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Abstract

In this paper we deal with three types of problems concerning the Hardy—Rellich’s embedding for a bi-
Laplacian operator. First we obtain the Hardy—Rellich inequalities in the critical dimension n = 4. Then we
derive a maximum principle for fourth order operators with singular terms. Then we study the existence,
non-existence, simplicity and asymptotic behavior of the first eigenvalue of the Hardy—Rellich operator
A% - % ‘f;—)l? under various assumptions on the perturbation q.
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1. Introduction

Let £2 C R" be a smooth bounded domain and O € £2. Let us recall that the Hardy—Rellich’s
inequality states that for all u HO2 (£2)

/ 2 n2(n—4)2/ u?

Aul” = ———— [ =320, n=>5, (1.1
16 Jx[*
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where % is the best constant in (1.1) and it is never achieved in any domain £2 C R”. This
inequality was firstly proved by F. Rellich [14] for u € HOZ(.Q) and it was extended to functions
in H?(£2) N H} (2) by Dold et al. [9]. On the lines of improving Hardy—Sobolev inequality
for functions in Hol(.Q) (see [1,3,6,8,10]) there has been a considerable interest in improving
(1.1). Recently, Gazzola et al. [11] proved that for n > 5 there exist C, C; > 0 such that for all

u € H}(2) oru € H*(£2) N HJ (2), the following inequality holds,

2 2 2 2
n“(n —4) u u 5
AuP——— | —>c | —+cC , >5. 1.2
fraur -G [z [ e [ (42
2 2 2 2
Furthermore, Tertikas and Zographopolous [17] have improved this by obtaining an optimal
inequality,
2 2 2 2
-4 —4
[ioup O [ LMD [ s )
16 |4 8 lx|*(nR/|x])?
2 2 2

which holds for every u € H(£2) or u € H*(2) N Hj (2) where R > ediam(£2). For the sake
of completeness we give the proof of the generalized inequality in Appendix A (Theorem A.1)
so that (1.3) follows as a consequence of this theorem.

In this paper we consider the following three problems:

e Optimal Hardy—Rellich inequality in n = 4.
e Maximum principle for the bi-Laplacian equation with singular potential.
e Existence and non-existence of the perturbed Hardy—Rellich operator.

Surprisingly optimal Hardy—Rellich inequality for n = 4 turn out to be different compared to
n > 5 and this will be dealt in Section 3.
Secondly, for n > 5 the best constant

2 2 2
—4
A= inf {/|Au|2—w/u—4: /u2=1} (1.4)
ueHA(R) 16 x|
2 2

2

is never attained in any domain §2 and hence as in [4] we look to the perturbed problem

200 _ 4)2 2

ueHA(R2) 16 Jx[*
2 2 2

where g € C°(£2) be such that 0 < ¢ (x) < 1. In Section 5 we give a necessary and sufficient con-
dition on ¢ for which A(g) is achieved as in [4] for the Hardy—Sobolev inequality. Unlike in the
Laplacian case, the bi-Laplacian does not satisfy the maximum principle which is a main ingre-
dient in obtaining the results. Therefore in Section 4 we prove a weak type maximum principle
for bi-Laplacian with singular potential using continuation method which will be used to prove
the existence and non-existence of minimizers for (1.5). Finally in Appendix A we prove some
technical lemmas and we give some new Hardy—Rellich’s inequalities and W7 (£2) estimates.
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2. Main results

Let R > 0, B(R) denote the open ball of radius R with center at the origin and B denotes the
ball with radius one. Let 0 € £2 C R" be a domain with smooth boundary and define

C&r([}) ={ve Ch(£2): v is radial and suppv C 2},
H{'.($2) = {v € H{'(£2): v is radial}.
Let —Ag3 denotes the Laplace—Beltrami operator on S3. Then the spectrum of —Ags =—As 18

discrete with eigenvalues given by {i (i +2): i € NU{0}}. Let V; be the eigenspace corresponding
to the eigenvalue i (i 4+ 2). Let P; : L2(R*) — V; be the orthogonal projection given by

Pif) = ( / Fro)gi; (@) do(w))ga, B @1

j=1

where {¢; j}1<j<k; 1s a complete orthonormal set for V; and r = |x|.
For t € (0, 1], define the functions {Y; (¢)};en inductively as follows:
Yi(t):=(1—Inn)~', re(0,1],
Yi(¢) .= Yi,l(Yl (t)), te(0,1),i=2,3,4,...,
Y;(0)=0, Yi(h=1,
0<Yi(n) <1

Note in the case of bi-Laplacian there are two types of Hardy—Rellich’s inequality that is inter-
action between Au with u and Au with Vu.

Theorem 2.1. (a) Let 0 € 2 C B(R) be a bounded domain in R*, R > 0, R| > eR. Then Vu €
H} () or Yu € H*(£2) N H} (2) we have

o0

Aul* — X3 X7, 2.2
/| : /| fan 2 Z‘/|x|4<1n B2 =y

129

where
Xi(x) _Y<| |>, i=1,2,3,4,....
R

. 2 . . .
The constants —1 (the coefficient of . o Ix\“(lnuw) is the best constant and is never achieved

by any nontrivial function u € HOZ(.Q) orVu e H*(£2)N HO1 (£2).
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(b) Let 0 < R < 00, and 0 € 2 C B(R) C R*. Suppose u € Hz(.Q) then

\v/ 2 P 2
/|Au|2—4/ ||xb|’2| S NG LV 2.3)
2 2 2

x|

/lAu|2 —4/ Vul® o 5 [ (P’ +§f [Pl / Ll 2.4)
x> = x4 4 IXI“(IHR/I)CI)2 32) |x*(InR/|xD*" T
2 2 2 2

—4, -3, %, % are the best constants and equality holds iff u = 0.

Next we study the eigenvalue problems associated with the perturbed Hardy—Rellich operator.
Letn>4and0€ 2 C R” be a bounded domain with smooth boundary. Let R; > ediam(£2).
Let g € CO(£2) be such that 0 < g(x) < 1 for u € H*(£2)

fg |Aul? — 2(n 4)2 fg \x|4’ n>=5s,
I,(u) = (2.5)

Jo|Aul = [o |x|4(1nR/\x|>2’ n=4,

and
Ap(g)= inf {Iq(u):/uzzl}, (2.6)
ueHO(.Q)
2
An(g) = inf {Iq(u): /uzzl}. 2.7
ueH2(2)NH (2) J

Now define the associated Hardy—Rellich operator

2, _ (=4 qu
A“u — 6 A nz=5,

Lou= 28)
2 qu _
AU = TR P4

Then if u is a minimizer in any one of (2.6) and (2.7), then u satisfies
Lju=Au in &2 2.9
with the following boundary conditions:

(i) In the case of (2.6), A = Ap(q) satisfies the Dirichlet boundary condition
a
Pp: = — =0 onds. (2.10)
dy

(ii) In the case of (2.7), L = Ay (q) satisfies the Navier boundary condition

Py: u=Au=0 onadSs2. (2.11)
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Now we observe that in the case of Navier boundary condition (Py), maximum principle holds
and hence if the minimizers exists, then we can expect a non-negative solution.

In the Dirichlet case (Pp), no maximum principle holds and since u € H?(§2) need not imply
lu| € H?(£2), we cannot expect a non-negative minimizer. Therefore obtaining the a priori esti-
mates is difficult. In view of this we develop a weak maximum principle with singular potential
in Section 4 which will be used to prove the following theorems. Here we give a necessary and
sufficient condition on the perturbation ¢ in order to get a minimizer.

Theorem 2.2. Let n > 5.

(1) If q satisfies

o 1\? 6(n? —4n + 8)

then Ap(q) and Ay (q) are achieved by u. Moreover, in the case of Navier boundary condi-
tion, we can choose u > 0.
(ii) Let 0 < R < 1. Assume that q satisfies

1)’ 6(n> — 4n + 8)

0O<x<R

Then,
(a) An(q) is not achieved,
(b) if 2 = B, then Lp(q) is not achieved by any non-negative function.
(iii) Let 1 < p <2, then there exists u € W>P($2) satisfying in the sense of distribution,

Ly(u)=2xu in$2, (2.14)

where ) € {Ap(q), An(q)}:
(@) ifA=An(q), thenu € W2’P(.Q) N Wé’p(Q) withu > 0;

(b) if 2 = Ap(q), then u € WyP (£2).
Next we consider the case n = 4. In view of Theorem 2.1 we have the following theorem.

Theorem 2.3. Let n = 4.

() If g satisfies

- R\’
hml(r)lf(ln(ln m)) (1 — q(x)) >3 (2.15)

X—>

then Ap(q) and Ay (q) are achieved by u.
(i) Let 0 < Ry < 1. Assume that q satisfies

R 2
sup (ln(ln m)) (1 — q(x)) < 3. (2.16)

O<x<R;
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Then,
(a) An(q) is not achieved,
(b) if 2 = B, then Ap(q) is not achieved by any non-negative function.
(iii) Let 1 < p <2, then there exists u € W>P(2) satisfying in the sense of distribution

Ly(w)=hu in$2, 2.17)

where A € {Ap(q), An(q)}. Moreover,
(@) if A=AN(q), thenu € Wz’p(.Q) N W(}’p(.Q) withu > 0;
(b) if 2 = Ap(q), then u € W) (£2).

Next we take g (x) = v a constant such that 0 < v < 1 and we study the behavior of minimizers
at the origin as v — 1. To do this let 0 < 8(v) < 1/2 be the unique zero of the polynomial

2

g =0 -P2+Bn—H)(n—2-pn—4)~ ’11_6‘}' (2.18)

Clearly 8(v) — 1/2 as v — 1. Then we have the following theorem.

Theorem 2.4. Letn > 5, g(x) =vand 0 <v < 1. Let . > 0, u, € H2(2) be a non-negative
solution of

Lyu=Au inS2, (2.19)

where A € {Lp(v), AN (V)}, then there exist C1 > 0, Cp > 0 such that

(n—4Hpv) (n—4Hpv)
Ci < liminf(ln—> uy(x) < limsup(ln—) u,(x) < Ch.
x—0 x| x>0 x|

Theorem 2.5. Let n =4, gq(x) =vand 0 <v < 1. Let A > 0, u, € H2(2) be a non-negative
solution of

Lyu=Mu inS2, (2.20)
where A € {Ap(V), An(V)}, then there exist C1 > 0, C> > 0 such that

R 71+2Jm R —1+§/m
C1 < liminf<1n —) uy(x) < limsup<ln —) uy(x) < Cs.

x—0 | x| x—0 | x|

Theorem 2.6. Let B be the unit ball centered at origin and 0 < q(x) < 1. Moreover, let uy,us €
HOZ(B) be two non-negative minimizers for .p(q). Then uy = muy for some m > 0.
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3. Hardy-Rellich inequalities

Lemma 3.1. Let n > 4 and B be the unit ball centered at zero. Then Yu € H2 +(B) or Vu €
H?(B)N Hy ,(B)

|Vul?
/|A B > (3.1)

|x|2

and equality holds iff u = 0.

Proof. Proof of the first part. Let us assume that u € C3°(B). Note that

1
[Vul? _ (n—2)2
/'A '2__ T VA G,

0 0

Setting u#, = v and using the classical Hardy inequality in H(} (B), we get

1

—2)2 —_7)2
w,,{/uf,r"—l (n 42) / ? e 1} /W G 2)/ 2
|x|

0

and equality holds iff v = 0 and hence u = 0.
Proof of the second part. Let u € C,Z(B) N Cé (B) then

2 P _ 72 | 2
/|A |2—— vl =wn[/<u”>2r"—1—(” iy e r"—1+(n—1)(ur(1>)2],
0 0

x|

2 | oy
/I /IWI _ n|:/(vr)2rn1 _u/v%n3+(n_1)v2(1)}, (3.2)
x|2 4
0 0

where u, = v. Putting z = "7 v and integrating by parts the right-hand side of (3.2) becomes

|:/(v )2t (”—2) / 2,n— 3+(n—1)v2(1):|
[f( )2 — 2) 2+ 0 —1zZ? (U]—wn[/(zr) r+ z m}

Again the inequality holds iff z(1) =0, z, =0 and hence u = 0. Hence we are done. O




Adimurthi et al. / Journal of Functional Analysis 240 (2006) 36-83 43

Proof of Theorem 2.1(a). Let us first assume that u € H; 2 +(B) where B is a unit ball centered
at origin. It follows easily that Y; satisfies the following 1dent1t1es For t € [0, 1) we have

dYn  Ya()*Y,1(0)*-- Y1(0)*
dr t ’

For ¢ = |x|/R and X;(x) = Y;(Jx|/R)

X
= X100 Xa ().

Letv; = X]l/zu. Then v1(0) =0 and

Vu 1 VX, Vup

u 2 X1 v—l’
/|Vu|2 / /|Vv1|2 /<VX1 Vv1>u2
Ix2 4 |x* Xi+ Joop P AKX e [P
/ [Vuil? 1/< Xy 2>
1= 5 {77 VY
|x|41 |x |2 2/ \Jxt? !
B B
1 [ u |v1|2 2
_1/|x|4 / e X1 @
|Vv;|?
|x|4 Xi+ w2
B

/24i_1(x). Then

Let,fori >2, vi(x) =X

i

|Vv1|2X 1f v? |VX2|2X X oo N |Vv2|2X ¥
e —_— _—— . U
K2 T R T 2\ 2 R

B

Vs |2
f| |4X2X2+C 1(0)+/ P X1Xs.

Hence by induction we have
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Therefore, from Lemma 3.1 we have if u is radial,

Let Ry > eR. Then for |[x| < R, we have InR; — In|x| > Ine 4 In R — In |x| which implies that

R 2
In — oY =Xx;2.
|x] R

Hence we have

oo
|Aul? > / T f — X3 X7}
/ T ZXZ:B |x|4(ln Ry =2

> x2...x2
/|x|4(ln By 122:/|x|4(1n XX

This proves the inequality (2.2) for u € HO2 +(B).

Letu € HOZ(.Q), we apply the idea of [15]. Consider |§2| = |B|. Then we may restrict our-
selves to §2 = B and superharmonic radial function u. Define f = —Au.

{—Aw = f* inB, (33)

w=0 on 0B,

where f* denotes the Schwarz symmetrization of f. Then w € Hrz(B) N HO1 +(B). By [16] we
have w > u™* > 0. Hence

/|Aw|2dx=/(f*)2dx=/|f|2dx=/|Au|2dx,
B B 2 2

2 %2 2
w u u
/ 4 RIde>/ 4 RldeZ/ 4||R|2dx
2 x| (lnm) 2 |x] (hlm) P x| (lnm)

Similarly we get

00 00
2 2 2
> - X
Z 4. Rivo 2 Z/ 41+ R1N2 X3 :
=g |x| (In &) &) ixfn

Hence the inequality (2.5) holds for all u € H*(£2)N H(; ($2) and u € Hg(.s?).
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Now we prove the sharpness of the previous inequality, i.e., we show the existence of a family
of radial functions s such that

A 2
AR
8—)0]‘ 1//5

2 x4 (n b2

Let B(l) C 2 and ¢ € C(‘)’O(Q) be radial such that

_ |1 inB@®,
g"(x)_{o on 21 B(1),

Define

R1\?2™
%(X)=<1n|7> P(x),

R, ) R, 3-8 R \27?
AYs(x) = (ln —) A(p+A<ln —) ¢+2<V(ln—) ,V(p>.
|x| [x] | x|
Then

— 1_
5 R\ 5 Ri\27%\2 5 R
|AYs(0)] = (In— (Ap)" + | Alln— " +4((V(Ih—
x| |x| |x|
3-8 R, 3-8 R, 3-8 R, 3-8
+2 ln Alln— pAp +4A In — o(V{In— , Vo
|x | x| |x| |x|
Ry -3 Ry 3
+4Ap|In — V|{In— , Vo).
|x] |x|

f_QIAwal2 fQ(A(lnM)f 5)2¢2+ 0(1)
Jo —iims

SN——
=
|
Lo~
<
AS]
—~—
v
Y

NI

Hence we have

|x|4<1n )2 Jo Ty |x\4<1n Ly2 Je |x|4<1n’“>2

This implies

fQ|A¢5|2 4 1—8 2+4 1—8 2 1—}—8 fg IX\4(lnR1)3

I - \2 2 27

$ \x|4(1n 2 $ |x\4<1n h2
1//2

1,5\ Ja \x|4anaﬂ>3 0(1)

+(- -9 +

4
Ja \x|4<1n’*1>4 Ja gy \x|4(1n
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Taking the limit as § — 0 and noting that

o
gl_r:}) 41 B 2:00
J atan

we have
A 2
lim 71‘(2' idl =1.
6—)0] y?
2 |xfdan g2

Hence 1 is the best constant in (2.2) and it is never achieved in any bounded domain (this is clear
from (2.2)). O

Proof of Theorem 2.1(b). The restriction of A to the unit sphere S"—1 will be denoted by Ag,
the Laplace—Beltrami operator. Then the Laplacian operator in R” can be written in (r, o) as

1
A=A+ 5A,,
r

where A, is the radial Laplacian. For u € Hg(.Q) C Hg(B(R)), let

00 km

w=y Y tim)pim(©),

m=0i=1

where ¢; ,, are the complete orthonormal basis of eigenfunctions of the Laplace—Beltrami oper-
ator with eigenvalues ¢,;, = m(m + 2), m > 0. Then

0o ki

[ =Sl [ St e [

R4 =0i=1 R4

2
Note that u; ,,(0) =0 for m > 1 and hence fR4 l""’ < 00. Moreover, ¢o ,(0) =1, ug,o(r) is the
radial part of u. Now by Euler’s theorem (x, V f) = 0 if f is homogeneous of degree zero and

hence (Vu;m, Voim) = M(x, Vééim) =0. Since —As@i m = cmPi.m by direct calculation

we have
5 [Vu|?
(Au)” —4
|x|2
R4 R4

o b Vit |2
:Z {/|Au,~,m|2+(cﬁ1—4cm) . |4 4)/ |’|’2" }
m=1 i=1 ]R4 R4
\v4 2
[ 1augp =4 [ V2
|x|?
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Now form > 2, (c,zn —4cy,) >0, 2cy —4) > 0, hence from Lemma 3.1, we have

i1 |

2k 2
2 |V’4| 2 [V 1|
/|Au| —4 D > E {/‘|Au,~,1| +2 e -3
R4 R4 R#

_32/ i1 |* | Pyul®
I x|+
R4

This proves the required result.
Next let us show that —3 is the best constant.

Claim. Let R > 0 and define X = {v € CE(B(R)): v(0) = v(R) = 0}. Moreover, set

_ 2 Vol? /ﬁ_
A(B(R)) _mf{ /(A ) +2/ IXI2' e

B(R) B(R) B(R)

We claim that .(B(R)) = 0.

Jx[*

|

47

(3.4)

Since v is radial, now by change of variables |x| =r = 2¢~1/2 we obtain v(x) = y(1), R =

2¢7 172, y(00) = y;(00) =0, y(T) = 0 and y satisfies

oo
2
[v] 2
W:am y dt,

B(R) T

— o0 o0
) [Vv]? 2 2
(Av)? +2 el 8 [ i —y)?dt+4 | yidr
- T

B(R) B(R)

=wy|8 [ y5 +12

=

=wy4| 8

Hence we have

o0 o o
S/ytz,+12/y,2dt>A(B(R))/y2dt.
T T T

Setting @ =t — T and y(¢) = z(9) the above inequality gives

o o o0
8fz§9+12fz§dt>x(B(R))/z2d9.
0 0 0

yt2 dt + 8y(T)2i|

(3.5)

(3.6)



48 Adimurthi et al. / Journal of Functional Analysis 240 (2006) 36—83

Leta > 0,0 < ¢ € CZ(0, 00) and z4(9) = ¢(a6), then (3.6) gives

o0 o o
8a4/¢)§9+12a2/ 95 dt > A(B(R) /(p2d9
0 0 0

and letting « — 0 we get A(B(R)) = 0. This proves the claim.

Suppose now that —3 is not the best constant. Then from (3.6) it follows that A(B(R)) > 0
which contradicts our claim. Now we prove (2.4).

Let z € C%(0, 00); z(0) = 7,(0) = z(00) = z;(0c0) = 0. Hence z(r) = fot 7¢(0)d6O and by

Hardy’s inequality
© , ) ) )
/ §4/z§, / <4/z§9.
0 0 0 0

SaY S}

QD|N

[\S]

CD|1\1
[\S]

So we have

R

o0 o0 2 o0
/@9_1/@> é/
93 2 93 2
0 0 0

and by Holder inequality

©| IS
ENIESS

0 0
Z

[=3]

0 0

Then

002 1600
Z 2
IESIE
0 0
oo
0

)
)

8

NI\O
<I:>|N
S

<I:>|N
)

oo
2994‘12/15
0

00
w5
0

Going back to (3.5), we obtain

o0

JERTERY P
Vit Vi 2 5 - T)4 - T)2'
T 0

Nowt—T =2In § and by taking v = u; ; we have from (3.5)

/ <IAv|2+2|W|2+3ﬁ>>§/7|v|2 LA e U
|x|? x4/ 7 4 ) jxfan £)2 0 32) |xjAn 24
o [x] o [x]

B(R)
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Substituting this in (3.4) we obtain

/|Au|2_4/ VuP? oy (Puw? 30 |Pul 9 [ [Pl
|x|? t 4 xran£)2 32 ) pxtn £t
2 2 2 2 2

where —4, —3, %, % are best constants which are never achieved. This proves the theorem. O

Remark 3.1. We are able to generalize Hardy—Rellich type of inequality for p-biharmonic op-
erators where n = 2p in [5]. In that paper we have completely characterized the Hardy—Rellich
inequalities in the critical dimension but in the radial case. Note that the method of Szegd cannot
be used in higher order Sobolev spaces in Hy' (£2) where m > 2.

4. A maximum principle

Here we prove the maximum principle using the continuation method for the Navier boundary
condition which is good enough for our purpose.
The operator A2 — V is said to be coercive on H2(£2) N HO1 (£2) if

/(Au)2 - / Vu? > C/(Au)2
2 2 2

for all u € H*(£2) N Hy (£2) and for some C > 0.

Main lemma. Let V € L*°(£2), V > 0 and the operator A% —V be coercive on Hz(.Q) N HO1 (£2).
Let f € L*(2), ¢ € H*(382), ¥ € H3/2(882) such that f >0, ¢ >0, ¥ >0. Let u € H*(£2)
be a solution of

Au—Vu=f ing,
(A) u=qe on 482,
—Au=1y on ds2.

Thenu >0in S2.

Proof. Since A? satisfies weak maximum principle with respect to nonzero Navier data, we have
that

Azuzf in 2,
u=¢ onds2,
—Au=1v¢% onads2

implies that # > 0 in £2. Hence the solution u can be written in terms of the Green operator as

u=G(f)+Gi1(d) + G2(¢),

where G, G1, G are the integral operators with positive kernels. Let 0 < € < 1 and consider the
perturbation of the above problem with the same boundary conditions

A%u =eVu+ f.
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Since the operator is coercive there exists a unique solution given by

u=GEVu+ )+ Gi(¢) + G2(y).

Hence

(I —€Gy)w) =G(f)+Gi1(9) + Ga(V¥),

where Gy (u) = G(Vu). Since 0 < V < C we have that Gy (u) is a bounded operator. This
implies that for small € > 0, it exists (I — €Gy )~ and it is an integral operator with non-
negative kernels. This implies

u=(I—-eGy) HG(f) +Gi(@) + G(¥)} > 0.

Let

A= {t € [0,1]: Ve €0, ], (A2 — €V) satisfies weak maximum principle

with nonzero Navier data}.

Then we have A # (). We claim that sup. A = 1.

Suppose sup A = 1o < 1. Then (A% — #yV) is coercive and by continuity satisfies the weak
maximum principle with respect to nonzero Navier data. Hence by the above argument we can
find an €y > 0 such that VO < € < €p, (A2 — (5 + €)V) satisfies the weak maximum principle
with nonzero Navier data which implies a contradiction. Hence sup .A = 1. Thus if u is a solution
of (A),thenu >0in 2. O

Corollary 4.1. Letn > 5, V € L*®(£2) and V > 0. Let us suppose that the operator A> — # is
coercive on H*(2) N H} (2). Let f € L*(2), ¢ € H>?(382), ¥ € H¥?(382) such that f >0,
¢=0,%=>0. Letu € HZ(SZ) be a solution of

Azu—ﬁuzf in $2,

(B) u=aeo on ds2,
—Au=1y on ds2.

Thenu > 0in S2.

Proof. Let B C §2. Choose ¢ € C2°(£2) and 0 < ¢ < 1 such that

1 in B(3),

(p(x)z{O on 2\ B.

Choose 6§ > 0 and ¢s(x) = <p(§). Define V5 = 1=0s@ 7 Then Vs € L°(82).

x4
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Now consider the problem

A’u—Vsu=f inf2,
©) u=qe on 042,
—Au=1y on d2.

Then

|4 X
(Azu—Vgu,u)Lz(m=<A2u——4u,u> +<(p8(4) Vu,u>
2\ 12(2)

x|+ >L2(.Q).

Hence (A2 — Vj) is coercive in H2(£2) N HO1 (£2). Note that the coercivity is independent of the
choice of §. Hence by the previous theorem if us is a solution to (C) then us > 0. Now we claim
that us(x) — u(x) as § — 0.

Set ws = us — u. Then we have that wg satisfies

A2U)5 — Vsugs + #u =0 in$2,

ws =0 on 0s2,
—Aws =0 on 052.
‘We have
Vv
<A2w5 — Vsws — (Vg — —4)14, w3> =0.
lx] 12(2)
Hence,
Vuwsps
Q
Then

ws |2 <c Viuwsles _ wi \'/? 1z
Wlmnuy) S5 T A s 4 le“(p‘S
2

2
172
<G ||w3||H2(Q)ﬂH1(Q)</ |4‘p5) .
2

Thus we have

2\
”wall[—lz(g)mﬂ(}(g)gCl(/‘W‘/}S) .
2
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Hence by dominated convergence theorem we have that ws — 0in H 22N H(} (£2). Asusg >0
we also have u > 0 and u is a solution of (B). O

The same proof of the previous theorem gives the following result.

Corollary 4.2. Letn =4, V € L*(£2), V(x) > 0 and suppose that the operator
2 V

T 4 (n B2
Ix[*(n 57)

is coercive on H*(2) N H} (2). Let f € L*(R2), ¢ € H/*(3R2), ¥ € H¥?(382) such that
£>0,¢>0, ¢ >0. Let u € H*(£2) be a solution of

2., \%4 _ .
Acu 7|x|4(ln%)2u =f inS2,
(D) u=q¢ on ds2,
—Au=1y on ds2.

Thenu >0in S2.

We end this section by stating a general maximum principle for differential operator of even
order.

Corollary 4.3. Let us assume that the L is a differential operator of even order 4k and:

(i) VeL®(2)andV >0;
(ii) L —V is coercive on H2k(.Q) N Hé‘ (82) and self-adjoint,;
(iii) L — V satisfies weak maximum principle with respect to nonzero Navier data.

Let us consider the problem

LM—VMZf l}’l [2,
(E) { (—A)i_lu =i onds2.

Then f >0, Yi—1 =20forie{l,2,...,2k} and y;_1 € C*°(082) implies that u > 0 in 2.
5. Proof of the theorems

In view of the lack of maximum principle for the Dirichlet boundary condition we will only
prove the theorems in this case (the case of Navier boundary conditions follows in a similar way).
In order to follow the same proofs as in [4], we need some test functions and their main properties
will be proved in Appendix A. Let us recall some known results for biharmonic operator:

Boggio’s Principle. Consider the biharmonic equation

Ay = f inB,
(F) u=0 on dB,

ou _
ﬁ_o on dB,
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where B = {x € R": |x| < 1} and y is the outer normal at the boundary of B. Then Boggio’s prin-
ciple [7] states that the Green function associated to the biharmonic problem with zero Dirichlet
data in a ball is strictly positive. Hence if f > 0 a.e. then # > 0 in B. If f has enough regularity

such that u € C?(B) then we have an analogue of Hopf maximum principle, i.e., % >0ondB
(this was proved by Grunau and Sweers in [13]).

Remark 5.1. Consider the problem

A% >0 inB,
=0 on 0B,

#:0 on dB.

[STRN

If u € C*(B), then Au changes sign. Suppose Au has a definite sign. Without loss of generality
suppose —Au > 0 in B, then Hopf maximum principle says that g—)’f < 0 on 9 B which contradicts
the second boundary condition.

Theorem 5.1. Consider the problem

2 2
A2y — =D q() g =hu inB,

uz#0 in B, (5.1
u e H}(B),

where B is the unit ball centered at origin. If (5.1) admits a solution u for some . = \(q), then
u does not change sign in B.

Proof. Note that proving existence of positive solutions is quite hard in the sense that u™, u™ ¢
H02(B), which played a crucial role in second order equations. Suppose u € Hg(B) solves the
above problem with A = A(g) with (2.9) and u changes sign. Define

K = {v € Hg(B): v=0 a.e.}.

Let

a(u,v):(u,v)Hg(B)zfAuAv, Yu,v € H}(B).
B

Note that K is a closed convex cone. Hence there exists a projection P : HOZ(B) — K such that
forall u € H(B),Yw € K

a(u—P(u),w—P(u)) <0. (5.2)

Since K is a cone we can replace w by tw for r > 0 and letting t — o0 to obtain
o1
a(u — P(u), w) < tl;r(r)l() ;a(u — P(u), P(u))

which implies that A%(u — P(u)) < 0 and by Boggio’s principle, u — P(u) < 0.
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Now replacing w by ¢ P (u) for ¢t > 0 in (5.2) we have

(t— l)a(u — P(u), P(u)) <0

and hence a(u — P(u), P(u)) =0.
Hence we can write u = uy +uor, u; = P(u) € K, up =u — P(u), u1 L ur and ur < 0. Since
u changes sign we have that #1 # 0 and u5 # 0. Therefore we have,

2 _ 2 2
fglA(ul _u2)|2 n (n 4) fB q(uy M2) fglA(ul+u2)|2 n (” 4) fB quy+uy)

|x|* |x]4

S (u1 —u2)2 fB(u1+u2)2

which contradicts (2.6). Then u does not change sign and noting that the Green function is strictly
positive we have eitheru > 0Ooru <0in B. O

Proof of Theorem 2.2(i) (Existence). Let g be as in the assumption, and 0 < s < 1 and

n2 2 2
—4
ho(@):=inf {/m 2 - (" )s q—ﬂ:/u2=1}.
ueHg () |x]
Q Q
From (1.1) the operator A — ”2('1?)2 (| ‘4) defined on HZ(.Q) is coercive for 0 < s < 1. Hence

there exists a ug € Hg([?) satisfying

Ay — " (" 42 sq(x)L T = As(@)uy in £2,
us #0 in £2,
us € H3(2),

”uS”Hz(_Q) _/_Q |Aus| =1

Then we have ug; — uq in Hg(.Q), Ug —> up in L2(.Q) and ug; — ujp a.e. Let

-5
u(x) = |x|_# (ln L)
x|

with § > % From Lemma A.1, we have

2 —4 2
At = g o
_Pn=47 [( o ))(1 i)z_ 85(5 + 1)(n® — 4n +8)
16 |x|*(In il)2 TN x| n2(n — 4)2

16 G+ 1D +2)(6+3) _ 16 3 (@) 1 L 2
n2(n_4)2 (lnl)lc_‘)z n2(n_4)2 s\q |x| (n| |
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Choose § > % such that

liminf
x—0

2 2
Omi>(1—ﬂm)>%®+4x" 4n +8)

n2(n —4)2

(this is possible by assumption (2.12)). From (2.12) we can find an R > 0 such that B(R) C §2,

A2y ™ (n 4)2 q(x W —As(@)u >0 in B(R),
Au <0 in d B(R).

Now using standard elliptic estimates, we can find M > 0 such that
us < Mu on dB(R),
—Aug < —MAu ondB(R).

Let wg :=ug; — Mu. Then

ws <0 on dB(R),
—Awy <0 ondB(R).

We are required to show that wy; < 0in B(R).

Now,
2 2 2 2
5 n“(n—4) Wy n“(n —4)
A ws—qu |x|4 —ké(q)wéé—MW(l—s)qu
Thus we have
2 2
n“(n—4)
A? g — —————

()C)| |4 —As(@wsy <O in B(R).

So, we are in the case

A2w; = O g (1) B — Ag(@wg <O in B(R),
ws <0 on dB(R),
—Awg <0 on dB(R).

Claim. For R > 0 sufficiently small, the operator

n2(n — 4)% 1
TSQ(X)W —As(q)

A% —

is coercive in Hz(B(R)) N H(; (B(R)).
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Let gr(x) =g (Rx) for |x| < 1, and

2 —AN\2 2
(R, 5q) = inf |Av[? — Ms v =1l
|x|*

H2(B(R)NH, (B(R))
B(R) B(R)
Then
1 1
w(R,sq) = F“(l’ sq) = F“(l’ D).

Hence (R, sq) — oo as R — 0, uniformly in s and ¢g. Since {X;(g)} is bounded for 0 < s < 1
and hence for v € H*(B(R)) N H} (B(R))

2 2
2_n(n—4) /
/|Av| —e ||4 —hs(q)

B(R) B(R) B(R)
=(1—s){ / |Av? = A4(q) / vz}
B(R) B(R)
2 2
5 (n—4) f
—|—s{ / |Av|® — 716 ||4 — As(q) }
B(R) B(R) B(R)
2(1—s)<l—L@) / |AV? 4+ s(1L(R, @) — s (q)) f v?
(R, 0) ‘
B(R) B(R)

1_
> / AvP.
2

B(R)

This proves the claim.
Therefore from Corollary 4.1, we have wy < 0 in B(R). This implies that u; < Mu in B(R).
Since —uy is also a solution we have that |ug| < Mu in B(R). Hence we have

2 2
Ug u
S < m?

el S e

. 2 .
Since [ B(R) &7 < 0o by dominated convergence theorem we have

2 2
quy quy 2 2
7 | T I= [ u;— | uj
| x| x|
Q Q Q Q

as s — 1. Therefore from the weak-lower semicontinuity of HOZ(.Q) norm and the fact that
As(g) = A(q) as s — 1 we have

Iy(uy) < limi?flq (ug).
s—>
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This implies that ||ux||HOz(9) — |luq ||H§(Q) and hence uy; — u1. Hence Ap(q) is attained by u.
Note that #; > 0 if £2 is a ball (see Theorem 5.1). O

Proof of Theorem 2.2(ii) (Non-existence). We argue by contradiction. Suppose that Ap(g) is
attained at u| € HOZ(B). We claim that there exist m > 0, R > 0 such that

n—4 1/2
up = mlx _T<ln7> in B(R).

This will lead to a contradiction, since by Hardy—Rellich’s inequality
u% 1 1\ !
—— e L (B(R)) but / |x|_"(ln—) = 00.
x4 ( ) |x|
B(R)
In order to prove this we have the following
Claim 1. There exists 0 < Ry < 1 such that —Au;(x) > 0in B(R}).

From Corollary 4.1 we can assume that #1 > 0 in B. So we have A%u; =h > 0in B. Let
G (x, y) denote the Green function associated with the biharmonic operator with zero Dirichlet
condition in the unit ball. Then by [12],

—4
Glx,y)= cn<[xy]4‘" — XY - nT(l — Ix)(1 - |y|2)[XY]2—”>,

where

X
x|y — —

cn >0, [xy]=lx —yl, [XY]= i

Then

Axc<o,y>=cn<n—4)( lf 2+(2—n)|y|2+n>

ly
Hence —A,G(0,y) > 0 for all y € B. By continuity we have that for all € > 0 there exists
Ri1(e) < 1 such that for |y| < (1 — €), it holds —A,G(x,y) > 0, Vx € B(Rj(¢)). Suppose
the claim is not true. Then there exists a sequence x; #% O such that xy — 0 as k — oo and
—Auq(xr) < 0. Hence for large k£ and by Fatou’s lemma

0> lim —Auj(xg) = limo{ / (—AG(xk,y)h(y))dy—i— / (—AG(xk,y)h(y))dy}

xg—0 Xp—
B(1—¢) B\B(1—¢)
2{ / lkm_l)nf( AG (xp, y))h(y)dy + / (—AG(O,y)h(y))dy}
k
B(1—¢) B\B(1—¢)
—/AG(o,y)h(wdy -0

B

which is a contradiction. This proves the claim.
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. 2 —_ 2 . . .
Since the operator A2 — Z ("164) ﬁ is non-negative but need not be coercive. Hence we

cannot apply Corollary 4.1 to obtain lower bound for u;. For this we have the following

Claim 2. Consider the problem

2 nz(n—4)2 qu .
A“u — TW = f m B,
© Yu=¢ on 3B,

—Au=1y on dB.

Let f € L*>(B), ¢ € H?(dB), ¥ € H>*(3B) such that f >0, ¢ >0, ¥ >0 and is a solution
of (G). Then u > 0.

For s € (0, 1) as the operator A% — (’164) SW is coercive on H2(B) N H (B) by Corol-

lary 4.1, there exists a unique solution u; > 0 in B satisfying

Aluy — PO au i g,
H) x|
( Us =@ on 4B,
—Aus =y on dB.

Subtracting (G) from (H) and v, := u; — u we have

20 a2 2 20 A2
/(Avs)z—us ﬁ:%(l—s)fq”‘. (5.3)
B

16 x4 Jx|*
B

Hence from (5.3) we have

n*(n —4)? 2(n —4)2
{/(A T /|x|4}+ - )/| B
B

200 A2
_n (n—4) (l_s)/quvs
16

|x[*

As the term in the curly bracket is non-negative we have
n(n 4)2(1 )/qu (n =47 | )/quvs
Xt =16 B

By the Holder inequality,

“ N

T

B

Therefore from (5.3) and W!-?(B) estimates (A.17) we have
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n2(n — 4)2 qug

<Cp————(1 - -

1 16 ( S)/ |x|4
B

2N\ 172 1/2
qu qu;
<cia-s( [ %) (/w) sl
B B

This implies that ”vS”?/V“”(B) —0ass — 1. As ug > 0 we have u > 0 in B. This proves the
0

lvs 12

Ip(B)

claim.
Let

1 —5/2
oo(x) = x| (ln ﬂ) )

where s > 1. Note that ¢, € H*(B(R)) and from Lemma A.1 ¢, satisfies
2 2 2 2 2
n“(n—4° ¢ n‘(n—4 Ps [ 1
A2 — Vg 1—gx))|{In—
Ps 16 q|x|4 16 |x|4(ln‘)1€—|)2 ( q ) x|

_ 264290 —4n+8) s+ +A6+6) |
n%(n—4)2 n%(n —4)2 (npp? )

Hence from (2.13) we can choose R, > 0 such that

2 —4 2
DT o B(Ry).

Al — <
& 6 |xf*

Let 0 < R < min{R1, R»}. Then from Claim 1 and Corollary 4.1 u; > 0, —Au; > 0in B(R) and
so we can choose m > 0 independent of s such that

Ul = mes on dB(R),
—Au; =2 —mAgps; ondB(R).

Define wy := u1 — mgs. Then we have

A2y — 2= >0 in B(R),
wg =0 on dB(R),

—Aw; >0 on dB(R).

This implies that wg > 0 in B(R) by Claim 2. This proves 2.2(ii)). O

Proof of Theorem 2.2(iii) (Existence of Wg P solution). Let 0 <v < 1 and u, satisfy Lyqu, =

Au, with f B =1 and A = X, (g). Note that the existence of u, is assured by the fact that
2

A2 — (n 4)?

Vo |4 is coercive on H2(.Q) We will show that u,, — 1 in Wo P(£2) forall p < 2.
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(n—

Let &, (x) = x|~ 7 V(In |71|)5 and § € R. Then from Lemma A.1, we have the following:

_4)2
A%, =2 [(n D% 41 vin— )@ - )20 —2) — (n—4p)

“xl*|l 16
n—4 (12— =20 —4)2—4(n—-2)}1 —v)s
2 (In 7

(1= (3v2(n — 4% — 6v(n — 4)% +2(n(n — 10) +20)}
2 (In )2

280 =Hr-Hd-v) §1-8H2-68A3 —8)}
(In p)? (In ) ‘

Note that for 0 < R < 1, &, € H2(B(R)) iff v < 1. Fix 0 < § < 1. Therefore there exists R > 0
such that

n*(n —4)% q&
A, - TR Aoy
Sv 6 P

—Av(@)§y 20 in B(R).

Since &, > 0 and —A&, > 0 in a small ball, using standard elliptic estimates there exists M| > 0
such that

uy < Mi§, on B(R),
—Au, < —M;A§, ondB(R).

Define w, = u, — M&,. Then w, satisfies

200 a2 .

Aw, — %v% —(@w, <0 in B(R),
w, <0 on 0B(R),
—Aw, <0 on 0B(R).

Taking R small enough (if necessary) and proceeding as in the claim of the proof of Theo-
rem 2.2(i) we have

wy, <0 in B(R),
—Aw, <0 in B(R),

and then as —u,, is also a solution, we have

|x]
[Auy| < —M A, in B(R).

n—4 .
{|uv| <Myx[~ 7 (In L) in B(R), 5
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Now we claim that there exist M, M>, M3, R > O such that for v € (%, 1)

_n-4 8 .
Juy] < Mi|x| ™2 (In 7fp) in B(R),
_(n=t 5.
Vuyl < Malx|"¥ 40 (In)”  in B(R), (5.5)
_(n=t 5 .
1V2u,| < Ms]x]~7 ") (In plc_|) in B(R).
To prove the above estimates on |Vu, |, |V2u, | we proceed as in [8].

Letx € B(%) where R is chosen as above. Let r = %|x| and define i, (y) = u,(x 4+ ry) for
y € B(1). Then i, satisfies

Azﬁv(y) = Eu(y)ﬂu(y)7

where |¢,(y)| < Candv e (%, 1). Then by Green formula we have for all x € B(1)

V2, (0] + [Vity (0)| < Ci (lliwll sy + 1 Adu sy + | A% | oo pryy)

<2CC (lliy L B1y) + 1Al Lo B1)))-

For |y| <1 we have |x +ry| > |x| —r > % and hence from (5.4) there exist some M; > 0,
My >0,

~ ~ n—4 1 8 r2
|uu(y>}+|Auu(y)\<M1|x+ry|—7v<1n ) ( +1>
[x +ry|

Ix +ryl?

_n—4 1y’

<Mlx|” 2" (In— ) .
x|

These estimates proves (5.5). Hence we can find a subsequence u,, — u; (say) in Wg P(£2) as
v — 1. Then u, — u; ae. and 1 = [,u? = [, u}. Hence u; # O satisfies (2.14) in D'(£2).
Furthermore, from Theorem 5.1, u,, > 0 if 2 = B and then we have that u; > 0 if £2 = B. Note
that u; > 0 on a set of positive measure in B. This proves the theorem. O

Proof of Theorem 2.3(i) (Existence). Let

2 ‘]“2 2
As(g) := inf {/|Au| —sf—: fu :1}_
’ ueHA(2) x|*(In £)2
Q 2 Q

Since the operator

L S
R 2
x4 (In &)
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defined on Hg(.Q) is coercive for 0 < s < 1 (Theorem 2.1) and hence there exists ug € Hg(.Q)
satisfying

Aug —SCI(X)W(IHMW = As(q)us in £2,
s #0 in Q,
uy € H} (),

sl g2y = S 1 AP = 1.

We will prove the existence of a solution to (2.9) by showing that u; converges in Hg(.Q) to uy
(say) and u satisfies (2.9).
Let u(x) = (In %)l/z(ln(ln %))5, where § is chosen so that § > % and

R 2
1imi(r)1f(ln<ln m)) (1 — q(x)) >46(5 +1).

Then from Lemma A.2 and (2.15), for small R; > 0, we obtain

A%u— g(x) As(q)u

4q0p B2
Ix[*(n 57)

u R 2
- l—¢)(In(ln—)) —466+ 1 +o(1
[ [*(In £)2(In(in £))2 [( ‘”(“(“pq)) G+1)+o )}

= 0.

Now proceeding exactly as in case of Theorem 2.2(i) we obtain, for all s € (0, 1),

lus] <Mu in B(R) (5.6)

for some M > 0. Using the boundedness of u; in H02(.Q), we can find u; € H02(.Q) such that
us — u (along a subsequence if necessary), strongly in L2(£2) and almost everywhere in £2 as
s — 1. Hence by dominated convergence theorem we obtain

2 2
qug / qu;
— (5.7
/ el*(In &2 e[*(In &)?

2 2

and

/ufa/u% (5.8)
2 2

Hence proceeding as in Theorem 2.2(i), we have ug; — u in H&(.Q). Hence there exists a solu-
tion to (2.9) for A = A(g) by passing to the limitas s — 1. O
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Proof of Theorem 2.3(ii) (Non-existence). By contradiction let us suppose that (2.9) has a non-
negative radial solution u] € Hg(B) for some A > 0. We claim that there exist m > 0, Ry > 0

such that
R\1/2 R —1/2
uj >m<ln—> <ln(ln —)) in B(Ry).
x| x|

This will lead to a contradiction, since by Hardy—Rellich’s inequality

2

] . 4. R R))“
———— €L (B(R b In— |(In{ In— = 00.
itan e <1 (B0 b [ (i) (n(n)) =

B(Ry)

R\ /2 R —s/2
@5 (x) = (ln —) (ln(ln —)) ,
x| x|

where s > 1. Note that ¢, € H,Z(B(Rl)) and that u; > 0 in B by Boggio’s principle. So we
have A%2u; =h > 0in B. Let G (x, y) denote the Green function associated with the biharmonic
operator with zero Dirichlet condition in the unit ball. Then by [12]

Define

G(x,y) = cn(2In[xy] = 2In[X Y] — (1 — x*) (1 = [y*)[X Y1),
where

X
x|y — —

¢, >0, [xy]=|x —y], [XY]= x|

Then
4 2
AxG(0,y)=c¢, —W+8—4|)’| :

Hence —A,G(0, y) > 0 for all y € B and thus arguing exactly as in Theorem 2.2(ii), we have
—Aui1(x) > 01in B(Ry) where R; > 0 is sufficiently small. Choose R; < R such that the condi-
tion (2.16) is satisfied. Then from Lemma A.2 we have

Ds
A2y — q(0)—2
B an )2

— Ps R 2
= |x|4(1n %)Zan(]n %))2 [(1 - q)(ln(ln m)) — S(S +2) +0(1)}

Hence

Ps .
Ag, — g(x)——=—— <0 inB(R).
' x4 (In )2

Similarly as in Theorem 2.2(ii) we obtain that u| > mg, in B(Ry). O
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Proof of Theorem 2.3(iii) (Existence of W02 P (£2) solution). Let 0 < v < 1 and u, satisfy
Lygu, = Au, with fB u% =1 for some A = A, (g). The existence of u, follows from Theorem 2.1
and by coercivity of the operator A% — v in H3(£2). We will show that u, — u in

Wg’p(.Q) for all p < 2.

First we will prove the following estimates on u,,, Vi, V2u,.Fix 0 < § < 1. Then there exists
R > 0 such that for v € (%, 1)

- R
4 R N2
x[#(n £

| < My (1n )" (in(1n £))? in B(R)),
Vuy| < My~ (In £)% (1n(in £))° in B(Ry), (5.9)
IV2u,] < Ml =2 (In £ (1n(in £))° in B(Ry),

where M1, M>, M3 are constants independent of v.

Let
R\V/2 R H)
E(x)= <1n—> <ln<1n—>>
x| x|

Then from Lemma A.2 we have

A% —vg— @ Sv Al

=———25([V2-v-—@+td——F—=+o(D) |
|x|4(ln‘%)2 |X|4(ln%)2|:‘)( v—gq)+ (ln(ln%))z_’_O( )i|

Hence there exists Ry > 0 such that

£y .
A%ty —vg—"— — (@), =0 in B(Ry).
v61|x|4(1 |x\)2 q 1

Proceeding exactly as in Theorem 2.2(iii), we have the above result. O

Proof of Theorem 2.4. Let u, be a non-negative solution to (2.19) corresponding toA=Xip(v).
Set ¢! = |x|~"=HBM) By choice of B(v) and (2.18) it follows that ¢! satisfies the equation

n?(n—4)72 ¢,

=0.
16 |xf*

APl —v
Let0 < R < 1. Since —Aqb]l > 0 on d B(R) we can choose C; > 0 such that
uy, >Crpl,  —Au,>—-CiAp! ondB(R).
Define w, = u, — C1¢3. Then w, satisfies

n*(n—4)* w,

Aw, —
L T

=x(V)u,.
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So we have

16

{ A2y, — pn2n=? >0 in B(R),
wy 20, —Aw, 20 on dB(R).

Hence by the maximum principle (Section 4) we have that u,, > C 1¢$ in B(R). Hence

1\ =98
C < liminf|:(ln —) uu(x):|.

x—=0 |x|
Now to prove the other inequality. Let us introduce the function
2
¢y (x) = |x]*,

where a(x) = —(n — 4)B(v) — |x|. Let

Yy =~ OB — ma Yy =r".
So we have
Yl =—ar~ @Dyl =aa+ D@t
Ay =y + 75 ; 11/4 =[ata+1) — (n — Da]r~@*+?,
Ya A2y = 12— i)

16 lx]4
Hence we have
AV =aR+a—n)r @,
Ay = —aA(r_(“'H)) =—a(a+ 1)@ +a—n)r @+,
Yh=—(+1Inr)e ",

wé’zr_r{(1+lnr)2—l}, (Al/fi)/zAl/’i/_#l//i/’
r r

r

2 —1) B 1\?
20918 + AP AYL + M A APV — S = O(r R (ln—) )

Then

2 —4 2.2 1 3
A% (x) — V% <,0|,, (;) — AWy = Y187, + O(r_(“+3+’) <ln —) >
* r

and

1 4
U1 A%y = Cr~ @3+ <ln —) ,

r
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where C > 0. Hence we can choose R > 0 such that

nn—=4* ¢y
16 x|

A2 —v A(V)$2 >0 in B(R).

Since —Aqb% > 0 on d B(R) we can choose C, > 0 so that

{uu < Cap on dB(R),
—Au, < —C2A¢2  on dB(R),

and proceeding exactly as in Theorem 2.2(i), we have

uy < C2¢?  in B(R),

1\ =B
lim sup[(ln —) uv(x):| < Csh. O

x—0 x|

Proof of Theorem 2.5. Let u, be a non-negative solution to (2.20) corresponding to A = Ap (V).
—VI-v . .
Set ¢} = (In |TR|) =0 Tt follows that ) satisfies the equation

o) o)

lel*n 92 A an £4

APl —v

where A is a positive constant. Let 0 < R; < 1 and choose C > 0 such that

{uu >Ci¢, on 0B(Ry),
—Auy, > —C1A¢! ondB(Ry).

Define w, = u, — C1¢,£. Then w, satisfies

Wy
VTR >0
|x|4(ln m)z

A2wU -
So we have
2 _ Wy 3
{A wy le\“(ln%)z >0 in B(Ry),
wy, =20, —Aw, >0 on d B(Ry).
Hence again by the maximum principle (Section 4) we have u, > C 1¢>3 in B(Ry). Then
—14+/T=v
R 2
Ci < liminf[<ln —) uv(x)].
x—0 |x|

In order to prove the other inequality we define
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R ﬁ(x)
¢5(x)=(1n—> ,

|x|

where B(x) = =412 4+ |x|. Let

R\“ R\
Yi(x) = <1n —) and Ynp(x) = <ln —> ,
x| | x|

. Then we have

1—/1-v
2

where @ =

Vv
T

A9 = Yo A% + Y1 ATV + 2401 Ay + 4{U ] A + Y AU+ 4y vg — 61

Note that the major term is

4
U1 ARy = Ci%qbf <ln<ln 5)) ,
r- r

where C > 0 and hence we have

2o B sai= S (n(R)) + o (2 ()
ot 0= i (00 7)) o (Gt (n(n 7)) )

Hence we can choose R; > 0 small enough such that

2
A2 — lew‘fﬁ —A(1)¢2=0 in B(R)).

Il

Since —Ad)% > 0 on d B(R;) we can choose C, > 0 so that

{uu < G2 on 0B(R)),
—Au, < —CrA¢? ondB(Ry),

and proceeding exactly as in Theorem 2.3(i) we have
=1+/T=v
2

R
u, < Ca¢? in B(Ry), limsup|:<ln —)

”v(x)] < Ca.
x—0 x|
Then the claim follows. O

Proof of Theorem 2.6. Letn > 5. Let u; and u be two non-negative solutions of L,u = Au for
A=A(g).
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A2u1 _n (n 4)

q(xX) e =Mgur i B,

AZuy — 1 (" 4’ qg(x)2 =A(q)u, inB,
ulzuzzo,%ﬂ—M:O on 0B.

Then by Theorem 5.1 u; > 0 and u, > 0 in B. Then by regularity result u € C>(B \ 0) and by

Hopf’s lemma [13] for fourth order equations, we have %2;21 >0 and %2;22 >0 ondB.

We will proceed by contradiction. Define

3%u1 /0y (x)

m: =mmn-—-————-——.
x€dB 82us /3y 2(x)

=m 3;;22 (x0). If possible let uq # mus,.

Define v :=u; — muy. Then v satisfies

A%y -1 (" 4’ q(x)2; i =XA(@)v inB,

v:O,S—)’j:O on 0B.

Then v is a minimizer in (2.4). Hence by Theorem 5.1 v does not change sign in B and by Hopf’s
lemma 32—3 # 0 on d B which is a contradiction.
Proceeding similarly as above we have the result forn =4. O
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Appendix A

Lemma A.l. Letn > 5 and &, (x) = |x|_#"(ln plc_|)8’ 8 €R. Then

(i) forO0 <R <1, SUEHz(B(R)) ifandonly ifv<lorv=1and§ < —5

(i) for x #0,
v [(1—4)?
A2, = é|4 [(” = ) (44 v —4)2 = )2 —2) — (n — 4)v)
_n—4 Wi —4)2 —2v(n—42—4(m —2)}(1 —v)s
2 (In7)

819 (3v2(n —4)% —6v(n — 42 + 2(n(n — 10) + 20)}
2 (In )2
281 =) =HU-v) §1-8)(2- 5)(3—5)}
(In ¢i7)3 (Inp)*

(A1)
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Proof. (i) &, € H2(B(R)) iff

1 26
x|~ — ) <00
|x]|

B(R)

and this happens iff v < l orv=1and § < —%. This proves (i).

(i) Let &, (x) = |x|™ o Y(In ﬁ)‘g and § € R. Then we have the following:

. 1\°
su=|x|74”<ln—) ,
| x|
. 4 1\? 1\°~!
%_v,r:r(z“v+1){_i’l v(log—> —5(1n—> },
2 r r
. —4 —4 1\°
o =r T (P2 g ) (-
’ 2 2 r

1 §—1 1 §—2
+5((n—4)v+l)<ln;> +5(—1+6)(ln;) }

8
A§, = r—(%v-‘,—Z) { (n—; 4!)) (n ; 4U —(n— 2)) <ln %)

1 5—1 1 §—2
+8((n—4)v—(n—2))<ln;> +8(8—1)<ln;) }

8
o= EOf () () () ()

1\ (3
—8<1n—) {—(n—4)2112—1)(11—4)2—2(11—2)}
r

4

INS2(/3 1\%-3
+8(8—1)(ln—> {(—v—l)(n—4)}+8(8—1)(8—2)(ln—> },
r 2 r
A _ (5t n—4 n—4 —n—2 n—4 ) n—4 3\ (1 1 s
(A& =T —2 v 3 v—(n ) > v+ 5 v+ nr

a3 2
+8{(n 4) v3—3v2<(n 4)*(n 7))
2 4

§—1
—2n—4)(n—2)v—3v(n—4)*— (n— 2)2} <ln 1)
p

+6(6—1)In— —n—4Y) v —-vin—-T(n—-4)—=-Bn—-16)(n —2)
r 2 2 2
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1 52
—6@—1X8—2Hﬂn—4ﬂ—{n—7”<m—>
r

1 §—3
+5®—n@—mw—3%m;) }

_A\2
AZSV = |XT |:(n 164) (4+ v(n — 4))(2 — v)(2(n —2)—(n— 4)v)

_n—4hﬂ@—4ﬂ—2wn—®2—4n—DK1—WS

2 (In )
_aa—an&ﬂm—4ﬂ—6wn—®2+2mm—1®+2m}

2 (n )2
_2M1—®m—4x1—uy_a1—®@—wx3—&]

(mﬁﬁ (mﬁﬁ ’

Note that for v = 1 and replacing § by —§, we have

A2 = E_1|:n2(n —4)? CEs Dn*>—4n+8) S@E+DG+2)(+ 3):|
|x[4 16 2(In I)lc_l)z (lnplc_|)4 )

Lemma A.2. Let n =4 and ¢ (x) = (In %)“(ln(ln %))b, a,beR, R > 0. Then,

(i) for 0 < Ry <e 'R, ue H3(B(R))) ifandonlyifa <lora=1and b < —%;
(i) for0 < |x| <e 'R,

a2p— ) A L{&Ma—l)+q)@n0nﬁ%))

xl*log fp?  Ix*(n fp2(n(in 1))

+4b(b—a) +

4b(b — 1) }
——— +o()|. (A.2)

(In(In 7))

Proof. (i) The first part is easy to verify.

0-(o2) (o))
s8] ) 2 )
w802 ()48 (o0

)
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Hence A¢ = ¢y + %zbr (r) we have,

2a R\ R\\?  2p R\4! R\ !
A¢=——2<ln —> <ln<ln—>> — —2<ln —> (ln(ln—))

r r r r r r

a—2

o3

Y = <ln5>a<ln(ln§))ﬂ n
sv=s(EJos( e (£)on
AT G A2 )
AL ) 22 (o)
(A2 o))

o= (o8 () o ]

(In(in £))

) ) o oG () (3)))

Hence

A% = —ZaA((ln P 1(ln(ln N _opa ((m Rya=1(1n(in & )y>-1

) )
=0 8) (0 (0F)) (o1 )

_2(1“§> ((ln_»b( (lnanR)))}
) 00) e )

(ln(ln )
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R a—2 R b—1 b
(2] (o(=3)) (- )
- r (In(In %))
Rya—2 Ry\b
_ I r(in(ln ) [—8a(a — 1) +4a(a — 1]
Rya—-2 Ryyb—1
L) (lj(m [ sab+dab — 8ha — 1)+ 4b(a— 1]
Rya-2 Ryy\b-2
L (ij(ln b — 1) +4bb— D],

5 daa—1) (. R\*? R\\? 4b(1—2a)/ R\"2 R\\*!
o= (1, F) 7 (1 B) ) 0201, 8) 7, )
r r r r

r r
a—2 b—2 Rya—3 R\\b
+4b(b—1)<ln§) <ln(ln£>> +0((1nr) (In(ln &) >

r4 r r r4

_ da@-1) ¢ 4b(1 — 2a) b

ot (nfy r* (i E)2(n(n £))

4b(b —1) ¢ E¢
+ : X3 YD) IR where E — O asr — 0.
r (In 2)*(In(In 7)) (log -)*r

Therefore we have

s et ? [—4 —1 (1 (1 5))
’ rdlog )2 r4(log £)2(In(in &) (4a@=1)+4q(0)(In{In—

4b(b —1)
4b(b — —_— 1
+4b(b — a) + (In(in B)) +o( ):|

which finishes the proof. O

Thus when a = % and b = —% we have

A2¢ — q¢
x| (log )2

_ ¢ [(1 - (x))(ln(ln 5))2—s<s+z>+o(1>]
" x*dog £)2(nan )2 [V x '

A.l. H%(2) Hardy—Rellich inequality

Let £2 be a smooth domain of R* and consider the problem

A2w=0 in$2,
w=f on 0s2,

(A.3)
%—15 =g on 052.
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Then, by elliptic regularity, there exist unique Green functions Kj(x, y), K2(x, y) smooth for
x € 2,y € 352 and some constants C; > 0, C» > 0 such that Vx € £2, y € 952

C C
Ky < ——,  |Ka(x, )| < ——. (A4)
lx — vl lx — yl
Moreover,
w(x)=fK1(x,y)f(y)d0(y)+/Kz(x,y)g(y)do(y)- (A.5)
a2 a2

Then we have the following lemma.

Lemma A.3. Consider the above problem. Then, Yo > 0 there exists a constant C > 0 such that

!w<C{/f+/ } (A6)

002
/|ln(lnm)|“w 4 <C{/f2+/ 2} (A7)
— dx< . .

A (n £2 §
22 a2 a2

Proof. (A.6) follows easily.
For (A.7) we proceed in the following manner. We have

fummpwz ‘/f(<fummﬁmmuynd>d()
J a2 el f )Y

+/2(%/Hmm$mmmwu)d()

o .

oY xfan gy )Y
082 2

Let B(0, R)) C 2. Then

|ln(ln‘ Dl w?
[ TR ff@( [ [ oo
2 ]

B(0,Ry) 2\B(0,R1)
+C/g2(y)</-~+ / -~~>d6(y),

382 B(0,R)) 2\B(0,Ry)
[l e [ (B [
x[*(in £ )2 (In ®)2 =yl )Y

2 2\B(O,R))

L { {1nan B / 1
— do ().
Cfg@% ranky TS e

0 0 2\B(0,Ry)
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Hence we have

[ e
J BT 1

30 3
The proof of lemma is finished. O

(klnl)order to state the next result we introduce certain notations. Let ¢©@ = 1, e = ¢, ¢® =
ef for k > 1. Let b > 0 and define

In'(b) =Inb, Inf () = In(In* 1 ().

Then we have the following.

Theorem A.l. Let 2 be a bounded domain with smooth boundary and 0 € $2. Let
R > ektDsupicig X1 then there exist constants A1 >0, Ay > 0 such that for all u € Hz(.Q)

2(, 4 2 2 —4 2
/(Au)zdx— nn— 4 /u—4dx— n(n )/ “ z
16 x| 8 |x|4(lnm)2
2 2 2
nn—4) > u?
S i
ZJ ki )

Ju\2
>—A1/MZ—A2/<8M> , forn2=5;
%

(A.8)
082 082
2 k 2
u u
@utar - [ ae Y [
! Sk S e 2’ £)?
5 du\?
2—)»1/14 —)»2/(—) , n=4. (A.9)
ov
082 082

Proof of (A.Sl. In order to prove (A.8) we borrow ideas from [2]. Let E := x|~y e
C%2(2)NC'(£2) and u = E'/?vy. Then vp(0) = 0 and

(n—4)2 u? 5 X
———— +|Vuy|"E — (n—4) Vg )E v,
4 |xf?

>’
IVul> _ (n=4)?% u*>  |Vul?

n—4) x 5
P 4 W Re P2 < Vo)

|Vul* =

|x|"
\V/ 2 _42 2 \V/ 2 —4
f|u| @ )/u_dx+/|vo|de_<n )/(x
|x[2 4 x4
2 2 2 982

) V) U2
|x|2 2 x| O
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|Vu|2d (n—4)2/ u? 4 |Vv0|2Ed (n—4) (A10)
X = —daxXx X — .
|x|? x| |x|? 2 x|
82
Now,
Vul|? Vu-V
[Vu] dx:/ “ udx
|x|? |x|?
2 2
/v Vi d +/ YV, )
= — — Judx ——(Vu,v
|x|? |x|?
2 982
ulAu X u ou
__ dx+2 / S
T ol e
2
uAud ( )/ /‘ u ou (A11)
x—(n— a0 :
le2 x| |x |4 |x|28v
Putting the value of (A.10) in (A.11) we have
uAu n(n—4)/ n—2/ u?
_ — - , d
o ¢ WF 2 ) Etee
2 a2
9 Vpl?
—/L—u-i- Vool” o 4. (A.12)

lx|? v x|
Yo 7

Using the above substitution and Schwartz inequality, we obtain

n2(n — 4)2 2 _ _ 2
/M dx <" Y __W/“_wu)dx
2 ) P

|x|4
Q
n—4 u du nn-—4 Vuol?
~ w du ni=d) [Vwl
2 |x|2 v 2 |x|?
E)es Q
Let v = Xll/zvo. Then we have
Vool® ju? 2 / X1+ |VU1|2EX
x: x 1) 1 1-
|x|? | |4 |x |4 |x|?

Similarly for i > 2 define v; (x) = X; l/zvi,l. Then

|V |? /|u|2 N / u? Vs |?
EXidx X7X5— | —x, X1 X2+ EX1X>.
/ ]2 @ 2T X2
22 2 082 2
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Let

.o (=4 —-2) (n—4)°
A1 = inf PR { —}—le }—‘r .

x€a82 2 4
i=1

Similarly as in Theorem 2.1,

20, 4 2 2 —4 2
/}mmdx>ﬁﬁl_l:/£_+”m {[ u _Ahfﬁ
16 x|+ 8 |x|4(In £)2
2 2 Ix] FY?,

2

wu\? nn—4) = u? vor

—m (=) + ) X3x3---x2. o

2/(%) 8 Sl B
22 =2 I

Proof of (A.9). In order to prove Theorem A.1, we require the following lemma and the proof
of the theorem will follow as a consequence. O

Let H = {u € H*(2): A*u=0}. Then H>(2) = H}(2) ® H. For v e H3(2), u € H we
have [, AuAv=0.

Lemma A4. Letu € HX(2), v € HOZ(.Q), w € H such that u = v + w, where w satisfies

Aw=0 in$2,
w=u on 0§52,
‘?—’]‘j = 3—"‘) on 052.
Then there exists C > 0 such that
/}Am2=/}Aw2+/}Awﬂ, (A13)
Q Q Q

5 2 au\>
fw <C{/u —i—/(—) } (A.14)
ov
2 2 2

Letk €N, R > %+ supg, |x|, then there exist C1 > 0, Cp > 0 such that Vu € H2(2)

o= frames [utves () - [ it
v el*(in &2
82 082 2

>

M»

A.15
/uwmﬂﬂm_m2 19
o
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Proof. The first part follows trivially.
For the second part define

2 u?
Tw):= | (Auw)? — | ———.
() /( " /|x|4(ln%)2
2 2

Let 0 <! < k and let Cy, denote a generic constant depending on k, £2, R. Then
k+1 ﬁ)

2/ |vw| _2/ |v| |w|(1n [x]
S QxR g2l g2 T xan At [xPan H(in' )2

|x|

k+1 R )2

- / lv|? +C/ |w]“(In
X 7 k
Nt an g2t gz - ) |x|4<1nm)2(ln i

x|

- 1/ vl Lc ” 2+(8u>2}
<— u —
N J xfn E)2antt B2 k v
2 a2
- 1/ vl ic ” 2+(8u>2}
X 7 u o .
N J e Eyzanki By T av
2 a2

x|

Thus we have

2/ lvw| <_/ lv|?
4010 RV2(1nl By2 4010 R\2(1nk+1 R \2
S xtn f2an’ )2 7 N e an g2t

ou
+Ck/{u +( > } (A.16)
av
082

Using (A.16), (A.7) we have

1) — §k / ul
= xt(n 2! &2
=R

k 2
ul
-7 _
v ;/ x*n £ )2(n K2
- R

k

k 2
3 v] /
W P [[ [ £)2an’ B2 ZQ Jx[*(In ; ‘)2(1111 2

k 2
—Z/ |wl _2/L
R I R R
) a2’ 527 i £)2
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k 2 2
> 1) / lv] (k+1)/ [v]
z _Z R I Ry2 R k+1 R
—J Ix[*(In )2 (In" 52 N x[*(In )2 (I 32
=15 x| x| 4 ]

2 ou\? 2
ov
082 Q

Choosing N =k + 1 we have

k 2
ul
1 —
“ ;f xl*(In £ 20’ )2
-2

k+1

S B ey O
[l B2 B2 T ¢ w) |

2

Finally as v € Hg(.Q) we have

R ME ) Ju\?
I(")_/(Aw) _Z/ Ix[*(In £ )2(n’ B )2 z Cl/u _C2/<8_v> '
Q i=19 |x] ‘xl P

Hence the lemma is proved. O

A.2. W(;’q(.Q) estimates

Theorem A.2. Let 1 < g < 2. Then there exist Ry > 0, C; > 0, Co > 0 such that VR > Ry,
Yu € H(2) or Yu € H2(s2) NHY ()

2(71—4)2 Lt2
Au)’d / /—
/( u)“-dx — |x|4 C |x|4(ln|7R‘)2

> Collullyra g 12 S: (A.17)
2 2
u u
Au zdx — / ———dx —/
/ o e[+ )? e [*(In )2 (Inln £))>
2 2
> Collul g =4 (A.18)

Proof of (A.17). We use the similar ideas as in [3]. Let n > 5. Then we obtain by Theorem A.1,

/(Au)zdx—M/u—zdx—C]/uiz>C/ |Vw|2<ln£>
16 x4 Ix[4(n £)2 7 "2\ x| )
2 2 2 Ix] 2
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where
R\ 12 -2
w=|In— V= — x| 2 u
| x| x|
Since
s R\ 12
u=|x|" 2 [In— w,
| x|
we have
wal O((IH%)‘/ZV +(ln§)‘/2 )
ul = — w ———w .
M |7
Therefore
In £y4/2 In R y4/2
n=4 n=2 :
x| 24 x| 24

Letw e C°($2) and k > 0, & > 0. Then

/ (In %)a i 1/ (divx)(In |7R\)°' i

x|k n x|k

(x, Vw)(In £y« k [ (In&)e
=—z/—'x'|w|"—2w+—f x| lwl|?
n

n x|k |x|¥
2
R \a
o (In75)
+_~/%|W|q
nJ |xfk(n &)
2

Let k < n and Rg > 0 such that

a 1 1 (1 k)

— sup <—{1-——).

nre2 (Inf8) 2 n
Then for R > Ry, the above identity gives

R

ARt \v/ R\«
l 1_5 /(ln IX\) |w|q<i/| wi(In \xl) |w|q71
2 n x|k n | |k—1 ’
2 2

R R _ R
1 1_5 /(lnm)a|w|‘1<z /|w|q(lnl7)a a=hia /|Vw|q(lnm)°‘ e
2 n |x |k n |x |k |x|k—4 '
2 2 2
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This implies that there exists C = C(k, n, &) > 0 such that

R R
/(lnﬂ)a|w|q<c /|Vw|q(ln|7)a

x|k h |x k=4 ’
2 2

Choose k = 5 where g is such that k < n and & = £. For R > Ry we have

q/2
/|W|q— (/7( 1) IVw |4>.
lx| 29

This implies that

(In B a/2
[wur<c( [ bwar)
2 2

which follows by Holder’s inequality. Hence we have

2 2 2 2 2/q
2, N n—4 / u 3 / |ut| (/ q)
/(Au) dx e —|x|4 dx |x|4(ln )2 [Viul
2 2 Tl

i.e.,

2 2 2 2
n“(n—4) / u /‘ |u|
Auldx————— | —dx-C, | ———
[( u)"dx 16 T pan B2
2 2 2 x|
> Co||Vu)? Yue H} (). O
2 Vil g, Vit € HG(2)

Proof of (A.18). From the Hardy—Rellich inequality for » = 4 in Theorem A.1 we have
u? u?
f (Au)*dx / dx — f - -
x4(n £)2 x[4(n £)2(In(In £))2
Q
[Vw|? R R
>(Cy — In— |({In{In—
|x] |x] |x|
Q
) R R
>C | |Vw|“{In— ){In{ In—
J |x] |x|

where

el ) o) (o)
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Hence we have

R 172 R\ 12
u= <ln<1n—>> (ln —) w.
| x| x|

- o(ﬂnﬂn%””wm(m(m R ))‘”(m R )”)
uj= — — — .
(In £)1/2 x| x|

Then,

This implies

Vull =0 —(ln(ln‘%))wz Vu(in(1n 2 q/zl R\ A.19
it =of an ke " o(n(ni) (nig) ) @w

Letw e C(‘)’O(.Q) and k > 0, o > 0 such that

/-(ln(ln By fwe 1/ (In(In %))* [w}?

(niflee 4 ) (In & )¥|x|g

szmﬁwmw%Wmm q/mm%wmw

+_
4 (n ¥ fx[e 4) an gk
2 2

a/ (In(In £y w4 E/mm%wmw

+_ —
4 (n gy ndn gy)lxle 4 ) (g

2

This implies

R
(In & y¥|x|e 4

(1 ")/W_ 61/(ln(ln%))“lwlq‘zw(vw,x)

4 (In & yk|x|a

af (In(ln £))* w4

4J (n By andn Eplxie”
2

Choose Rg > 0 such that

o 1

sup ——— < 1+ -
4 veo (In 20y (In(In Roy) 4

x| [x]

Then by Holder’s inequality we have

(In(In %))* [w}? c (In(ln &) w4\ @=D/a o ¢ (Inin £))*|Vaw|e /g
/ (In gk fxe </ (In &)k x]a ) (/ (In (& )k~ )
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Hence we have

(In(In &) [w} (In(In £)* | Vw|?

——— < C .
/ (In & yk|x|a (/ (In R yk=a )
2 2

Choose k = %, o = % then the above inequality becomes

(1n(1n%))q/2|w|q RA\\9/2/ R \42
[t el froon(o(o)) (o))
(1n§;|)q/2|x|q x| x|

2 2

Thus from (A.19) we have

R q/2 R\9/?
/|Vu|q§Cf|Vw|"<ln<ln—)) <ln—) .
x| x|
2 2

Hence we have

[ frr(u(u)) o))
([[wuw)yq <CQ/|Vw|2<ln<ln l%))(m %)

which ends the proof. 0O
Concluding remark. We have also obtained Wg 4(£2) estimates in [5].
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