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Abstract. We propose two schemes to establish entanglement between two
mesoscopic quantum systems through a third mesoscopic quantum system.
The first scheme entangles two nano-mechanical oscillators in a non-Gaussian
entangled state through a Cooper-pair box (CPB). Entanglement detection of
the nano-mechanical oscillators is equivalent to a teleportation experiment in a
mesoscopic setting. The second scheme can entangle two CPB qubits through
a nano-mechanical oscillator in the presence of arbitrarily strong decoherence.
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Probing quantum superpositions and entanglement with mesoscopic mechanical systems has
recently developed into an area of substantial interest [1]–[9]. The most striking experimental
demonstrations are the interferometry of mesoscopic free particles (molecules) [1] and the
entangling of mesoscopic atomic ensembles [2]. Proposals for the generation of entanglement
between Bose–Einstein condensates [3, 10] and coherence between states of mesoscopic atomic
ensembles have been made [4]. Some early proposals involving harmonically bound mesoscopic
systems were based on opto-mechanical effects where schemes for observing coherent
superpositions of states of the movable mirror [5] and entanglement between two such mirrors
[6] were proposed. Soon, however, a canonical system of a Cooper-pair box coupled to a
mesoscopic cantilever was introduced [7]. It offered an optics-free, fully nano-technological
alternative, with switchable couplings for such schemes. Accordingly, a scheme to observe
coherent superpositions between states of a mesoscopic cantilever, as well as its entanglement
with a Cooper-pair box (CPB) was proposed [7]. Recently, interferometric proposals to probe
superpositions of states of movable mirrors have also been proposed [8]. Recently, a proposal
to entangle two well-separated nano-electromechanical oscillators through a harmonic chain
has also been made [9]. A host of other quantum effects are expected to be seen in mesoscopic
mechanical systems [11]–[17]. Even quantum computation has been proposed with such systems
[18]. These theoretical proposals are fuelled by the rapid technological progress in the fabrication
of nano-mechanical systems and experiments approaching the quantum regime [19, 20].

The Hamiltonian which generates entanglement between a CPB and a cantilever in [7]
offers many more exciting entangling possibilities even with minimal additions to the number of
systems, such as just one extra CPB or just one extra cantilever. In this paper, we show that with
the above minimal addition, one can entangle two mesoscopic systems of the same dimension:
two discrete variable systems (two CPBs) or two continuous variable systems (two nano-
mechanical cantilevers (NCs)). One can also verify their entanglement with an entanglement
witness or teleportation with higher than classically achievable fidelity. An interesting feature of
the entangling of the cantilevers is that they are placed in a non-Gaussian continuous variable
entangled state as a result of our scheme. To date, only Gaussian entangled states have been
used in continuous variable implementations of quantum information processing [21], and the
scheme we suggest might enable one to realize a non-Gaussian entangled state. The scheme we
suggest for detection of the non-Gaussian entanglement is equivalent to possibly the simplest
realization of a quantum teleportation experiment with entangled NCs. Positive features of the
entangling scheme for the CPBs are its applicability in entangling non-neighbouring (not directly
interacting) boxes in an array and its robustness to the thermal nature as well as decoherence of
the states of the mediating cantilever. Most importantly, our schemes seek to extend the domain of
quantum behaviour by entangling two mesoscopic systems through a third mesoscopic system.

1. Entangling two nano-cantilevers

A CPB is an example of a qubit with states |0〉 and |1〉 representing n or n + 1 Cooper pairs in
the box [7, 22]. It can be made to evolve under a Hamiltonian −EJ

2 σx by the application of an
appropriate voltage pulse [7, 22], where σx is the Pauli-X operator and the parameter EJ is called
the Josephson coupling. This gives rise to coherent oscillations between the |0〉 and |1〉 states as
observed in [22]. A NC, on the other hand is a simple example of a quantum harmonic oscillator.
We now proceed to the proposal for entangling two cantilevers based on their interaction with a
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CANTILEVER a CANTILEVER b

CPB

SET CPB

SET 1 SET 2

Figure 1. The figure shows a schematic diagram of the setup for entangling
two cantilevers, denoted as cantilever 1 and cantilever 2 respectively, through a
CPB. For the entangling, measurements are only needed to be performed on the
CPB, which is done with the help of the single electron transistor SET CPB.
For verification of the entanglement of cantilevers 1 and 2 by a mesoscopic
teleportation, measurements need to be performed on them through SET1 and
SET2 respectively.

single CPB. The setup is shown in figure 1. The Hamiltonian required for the scheme is given by

H = −2ECσz + h̄ωma†a + h̄ωmb†b + λ{(a + a†) + (b + b†)}σz, (1)

where the parameter EC is called the charging energy of the CPB, σz is the Pauli-Z operator
for the CPB, operators a, a† and b, b† are the creation/annihilation operators for two oscillators
and λ is a coupling strength. We assume that the NCs are prepared initially in their ground state
(this is quite realistic for the GHz oscillators available now [20] by cooling, as suggested in
[18]). Accordingly, we start with the cantilevers in the initial state |0〉a|0〉b, where subscripts
a and b denote the two cantilevers, and the CPB in the state 1√

2
(|0〉 + |1〉). (This state can be

prepared by using a voltage pulse to accomplish a π/2 rotation about the x-axis through −EJ

2 σx

followed by local phase adjustments). The evolution induced by the Hamiltonian H has the
feature that corresponding to the |0〉 state of the CPB the cantilevers undergo an oscillation
given by the state |β(e−iωmt − 1)〉 and corresponding to the |1〉 state of the CPB the cantilevers
undergo an oscillation given by the state |−β(e−iωmt − 1)〉. The evolution that takes place in a time
T = π/ωm is

1√
2
(|0〉 + |1〉)|0〉a|0〉b → 1√

2
(e−i 2ECT

h̄ |0〉|−2β〉a|−2β〉b + ei 2ECT

h̄ |1〉|2β〉a|2β〉b), (2)

where β = λ/h̄ωm is a dimensionless coupling and |±2β〉 are coherent states. For simplicity,
we will assume that 2ECT

h̄
is an integral multiple of 2π. We now measure the CPB in the basis

|±〉 = 1√
2
(|0〉 ± |1〉) to obtain the state

|ψ(±)〉ab = 1√
2
(|−2β〉a|−2β〉b ± |2β〉a|2β〉b), (3)

where the upper and lower signs stand for the |+〉 and |−〉 outcomes respectively. If β ∼ 1, as will
happen, for example, if one takes the parameters of [7] (even if one took the higher frequency
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oscillators of [20], which decreases λ by about a factor of 6, one can reduce the mass of the
oscillators by the same factor to keep β ∼ 1) then |〈−2β|2β〉|2 = e−16β2 ∼ O(10−7). This means
that the states |−2β〉 and |2β〉 involved in |ψ(±)〉ab are nearly orthogonal and thus |ψ(±)〉ab has
nearly one ebit of entanglement. The above also implies that each outcome has a probability of
nearly 1/2 to occur. |ψ(±)〉ab are a class of non-Gaussian continuous variable entangled states
known as entangled coherent states, proposed originally in the optical context [23].An analogous
calculation will show that the scheme also works if the cantilevers started in coherent states of
nonzero amplitude.

2. Verifying the entanglement of the cantilevers by teleportation

An interesting question now is how to verify the entanglement of the states |ψ(±)〉ab. The
non-local character can be ascertained in principle from Bell’s inequality experiments [24].
However, these involve measurements in a highly non-classical (Schrödinger Cat-like) basis
[24], and could be rather difficult for an NC. For an NC, position/momentum measurements
seem natural. Unfortunately, from joint uncertainties in position and momentum of the two
NCs, the entangled nature of the state |ψ(±)〉ab cannot be inferred. We will thus use quantum
teleportation through |ψ(±)〉ab to demonstrate its entangled nature. Note that the possibility of
teleportation of Schrödinger Cat states of a third oscillator through the entangled coherent state
of two oscillators has already been pointed out by van Enk and Hirota [25] in the quantum
optical context. However, for NCs, preparing a third NC in a highly non-classical state such as
a Schrödinger Cat is challenging, making it directly interact with one of the entangled NCs is
difficult and, moreover, we do not want to increase the complexity of the system by adding an
extra NC. We will thus concentrate on the teleportation of the state of a qubit through |ψ(±)〉ab

with better than classically achievable (2/3) fidelity. This will prove the entangled nature of the
state |ψ(±)〉ab.

For the teleportation protocol, first assume that the NCs were prepared in |ψ(+)〉ab as a
result of the measurement of the CPB in the |±〉 basis. The CPB is now, of course, disentangled
from the state of the NCs. It is thus now prepared in the arbitrary state cos θ/2|0〉 + eiδ sin θ/2|1〉
which we want to teleport through |ψ(+)〉ab. The CPB interacts with cantilever a for a time T

and the resulting evolution is:

(cos θ/2|0〉 + eiδ sin θ/2|1〉)|ψ(+)〉ab → 1√
2
(cos θ/2|0〉|0〉a|−2β〉b + eiδ sin θ/2|1〉|4β〉a|−2β〉b

+ cos θ/2|0〉|−4β〉a|2β〉b + eiδ sin θ/2|1〉|0〉a|2β〉b). (4)

The position of the cantilever a and the state of the CPB in the |±〉 basis are now measured.
All the above corresponds to the Bell state measurement part of the teleportation procedure. As
e−8β2 � 1, there is a probability ∼ 1/2 that the cantilever is projected to the state |0〉a. Let us, for
the moment, concentrate on this outcome. Contingent on this outcome, the state of the CPB is
projected to |+〉 and |−〉 with 1/2 probability each, corresponding to which the state of cantilever
b goes to cos θ/2|−2β〉b + eiδ sin θ/2|2β〉b and cos θ/2|−2β〉b − eiδ sin θ/2|2β〉b. Let us assume
the state to be cos θ/2|−2β〉b + eiδ sin θ/2|2β〉b for the moment. In some sense the above state of
cantilever b already contains the teleported quantum information from the original state of the
CPB. However, it is difficult to verify this information while it resides in the state of cantilever
b. So we map it back from cantilever b to the CPB (which is now disentangled as a result of the
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previous measurement) by preparing the CPB in the state |+〉, allowing for the evolution

|+〉(cos θ/2|−2β〉b + eiδ sin θ/2|2β〉b) → 1√
2
(cos θ/2|0〉|0〉b + eiδ sin θ/2|1〉|4β〉b

+ cos θ/2|0〉|−4β〉b + eiδ sin θ/2|1〉|0〉b), (5)

and then measuring the position of cantilever b. With a probability 1/2 it is |0〉b, for which the
CPB is projected to the state cos θ/2|0〉 + eiδ sin θ/2|1〉, thereby concluding a chain of operations
leading to teleportation with unit fidelity. In the case when the outcome |−〉|0〉a is obtained
during the Bell measurement procedure, a teleportation with unit fidelity can also be performed
on obtaining |0〉b in the mapping back stage followed by the correction of a known phase factor.
For the outcomes |±〉|−4β〉a and |±〉|4β〉a in the Bell state measurement, the CPB is prepared
in states |0〉 and |1〉 respectively, while for |−4β〉b and |4β〉b in the mapping back stage, it is
prepared in states |0〉 and |1〉 respectively. This completes our teleportation protocol. The fidelity
of the procedure is thus unity with probability 1/4, cos2 θ/2 with probability (3/8) cos2 θ/2 and
sin2 θ/2 with probability (3/8) sin2 θ/2. Averaging over all possible initial states one then gets
an average fidelity of 3/4, which is greater than the classical teleportation fidelity of 2/3.

Let us clarify the sense in which the above is a bona fide teleportation procedure despite the
systems being adjacent and the same CPB being reused. The CPB interacts with only cantilever
a during the Bell state measurement procedure and hence this can be considered as a local action
by a party holding cantilever a. The CPB is automatically reset in the process as a fresh qubit
not bearing any memory of its initial state. In the mapping back stage it can thus be regarded as
a local device used by the party holding cantilever b for extraction of the state.

Decoherence of the cantilever, if significant, will of course affect both the generation of
the state |ψ(+)〉ab, as well as the teleportation. However, decoherence of a cantilever is in the
coherent state basis and it will simply multiply the off diagonal term |−2β〉a|−2β〉b〈2β|a〈2β|b
(and its conjugate) in |ψ(+)〉ab by a factor of the form e−	 where e−	 ∼ e−8β2π/Q in which Q

is the quality factor of the cantilevers [7] (note that as physically expected, higher the quality
factor lower the decoherence). Similarly, in evolutions given by equations (4) and (5), the off
diagonal terms |0〉|0〉a|2β〉b〈1|〈0|a〈−2β|b and |0〉|0〉b〈1|〈0|b (and their conjugates) are multiplied
by e−5	/2 and e−	/2 respectively. The net effect of decoherence at the end of the teleportation
will then be a reduction of fidelity corresponding to the |±〉|0〉a outcome of the Bell state
measurement to (2 + e−4	)/3, while the fidelity corresponding to other outcomes will remain
unchanged. Thus unless all coherence is destroyed by decoherence i.e., e−4	 ∼ 0, we have an
average teleportation fidelity 2/3 + e−4	/12, which is better than 2/3. For example, for Q ∼ 1000
[7], we have e−	 ∼ 0.975 (for β ∼ 1 [7]) and average teleportation fidelity is 0.74. In this paper,
we assume that the CPB hardly decoheres over the ns timescale of experiments with a GHz
NC [7].

3. Entangling two CPBs

The setting of our scheme of entangling two CPBs as depicted in figure 2 is two CPBs coupled
to a single NC. The Hamiltonian for this system, in the absence of the voltage pulse giving rise
to −EJ

2 σx, is well approximated (by straightforward extrapolation of [7]) as

H = −2EC(σ(1)
z + σ(2)

z ) + h̄ωma†a + λ(a + a†)(σ(1)
z + σ(2)

z ), (6)
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CANTILEVER

CPB2CPB1

SET2SET1

Figure 2. The figure shows a schematic diagram of the setup for entangling two
CPBs, denoted as CPB1 and CPB2 respectively, through a cantilever. For the
entangling procedure, no measurements are required.

where σ(i)
z is a Pauli-Z operator of the ith CPB, a, a† are the annihilation–creation operators of

the nano-cantilever. We initially consider the NC to be starting in the coherent state |α〉 (we shall
generalize later to a thermal state) and the CPB’s to be initialized in the state |0〉1|0〉2, where
labels 1 and 2 stand for the two CPBs. At first, the Hamiltonian −EJ

2 σx is applied to each CPB
to rotate their states from |0〉 to 1√

2
(|0〉 + |1〉). Then evolution according to the Hamiltonian H

kicks in and in a time T = π/ωm the evolution of the state can be calculated from [11] to be
1√
2
(|0〉1 + |1〉1)

1√
2
(|0〉2 + |1〉2)|α〉 → 1

2{e−i(ECT +φ(T,β,α))|0〉1|0〉2|−α − 4β〉
+ (|0〉1|1〉2 + |1〉1|0〉2)|−α〉 + ei(ECT−φ(T,β,α))|1〉1|1〉2|−α + 4β〉}, (7)

where φ(T, β, α) = 2βImα is a phase factor and |−α〉, |−α − 4β〉 and |−α + 4β〉 are coherent
states. The sign flip from α → −α in the above evolution occurs due to the oscillator evolution
for half a time period. The production of states of the above type has been noted earlier in the
context of cavity-QED [26] and very recently in the context of measurement-based quantum
computation [27]. In [27], it has been pointed out that for a large β, a measurement of the
oscillator (NC in our case) will project the two qubits (CPBs in our case) probabilistically to
the maximally entangled state |ψ+〉12 = 1√

2
(|0〉1|1〉2 + |1〉1|0〉2). Such an entangled state can, of

course, be verified through Bell’s inequalities by measurements on the CPBs.
Note that when decoherence of the states of the cantilever is taken into account, as occurs

in the coherent state basis [7], we can, without loss of generality, replace |−α〉, |−α − 4β〉
and |−α + 4β〉 in equation (7) by |−α〉|ξ−α〉, |−α − 4β〉|ξ−α−4β〉 and |−α + 4β〉|ξ−α+4β〉, where
|ξ−α〉, |ξ−α−4β〉 and |ξ−α+4β〉 are three distinct environmental states with pair-wise mutual overlap
tending to zero in the limit of strong decoherence. Thereby, for β ∼ 1, the projected state |ψ+〉12

of the two CPBs for a state |−α〉 of the cantilever is unaffected by decoherence.
We have thus proposed a way of entangling two CPBs through a cantilever in the presence

of decoherence. This is an useful alternative to entangling the CPBs by direct interaction, as
it will work even when the CPBs fall outside the range of each other’s interaction. We have
also proposed a method to verify their entanglement through local measurements on each of
the CPBs. Of course, if the CPBs were allowed to resonantly exchange energy with a mode of
the cantilever in analogy with [18], then not only entanglement, but any quantum computation
would be possible in low decoherence [18]. The presence of arbitrarily strong decoherence will,
however, affect such a method. What we have shown is that even given the Hamiltonian of [7],
arbitrarily strong decoherence, entanglement between the CPBs is still possible.
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4. Conclusions

In this paper, we have proposed a scheme to entangle two mesoscopic systems of the same
type through a third mesoscopic system. In this context, we have also proposed a teleportation
experiment in the mesoscopic setting using continuous variable entanglement for discrete variable
teleportation.
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