2 log(vk(x0))+2 log rk+o(1)

on Br�5( y), where o(1) � 0 in C 1(Br�5( y)) as k � �.
Indeed, letting R=5(| y&x0 |+r) so that Br( y)/BR�5(x0) and letting

vk=wk+ck( y, r)=w0
k+ck(x0 , R)

be the respective decompositions of vk , from Lemma 4.7 we conclude that

|vk(x0)&ck( y, r)|�|vk(x0)&vk( y)|+|vk( y)&ck( y, r)|

=|w0
k(x0)&w0

k( y)|+|wk( y)| � 0

as k � �.
Fixing any point x0 # R2, and letting 'k be defined relative to the decom-

position (16) of vk on BR(0) for a suitable sequence R=R(k) � �, we then
obtain a sequence ('k) which is well-defined on any domain D//R2 for
sufficiently large k and differs from the function

' (1)
k =.k(vk)+2 log(vk(x0))+2 log rk

by an error o(1) � 0 in C1(D) as k � �.
More concisely, we may represent 'k as

'k=.(vk)+2 log(rkvk)+o(1).

with error o(1) � 0 locally C1-uniformly on R2.
Moreover, we may achieve that

Vk � V= lim
k � �

.$k(ck)
ck

#8? # R

and Wk � 1 locally uniformly on R2 as k � � for this choice of radii R(k).
In view of (20) and Lemma 4.5 we can now invoke the result [5,

Theorem 3] and its improvement [11, Theorem, p. 1256] to conclude that
one of the following must occur. As k � �, either

(a) 'k � &� locally uniformly on R2; or

(b) there are points x1 , ..., xL # R2 and numbers m1 , ..., mL # N such
that 'k � &� locally uniformly on R2"[x1 , ..., xL] and Vke'k dx )

�L
l=1 8?m l$xl weakly in the sense of measures; or

(c) 'k � ' locally uniformly in C 1, : for any :<1.
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But, in view of our normalization (15) we have

a�|
B1(0)

Wk e'k dx=|
B1(0)

r2
k vk fk(vk) dx�

a
2

.

Therefore, and since Wk � 1 locally uniformly as k � 0, Case (a) is ruled
out. Case (b) is impossible in view of Lemma 4.6. Thus, only possibility (c)
remains; that is, 'k � ' in C 1, :, and hence also ' (1)

k � ' locally
C1-uniformly as k � �, where ' solves the Liouville [13] equation

&2'=V0e' on R2 (23)

with V0 #8?. Moreover, e' # L1(R2); in fact, for any L # N there holds

|
BL(0)

e' dx= lim
k � � |

BL(0)
Wke'k dx= lim

k � � |
BL rk(xk)

uk fk(uk) dx�2;.

By a result of Chen and Li [8, Lemma 1], then '(x) � &� as |x| � �.
Choose x0 # R2, r0>0 such that '(x0)=supR2 '=&2 log r0 . The scaled
and shifted function

'~ (x)='(x0+r0 x�- V0 )+2 log r0

then satisfies the equation

&2'~ =e'~ on R2

with '~ (x)�'~ (0)=0 and �R2 e'~ dx<�.
Hence by the result of Chen and Li [8] it follows that

'~ (x)=log
1

(1+|x| 2�8)2 ;

in particular,

|
R2

e'~ dx=V0 |
R2

e' dx=8?

and thus

|
R2

e' dx= lim
L � �

lim
k � � |

BLrk(xk)
uk fk(uk) dx=1. (24)

Redefining

x~ k=xk+rkx0 , r~ k=rk r0 �- V0 ,
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we then obtain that

.k(uk(x~ k+r~ kx))+2 log(uk(x~ k))+2 log r~ k+log 8?

=' (1)
k (x0+r0x�- V0 )+2 log r0 � '~ (x)=log

1
(1+|x|2�8)2

locally C1-uniformly on R2, proving the last assertion in Theorem 1.1.

5. ENERGY ESTIMATE

It remains to show that ;= 1
2 .

The argument is particularly elegant in the radially symmetric case.
Indeed, if 0=BR(0), by a result of Gidas et al. [10] the function uk is
radially symmetric and radially non-increasing, and, in particular, xk=0
for any k. The proof of Lemma 5.1 below then does not require the Fubini-
type analysis that we use to estimate the oscillation of uk on suitable circles
�Br(xk), and also the auxiliary Lemma 5.2 is not needed to obtain the
improved, final form of that result, Lemma 5.3. Moreover, Lemma 5.4 and
Lemma 5.5 are superfluous, as the functions 8k and 8� k introduced below
are identical in the radial case, and we may conclude as in Lemma 5.6.

In the case of a general domain 0 the argument is slightly more techni-
cal. Let xk , rk be determined as above such that

' (1)
k (x)=.k(uk(xk+rkx))+2 log(rk uk(xk+rk x)) � '='(1)

locally C1-uniformly, where

|
R2

e' dx=1.

Observe that now for convenience we use the alternative representation of
'(1)

k and the original xk , rk rather than x~ k , r~ k .

Lemma 5.1. There exists radii tk>0, k # N, such that with error o(1) �
0 as k � � there holds tk � 0, rk �tk � 0,

|
0"Btk(xk)

uk fk(uk) dx � 0,

|
0"Btk �2(xk)

|{uk |2 dx � 1&o(1)
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while

inf
Btk(xk)

uk � �.

Moreover, dist(xk , �0)�2tk .

Proof. For any number *>0 such that 2;&1<*<1 choose tk=t*
k

such that

|
0"Btk(xk)

|{uk |2 dx=*

for each k. Note that Lemma 3.3 implies tk � 0 as k � �. Moreover,
rk �tk � 0 (k � �). Else there exists L # N such that tk�Lrk for a sequence
k � �. Hence, by Lemma 4.7, with error o(1) � 0 as k � � we obtain

2;+o(1)=|
0

|{uk | 2 dx

�|
BL rk(xk)

|{uk | 2 dx+|
0"Btk(xk)

|{uk |2 dx=*+o(1),

yielding the contradiction 1�2;�*<1.
By Fubini's theorem, for any R>0 there holds

log 2 } inf
R�r�2R \r |

�Br (xk)
|{uk |2 do+

�|
2R

R \r |
�Br (xk)

|{uk | 2 do+ dr
r

�|
0

|{uk |2 dx�2;+o(1),

where o(1) � 0 as k � �. Hence there exist t$k # [tk �2, tk], t"k # [tk , 2tk]
such that for r=t$k or r=t"k we have

r |
�Br (xk)

|{uk |2 do�
2;

log 2
+o(1)�4

for large k. Taking account of the estimate

( sup
�Br (xk)

uk& inf
�Br (xk)

uk)2�\|�Br (xk)
|{uk | do+

2

�2?r |
�Br (xk)

|{uk |2 do,
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we conclude that

osc�Br (xk) uk= sup
�Br (xk)

uk& inf
�Br (xk)

uk�- 8?=: C0

for r=t$k or r=t"k and sufficiently large k.
Also observe that the estimate t$k�tk�t"k and our choice of tk imply that

|
0"Bt "k(xk)

|{uk | 2 dx�*�|
0"Bt $k(xk)

|{uk | 2 dx

for all k. In particular,

|
Bt $k(xk)

|{uk |2 dx�|
0

|{uk | 2 dx&*=2;&*+o(1)�#<1

for large k.
This implies that sup�Bt $k(xk) uk � � as k � �. Indeed, arguing by con-

tradiction, suppose that

sup
�Bt $k(xk)

uk�C1

for all k. Then the sequence

u~ k=max[0, uk&C1] # H 1
0(Bt$k

(xk))

satisfies uk�u~ k+C1 . Hence there holds

uk fk(uk)�C2e4?#&1u~ 2k

with a uniform constant C2 . Moreover, we have

|
Bt $k(xk)

|{u~ k |2 dx�|
Bt $k(xk)

|{uk | 2 dx�#

for large k. The Moser�Trudinger inequality then implies that

|
Bt $k�2(xk)

uk fk(uk) dx�C2 |
Bt $k(xk)

e4?#&1u~ 2k dx�Ct$2
k � 0

as k � �, whereas (24) gives

1= lim
L � �

lim
k � � |

BLrk(xk)
uk fk(uk) dx�lim inf

k � � |
Bt $k�2(xk)

uk fk(uk) dx.
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We now claim that also inf�Bt "k(xk) uk � � as k � �. Indeed, we have

sup
�Bt $k(xk)

uk& inf
�Bt "k(xk)

uk �osc�Bt $k(xk) uk+osc�Bt "k(xk) uk

+ inf
�Bt $k(xk)

uk& sup
�Bt "k(xk)

uk

�2C0+ inf
�Bt $k(xk)

uk& sup
�Bt "k(xk)

uk ,

and since t"k�2tk�4t$k the latter can be estimated

inf
�Bt $k(xk)

uk& sup
�Bt "k(xk)

uk

�
1

2? |
�B1(0)

(uk(xk+t$k !)&uk(xk+t"k!)) do(!)

�C |
�B1(0)

|
t"k

t$k

|{uk(xk+r!)| dr do(!)

�C \|0
|{uk |2 dx+

1�2

�C3 ,

uniformly in k. Hence inf�Bt "k(xk) uk � � and therefore, since fk(uk)�0, also

inf
Bt "k(xk)

uk � �

by the maximum principle.
Repeating the above argument with Tk=dist(xk , �0) instead of tk and

suitable numbers T $k , T"k satisfying Tk �4�T $k�Tk �2�Tk�T"k�2Tk , we
obtain the estimate

sup
�BT $k(xk)

uk� inf
�BT "k(xk)

uk+C4=C4 .

Hence it follows that t"k�T $k for large k, and therefore

2t"k�2T $k�Tk=dist(xk , �0).

Finally, since osc�Bt "k(xk) uk�C0 it also follows that

1�:k := sup
�Bt "k(xk)

uk � inf
�Bt "k(xk)

uk � 1
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as k � �. Thus, for any k the function u$k , given by

u$k= sup
�Bt "k(xk)

uk in Bt"k
(xk)

and

u$k=max[uk , min[:kuk , sup
�Bt "k(xk)

uk]] in 0"Bt"k(xk),

belongs to H 1
0(0) and

|
0

|{u$k | 2 dx�:2
k |

0"Bt "k(xk)
|{uk | 2 dx�:2

k*�C<1

for sufficiently large k. Clearly, u$k ) 0 weakly in H 1
0(0) and uk�u$k in

0"Bt"k
(xk). Thus, by the Moser�Trudinger inequality, observing that our

functions fk= fk(s) are increasing for s�s1 with s1�0 independent of k,
with error o(1) � 0 as k � � there holds

|
0"Bt "k(xk)

uk fk(uk) dx�|
0

u$k fk(u$k) dx+o(1) � 0

as k � �.
Letting *=*k � 1 suitably and replacing tk by t"k , we thus obtain the

assertion of the lemma. K

Lemma 5.2. For any sequence of radii sk>0 such that sk �rk � � there
holds

lim
k � � |

B2sk"Bsk(xk)
uk fk(uk) dx=0.

Proof. By Lemma 5.1 it suffices to consider sk�tk . We argue by con-
tradiction. Then for any sufficiently small number 0<a<a1 , with a1 as
determined in Section 4, and any L # N there exist points yk # Btk(xk) such
that 2sk=|xk& yk |�Lrk and

|
Bsk( yk)

uk fk(uk) dx�a.

147SEMILINEAR ELLIPTIC EQUATIONS



Decreasing sk further, and possibly choosing new points yk # Btk "BLrk(xk),
still satisfying |xk& yk |�2sk for the new sk , we can achieve that

a
2

�|
Bsk( yk)

uk fk(uk) dx�sup
s, y

|
Bs ( y)

uk fk(uk) dx�a,

where the supremum is taken over all y # Btk "BLrk(xk) and s�min[ |xk&
y|�2, sk].

Letting L � �, we then pass to a diagonal subsequence satisfying the
above for k�k0(L). Finally, remark that Lemma 5.1 implies that
sk�|xk& yk |�tk � 0 as k � �.

Now we distinguish two cases.

Case 1. Suppose there holds

|xk& yk |
sk

� � (k � �).

Then, given L # N, it follows that BLrk(xk) & BLsk( yk)=< for sufficiently
large k and our previous argument may be applied to show that a sequence

' (2)
k ( y)=.k(uk( yk+sk y))+2 log(skuk( yk)) � '(2)

locally C1-uniformly on R2 as k � �, where '(2) solves the equation

&2'(2)=8?e'(2)
in R2

with

1=|
R2

e'(2) dx= lim
L � �

lim
k � � |

BLsk( yk)
uk fk(uk) dx.

Thus, with error o(1) � 0 as k � �, for any L # N we have

2;=|
0

uk fk(uk) dx+o(1)

�|
BLrk(xk)

} } } +|
BLsk( yk)

} } } +o(1)=|
BL(0)

(e'(1)
+e'(2)

) dx+o(1).

Upon letting L � �, we conclude that ;�1 contrary to assumption.
Thus we are left with

Case 2. There exists a constant C such that

|xk& yk |�Csk , k # N.
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In this case we may scale with sk around xk to obtain the sequence

vk(x)=v (3)
k (x)=uk(xk+skx), k # N.

Note that rk �sk � 0 as k � �. Thus for any y # R2"[0] and any
r�min[1, | y|�2] we have

|
Br ( y)

s2
k vk fk(vk) dx�a

if k�k0( y). Splitting

vk=wk+ck

on Br( y) as before, where

ck=ck( y, r)=�|
Br ( y)

vk(x) dx,

by Lemma 4.1 for any r<min[1, | y|�2] we have

lim sup
k � �

|
Br ( y)

|{wk | 2 dx�a.

Moreover, since sk�tk , from Lemma 5.1 we deduce that

ck(0, 1)=�|
Bsk(xk)

uk dx� inf
Btk(xk)

uk � �

and hence from Lemma 4.2 that

ck( y, r) � � as k � �,

locally uniformly in y # R2, r>0.
In particular, the rescaled domains

0k=0 (3)
k =[x # R2; xk+skx]

exhaust R2 as k � �.
As before, let

'k=' (3)
k =.k(ck)+.$k(ck) wk+2 log(cksk) on Br( y).

Then we have

&2'k=Vk e'k,
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where

Vk=
.$k(ck)

ck \1+
wk

ck + eRk(ck, wk).

For y # R2"[0] and r<min[1, | y|�2], Lemmas 4.5, 4.6, and 4.7 then may
be carried over unchanged from our previous construction to conclude that
wk � 0 in C1(Br�5( y)) as k � � on any such ball Br( y).

It follows that

' (3)
k =.k(vk)+2 log(vk sk)+o(1),

where o(1) � 0 locally C1-uniformly on R2"[0], and our initial assumption
implies that

lim inf
k � � |

B1(( yk&xk)�sk)
e'k

(3)
dx=lim inf

k � � |
Bsk( yk)

uk fk(uk) dx�
a
2

>0.

From the results in [5, 11], and using our normalization, we then
deduce that ' (3)

k � '(3) locally C 1-uniformly on R2"[0] where '(3) solves

&2'(3)=8?e'(3)
in R2"[0] (25)

with e'(3)
# L1(R2"[0]).

We claim that '(3) may be extended as a distribution solution '(3) #
�q<2 W 1, q(B1(0)) of the differential inequality

&2'(3)�8?(e'(3)
+$0) on B1(0).

Indeed, let gk # H 1
0(B1(0)) solve

&2gk=Vke'k in B1(0).

Observe that with uniform constants C for large k in view of (19) we have

Vk=
.$k(ck)

vk
Wk�

.$k(ck)
ck&C

Wk�CWk .

Hence from (13) we conclude that

|
B1(0)

Vke'k dx�C |
B1(0)

Wk e'k dx=C |
Bsk(xk)

uk fk(uk) dx�C,

and (gk) is bounded in W 1, q
0 (B1(0)) for any q<2. But hk='k& gk is har-

monic on B1(0) with boundary data hk='k � '(3) in C1 on �B1(0). Thus
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'k= gk+hk ) '(3) weakly in W1, q(B1(0)) for any q<2. Moreover, for any
testing function 0�� # C �

0 (B1(0)) we find

|
B1(0)

'(3)(&2�) dx

= lim
k � � |

B1(0)
Vk e'k� dx

= lim
= � 0 \ lim

k � � |
B=(0)

Vke'k� dx+8? |
B1"B=(0)

e'(3)� dx+
=�(0) lim

= � 0
lim

k � � |
B=(0)

Vk e'k dx+8? |
B1(0)

e'(3)� dx.

Finally, for any =>0 by (24) we have

lim
k � � |

B=(0)
Vke'k dx�8? lim

L � �
lim

k � � |
BL rk(xk)

uk fk(uk) dx=8?.

Thus &2'(3)�8?(e'(3)
+$0), as claimed.

In particular, &2'(3)�8?$0 on B1(0). Therefore, with C1=inf�B1(0) '(3),
we conclude that

'(3)(x)�4 log
1

|x|
+C1 ,

which yields the contradiction

�>|
B1(0)

e'(3) dx�C |
B1(0)

|x|&4 dx=�.

Thus, also Case 2 is ruled out and the proof is complete. K

In particular, as a consequence of Lemma 5.2 we may sharpen
Lemma 5.1, as follows.

Lemma 5.3. There exist radii tk>0, k # N, such that with error o(1) � 0
as k � � there holds tk � 0, rk �tk � 0,

|
0"Btk(xk)

uk fk(uk) dx=o(1),

|
0"Btk(xk)

|{uk |2 dx�1+o(1),
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while

inf
Btk(xk)

uk � �.

Moreover, dist(xk , �0)�2tk .

Proof. Repeat the construction in the proof of Lemma 5.1 but replace
tk by t$k instead of t"k at the end. Since t$k�t"k , the condition dist(xk , �0)�
2t$k is immediate. Observing that t$k�t"k �4, from Lemma 5.2 we deduce that
as k � �

|
Bt "k "Bt $k(xk)

uk fk(uk) dx � 0

and hence that

|
0"Bt $k(xk)

uk fk(uk) dx � 0;

moreover, by construction

|
0"Bt $k(xk)

|{uk | 2 dx�*k � 1.

Finally, we have

inf
Bt $k(xk)

uk� inf
Bt "k(xk)

uk � �. K

Consider now the sequence

'k=' (0)
k =.k(uk)+2 log uk , k # N,

in the original coordinates. For r>0, y # 0 also decompose

uk=w (0)
k +ck on Br( y),

where

ck=ck( y, r)=�|
Br( y)

yk dx=c (0)
k ( y, r).
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Lemma 5.4. For any =>0 there exists a constant C1=C1(=) depending
on the sequence (.k) such that

lim
L � �

lim sup
k � �

sup
y

(s2e'k
(0)( y))�=

lim
L � �

lim sup
k � �

sup
y

&( |w (0)
k |+s |{w (0)

k | )&L�(Bs�10( y))�=,

where the supremum is taken with respect to y # 0"BLrk(xk) such that
uk( y)�C1 , with s=|xk& y|�2 and with w (0)

k =uk&ck( y, s).

Proof. (i) Under the slightly stronger assumption that ck( y, s)�C1

for some sufficiently large number C1 , the assertion follows from the blow-
up argument used in the proof of Lemma 5.2.

Indeed, suppose by contradiction that there is =>0 and points yk # 0
such that for any L # N there holds 2sk=| yk&xk |�Lrk for k�k0(L),
ck( yk , sk) � � as k � �, and such that either

s2
ke'k

(0)( yk)�=

or

&( |w (0)
k |+sk |{w (0)

k | )&L�(Bsk �10( yk))�=.

Observe that the assumption ck( yk , sk) � � in view of weak convergence
uk ) 0 in H 1

0(0) implies that sk � 0 as k � �.
For the rescaled sequence

vk(x)=v (4)
k (x)=uk(xk+skx)

with associated sequences w(4)
k and ' (4)

k =.k(v (4)
k )+2 log(sk v (4)

k ) as in the
analysis of Case 2 in the proof of Lemma 5.2, thereby using the result of
Lemma 5.2, we then obtain that

&w(4)
k &C1(Br�5( y)) � 0 as k � �

for any y # R2"[0], r<min[1, | y|�2], and hence, in particular, that

&( |w (0)
k |+sk |{w (0)

k | )&L�(Bsk �10( yk))

=&w (4)
k &C1(B1�10(( yk&xk)�sk)) � 0 as k � �.
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In addition, from the Brezis�Merle result and Lemma 5.2, we obtain that
'(4)

k � &� locally uniformly on R2"[0]; in particular, as k � �,

' (0)
k ( yk)+2 log sk =.k(uk( yk))+2 log(sk uk( yk))

=' (4)
k \yk&xk

sk +� &�,

and we achieve the desired contradiction.

(ii) We now show that ck( yk , sk) � � whenever uk( yk) � � as
k � �. Arguing indirectly, suppose that ck( yk , sk)�C uniformly in k.

Observe that Lemma 3.3 implies that yk � x0=limk � � xk and hence
sk � 0 as k � �. Indeed, for any � # C �

0 (R2) such that 0���1 and �#0
near x0 , by Lemma 3.3 and the Moser�Trudinger inequality there holds

fk(�uk) � 0 in L2(0)

and hence for any such � there holds

&2(uk�)=�fk(uk)&2{uk {�&uk 2� � 0 in L2(0)

as k � �. Thus, for any such � we have uk� � 0 in H 2 & H 1
0(0)/�C0(0� )

as k � �, and it follows yk � x0(k � �), as claimed.
Scale

vk(x)=v (5)
k (x)=uk( yk+sk x)

and decompose

vk=wk+ck , ck=c (5)
k =ck( y, r)

on Br( y), as usual. Observe that our assumption that c (0)
k ( yk , sk)�C trans-

lates into the uniform bound ck(0, 1)�C. Hence by Lemmas 4.1, 4.2, 4.3,
and Lemma 5.2 we obtain that vk � v0 , wk � 0 in H1(B3�2(0)) as k � �.

Thus, if B3�2(0) lies within our rescaled domain 0 (5)
k , upon decomposing

vk=wk+ck on B3�2(0) and choosing a cut-off function � # C �
0 (B3�2(0))

such that 0���1 and �#1 on B1(0), we obtain that, as k � �.

&2(wk�)=�s2
k fk(vk)&2{wk {�&wk 2� � 0 in L2(B3�2(0))

and hence wk� � 0 in H2 & H 1
0(B3�2(0))/�C0(B3�2(0)).

If B3�2(0) & �0(5){<, it follows that v0 #0 and we may argue in the
same way for the function vk� instead of wk �.
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In particular, we conclude that

|vk(0)&ck(0, 1)|=|uk( yk)&ck( yk , sk)| � 0

and hence that

ck( yk , sk) � �

as k � �, contradicting our initial assumption.
The proof is complete. K

Introducing polar coordinates (r, %) around xk , we next let

u� k(r)=�|
�Br (xk)

uk dv

denote the spherical mean of uk , etc. We also write u� k(x)=u� k(r) for x #
�Br(xk) and denote

wk=uk&u� k .

Expanding 'k=' (0)
k around u� k on Btk(xk), we find

'k =.k(uk)+2 log uk

=.k(u� k)+2 log u� k+\.$k(u� k)+
2

u� k+ wk+Rk(u� k , wk),

where

(4?&o(1)) w2
k�Rk(u� k , wk)�4?w2

k ,
.$k(u� k)

u� k
+

2
u� 2

k

=8?+o(1)

with error o(1) � 0 uniformly as k � �. Hence we can represent

'k&'� k =\.$k(u� k)+
2

u� k+ wk+Rk(u� k , wk)&Rk(u� k , wk)

=(8?+o(1)) u� kwk+O(w2
k+w2

k ).

By Jensen's inequality, e'� k�e'k. Expanding to second order around '� k ,
observing that

�|
�Br (xk)

('k&'� k) e'� k do=0,
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for 0<r<tk then we obtain

0�|
�Br (xk)

(e'k&e'
k) do� 1

2 |
�Br (xk)

|'k&'� k | 2 max[e'k, e'� k] do

�C |
�Br (xk)

(u� 2
kw2

k+|Rk(u� k , wk)&Rk(u� k , wk)| 2) max
�Br (xk)

e'k do.

Observe that Lemmas 5.3 and 5.4 imply that |wk |�u� k on Btk(xk) and
hence

|
�Br (xk)

|Rk(u� k , wk)&Rk(u� k , wk)|2 do

�C |
�Br (xk)

(w4
k+(w2

k )2) do�C |
�Br (xk)

u� 2
kw2

k do

for r�tk and all sufficiently large k.
By Lemma 5.4 and Poincare� 's inequality then it follows that

0�|
�Br(xk)

(e'k&e'
k) do�C max

�Br (xk)
(e'kr2) u� 2

k \r&2 |
�Br (xk)

w2
k do+

�o(1) |
�Br (xk)

u� 2
k |{wk |2 do, (26)

where o(1) � 0 uniformly for r # [Lrk , tk] as k0(L)�k � � and L � �.

Lemma 5.5. lim supk � � �Btk(xk) u� 2
k |{wk |2 dx�C.

Proof. Let Tk=dist(xk , �0)�2tk . By a Fubini-type argument as in the
proof of Lemma 5.1 there exist radii T $k with Tk �2�T $k�Tk such that

sup
�BT $k(xk)

u2
k+T $k |

�BT $k(xk)
|{uk | 2 dx�C,

uniformly in k. For ease of notation we now replace Tk by T $k . It suffices
to bound

|
BTk(xk)

u� 2
k |{wk |2 dx.
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Compute

&2
u� 2

kw2
k

2
+u� 2

k |{wk | 2=u� kw2
k(&2u� k)+u� 2

kwk(&2wk)

&|{u� k | 2 w2
k&4u� kwk {u� k {wk . (27)

The Laplace operator commutes with the spherical mean. Thus

u� kw2
k(&2u� k)+u� 2

kwk(&2wk)

=u� kw2
k fk(uk)+u� 2

k wk( fk(uk)&fk(uk))

=u� kwk uk fk(uk)&u� kw2
k( fk(uk)&fk(uk))&u� 2

k wk fk(uk).

Upon integrating over �Br(xk) the last term vanishes. By a similar obser-
vation, for the contribution from the first term on the right we obtain

|
�Br (xk)

u� k wk uk fk(uk) do=|
�Br (xk)

u� kwk e'k do

=|
�Br (xk)

u� kwk(e'k&e'� k) do.

Estimating

e'k&e'� k

'k&'� k
�max[e'k, e'� k]� max

�Br(xk)
e'k,

from Lemma 5.4 for any =>0 we can either bound the latter integrand by
a uniform constant C2=C2(=) or u� k�C1=C1(=) and,

max
�Br (xk)

e'k+2 log r�=+o(1)

with error o(1) � 0 uniformly for r�Lrk as k0(L)�k � � and L � �.
Thus, we obtain the estimate

u� kwk(e'k&e'� k)�C2(=)+(=+o(1)) r&2u� 2
k w2

k .

Again the Poincare� inequality gives

|
�Br (xk)

w2
k do�Cr2 |

�Br (xk)
|{wk |2 do.
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Hence we find that

|
�Br (xk)

u� kwkuk fk(uk) dx�C(=)+(=+o(1)) |
�Br (xk)

u� 2
k |{wk |2 do

with o(1) � 0 uniformly for r�Lrk as k0(L)�k � �, L � �.
If r�Lrk , for k�k0(L) we have

max
�Br (xk)

e'k+2 log r�max
BL(0)

e'k
(1)(x)+2 log |x|�C

and therefore

|
�Br (xk)

u� k wkuk fk(uk) dx�Cr&2 |
�Br (xk)

u� 2
kw2

k do

�C |
�Br (xk)

u� 2
k |{wk | 2 do.

Finally, we use positivity of uk , fk(uk) and the monotonicity of fk for
s�s1 to bound

|
�Br (xk)

u� k w2
k(fk(uk)& fk(uk)) do

�|
�Br (xk)

w2
ku� k fk(uk) do

=�|
�Br (xk)

w2
k do |

�Br (xk)
(e'k&(uk&u� k)( fk(uk)& fk(u� k))) do

� max
�Br (xk)

w2
k |

�Br (xk)
(C+e'k) do

�C(=)+(=+o(1)) |
�Br (xk)

e'k do,

where o(1) � 0 uniformly for r�Tk as k � � on account of Lemmas 4.7
and 5.4.

Splitting

4 |u� k wk {u� k {wk |� 1
4 u� 2

k |{wk |2+16w2
k |{u� k |2,
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and choosing == 1
4 , upon integrating (27) over BTk(xk) we then obtain that

|
BTk(xk)

u� 2
k |{wk |2 dx

�|
�BTk(xk)

�n(u� 2
kw2

k) dx+C |
BTk(xk)

w2
k |{u� k | 2 dx

+C |
BLrk(xk)

u� 2
k |{wk | 2 dx+o(1) |

BTk(xk)
u� 2

k |{wk |2 dx+C

for any L, where o(1) � 0 as k � �, L � �. But by choice of Tk , observ-
ing that |wk |�uk+u� k , |{wk |�|{uk |+|{u� k |, and, finally, that

\|�BTk(xk)
|{u� | do+

2

�2?Tk |
�BTk(xk)

|{u� |2 do

�2?Tk |
�BTk(xk)

|{u| 2 do�C,

we can estimate the first term on the right by a uniform constant. Similarly,
using Lemma 5.4, we find

|
BTk(xk)

w2
k |{u� k |2 dx�C |

BTk(xk)
|{uk |2 dx�C.

Moreover, on BLrk(xk) we have

|
BLrk(xk)

u� 2
k |{wk | 2 dx�C |

BLrk(xk)
|{('k&'� k)|2 dx

�C |
BL(0)

|{(' (1)
k &'� (1)

k )|2 dx

�CL2 &' (1)
k &'(1)&C1(BL(0)) � 0

as k � �. Thus, choosing L # N sufficiently large, we find that

lim sup
k � �

|
BTk(xk)

u� 2
k |{wk |2 dx�C,

as desired. K

159SEMILINEAR ELLIPTIC EQUATIONS



Letting 'k=' (0)
k as above, setting

8k(r)=|
Br (xk)

uk fk(uk) dx=|
Br (xk)

e'k dx,

9k(r)=|
Br (xk)

|{uk |2 dx,

and defining '� k=' (0)
k as well as

8� k(r)=|
Br (xk)

e'� k dx,

from Lemma 4.7, the estimate (26), and Lemma 5.5 we conclude that

sup
r

(8k(r)&8� k(r)) � 0 as k � �.

We can now identify the blow-up energy level.

Lemma 5.6. There holds ;= 1
2 .

Proof. Rewriting 8� k as

8� k(r)=|
B1(0)

r2e'� k(xk+rx) dx,

and shifting xk to 0 for convenience, we compute

r8� $k(r)=|
B1(0)

e'� k(rx)(2r2+r3x } {'� k) dx

=28� k(r)+|
r

0 \
1

2? |
�B\(0)

e'� k do |
�B\(0)

�n'� k do+ d\.

Observe that for r�tk with error o(1) � 0 as k � � we have

&2'k =&2' (0)
k =\.$k(uk)+

2
uk+ fk(uk)&\."k(uk)&

2
u2

k+ |{uk |2

=(8?+o(1)) e'k&(8?+o(1)) |{uk |2.
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Thus

&|
�Br (0)

�n '� k do

=&|
�Br (0)

�n 'k do=|
Br (0)

&2'k dx

=(8?+o(1)) |
Br (0)

e'k dx&(8?+o(1)) |
Br (0)

|{uk |2 dx

=8?(8k(r)&9k(r))+o(1)�8?(8� k(r)&9k(r))+o(1).

Hence for r�tk we obtain

0�r8� $k(r)�28� k(r)&4 |
r

0
8� $k(\)(8� k(\)&9k(\)) d\+o(1)

=28� k(r)&28� 2
k(r)+4 |

r

0
8� $k(\) 9k(\) d\+o(1)

=28� k(r)(1&8� k(r))+4 |
r

0
9$k(\)(8� k(r)&8� (\)) d\+o(1).

Splitting the last integral

Ik=|
r

0
9$k(\)(8� k(r)&8� k(\)) d\=|

Lrk

0
} } } +|

r

Lrk

} } }

and observing that 9k(Lrk)=o(1), 8k(Lrk)=8� k(Lrk)+o(1)=1+o(1)
with error o(1) � 0 if first k � � and then L � �, we may estimate

Ik�9k(r)(8� k(r)&1)+o(1)

to obtain the inequality

0�2(8� k(r)&29k(r))(1&8� k(r))+o(1)

for any r�tk . In view of Lemma 5.3, at r=tk with error o(1) � 0 as k � �
we have 8� k(r)=8k(r)+o(1)=2;+o(1), 9k(r)�2;&1+o(1), yielding
the inequality

0�4(1&;)(1&2;)+o(1).

Since 1
2�;<1, the claim follows. K
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APPENDIX A

Here we show that the family (u\)\>0 defined in Section 2 indeed is a
Palais�Smale sequence at level ;= 1

2 , that is, satisfies

&dE(u\)&H1(0)= sup
v # H1

0(0); &v&H 1
0(0)�1

(dE(u\), v) � 0 as \ � 0.

For 0/BR0
(0) we may regard u\ # H 1

0(BR0
(0)) and it will suffice to show

that

&dE(u\)&H&1(BR0(0)) � 0 as \ � 0. (28)

Given v # H 1
0(BR0

(0)), for 0�r�R0 denote as

v� (r)=�|
�Br (0)

v do

the spherical mean. Then v� # H 1
0(BR0

(0)), and by radial symmetry of u\ we
have

(dE(u\), v)=(dE(u\), v� ).

Since, moreover, there also holds &v� &H1
0(BR0 (0))�&v&H1

0(BR0(0)) , in order to
estimate dE(u\) in the dual norm it suffices to consider radially symmetric
testing functions v=v� # H 1

0(BR0
(0)).

Let v$= d
drv, etc. Then in view of (8), we may further assume

0=|
BR0(0)

{u\ {v dx=2? |
R

0
u$\v$r dr

=&
- 2? a\

- log(R�\) |
R

\
v$(r) dr=

- 2? a\

- log(R�\)
(v(\)&v(R)); (29)

that is,

v(\)=v(R).

Let G\ : H 1
0(B\(0)) � R, H\ : H 1

0(BR"B\(0)) � R be given by, respectively,

G\(w)=|
B\(0)

wf (u\) dx, H\(w)=|
BR"B\(0)

wf (u\) dx.
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Then from (29) it follows that

&(dE(u\), v)=|
BR(0)

vf (u\) dx

=v(R) |
BR(0)

f (u\) dx+G\(v&v(R))+H\(v&v(R))

=I+II+III.

Ho� lder's inequality and the bound &v&H1
0(BR0(0))�1 imply the uniform

estimate

|v(R)|=|v(R0)&v(R)|�|
R0

R
|v$| dr

�\ 1
2?

log \R0

R + } 2? |
R0

R
|v$|2 r dr+

1�2

�\ 1
2?

log \R0

R ++
1�2

.

Since f (u\) � 0 in L1(BR(0)) as \ � 0, we conclude that

|I |� sup
v=v� # H1

0(BR0(0)); &v&H 1
0(BR0

(0))�1

v(R) |
BR(0)

f (u\) dx � 0. (30)

Let v=v\(r) # H 1
0(B\(0)) maximize G\ subject to the constraint

&v&H1
0(B\(0))�1. Then &v\&H1

0(B\(0))=1, and there exists *\>0 such that

&2v\=&
1
r

(rv$\)$=*\ f (u\) in B\(0). (31)

Multiplying (31) by v\ and integrating by parts, we infer that

1=|
B\(0)

|{v\ |2 dx=*\G\(v\). (32)

Since u\ is a constant on B\(0), we may also integrate (31) directly from
r=0 to s<\ to find

&v$\(s)=*\s&1 |
s

0
f (u\) r dr= 1

2*\ f (u\) s

and hence, for 0<r<\, that

v\(r)=&|
\

r
v$\(s) ds= 1

4 *\ f (u\)(\2&r2).
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Again using that u\ #u\(0), we deduce that

G\(v\)=2? |
\

0
v\ f (u\) r dr=

?
8

*\ f 2(u\) \4

=
*\

8?u2
\(0) \|B\(0)

u\ f (u\) dx+
2

�
*\a2

\

8?u2
\(0)

.

By (32) therefore

1=*\G\(v\)�
*2

\a2
\

8?u2
\(u)

,

and it follows that, as \ � 0,

*2
\�8?u2

\(0)�a2
\ � �

and thus

|II |� sup
v # H1

0
(B\(0)); &v&H 1

0(B\(0))

G\(v)�G\(v\)=
1

*\
� 0. (33)

Similarly, let w=w\(r) # H 1
0(BR"B\(0)) maximize H\ subject to the con-

straint &w&H1
0(BR"B\(0))�1. Then again &w\&H1

0(BR"B\(0))=1, and there exists
+\>0 such that

&2w\=&
1
r

(rw$\)$=+\ f (u\) in BR "B\(0), (34)

while w\(R)=w\(\)=0.
Multiplying (34) by w\ and integrating, we obtain that

1=|
BR"B\(0)

|{w\ | 2 dx=+\H\(w\), (35)

similar to (32). Moreover, observe that (34) implies that r [ rw$\(r) is non-
increasing. Therefore, for any s>\ either w$\(s)�0 or we can estimate

1�2? |
s

\
(w$\(r))2 r dr�2? |

s

\
(w$\(s))2 s2 dr

r
=2? log \ s

\+ (w$\(s))2 s2.

In particular, if we choose s=\: for some 1
2�:<1, it follows that either

w$\(\:)�0 or

w$\(\:) \:�
1

- 2?(1&:) log(1�\)
� 0 (36)
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as \ � 0. Next, we integrate (34) from \ to \: and use monotonicity of u\

to bound

\w$\(\)&\:w$\(\:)=+\ |
\:

\
f (u\) r dr

�+\ |
\:

\
u\ f (u\) r dr�u\(\:)

�
+\ a2

\

2?u\(\:)
=

+\a\ - log(R�\)

- 2? log(R�\:)
.

Using also (36) and the fact that a\ � 1 as \ � 0, we conclude that for
sufficiently small \>0 and all s # [\, \:] there holds

sw$\(s)�\w$\(\)�C(1++\) �log \1
\+

&1

with a uniform constant C.
Thus, for \�r�\:, 1

2�:<1 we can now estimate

w\(r)�|
r

\
w$\(s) ds�\w$\(\) |

r

\

ds
s

�C(1++\)
log(r�\)

- log(1�\)
�C(1++\)(1&:) �log \1

\+
�C(1++\)(1&:) m\, R(\:)�C(1++\)(1&:) u\(r)

and it follows that

|
\:

\
w\ f (u\) r dr�C(1++\)(1&:) |

\:

\
u\ f (u\) r dr

�C(1++\)(1&:).

Finally, the truncated function

u~ \(r)=min[u\(r), u\(\:)]

satisfies

|
BR(0)

|{� u\ |2 dx=
a2

\

log(R�\) |
R

\:

dr
r

=a2
\

log(R�\:)
log(R�\)

�C<1

for any :<1 and sufficiently small \>0.
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Hence ( f (u~ \))\>0 is bounded in L p(BR(0)) for some p= p(:)>1, and
thus also ( f (u\) |BR"B\ :(0))\>0 . Since H 1

0(BR "B\(0))/�H 1
0(BR(0))/�

Lq(BR(0)) for any q<�, it follows that for any fixed :<1, as \ � 0 there
holds

sup
w # H1

0(BR"B\(0)); &w&H 1
0(BR"B\(0))

|
R

\:
wf (u\) r dr � 0.

We conclude that

lim sup
\ � 0

H\(w\)�2? lim sup
\ � 0

|
\:

\
w\ f (u\) r dr

�C(1&:) lim sup
\ � 0

(1++\).

Thus, as \ � 0, either +\ � � and H\(w\) � 0 by (35), or +\�C<� and
we may let : � 1 to conclude that H\(w\) � 0 and therefore, in view of
(30), (33), that

lim sup
\ � 0

&dE(u\)&H&1(0)�lim sup
\ � 0

H\(w\)=0,

as desired.
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