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Abstract

In this paper we deal with three types of problems concerning the Hardy–Rellich’s embedding for a bi-
Laplacian operator. First we obtain the Hardy–Rellich inequalities in the critical dimension n = 4. Then we
derive a maximum principle for fourth order operators with singular terms. Then we study the existence,
non-existence, simplicity and asymptotic behavior of the first eigenvalue of the Hardy–Rellich operator

�2 − n2(n−4)2

16
q(x)

|x|4 under various assumptions on the perturbation q.
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1. Introduction

Let Ω ⊂ R
n be a smooth bounded domain and 0 ∈ Ω . Let us recall that the Hardy–Rellich’s

inequality states that for all u ∈ H 2
0 (Ω)∫

Ω

|�u|2 − n2(n − 4)2

16

∫
Ω

u2

|x|4 � 0, n � 5, (1.1)
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where n2(n−4)2

16 is the best constant in (1.1) and it is never achieved in any domain Ω ⊂ R
n. This

inequality was firstly proved by F. Rellich [14] for u ∈ H 2
0 (Ω) and it was extended to functions

in H 2(Ω) ∩ H 1
0 (Ω) by Dold et al. [9]. On the lines of improving Hardy–Sobolev inequality

for functions in H 1
0 (Ω) (see [1,3,6,8,10]) there has been a considerable interest in improving

(1.1). Recently, Gazzola et al. [11] proved that for n � 5 there exist C,C1 > 0 such that for all
u ∈ H 2

0 (Ω) or u ∈ H 2(Ω) ∩ H 1
0 (Ω), the following inequality holds,

∫
Ω

|�u|2 − n2(n − 4)2

16

∫
Ω

u2

|x|4 � C

∫
Ω

u2

|x|2 + C1

∫
Ω

u2, n � 5. (1.2)

Furthermore, Tertikas and Zographopolous [17] have improved this by obtaining an optimal
inequality,

∫
Ω

|�u|2 − n2(n − 4)2

16

∫
Ω

u2

|x|4 � n(n − 4)

8

∫
Ω

u2

|x|4(lnR/|x|)2
, n � 5, (1.3)

which holds for every u ∈ H 2
0 (Ω) or u ∈ H 2(Ω) ∩ H 1

0 (Ω) where R > e diam(Ω). For the sake
of completeness we give the proof of the generalized inequality in Appendix A (Theorem A.1)
so that (1.3) follows as a consequence of this theorem.

In this paper we consider the following three problems:

• Optimal Hardy–Rellich inequality in n = 4.
• Maximum principle for the bi-Laplacian equation with singular potential.
• Existence and non-existence of the perturbed Hardy–Rellich operator.

Surprisingly optimal Hardy–Rellich inequality for n = 4 turn out to be different compared to
n � 5 and this will be dealt in Section 3.

Secondly, for n � 5 the best constant

λ = inf
u∈H 2

0 (Ω)

{∫
Ω

|�u|2 − n2(n − 4)2

16

∫
Ω

u2

|x|4 :
∫
Ω

u2 = 1

}
(1.4)

is never attained in any domain Ω and hence as in [4] we look to the perturbed problem

λ(q) = inf
u∈H 2

0 (Ω)

{∫
Ω

|�u|2 − n2(n − 4)2

16

∫
Ω

qu2

|x|4 :
∫
Ω

u2 = 1

}
, (1.5)

where q ∈ C0(Ω) be such that 0 � q(x) � 1. In Section 5 we give a necessary and sufficient con-
dition on q for which λ(q) is achieved as in [4] for the Hardy–Sobolev inequality. Unlike in the
Laplacian case, the bi-Laplacian does not satisfy the maximum principle which is a main ingre-
dient in obtaining the results. Therefore in Section 4 we prove a weak type maximum principle
for bi-Laplacian with singular potential using continuation method which will be used to prove
the existence and non-existence of minimizers for (1.5). Finally in Appendix A we prove some
technical lemmas and we give some new Hardy–Rellich’s inequalities and W 1,p(Ω) estimates.
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2. Main results

Let R > 0, B(R) denote the open ball of radius R with center at the origin and B denotes the
ball with radius one. Let 0 ∈ Ω ⊂ R

n be a domain with smooth boundary and define

Ck
0,r (Ω) = {

v ∈ Ck
0(Ω): v is radial and suppv ⊂ Ω

}
,

Hm
0,r (Ω) = {

v ∈ Hm
0 (Ω): v is radial

}
.

Let −�S3 denotes the Laplace–Beltrami operator on S
3. Then the spectrum of −�S3 = −�σ is

discrete with eigenvalues given by {i(i +2): i ∈ N∪{0}}. Let Vi be the eigenspace corresponding
to the eigenvalue i(i + 2). Let Pi : L2(R4) → Vi be the orthogonal projection given by

Pi(f ) =
ki∑

j=1

( ∫
S3

f (rω)ϕi,j (ω)dσ(ω)

)
ϕi,j , (2.1)

where {ϕi,j }1�j�ki
is a complete orthonormal set for Vi and r = |x|.

For t ∈ (0,1], define the functions {Yi(t)}i∈N inductively as follows:

Y1(t) := (1 − ln t)−1, t ∈ (0,1],
Yi(t) := Yi−1

(
Y1(t)

)
, t ∈ (0,1), i = 2,3,4, . . . ,

Yi(0) = 0, Yi(1) = 1,

0 � Yi(t) � 1.

Note in the case of bi-Laplacian there are two types of Hardy–Rellich’s inequality that is inter-
action between �u with u and �u with ∇u.

Theorem 2.1. (a) Let 0 ∈ Ω ⊂ B(R) be a bounded domain in R
4, R > 0, R1 > eR. Then ∀u ∈

H 2
0 (Ω) or ∀u ∈ H 2(Ω) ∩ H 1

0 (Ω) we have

∫
Ω

|�u|2 −
∫
Ω

u2

|x|4(ln R1|x| )2
�

∞∑
i=2

∫
Ω

u2

|x|4(ln R1|x| )2
X2

2 · · ·X2
i , (2.2)

where

Xi(x) := Yi

( |x|
R

)
, i = 1,2,3,4, . . . .

The constants −1 (the coefficient of
∫
Ω

u2

|x|4(lnR1/|x|)2 ) is the best constant and is never achieved

by any nontrivial function u ∈ H 2(Ω) or ∀u ∈ H 2(Ω) ∩ H 1(Ω).
0 0
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(b) Let 0 < R � ∞, and 0 ∈ Ω ⊂ B(R) ⊂ R
4. Suppose u ∈ H 2

0 (Ω), then

∫
Ω

|�u|2 − 4
∫
Ω

|∇u|2
|x|2 � −3

∫
Ω

(P1u)2

|x|4 , (2.3)

∫
Ω

|�u|2 − 4
∫
Ω

|∇u|2
|x|2 � −3

∫
Ω

(P1u)2

|x|4 + 3

4

∫
Ω

|P1u|2
|x|4(lnR/|x|)2

+ 9

32

∫
Ω

|P1u|2
|x|4(lnR/|x|)4

, (2.4)

−4,−3, 3
4 , 9

32 are the best constants and equality holds iff u ≡ 0.

Next we study the eigenvalue problems associated with the perturbed Hardy–Rellich operator.
Let n � 4 and 0 ∈ Ω ⊂ R

n be a bounded domain with smooth boundary. Let R1 > e diam(Ω).
Let q ∈ C0(Ω) be such that 0 � q(x) � 1 for u ∈ H 2(Ω)

Iq(u) =
⎧⎨
⎩
∫
Ω

|�u|2 − n2(n−4)2

16

∫
Ω

qu2

|x|4 , n � 5,∫
Ω

|�u|2 − ∫
Ω

qu2

|x|4(lnR/|x|)2 , n = 4,
(2.5)

and

λD(q) = inf
u∈H 2

0 (Ω)

{
Iq(u):

∫
Ω

u2 = 1

}
, (2.6)

λN(q) = inf
u∈H 2(Ω)∩H 1

0 (Ω)

{
Iq(u):

∫
Ω

u2 = 1

}
. (2.7)

Now define the associated Hardy–Rellich operator

Lqu =
⎧⎨
⎩

�2u − n2(n−4)2

16
qu

|x|4 , n � 5,

�2u − qu

|x|4(lnR/|x|)2 , n = 4.
(2.8)

Then if u is a minimizer in any one of (2.6) and (2.7), then u satisfies

Lqu = λu in Ω (2.9)

with the following boundary conditions:

(i) In the case of (2.6), λ = λD(q) satisfies the Dirichlet boundary condition

PD: u = ∂u

∂γ
= 0 on ∂Ω. (2.10)

(ii) In the case of (2.7), λ = λN(q) satisfies the Navier boundary condition

PN : u = �u = 0 on ∂Ω. (2.11)
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Now we observe that in the case of Navier boundary condition (PN), maximum principle holds
and hence if the minimizers exists, then we can expect a non-negative solution.

In the Dirichlet case (PD), no maximum principle holds and since u ∈ H 2(Ω) need not imply
|u| ∈ H 2(Ω), we cannot expect a non-negative minimizer. Therefore obtaining the a priori esti-
mates is difficult. In view of this we develop a weak maximum principle with singular potential
in Section 4 which will be used to prove the following theorems. Here we give a necessary and
sufficient condition on the perturbation q in order to get a minimizer.

Theorem 2.2. Let n � 5.

(i) If q satisfies

lim inf
x→0

(
ln

1

|x|
)2(

1 − q(x)
)
>

6(n2 − 4n + 8)

n2(n − 4)2
(2.12)

then λD(q) and λN(q) are achieved by u. Moreover, in the case of Navier boundary condi-
tion, we can choose u > 0.

(ii) Let 0 < R < 1. Assume that q satisfies

sup
0<x<R

(
ln

1

|x|
)2(

1 − q(x)
)
� 6(n2 − 4n + 8)

n2(n − 4)2
. (2.13)

Then,
(a) λN(q) is not achieved;
(b) if Ω = B , then λD(q) is not achieved by any non-negative function.

(iii) Let 1 � p < 2, then there exists u ∈ W 2,p(Ω) satisfying in the sense of distribution,

Lq(u) = λu in Ω, (2.14)

where λ ∈ {λD(q),λN(q)}:
(a) if λ = λN(q), then u ∈ W 2,p(Ω) ∩ W

1,p

0 (Ω) with u � 0;

(b) if λ = λD(q), then u ∈ W
2,p

0 (Ω).

Next we consider the case n = 4. In view of Theorem 2.1 we have the following theorem.

Theorem 2.3. Let n = 4.

(i) If q satisfies

lim inf
x→0

(
ln

(
ln

R

|x|
))2(

1 − q(x)
)
> 3 (2.15)

then λD(q) and λN(q) are achieved by u.
(ii) Let 0 < R1 < 1. Assume that q satisfies

sup

(
ln

(
ln

R

|x|
))2(

1 − q(x)
)
� 3. (2.16)
0<x<R1



Adimurthi et al. / Journal of Functional Analysis 240 (2006) 36–83 41
Then,
(a) λN(q) is not achieved;
(b) if Ω = B , then λD(q) is not achieved by any non-negative function.

(iii) Let 1 � p < 2, then there exists u ∈ W 2,p(Ω) satisfying in the sense of distribution

Lq(u) = λu in Ω, (2.17)

where λ ∈ {λD(q),λN(q)}. Moreover,
(a) if λ = λN(q), then u ∈ W 2,p(Ω) ∩ W

1,p

0 (Ω) with u � 0;

(b) if λ = λD(q), then u ∈ W
2,p

0 (Ω).

Next we take q(x) = ν a constant such that 0 < ν < 1 and we study the behavior of minimizers
at the origin as ν → 1. To do this let 0 < β(ν) < 1/2 be the unique zero of the polynomial

g(β) = β(1 − β)
(
2 + β(n − 4)

)(
n − 2 − β(n − 4)

)− n2

16
ν. (2.18)

Clearly β(ν) → 1/2 as ν → 1. Then we have the following theorem.

Theorem 2.4. Let n � 5, q(x) = ν and 0 < ν < 1. Let λ > 0, uν ∈ H 2(Ω) be a non-negative
solution of

Lνu = λu in Ω, (2.19)

where λ ∈ {λD(ν), λN(ν)}, then there exist C1 > 0, C2 > 0 such that

C1 � lim inf
x→0

(
ln

1

|x|
)(n−4)β(ν)

uν(x) � lim sup
x→0

(
ln

1

|x|
)(n−4)β(ν)

uν(x) � C2.

Theorem 2.5. Let n = 4, q(x) = ν and 0 < ν < 1. Let λ > 0, uν ∈ H 2(Ω) be a non-negative
solution of

Lνu = λu in Ω, (2.20)

where λ ∈ {λD(ν), λN(ν)}, then there exist C1 > 0, C2 > 0 such that

C1 � lim inf
x→0

(
ln

R

|x|
)−1+√

1−ν
2

uν(x) � lim sup
x→0

(
ln

R

|x|
)−1+√

1−ν
2

uν(x) � C2.

Theorem 2.6. Let B be the unit ball centered at origin and 0 � q(x) � 1. Moreover, let u1, u2 ∈
H 2

0 (B) be two non-negative minimizers for λD(q). Then u1 = mu2 for some m > 0.
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3. Hardy–Rellich inequalities

Lemma 3.1. Let n � 4 and B be the unit ball centered at zero. Then ∀u ∈ H 2
0,r (B) or ∀u ∈

H 2
r (B) ∩ H 1

0,r (B)

∫
B

|�u|2 � n2

4

∫
B

|∇u|2
|x|2 (3.1)

and equality holds iff u ≡ 0.

Proof. Proof of the first part. Let us assume that u ∈ C∞
0 (B). Note that

∫
B

|�u|2 − n2

4

∫
B

|∇u|2
|x|2 = ωn

{ 1∫
0

u2
rr r

n−1 − (n − 2)2

4

1∫
0

u2
r

r2
rn−1

}
.

Setting ur = v and using the classical Hardy inequality in H 1
0 (B), we get

ωn

{ 1∫
0

u2
rr r

n−1 − (n − 2)2

4

1∫
0

u2
r

r2
rn−1

}
=
∫
B

|∇v|2 − (n − 2)2

4

∫
B

v2

|x|2 � 0

and equality holds iff v = 0 and hence u = 0.
Proof of the second part. Let u ∈ C2

r (B) ∩ C1
0,r (B) then

∫
B

|�u|2 − n2

4

∫
B

|∇u|2
|x|2 = ωn

[ 1∫
0

(urr )
2rn−1 − (n − 2)2

4

1∫
0

(ur)
2

r2
rn−1 + (n − 1)

(
ur(1)

)2]
,

∫
B

|�u|2 − n2

4

∫
B

|∇u|2
|x|2 = ωn

[ 1∫
0

(vr)
2rn−1 − (n − 2)2

4

1∫
0

v2rn−3 + (n − 1)v2(1)

]
, (3.2)

where ur = v. Putting z = r
n−2

2 v and integrating by parts the right-hand side of (3.2) becomes

ωn

[ 1∫
0

(vr )
2rn−1 − (n − 2)2

4

1∫
0

v2rn−3 + (n − 1)v2(1)

]

= ωn

[ 1∫
0

(zr )
2r − (n − 2)

2
z2(1) + (n − 1)z2(1)

]
= ωn

[ 1∫
0

(zr )
2r + n

2
z2(1)

]
� 0.

Again the inequality holds iff z(1) = 0, zr = 0 and hence u = 0. Hence we are done. �
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Proof of Theorem 2.1(a). Let us first assume that u ∈ H 2
0,r (B) where B is a unit ball centered

at origin. It follows easily that Yi satisfies the following identities. For t ∈ [0,1) we have

dYn

dt
= Yn(t)

2Yn−1(t)
2 · · ·Y1(t)

2

t
.

For t = |x|/R and Xi(x) = Yi(|x|/R)

∇Xn

Xn

= x

|x|2 X1(x) · · ·Xn(x).

Let v1 = X
1/2
1 u. Then v1(0) = 0 and

∇u

u
= −1

2

∇X1

X1
+ ∇v1

v1
,

∫
B

|∇u|2
|x|2 = 1

4

∫
B

u2

|x|4 X2
1 +

∫
B

|∇v1|2
v2

1

u2

|x|2 −
∫
B

〈∇X1

X1
,
∇v1

v1

〉
u2

|x|2

= 1

4

∫
B

u2

|x|4 X2
1 +

∫
B

|∇v1|2
|x|2 X1 − 1

2

∫
B

〈
x

|x|4 ,∇v2
1

〉

= 1

4

∫
B

u2

|x|4 X2
1 +

∫
B

|∇v1|2
|x|2 X1 − Cv2

1(0)

= 1

4

∫
B

u2

|x|4 X2
1 +

∫
B

|∇v1|2
|x|2 X1.

Let, for i � 2, vi(x) = X
1/2
i vi−1(x). Then

∫
B

|∇v1|2
|x|2 X1 = 1

4

∫
B

v2
1

|x|2
|∇X2|2
|X2|2 X1 − 1

2

〈
x

|x|4 ,∇v2
1

〉
+
∫
B

|∇v2|2
|x|2 X1X2

= 1

4

∫
B

u2

|x|4 X2
1X

2
2 + Cv2

1(0) +
∫
B

|∇v2|2
|x|2 X1X2.

Hence by induction we have

∫
B

|∇u|2
|x|2 � 1

4

∞∑
i=1

∫
B

u2

|x|4 X2
1X

2
2 · · ·X2

i .
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Therefore, from Lemma 3.1 we have if u is radial,

∫
B

|�u|2 � 4
∫
B

|∇u|2
|x|2 �

∞∑
i=1

∫
B

u2

|x|4 X2
1X

2
2 · · ·X2

i .

Let R1 � eR. Then for |x| � R, we have lnR1 − ln |x| � ln e + lnR − ln |x| which implies that

(
ln

R1

|x|
)2

�
(

1 − ln
|x|
R

)2

= X−2
1 .

Hence we have

∫
B

|�u|2 �
∫
B

u2

|x|4 X2
1 +

∞∑
i=2

∫
B

u2

|x|4(ln R1|x| )2
X2

2 · · ·X2
i

�
∫
B

u2

|x|4(ln R1|x| )2
+

∞∑
i=2

∫
B

u2

|x|4(ln R1|x| )2
X2

2 · · ·X2
i .

This proves the inequality (2.2) for u ∈ H 2
0,r (B).

Let u ∈ H 2
0 (Ω), we apply the idea of [15]. Consider |Ω| = |B|. Then we may restrict our-

selves to Ω = B and superharmonic radial function u. Define f = −�u.

{−�w = f ∗ in B,
w = 0 on ∂B,

(3.3)

where f ∗ denotes the Schwarz symmetrization of f . Then w ∈ H 2
r (B) ∩ H 1

0,r (B). By [16] we
have w � u∗ � 0. Hence

∫
B

|�w|2 dx =
∫
B

(f ∗)2 dx =
∫
Ω

|f |2 dx =
∫
Ω

|�u|2 dx,

∫
B

w2

|x|4(ln R1|x| )2
dx �

∫
B

u∗2

|x|4(ln R1|x| )2
dx �

∫
Ω

|u|2
|x|4(ln R1|x| )2

dx.

Similarly we get

∞∑
i=2

∫
B

w2

|x|4(ln R1|x| )2
X2

2 · · ·X2
i �

∞∑
i=2

∫
Ω

u2

|x|4(ln R1|x| )2
X2

2 · · ·X2
i .

Hence the inequality (2.5) holds for all u ∈ H 2(Ω) ∩ H 1(Ω) and u ∈ H 2(Ω).
0 0
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Now we prove the sharpness of the previous inequality, i.e., we show the existence of a family
of radial functions ψδ such that

lim
δ→0

∫
Ω

|�ψδ|2∫
Ω

ψ2
δ

|x|4(ln R1|x| )2

= 1.

Let B(1) ⊂ Ω and ϕ ∈ C∞
0 (Ω) be radial such that

ϕ(x) =
{

1 in B( 1
2 ),

0 on Ω \ B(1).

Define

ψδ(x) =
(

ln
R1

|x|
) 1

2 −δ

ϕ(x),

�ψδ(x) =
(

ln
R1

|x|
) 1

2 −δ

�ϕ + �

(
ln

R1

|x|
) 1

2 −δ

ϕ + 2

〈
∇
(

ln
R1

|x|
) 1

2 −δ

,∇ϕ

〉
.

Then

∣∣�ψδ(x)
∣∣2 =

(
ln

R1

|x|
)1−2δ

(�ϕ)2 +
(

�

(
ln

R1

|x|
) 1

2 −δ)2

ϕ2 + 4

(〈
∇
(

ln
R1

|x|
) 1

2 −δ

,∇ϕ

〉)2

+ 2

(
ln

R1

|x|
) 1

2 −δ

�

(
ln

R1

|x|
) 1

2 −δ

ϕ�ϕ + 4�

(
ln

R1

|x|
) 1

2 −δ

ϕ

〈
∇
(

ln
R1

|x|
) 1

2 −δ

,∇ϕ

〉

+ 4�ϕ

(
ln

R1

|x|
) 1

2 −δ〈
∇
(

ln
R1

|x|
) 1

2 −δ

,∇ϕ

〉
.

Hence we have

∫
Ω

|�ψδ|2∫
Ω

ψ2
δ

|x|4(ln R1|x| )2

=
∫
Ω

(�(ln R1|x| )
1
2 −δ)2φ2

∫
Ω

ψ2
δ

|x|4(ln R1|x| )2

+ O(1)∫
Ω

ψ2
δ

|x|4(ln R1|x| )2

.

This implies

∫
Ω

|�ψδ|2∫
Ω

ψ2
δ

|x|4(ln R1|x| )2

= 4

(
1

2
− δ

)2

+ 4

(
1

2
− δ

)2(1

2
+ δ

)∫Ω ψ2
δ

|x|4(ln R1|x| )3∫
Ω

ψ2
δ

|x|4(ln R1|x| )2

+
(

1

4
− δ2

)2

∫
Ω

ψ2
δ

|x|4(ln R1|x| )3∫
Ω

ψ2
δ

|x|4(ln R1 )4

+ O(1)∫
Ω

ψ2
δ

|x|4(ln R1 )2

.

|x| |x|
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Taking the limit as δ → 0 and noting that

lim
δ→0

∫
Ω

ψ2
δ

|x|4(ln R1|x| )2
= ∞,

we have

lim
δ→0

∫
Ω

|�ψδ|2∫
Ω

ψ2
δ

|x|4(ln R1|x| )2

= 1.

Hence 1 is the best constant in (2.2) and it is never achieved in any bounded domain (this is clear
from (2.2)). �
Proof of Theorem 2.1(b). The restriction of � to the unit sphere S

n−1 will be denoted by �σ ,
the Laplace–Beltrami operator. Then the Laplacian operator in R

n can be written in (r, σ ) as

� = �r + 1

r2
�σ ,

where �r is the radial Laplacian. For u ∈ H 2
0 (Ω) ⊂ H 2

0 (B(R)), let

u =
∞∑

m=0

km∑
i=1

ui,m(r)φi,m(σ ),

where φi,m are the complete orthonormal basis of eigenfunctions of the Laplace–Beltrami oper-
ator with eigenvalues cm = m(m + 2), m � 0. Then

∫
R4

|∇u|2
|x|2 =

∞∑
m=0

km∑
i=1

{∫
R4

|∇ui,m|2
|x|2 + cm

∫
R4

u2
i,m

|x|4
}
.

Note that ui,m(0) = 0 for m � 1 and hence
∫

R4
u2

i,m

|x|4 < ∞. Moreover, φ0,m(σ ) = 1, u0,0(r) is the
radial part of u. Now by Euler’s theorem 〈x,∇f 〉 = 0 if f is homogeneous of degree zero and
hence 〈∇ui,m,∇φi,m〉 = (ui,m)r

r
〈x,∇φi,m〉 = 0. Since −�σ φi,m = cmφi,m by direct calculation

we have ∫
R4

(�u)2 − 4
∫
R4

|∇u|2
|x|2

=
∞∑

m=1

km∑
i=1

{∫
R4

|�ui,m|2 + (
c2
m − 4cm

)∫
R4

u2
i,m

|x|4 + (2cm − 4)

∫
R4

|∇ui,m|2
|x|2

}

+
{∫

4

|�u0|2 − 4
∫

4

|∇u0|2
|x|2

}
.

R R
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Now for m � 2, (c2
m − 4cm) > 0, (2cm − 4) > 0, hence from Lemma 3.1, we have

∫
R4

|�u|2 − 4
∫
R4

|∇u|2
|x|2 �

k1∑
i=1

{∫
R4

|�ui,1|2 + 2
∫
R4

|∇ui,1|2
|x|2 − 3

∫
R4

|ui,1|2
|x|4

}

� −3
k1∑

i=1

∫
R4

|ui,1|2
|x|4 = −3

∫
R4

|P1u|2
|x|4 . (3.4)

This proves the required result.
Next let us show that −3 is the best constant.

Claim. Let R > 0 and define X = {v ∈ C2
r (B(R)): v(0) = v(R) = 0}. Moreover, set

λ
(
B(R)

)= inf
v∈X

{ ∫
B(R)

(�v)2 + 2
∫

B(R)

|∇v|2
|x|2 :

∫
B(R)

v2

|x|4 = 1

}
.

We claim that λ(B(R)) = 0.

Since v is radial, now by change of variables |x| = r = 2e−t/2 we obtain v(x) = y(t), R =
2e−T/2, y(∞) = yt (∞) = 0, y(T ) = 0 and y satisfies

2
∫

B(R)

|v|2
|x|4 = ω4

∞∫
T

y2 dt,

∫
B(R)

(�v)2 + 2
∫

B(R)

|∇v|2
|x|2 = ω4

[
8

∞∫
T

(ytt − yt )
2 dt + 4

∞∫
T

y2
t dt

]

= ω4

[
8

∞∫
T

y2
t t + 12

∞∫
T

y2
t dt + 8y(T )2

]

= ω4

[
8

∞∫
T

y2
t t + 12

∞∫
T

y2
t dt

]
. (3.5)

Hence we have

8

∞∫
T

y2
t t + 12

∞∫
T

y2
t dt � λ

(
B(R)

) ∞∫
T

y2 dt.

Setting θ = t − T and y(t) = z(θ) the above inequality gives

8

∞∫
z2
θθ + 12

∞∫
z2
θ dt � λ

(
B(R)

) ∞∫
z2 dθ. (3.6)
0 0 0
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Let α > 0, 0 � ϕ ∈ C2
0(0,∞) and zα(θ) = ϕ(αθ), then (3.6) gives

8α4

∞∫
0

ϕ2
θθ + 12α2

∞∫
0

ϕ2
θ dt � λ

(
B(R)

) ∞∫
0

ϕ2 dθ

and letting α → 0 we get λ(B(R)) = 0. This proves the claim.
Suppose now that −3 is not the best constant. Then from (3.6) it follows that λ(B(R)) > 0

which contradicts our claim. Now we prove (2.4).
Let z ∈ C2(0,∞); z(0) = zt (0) = z(∞) = zt (∞) = 0. Hence z(t) = ∫ t

0 zt (θ) dθ and by
Hardy’s inequality

∞∫
0

z2

θ2
� 4

∞∫
0

z2
θ ,

∞∫
0

z2
θ

θ2
� 4

∞∫
0

z2
θθ .

So we have

∞∫
0

zzθ

θ3
= 1

2

∞∫
0

(z2)θ

θ3
= 3

2

∞∫
0

z2

θ4

and by Hölder inequality

∞∫
0

z2

θ4
� 4

9

∞∫
0

z2
θ

θ2
.

Then

∞∫
0

z2

θ4
� 16

9

∞∫
0

z2
θθ and

8

∞∫
0

z2
θθ + 12

∞∫
0

z2
θ � 9

2

∞∫
0

z2

θ4
+ 3

∞∫
0

z2

θ2
.

Going back to (3.5), we obtain

8

∞∫
T

y2
t t + 12

∞∫
T

y2
t � 9

2

∞∫
0

y2

(t − T )4
+ 3

∞∫
0

y2

(t − T )2
.

Now t − T = 2 ln R
r

and by taking v = ui,1 we have from (3.5)

∫ (
|�v|2 + 2

|∇v|2
|x|2 + 3

|v|2
|x|4

)
� 3

4

∫ |v|2
|x|4(ln R

|x| )2
+ 9

32

∫ |v|2
|x|4(ln R

|x| )4
.

B(R) Ω Ω
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Substituting this in (3.4) we obtain

∫
Ω

|�u|2 − 4
∫
Ω

|∇u|2
|x|2 � −3

∫
Ω

(P1u)2

|x|4 + 3

4

∫
Ω

|P1u|2
|x|4(ln R

|x| )2
+ 9

32

∫
Ω

|P1u|2
|x|4(ln R

|x| )4
,

where −4,−3, 3
4 , 9

32 are best constants which are never achieved. This proves the theorem. �
Remark 3.1. We are able to generalize Hardy–Rellich type of inequality for p-biharmonic op-
erators where n = 2p in [5]. In that paper we have completely characterized the Hardy–Rellich
inequalities in the critical dimension but in the radial case. Note that the method of Szegő cannot
be used in higher order Sobolev spaces in Hm

0 (Ω) where m > 2.

4. A maximum principle

Here we prove the maximum principle using the continuation method for the Navier boundary
condition which is good enough for our purpose.

The operator �2 − V is said to be coercive on H 2(Ω) ∩ H 1
0 (Ω) if∫

Ω

(�u)2 −
∫
Ω

V u2 � C

∫
Ω

(�u)2

for all u ∈ H 2(Ω) ∩ H 1
0 (Ω) and for some C > 0.

Main lemma. Let V ∈ L∞(Ω), V � 0 and the operator �2 −V be coercive on H 2(Ω)∩H 1
0 (Ω).

Let f ∈ L2(Ω), φ ∈ H 5/2(∂Ω), ψ ∈ H 3/2(∂Ω) such that f � 0, φ � 0, ψ � 0. Let u ∈ H 2(Ω)

be a solution of

(A)

⎧⎨
⎩

�2u − V u = f in Ω ,
u = φ on ∂Ω ,
−�u = ψ on ∂Ω .

Then u � 0 in Ω .

Proof. Since �2 satisfies weak maximum principle with respect to nonzero Navier data, we have
that ⎧⎨

⎩
�2u = f in Ω ,
u = φ on ∂Ω ,
−�u = ψ on ∂Ω

implies that u � 0 in Ω . Hence the solution u can be written in terms of the Green operator as

u = G(f ) + G1(φ) + G2(ψ),

where G, G1, G2 are the integral operators with positive kernels. Let 0 < ε � 1 and consider the
perturbation of the above problem with the same boundary conditions

�2u = εV u + f.
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Since the operator is coercive there exists a unique solution given by

u = G(εV u + f ) + G1(φ) + G2(ψ).

Hence

(I − εGV )(u) = G(f ) + G1(φ) + G2(ψ),

where GV (u) = G(V u). Since 0 � V � C we have that GV (u) is a bounded operator. This
implies that for small ε > 0, it exists (I − εGV (u))−1 and it is an integral operator with non-
negative kernels. This implies

u = (I − εGV )−1{G(f ) + G1(φ) + G2(ψ)
}

� 0.

Let

A = {
t ∈ [0,1]: ∀ε ∈ [0, t], (�2 − εV ) satisfies weak maximum principle

with nonzero Navier data
}
.

Then we have A �= ∅. We claim that supA = 1.
Suppose supA = t0 < 1. Then (�2 − t0V ) is coercive and by continuity satisfies the weak

maximum principle with respect to nonzero Navier data. Hence by the above argument we can
find an ε0 > 0 such that ∀0 < ε � ε0, (�2 − (t0 + ε)V ) satisfies the weak maximum principle
with nonzero Navier data which implies a contradiction. Hence supA = 1. Thus if u is a solution
of (A), then u � 0 in Ω . �
Corollary 4.1. Let n � 5, V ∈ L∞(Ω) and V � 0. Let us suppose that the operator �2 − V

|x|4 is

coercive on H 2(Ω) ∩ H 1
0 (Ω). Let f ∈ L2(Ω), φ ∈ H 5/2(∂Ω), ψ ∈ H 3/2(∂Ω) such that f � 0,

φ � 0, ψ � 0. Let u ∈ H 2(Ω) be a solution of

(B)

⎧⎨
⎩

�2u − V

|x|4 u = f in Ω ,
u = φ on ∂Ω ,
−�u = ψ on ∂Ω .

Then u � 0 in Ω .

Proof. Let B ⊂ Ω . Choose ϕ ∈ C∞
c (Ω) and 0 � ϕ � 1 such that

ϕ(x) =
{

1 in B( 1
2 ),

0 on Ω \ B.

Choose δ > 0 and ϕδ(x) = ϕ(x ). Define Vδ = 1−ϕδ(x)
4 V . Then Vδ ∈ L∞(Ω).
δ |x|
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Now consider the problem

(C)

⎧⎨
⎩

�2u − Vδu = f in Ω ,
u = φ on ∂Ω ,
−�u = ψ on ∂Ω .

Then

〈
�2u − Vδu,u

〉
L2(Ω)

=
〈
�2u − V

|x|4 u,u

〉
L2(Ω)

+
〈
ϕδ(x)

|x|4 V u,u

〉
L2(Ω)

�
〈
�2u − V

|x|4 u,u

〉
L2(Ω)

.

Hence (�2 − Vδ) is coercive in H 2(Ω) ∩ H 1
0 (Ω). Note that the coercivity is independent of the

choice of δ. Hence by the previous theorem if uδ is a solution to (C) then uδ � 0. Now we claim
that uδ(x) → u(x) as δ → 0.

Set wδ = uδ − u. Then we have that wδ satisfies

⎧⎨
⎩

�2wδ − Vδuδ + V

|x|4 u = 0 in Ω ,
wδ = 0 on ∂Ω ,
−�wδ = 0 on ∂Ω .

We have

〈
�2wδ − Vδwδ −

(
Vδ − V

|x|4
)

u,wδ

〉
L2(Ω)

= 0.

Hence,

〈
�2wδ − Vδwδ,wδ

〉
L2(Ω)

+
∫
Ω

V uwδϕδ

|x|4 = 0.

Then

‖wδ‖2
H 2(Ω)∩H 1

0 (Ω)
� C1

∫
Ω

V |uwδ|ϕδ

|x|4 � C1

(∫
Ω

w2
δ

|x|4
)1/2(∫

Ω

u2

|x|4 ϕ2
δ

)1/2

� C1‖wδ‖H 2(Ω)∩H 1
0 (Ω)

(∫
Ω

u2

|x|4 ϕ2
δ

)1/2

.

Thus we have

‖wδ‖H 2(Ω)∩H 1
0 (Ω) � C1

(∫
u2

|x|4 ϕ2
δ

)1/2

.

Ω
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Hence by dominated convergence theorem we have that wδ → 0 in H 2(Ω) ∩ H 1
0 (Ω). As uδ � 0

we also have u � 0 and u is a solution of (B). �
The same proof of the previous theorem gives the following result.

Corollary 4.2. Let n = 4, V ∈ L∞(Ω), V (x) � 0 and suppose that the operator

�2 − V

|x|4(ln R
|x| )2

is coercive on H 2(Ω) ∩ H 1
0 (Ω). Let f ∈ L2(Ω), φ ∈ H 5/2(∂Ω), ψ ∈ H 3/2(∂Ω) such that

f � 0, φ � 0, ψ � 0. Let u ∈ H 2(Ω) be a solution of

(D)

⎧⎨
⎩

�2u − V

|x|4(ln R
|x| )2 u = f in Ω ,

u = φ on ∂Ω ,
−�u = ψ on ∂Ω .

Then u � 0 in Ω .

We end this section by stating a general maximum principle for differential operator of even
order.

Corollary 4.3. Let us assume that the L is a differential operator of even order 4k and:

(i) V ∈ L∞(Ω) and V � 0;
(ii) L − V is coercive on H 2k(Ω) ∩ Hk

0 (Ω) and self-adjoint;
(iii) L − V satisfies weak maximum principle with respect to nonzero Navier data.

Let us consider the problem

(E)

{
Lu − V u = f in Ω ,
(−�)i−1u = ψi−1 on ∂Ω .

Then f � 0, ψi−1 � 0 for i ∈ {1,2, . . . ,2k} and ψi−1 ∈ C∞(∂Ω) implies that u � 0 in Ω .

5. Proof of the theorems

In view of the lack of maximum principle for the Dirichlet boundary condition we will only
prove the theorems in this case (the case of Navier boundary conditions follows in a similar way).
In order to follow the same proofs as in [4], we need some test functions and their main properties
will be proved in Appendix A. Let us recall some known results for biharmonic operator:

Boggio’s Principle. Consider the biharmonic equation

(F)

⎧⎨
⎩

�2u = f in B,
u = 0 on ∂B,
∂u = 0 on ∂B,

∂γ



Adimurthi et al. / Journal of Functional Analysis 240 (2006) 36–83 53
where B = {x ∈ R
n: |x| < 1} and γ is the outer normal at the boundary of B . Then Boggio’s prin-

ciple [7] states that the Green function associated to the biharmonic problem with zero Dirichlet
data in a ball is strictly positive. Hence if f � 0 a.e. then u > 0 in B . If f has enough regularity

such that u ∈ C2(B) then we have an analogue of Hopf maximum principle, i.e., ∂2u

∂γ 2 > 0 on ∂B

(this was proved by Grunau and Sweers in [13]).

Remark 5.1. Consider the problem ⎧⎨
⎩

�2u � 0 in B,
u = 0 on ∂B,
∂u
∂γ

= 0 on ∂B.

If u ∈ C2(B), then �u changes sign. Suppose �u has a definite sign. Without loss of generality
suppose −�u > 0 in B , then Hopf maximum principle says that ∂u

∂γ
< 0 on ∂B which contradicts

the second boundary condition.

Theorem 5.1. Consider the problem⎧⎪⎨
⎪⎩

�2u − n2(n−4)2

16 q(x) u

|x|4 = λu in B,
u �= 0 in B,
u ∈ H 2

0 (B),

(5.1)

where B is the unit ball centered at origin. If (5.1) admits a solution u for some λ = λ(q), then
u does not change sign in B .

Proof. Note that proving existence of positive solutions is quite hard in the sense that u+, u− /∈
H 2

0 (B), which played a crucial role in second order equations. Suppose u ∈ H 2
0 (B) solves the

above problem with λ = λ(q) with (2.9) and u changes sign. Define

K := {
v ∈ H 2

0 (B): v � 0 a.e.
}
.

Let

a(u, v) = 〈u,v〉H 2
0 (B) =

∫
B

�u�v, ∀u,v ∈ H 2
0 (B).

Note that K is a closed convex cone. Hence there exists a projection P :H 2
0 (B) → K such that

for all u ∈ H 2
0 (B), ∀w ∈ K

a
(
u − P(u),w − P(u)

)
� 0. (5.2)

Since K is a cone we can replace w by tw for t > 0 and letting t → ∞ to obtain

a
(
u − P(u),w

)
� lim

t→∞
1

t
a
(
u − P(u),P (u)

)
which implies that �2(u − P(u)) � 0 and by Boggio’s principle, u − P(u) � 0.
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Now replacing w by tP (u) for t > 0 in (5.2) we have

(t − 1)a
(
u − P(u),P (u)

)
� 0

and hence a(u − P(u),P (u)) = 0.
Hence we can write u = u1 + u2, u1 = P(u) ∈ K , u2 = u − P(u), u1 ⊥ u2 and u2 � 0. Since

u changes sign we have that u1 �≡ 0 and u2 �≡ 0. Therefore we have,

∫
B

|�(u1 − u2)|2 − n2(n−4)2

16

∫
B

q(u1−u2)
2

|x|4∫
B
(u1 − u2)2

<

∫
B

|�(u1 + u2)|2 − n2(n−4)2

16

∫
B

q(u1+u2)
2

|x|4∫
B
(u1 + u2)2

which contradicts (2.6). Then u does not change sign and noting that the Green function is strictly
positive we have either u > 0 or u < 0 in B . �
Proof of Theorem 2.2(i) (Existence). Let q be as in the assumption, and 0 < s < 1 and

λs(q) := inf
u∈H 2

0 (Ω)

{∫
Ω

|�u|2 − n2(n − 4)2

16
s

∫
Ω

qu2

|x|4 :
∫
Ω

u2 = 1

}
.

From (1.1) the operator �2 − n2(n−4)2

16 (
sq

|x|4 ) defined on H 2
0 (Ω) is coercive for 0 < s < 1. Hence

there exists a us ∈ H 2
0 (Ω) satisfying

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�2us − n2(n−4)2

16 sq(x) us

|x|4 = λs(q)us in Ω ,
us �= 0 in Ω ,
us ∈ H 2

0 (Ω),

‖us‖H 2
0 (Ω) = ∫

Ω
|�us |2 = 1.

Then we have us ⇀ u1 in H 2
0 (Ω), us → u1 in L2(Ω) and us → u1 a.e. Let

u(x) = |x|− n−4
2

(
ln

1

|x|
)−δ

with δ > 1
2 . From Lemma A.1, we have

�2u − n2(n − 4)2

16
q(x)

u

|x|4 − λs(q)u

= n2(n − 4)2

16

u

|x|4(ln 1
|x| )2

[(
1 − q(x)

)(
ln

1

|x|
)2

− 8δ(δ + 1)(n2 − 4n + 8)

n2(n − 4)2

+ 16

n2(n − 4)2

δ(δ + 1)(δ + 2)(δ + 3)

(ln 1 )2
− 16

n2(n − 4)2
λs(q)|x|4

(
ln

1

|x|
)2]

.

|x|
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Choose δ > 1
2 such that

lim inf
x→0

(
ln

1

|x|
)2(

1 − q(x)
)
>

8δ(δ + 1)(n2 − 4n + 8)

n2(n − 4)2

(this is possible by assumption (2.12)). From (2.12) we can find an R > 0 such that B(R) ⊂ Ω ,

{
�2u − n2(n−4)2

16 q(x) u

|x|4 − λs(q)u � 0 in B(R),
�u < 0 in ∂B(R).

Now using standard elliptic estimates, we can find M > 0 such that

{
us � Mu on ∂B(R),

−�us � −M�u on ∂B(R).

Let ws := us − Mu. Then

{
ws � 0 on ∂B(R),
−�ws � 0 on ∂B(R).

We are required to show that ws � 0 in B(R).
Now,

�2ws − n2(n − 4)2

16
sq(x)

ws

|x|4 − λs(q)ws � −M
n2(n − 4)2

16|x|4 (1 − s)qu.

Thus we have

�2ws − n2(n − 4)2

16
sq(x)

ws

|x|4 − λs(q)ws � 0 in B(R).

So, we are in the case

⎧⎨
⎩

�2ws − n2(n−4)2

16 sq(x) ws

|x|4 − λs(q)ws � 0 in B(R),
ws � 0 on ∂B(R),
−�ws � 0 on ∂B(R).

Claim. For R > 0 sufficiently small, the operator

�2 − n2(n − 4)2

16
sq(x)

1

|x|4 − λs(q)

is coercive in H 2(B(R)) ∩ H 1(B(R)).
0
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Let qR(x) = q(Rx) for |x| � 1, and

μ(R, sq) = inf
H 2(B(R))∩H 1

0 (B(R))

{ ∫
B(R)

|�v|2 − n2(n − 4)2

16
s

∫
B(R)

qv2

|x|4 :
∫

B(R)

v2 = 1

}
.

Then

μ(R, sq) = 1

R4
μ(1, sq) � 1

R4
μ(1,1).

Hence μ(R, sq) → ∞ as R → 0, uniformly in s and q . Since {λs(q)} is bounded for 0 < s < 1
and hence for v ∈ H 2(B(R)) ∩ H 1

0 (B(R))

∫
B(R)

|�v|2 − n2(n − 4)2

16
s

∫
B(R)

qv2

|x|4 − λs(q)

∫
B(R)

v2

= (1 − s)

{ ∫
B(R)

|�v|2 − λs(q)

∫
B(R)

v2
}

+ s

{ ∫
B(R)

|�v|2 − n2(n − 4)2

16

∫
B(R)

qv2

|x|4 − λs(q)

∫
B(R)

v2
}

� (1 − s)

(
1 − λs(q)

μ(R,0)

) ∫
B(R)

|�v|2 + s
(
μ(R,q) − λs(q)

) ∫
B(R)

v2

� 1 − s

2

∫
B(R)

|�v|2.

This proves the claim.
Therefore from Corollary 4.1, we have ws � 0 in B(R). This implies that us � Mu in B(R).

Since −us is also a solution we have that |us | � Mu in B(R). Hence we have

us
2

|x|4 � M2 u2

|x|4 .

Since
∫
B(R)

u2

|x|4 < ∞ by dominated convergence theorem we have

∫
Ω

qu2
s

|x|4 →
∫
Ω

qu2
1

|x|4 , 1 =
∫
Ω

u2
s →

∫
Ω

u2
1

as s → 1. Therefore from the weak-lower semicontinuity of H 2
0 (Ω) norm and the fact that

λs(q) → λ(q) as s → 1 we have

Iq(u1) � lim inf Iq(us).

s→1
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This implies that ‖us‖H 2
0 (Ω) → ‖u1‖H 2

0 (Ω) and hence us → u1. Hence λD(q) is attained by u1.
Note that u1 > 0 if Ω is a ball (see Theorem 5.1). �
Proof of Theorem 2.2(ii) (Non-existence). We argue by contradiction. Suppose that λD(q) is
attained at u1 ∈ H 2

0 (B). We claim that there exist m > 0,R > 0 such that

u1 � m|x|− n−4
2

(
ln

1

|x|
)−1/2

in B(R).

This will lead to a contradiction, since by Hardy–Rellich’s inequality

u2
1

|x|4 ∈ L1(B(R)
)

but
∫

B(R)

|x|−n

(
ln

1

|x|
)−1

= ∞.

In order to prove this we have the following

Claim 1. There exists 0 < R1 < 1 such that −�u1(x) > 0 in B(R1).

From Corollary 4.1 we can assume that u1 > 0 in B . So we have �2u1 = h > 0 in B . Let
G(x,y) denote the Green function associated with the biharmonic operator with zero Dirichlet
condition in the unit ball. Then by [12],

G(x,y) = cn

(
[xy]4−n − [XY ]4−n − n − 4

2

(
1 − |x|2)(1 − |y|2)[XY ]2−n

)
,

where

cn > 0, [xy] = |x − y|, [XY ] =
∣∣∣∣|x|y − x

|x|
∣∣∣∣.

Then

�xG(0, y) = cn(n − 4)

(
− 2

|y|n−2
+ (2 − n)|y|2 + n

)
.

Hence −�xG(0, y) > 0 for all y ∈ B . By continuity we have that for all ε > 0 there exists
R1(ε) < 1 such that for |y| � (1 − ε), it holds −�xG(x, y) > 0, ∀x ∈ B(R1(ε)). Suppose
the claim is not true. Then there exists a sequence xk �= 0 such that xk → 0 as k → ∞ and
−�u1(xk) � 0. Hence for large k and by Fatou’s lemma

0 � lim
xk→0

−�u1(xk) = lim
xk→0

{ ∫
B(1−ε)

(−�G(xk, y)h(y)
)
dy +

∫
B\B(1−ε)

(−�G(xk, y)h(y)
)
dy

}

�
{ ∫

B(1−ε)

lim inf
xk→0

(−�G(xk, y)
)
h(y)dy +

∫
B\B(1−ε)

(−�G(0, y)h(y)
)
dy

}

= −
∫
B

�G(0, y)h(y) dy > 0

which is a contradiction. This proves the claim.
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Since the operator �2 − n2(n−4)2

16
q

|x|4 is non-negative but need not be coercive. Hence we
cannot apply Corollary 4.1 to obtain lower bound for u1. For this we have the following

Claim 2. Consider the problem

(G)

⎧⎨
⎩

�2u − n2(n−4)2

16
qu

|x|4 = f in B,
u = φ on ∂B,
−�u = ψ on ∂B.

Let f ∈ L2(B), φ ∈ H 52(∂B), ψ ∈ H 3/2(∂B) such that f � 0, φ � 0, ψ � 0 and is a solution
of (G). Then u � 0.

For s ∈ (0,1) as the operator �2 − n2(n−4)2

16 s
q

|x|4 is coercive on H 2(B) ∩ H 1
0 (B) by Corol-

lary 4.1, there exists a unique solution us � 0 in B satisfying

(H)

⎧⎨
⎩

�2us − n2(n−4)2

16 s
qus

|x|4 = f in B,
us = φ on ∂B,
−�us = ψ on ∂B.

Subtracting (G) from (H) and vs := us − u we have

∫
B

(�vs)
2 − n2(n − 4)2

16
s

∫
B

qv2
s

|x|4 = n2(n − 4)2

16
(1 − s)

∫
B

quvs

|x|4 . (5.3)

Hence from (5.3) we have

{∫
B

(�vs)
2 − n2(n − 4)2

16

∫
B

qv2
s

|x|4
}

+ n2(n − 4)2

16
(1 − s)

∫
B

qv2
s

|x|4

= n2(n − 4)2

16
(1 − s)

∫
B

quvs

|x|4 .

As the term in the curly bracket is non-negative we have

n2(n − 4)2

16
(1 − s)

∫
B

qvs
2

|x|4 � n2(n − 4)2

16
(1 − s)

∫
B

quvs

|x|4 .

By the Hölder inequality,

∫
B

qv2
s

|x|4 � C.

Therefore from (5.3) and W 1,p(B) estimates (A.17) we have
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‖vs‖2
W

1,p
0 (B)

� C1
n2(n − 4)2

16
(1 − s)

∫
B

quvs

|x|4

� C1(1 − s)

( ∫
B

qu2

|x|4
)1/2( ∫

B

qv2
s

|x|4
)1/2

� C2(1 − s).

This implies that ‖vs‖2
W

1,p
0 (B)

→ 0 as s → 1. As us � 0 we have u � 0 in B . This proves the

claim.
Let

ϕs(x) := |x|− n−4
2

(
ln

1

|x|
)−s/2

,

where s > 1. Note that ϕs ∈ H 2(B(R)) and from Lemma A.1 ϕs satisfies

�2ϕs − n2(n − 4)2

16
q

ϕs

|x|4 = n2(n − 4)2

16

ϕs

|x|4(ln 1
|x| )2

[(
1 − q(x)

)(
ln

1

|x|
)2

− 2s(s + 2)(n2 − 4n + 8)

n2(n − 4)2
+ s(s + 2)(s + 4)(s + 6)

n2(n − 4)2

1

(ln 1
|x| )2

]
.

Hence from (2.13) we can choose R2 > 0 such that

�2ϕs − n2(n − 4)2

16

qϕs

|x|4 � 0 in B(R2).

Let 0 < R < min{R1,R2}. Then from Claim 1 and Corollary 4.1 u1 > 0, −�u1 > 0 in B(R) and
so we can choose m > 0 independent of s such that

{
u1 � mϕs on ∂B(R),
−�u1 � −m�ϕs on ∂B(R).

Define ws := u1 − mϕs . Then we have

⎧⎨
⎩

�2ws − n2(n−4)2

16
qws

|x|4 � 0 in B(R),
ws � 0 on ∂B(R),
−�ws � 0 on ∂B(R).

This implies that ws � 0 in B(R) by Claim 2. This proves 2.2(ii). �
Proof of Theorem 2.2(iii) (Existence of W

2,p

0 solution). Let 0 < ν < 1 and uν satisfy Lνquν =
λuν with

∫
B

u2
ν = 1 and λ = λν(q). Note that the existence of uν is assured by the fact that

�2 − n2(n−4)2
νq 1

4 is coercive on H 2(Ω). We will show that uν → u1 in W
2,p

(Ω) for all p < 2.
16 |x| 0 0
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Let ξν(x) = |x|− (n−4)
2 ν(ln 1

|x| )
δ and δ ∈ R. Then from Lemma A.1, we have the following:

�2ξν = ξν

|x|4
[
(n − 4)2

16

(
4 + ν(n − 4)

)
(2 − ν)

(
2(n − 2) − (n − 4)ν

)

− n − 4

2

{ν2(n − 4)2 − 2ν(n − 4)2 − 4(n − 2)}(1 − ν)δ

(ln 1
|x| )

− δ(1 − δ)

2

{3ν2(n − 4)2 − 6ν(n − 4)2 + 2(n(n − 10) + 20)}
(ln 1

|x| )2

− 2δ(1 − δ)(n − 4)(1 − ν)

(ln 1
|x| )3

− δ(1 − δ)(2 − δ)(3 − δ)

(ln 1
|x| )4

]
.

Note that for 0 < R < 1, ξν ∈ H 2(B(R)) iff ν < 1. Fix 0 < δ < 1. Therefore there exists R > 0
such that

�2ξν − n2(n − 4)2

16
ν

qξν

|x|4 − λν(q)ξν � 0 in B(R).

Since ξν > 0 and −�ξν > 0 in a small ball, using standard elliptic estimates there exists M1 > 0
such that

{
uν � M1ξν on ∂B(R),
−�uν � −M1�ξν on ∂B(R).

Define wν = uν − M1ξν . Then wν satisfies

⎧⎨
⎩

�2wν − n2(n−4)2

16 ν
qwν

|x|4 − λν(q)wν � 0 in B(R),
wν � 0 on ∂B(R),
−�wν � 0 on ∂B(R).

Taking R small enough (if necessary) and proceeding as in the claim of the proof of Theo-
rem 2.2(i) we have

{
wν � 0 in B(R),
−�wν � 0 in B(R),

and then as −uν is also a solution, we have

{
|uν | � M1|x|− n−4

2 ν
(
ln 1

|x|
)δ in B(R),

|�uν | � −M1�ξν in B(R).
(5.4)
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Now we claim that there exist M1,M2,M3,R > 0 such that for ν ∈ ( 1
2 ,1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|uν | � M1|x|− n−4
2 ν
(
ln 1

|x|
)δ in B(R),

|∇uν | � M2|x|−( n−4
2 ν+1)

(
ln 1

|x|
)δ in B(R),

|∇2uν | � M3|x|−( n−4
2 ν+2)

(
ln 1

|x|
)δ

in B(R).

(5.5)

To prove the above estimates on |∇uν |, |∇2uν | we proceed as in [8].
Let x ∈ B(R

2 ) where R is chosen as above. Let r = 1
2 |x| and define ũν(y) = uν(x + ry) for

y ∈ B(1). Then ũν satisfies

�2ũν(y) = c̃ν(y)ũν(y),

where |c̃ν(y)| � C and ν ∈ ( 1
2 ,1). Then by Green formula we have for all x ∈ B(1)

∣∣∇2ũν(0)
∣∣+ ∣∣∇ũν(0)

∣∣� C1
(‖ũν‖L∞(B(1)) + ‖�ũν‖L∞(B(1)) + ∥∥�2ũν

∥∥
L∞(B(1))

)
� 2CC1

(‖ũν‖L∞(B(1)) + ‖�ũν‖L∞(B(1))

)
.

For |y| � 1 we have |x + ry| � |x| − r � |x|
2 and hence from (5.4) there exist some M1 > 0,

M2 > 0,

∣∣ũν(y)
∣∣+ ∣∣�ũν(y)

∣∣� M1|x + ry|− n−4
2 ν

(
ln

1

|x + ry|
)δ(

r2

|x + ry|2 + 1

)

� M2|x|− n−4
2 ν

(
ln

1

|x|
)δ

.

These estimates proves (5.5). Hence we can find a subsequence uν ⇀ u1 (say) in W
2,p

0 (Ω) as
ν → 1. Then uν → u1 a.e. and 1 = ∫

Ω
u2

ν = ∫
Ω

u2
1. Hence u1 �= 0 satisfies (2.14) in D′(Ω).

Furthermore, from Theorem 5.1, uν > 0 if Ω = B and then we have that u1 � 0 if Ω = B . Note
that u1 � 0 on a set of positive measure in B . This proves the theorem. �
Proof of Theorem 2.3(i) (Existence). Let

λs(q) := inf
u∈H 2

0 (Ω)

{∫
Ω

|�u|2 − s

∫
Ω

qu2

|x|4(ln R
|x| )2

:
∫
Ω

u2 = 1

}
.

Since the operator

�2 − sq

|x|4(ln R )2
|x|
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defined on H 2
0 (Ω) is coercive for 0 < s < 1 (Theorem 2.1) and hence there exists us ∈ H 2

0 (Ω)

satisfying

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�2us − sq(x) us

|x|4(lnR/|x|)2 = λs(q)us in Ω ,
us �= 0 in Ω ,
us ∈ H 2

0 (Ω),

‖us‖H 2
0 (Ω) = ∫

Ω
|�us |2 = 1.

We will prove the existence of a solution to (2.9) by showing that us converges in H 2
0 (Ω) to u1

(say) and u1 satisfies (2.9).
Let u(x) = (ln R

|x| )
1/2(ln(ln R

|x| ))
δ , where δ is chosen so that δ > 1

2 and

lim inf
x→0

(
ln

(
ln

R

|x|
))2(

1 − q(x)
)
> 4δ(δ + 1).

Then from Lemma A.2 and (2.15), for small R1 > 0, we obtain

�2u − q(x)
u

|x|4(ln R
|x| )2

− λs(q)u

= u

|x|4(ln R
|x| )2(ln(ln R

|x| ))2

[
(1 − q)

(
ln

(
ln

R

|x|
))2

− 4δ(δ + 1) + o(1)

]

� 0.

Now proceeding exactly as in case of Theorem 2.2(i) we obtain, for all s ∈ (0,1),

|us | � Mu in B(R) (5.6)

for some M > 0. Using the boundedness of us in H 2
0 (Ω), we can find u1 ∈ H 2

0 (Ω) such that
us ⇀ u1 (along a subsequence if necessary), strongly in L2(Ω) and almost everywhere in Ω as
s → 1. Hence by dominated convergence theorem we obtain

∫
Ω

qu2
s

|x|4(ln R
|x| )2

→
∫
Ω

qu2
1

|x|4(ln R
|x| )2

(5.7)

and

∫
Ω

u2
s →

∫
Ω

u2
1. (5.8)

Hence proceeding as in Theorem 2.2(i), we have us → u1 in H 2
0 (Ω). Hence there exists a solu-

tion to (2.9) for λ = λ(q) by passing to the limit as s → 1. �
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Proof of Theorem 2.3(ii) (Non-existence). By contradiction let us suppose that (2.9) has a non-
negative radial solution u1 ∈ H 2

0 (B) for some λ � 0. We claim that there exist m > 0,R1 > 0
such that

u1 � m

(
ln

R

|x|
)1/2(

ln

(
ln

R

|x|
))−1/2

in B(R1).

This will lead to a contradiction, since by Hardy–Rellich’s inequality

u2
1

|x|4(ln R
|x| )2

∈ L1(B(R1)
)

but
∫

B(R1)

|x|−4
(

ln
R

|x|
)(

ln

(
ln

R

|x|
))−1

= ∞.

Define

ϕs(x) :=
(

ln
R

|x|
)1/2(

ln

(
ln

R

|x|
))−s/2

,

where s > 1. Note that ϕs ∈ H 2
r (B(R1)) and that u1 > 0 in B by Boggio’s principle. So we

have �2u1 = h > 0 in B . Let G(x,y) denote the Green function associated with the biharmonic
operator with zero Dirichlet condition in the unit ball. Then by [12]

G(x,y) = cn

(
2 ln[xy] − 2 ln[XY ] − (

1 − |x|2)(1 − |y|2)[XY ]−2),
where

cn > 0, [xy] = |x − y|, [XY ] =
∣∣∣∣|x|y − x

|x|
∣∣∣∣.

Then

�xG(0, y) = cn

(
− 4

|y|2 + 8 − 4|y|2
)

.

Hence −�xG(0, y) > 0 for all y ∈ B and thus arguing exactly as in Theorem 2.2(ii), we have
−�u1(x) > 0 in B(R1) where R1 > 0 is sufficiently small. Choose R1 < R such that the condi-
tion (2.16) is satisfied. Then from Lemma A.2 we have

�2ϕs − q(x)
ϕs

|x|4(ln R
|x| )2

= ϕs

|x|4(ln R
|x| )2(ln(ln R

|x| ))2

[
(1 − q)

(
ln

(
ln

R

|x|
))2

− s(s + 2) + o(1)

]
.

Hence

�2ϕs − q(x)
ϕs

|x|4(ln R
|x| )2

� 0 in B(R1).

Similarly as in Theorem 2.2(ii) we obtain that u1 � mϕs in B(R1). �
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Proof of Theorem 2.3(iii) (Existence of W
2,p

0 (Ω) solution). Let 0 < ν < 1 and uν satisfy
Lνquν = λuν with

∫
B

u2
ν = 1 for some λ = λν(q). The existence of uν follows from Theorem 2.1

and by coercivity of the operator �2 − ν
q

|x|4(ln R
|x| )2 in H 2

0 (Ω). We will show that uν → u1 in

W
2,p

0 (Ω) for all p < 2.
First we will prove the following estimates on uν,∇uν,∇2uν . Fix 0 < δ < 1. Then there exists

R1 > 0 such that for ν ∈ ( 1
2 ,1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|uν | � M1
(
ln R

|x|
)ν/2(ln(ln R

|x|
))δ in B(R1),

|∇uν | � M2|x|−1
(
ln R

|x|
)ν/2(ln(ln R

|x|
))δ in B(R1),

|∇2uν | � M3|x|−2
(
ln R

|x|
)ν/2(

ln
(
ln R

|x|
))δ

in B(R1),

(5.9)

where M1, M2, M3 are constants independent of ν.
Let

ξν(x) =
(

ln
R

|x|
)ν/2(

ln

(
ln

R

|x|
))δ

.

Then from Lemma A.2 we have

�2ξν − νq
ξν

|x|4(ln R
|x| )2

− λν(q)ξν = ξν

|x|4(ln R
|x| )2

[
ν(2 − ν − q) + 4

δ(1 − δ)

(ln(ln R
|x| ))2

+ o(1)

]
.

Hence there exists R1 > 0 such that

�2ξν − νq
ξν

|x|4(ln R
|x| )2

− λν(q)ξν � 0 in B(R1).

Proceeding exactly as in Theorem 2.2(iii), we have the above result. �
Proof of Theorem 2.4. Let uν be a non-negative solution to (2.19) corresponding to λ = λD(ν).
Set φ1

ν = |x|−(n−4)β(ν). By choice of β(ν) and (2.18) it follows that φ1
ν satisfies the equation

�2φ1
ν − ν

n2(n − 4)2

16

φ1
ν

|x|4 = 0.

Let 0 < R < 1. Since −�φ1
ν > 0 on ∂B(R) we can choose C1 > 0 such that

uν � C1φ
1
ν , −�uν � −C1�φ1

ν on ∂B(R).

Define wν = uν − C1φ
1
ν . Then wν satisfies

�2wν − ν
n2(n − 4)2

16

wν

|x|4 = λ(ν)uν.
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So we have {
�2wν − ν

n2(n−4)2

16
wν

|x|4 � 0 in B(R),

wν � 0,−�wν � 0 on ∂B(R).

Hence by the maximum principle (Section 4) we have that uν � C1φ
1
ν in B(R). Hence

C1 � lim inf
x→0

[(
ln

1

|x|
)(n−4)β(ν)

uν(x)

]
.

Now to prove the other inequality. Let us introduce the function

φ2
ν (x) = |x|α(x),

where α(x) = −(n − 4)β(ν) − |x|. Let

ψ1 = r−(n−4)β(ν) = r−a, ψ2 = r−r .

So we have

ψ ′
1 = −ar−(a+1), ψ ′′

1 = a(a + 1)r−(a+2),

�ψ1 = ψ ′′
1 + n − 1

r
ψ ′

1 = [
a(a + 1) − (n − 1)a

]
r−(a+2),

ψ2�
2ψ1 = ν

n2(n − 4)2

16

ϕ2
ν (x)

|x|4 .

Hence we have

�ψ1 = a(2 + a − n)r−(a+2),

�ψ ′
1 = −a�

(
r−(a+1)

)= −a(a + 1)(3 + a − n)r−(a+3),

ψ ′
2 = −(1 + ln r)e−r ln r ,

ψ ′′
2 = r−r

{
(1 + ln r)2 − 1

r

}
, (�ψi)

′ = �ψ ′
i − n − 1

r2
ψ ′

i ,

2�ψ1�ψ2 + 4ψ ′
1�ψ ′

2 + 4ψ ′
2�ψ ′

1 + 4ψ ′′
1 ψ ′′

2 − 2(n − 1)

r2
ψ ′

1ψ
′
2 = O

(
r−(a+3+r)

(
ln

1

r

)3)
.

Then

�2ϕ2
ν (x) − ν

n2(n − 4)2

16

ϕ2
ν (x)

|x|4 − λ(ν)ϕ2
ν = ψ1�

2ψ2 + O

(
r−(a+3+r)

(
ln

1

r

)3)

and

ψ1�
2ψ2 = Cr−(a+3+r)

(
ln

1
)4

,

r
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where C > 0. Hence we can choose R > 0 such that

�2φ2
ν − ν

n2(n − 4)2

16

φ2
ν

|x|4 − λ(ν)φ2
ν � 0 in B(R).

Since −�φ2
ν > 0 on ∂B(R) we can choose C2 > 0 so that

{
uν � C2φ

2
ν on ∂B(R),

−�uν � −C2�φ2
ν on ∂B(R),

and proceeding exactly as in Theorem 2.2(i), we have

uν � C2φ
2
ν in B(R),

lim sup
x→0

[(
ln

1

|x|
)(n−4)β(ν)

uν(x)

]
� C2. �

Proof of Theorem 2.5. Let uν be a non-negative solution to (2.20) corresponding to λ = λD(ν).

Set φ1
ν = (ln R

|x| )
1−√

1−ν
2 . It follows that φ1

ν satisfies the equation

�2φ1
ν − ν

φ1
ν

|x|4(ln R
|x| )2

= −A
φ1

ν

|x|4(ln R
|x| )4

,

where A is a positive constant. Let 0 < R1 < 1 and choose C1 > 0 such that

{
uν � C1φ

1
ν on ∂B(R1),

−�uν � −C1�φ1
ν on ∂B(R1).

Define wν = uν − C1φ
1
ν . Then wν satisfies

�2wν − ν
wν

|x|4(ln R
|x| )2

� 0.

So we have

{
�2wν − ν wν

|x|4(ln R
|x| )2 � 0 in B(R1),

wν � 0, −�wν � 0 on ∂B(R1).

Hence again by the maximum principle (Section 4) we have uν � C1φ
1
ν in B(R1). Then

C1 � lim inf
x→0

[(
ln

R

|x|
)−1+√

1−ν
2

uν(x)

]
.

In order to prove the other inequality we define
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φ2
ν (x) =

(
ln

R

|x|
)β(x)

,

where β(x) = 1−√
1−ν

2 + |x|. Let

ψ1(x) =
(

ln
R

|x|
)α

and ψ2(x) =
(

ln
R

|x|
)|x|

,

where α = 1−√
1−ν

2 . Then we have

�2φ2
ν = ψ2�

2ψ1 + ψ1�
2ψ2 + 2�ψ1�ψ2 + 4

{
ψ ′

1�ψ ′
2 + ψ ′

2�ψ ′
1

}+ 4ψ ′′
1 ψ ′′

2 − 6
ψ ′

1ψ
′
2

r2
.

Note that the major term is

ψ1�
2ψ2 = C

1

r3
φ2

ν

(
ln

(
ln

R

r

))4

,

where C > 0 and hence we have

�2φ2
ν − ν

φ2
ν

|x|4(ln R
|x| )2

− λ(ν)φ2
ν = C

r3
φ2

ν

(
ln

(
ln

R

r

))4

+ O

(
1

r3
φ2

ν

(
ln

(
ln

R

r

))3)
.

Hence we can choose R1 > 0 small enough such that

�2φ2
ν − ν

φ2
ν

|x|4(ln R
|x| )2

− λ(ν)φ2
ν � 0 in B(R1).

Since −�φ2
ν > 0 on ∂B(R1) we can choose C2 > 0 so that

{
uν � C2φ

2
ν on ∂B(R1),

−�uν � −C2�φ2
ν on ∂B(R1),

and proceeding exactly as in Theorem 2.3(i) we have

uν � C2φ
2
ν in B(R1), lim sup

x→0

[(
ln

R

|x|
)−1+√

1−ν
2

uν(x)

]
� C2.

Then the claim follows. �
Proof of Theorem 2.6. Let n � 5. Let u1 and u2 be two non-negative solutions of Lqu = λu for
λ = λ(q).
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�2u1 − n2(n−4)2

16 q(x) u1
|x|4 = λ(q)u1 in B,

�2u2 − n2(n−4)2

16 q(x) u2
|x|4 = λ(q)u2 in B,

u1 = u2 = 0, ∂u1
∂γ

= ∂u2
∂γ

= 0 on ∂B.

Then by Theorem 5.1 u1 > 0 and u2 > 0 in B . Then by regularity result u ∈ C2(B \ 0) and by

Hopf’s lemma [13] for fourth order equations, we have ∂2u1
∂γ 2 > 0 and ∂2u2

∂γ 2 > 0 on ∂B .
We will proceed by contradiction. Define

m := min
x∈∂B

∂2u1/∂γ 2(x)

∂2u2/∂γ 2(x)
.

This implies there exists x0 ∈ ∂B such that ∂2u1
∂γ 2 (x0) = m∂2u2

∂γ 2 (x0). If possible let u1 �= mu2.
Define v := u1 − mu2. Then v satisfies⎧⎨

⎩�2v − n2(n−4)2

16 q(x) v

|x|4 = λ(q)v in B,

v = 0, ∂v
∂γ

= 0 on ∂B.

Then v is a minimizer in (2.4). Hence by Theorem 5.1 v does not change sign in B and by Hopf’s

lemma ∂2v

∂γ 2 �= 0 on ∂B which is a contradiction.
Proceeding similarly as above we have the result for n = 4. �
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Appendix A

Lemma A.1. Let n � 5 and ξν(x) = |x|− n−4
2 ν(ln 1

|x| )
δ , δ ∈ R. Then

(i) for 0 < R < 1, ξν ∈ H 2(B(R)) if and only if ν < 1 or ν = 1 and δ < − 1
2 ;

(ii) for x �= 0,

�2ξν = ξν

|x|4
[
(n − 4)2

16

(
4 + ν(n − 4)

)
(2 − ν)

(
2(n − 2) − (n − 4)ν

)

− n − 4

2

{ν2(n − 4)2 − 2ν(n − 4)2 − 4(n − 2)}(1 − ν)δ

(ln 1
|x| )

− δ(1 − δ)

2

{3ν2(n − 4)2 − 6ν(n − 4)2 + 2(n(n − 10) + 20)}
(ln 1

|x| )2

− 2δ(1 − δ)(n − 4)(1 − ν)

(ln 1
|x| )3

− δ(1 − δ)(2 − δ)(3 − δ)

(ln 1
|x| )4

]
. (A.1)
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Proof. (i) ξν ∈ H 2(B(R)) iff

∫
B(R)

|x|−(n−4)ν−4
(

ln
1

|x|
)2δ

< ∞

and this happens iff ν < 1 or ν = 1 and δ < − 1
2 . This proves (i).

(ii) Let ξν(x) = |x|− (n−4)
2 ν(ln 1

|x| )
δ and δ ∈ R. Then we have the following:

ξν = |x|− n−4
2 ν

(
ln

1

|x|
)δ

,

ξν,r = r−( n−4
2 ν+1)

{
−n − 4

2
ν

(
log

1

r

)δ

− δ

(
ln

1

r

)δ−1}
,

ξν,rr = r−( n−4
2 ν+2)

{(
n − 4

2
ν

)(
n − 4

2
ν + 1

)(
ln

1

r

)δ

+ δ
(
(n − 4)ν + 1

)(
ln

1

r

)δ−1

+ δ(−1 + δ)

(
ln

1

r

)δ−2}
,

�ξν = r−( n−4
2 ν+2)

{(
n − 4

2
ν

)(
n − 4

2
ν − (n − 2)

)(
ln

1

r

)δ

+ δ
(
(n − 4)ν − (n − 2)

)(
ln

1

r

)δ−1

+ δ(δ − 1)

(
ln

1

r

)δ−2}
,

(�ξν)r = r−( n−4
2 ν+3)

{
−
(

n − 4

2
ν

)(
n − 4

2
ν − (n − 2)

)(
n − 4

2
ν + 2

)(
ln

1

r

)δ

− δ

(
ln

1

r

)δ−1{3

4
(n − 4)2ν2 − ν(n − 4)2 − 2(n − 2)

}

+ δ(δ − 1)

(
ln

1

r

)δ−2{(3

2
ν − 1

)
(n − 4)

}
+ δ(δ − 1)(δ − 2)

(
ln

1

r

)δ−3}
,

(�ξν)rr = r−( n−4
2 ν+4)

{(
n − 4

2
ν

)(
n − 4

2
ν − (n − 2)

)(
n − 4

2
ν + 2

)(
n − 4

2
ν + 3

)(
ln

1

r

)δ

+ δ

{
(n − 4)3

2
ν3 − 3ν2

(
(n − 4)2(n − 7)

4

)

− 2(n − 4)(n − 2)ν − 3ν(n − 4)2 − (n − 2)2
}(

ln
1

r

)δ−1

+ δ(δ − 1)

(
ln

1
)δ−2{3

(n − 4)2ν2 − 3
ν(n − 7)(n − 4) − 1

(3n − 16)(n − 2)

}

r 2 2 2



70 Adimurthi et al. / Journal of Functional Analysis 240 (2006) 36–83
− δ(δ − 1)(δ − 2)
{
2(n − 4)ν − (n − 7)

}(
ln

1

r

)δ−2

+ δ(δ − 1)(δ − 2)(δ − 3)

(
ln

1

r

)δ−3}
,

�2ξν = ξν

|x|4
[
(n − 4)2

16

(
4 + ν(n − 4)

)
(2 − ν)

(
2(n − 2) − (n − 4)ν

)

− n − 4

2

{ν2(n − 4)2 − 2ν(n − 4)2 − 4(n − 2)}(1 − ν)δ

(ln 1
|x| )

− δ(1 − δ)

2

{3ν2(n − 4)2 − 6ν(n − 4)2 + 2(n(n − 10) + 20)}
(ln 1

|x| )2

− 2δ(1 − δ)(n − 4)(1 − ν)

(ln 1
|x| )3

− δ(1 − δ)(2 − δ)(3 − δ)

(ln 1
|x| )4

]
.

Note that for ν = 1 and replacing δ by −δ, we have

�2ξ1 = ξ1

|x|4
[
n2(n − 4)2

16
− δ(δ + 1)(n2 − 4n + 8)

2(ln 1
|x| )2

+ δ(δ + 1)(δ + 2)(δ + 3)

(ln 1
|x| )4

]
.

Lemma A.2. Let n = 4 and φ(x) = (ln R
|x| )

a(ln(ln R
|x| ))

b , a, b ∈ R, R > 0. Then,

(i) for 0 < R1 < e−1R, u ∈ H 2(B(R1)) if and only if a < 1 or a = 1 and b < − 1
2 ;

(ii) for 0 < |x| < e−1R,

�2φ − q(x)φ(x)

|x|4(log R
|x| )2

= φ(x)

|x|4(ln R
|x| )2(ln(ln R

|x| ))

[
−(4a(a − 1) + q

)(
ln

(
ln

R

|x|
))

+ 4b(b − a) + 4b(b − 1)

(ln(ln R
|x| ))

+ o(1)

]
. (A.2)

Proof. (i) The first part is easy to verify.
(ii) We have

φ(r) =
(

ln
R

r

)a(
ln

(
ln

R

r

))b

,

φr(r) = −a

r

(
ln

R

r

)a−1(
ln

(
ln

R

r

))b

− b

r

(
ln

R

r

)a−1(
ln

(
ln

R

r

))b−1

,

φrr (r) = − a

r2

(
ln

R

r

)a−1(
ln

(
ln

R

r

))b

− b

r2

(
ln

R

r

)a−1(
ln

(
ln

R

r

))b−1

+ o

(
1
2

(
ln

R
)a−2(

ln

(
ln

R
))b)

.

r r r
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Hence �φ = φrr + 3
r
φr (r) we have,

�φ = −2a

r2

(
ln

R

r

)a−1(
ln

(
ln

R

r

))b

− 2b

r2

(
ln

R

r

)a−1(
ln

(
ln

R

r

))b−1

+ o

(
1

r2

(
ln

R

r

)a−2(
ln

(
ln

R

r

))b)
.

Let

ψ(r) = 1

r2

(
ln

R

r

)α(
ln

(
ln

R

r

))β

= ψ1

r2
,

�ψ = �

(
1

r2

)
ψ1 + 2∇

(
1

r2

)
∇ψ1 +

(
1

r2

)
�ψ1

= ψ1(0) − 4

r3
ψ1 + 1

r2
�ψ1

= − 4

r3

[
− α

r2

(
ln

R

r

)α−1(
ln

(
ln

R

r

))β

− β

r2

(
ln

R

r

)α−1(
ln

(
ln

R

r

))β−1]

+ 1

r2

[
−2α

r2

(
ln

R

r

)α−1(
ln

(
ln

R

r

))β

− 2b

r2

(
ln

R

r

)α−1(
ln

(
ln

R

r

))β−1

+ o

(
1

r2

(
ln

R

r

)α−2(
ln

(
ln

R

r

))β)]
.

Thus

�ψ = 4

r4

(
ln

R

r

)α−1(
ln

(
ln

R

r

))β[
α + β

(ln(ln R
r
))

]

− 2

r4

(
ln

R

r

)α−1(
ln

(
ln

R

r

))β[
α + β

(ln(ln R
r
))

]
+ o

(
1

r2

(
ln

R

r

)α−2(
ln

(
ln

R

r

))β)
.

Hence

�2φ = −2a�

(
(ln R

r
)a−1(ln(ln R

r
))b

r2

)
− 2b�

(
(ln R

r
)a−1(ln(ln R

r
))b−1

r2

)

= −2a

r4

[
4

(
ln

R

r

)a−2(
ln

(
ln

R

r

))b(
a − 1 + b

(ln(ln R
r
))

)

− 2

(
ln

R

r

)a−2(
ln

(
ln

R

r

))b(
a − 1 + b

(ln(ln R
r
))

)]

− 2b

r4

[
4

(
ln

R

r

)a−2(
ln

(
ln

R

r

))b−1(
a − 1 + b

(ln(ln R ))

)

r
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− 2

(
ln

R

r

)a−2(
ln

(
ln

R

r

))b−1(
a − 1 + b

(ln(ln R
r
))

)]

= (ln R
r
)a−2(ln(ln R

r
))b

r4

[−8a(a − 1) + 4a(a − 1)
]

+ (ln R
r
)a−2(ln(ln R

r
))b−1

r4

[−8ab + 4ab − 8b(a − 1) + 4b(a − 1)
]

+ (ln R
r
)a−2(ln(ln R

r
))b−2

r4

[−8b(b − 1) + 4b(b − 1)
]
,

�2φ = −4a(a − 1)

r4

(
ln

R

r

)a−2(
ln

(
ln

R

r

))b

+ 4b(1 − 2a)

r4

(
ln

R

r

)a−2(
ln

(
ln

R

r

))b−1

+ 4b(b − 1)

r4

(
ln

R

r

)a−2(
ln

(
ln

R

r

))b−2

+ o

(
(ln R

r
)a−3(ln(ln R

r
))b

r4

)

= −4a(a − 1)

r4

φ

(ln R
r
)2

+ 4b(1 − 2a)

r4

φ

(ln R
r
)2(ln(ln R

r
))

+ 4b(b − 1)

r4

φ

(ln R
r
)2(ln(ln R

r
))2

+ Eφ

(log R
r
)2r4

, where E → 0 as r → 0.

Therefore we have

�2φ − q(x)φ

r4(log R
r
)2

= φ

r4(log R
r
)2(ln(ln R

r
))

[
−(4a(a − 1) + q(x)

)(
ln

(
ln

R

r

))

+4b(b − a) + 4b(b − 1)

(ln(ln R
r
))

+ o(1)

]

which finishes the proof. �
Thus when a = 1

2 and b = − s
2 we have

�2φ − qφ

|x|4(log R
|x| )2

= φ

|x|4(log R
|x| )2(ln(ln R

|x| ))2

[(
1 − q(x)

)(
ln

(
ln

R

|x|
))2

− s(s + 2) + o(1)

]
.

A.1. H 2(Ω) Hardy–Rellich inequality

Let Ω be a smooth domain of R
4 and consider the problem

⎧⎪⎨
⎪⎩

�2w = 0 in Ω ,

w = f on ∂Ω ,
∂w = g on ∂Ω .

(A.3)
∂ν
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Then, by elliptic regularity, there exist unique Green functions K1(x, y), K2(x, y) smooth for
x ∈ Ω,y ∈ ∂Ω and some constants C1 > 0, C2 > 0 such that ∀x ∈ Ω , y ∈ ∂Ω

∣∣K1(x, y)
∣∣� C1

|x − y| ,
∣∣K2(x, y)

∣∣� C2

|x − y|2 . (A.4)

Moreover,

w(x) =
∫

∂Ω

K1(x, y)f (y) dσ (y) +
∫

∂Ω

K2(x, y)g(y) dσ (y). (A.5)

Then we have the following lemma.

Lemma A.3. Consider the above problem. Then, ∀α � 0 there exists a constant C > 0 such that∫
Ω

w2 � C

{ ∫
∂Ω

f 2 +
∫

∂Ω

g2
}
, (A.6)

∫
Ω

| ln(ln R
|x| )|αw2

|x|4(ln R
|x| )2

dx � C

{ ∫
∂Ω

f 2 +
∫

∂Ω

g2
}
. (A.7)

Proof. (A.6) follows easily.
For (A.7) we proceed in the following manner. We have

∫
Ω

| ln(ln R
|x| )|αw2

|x|4(ln R
|x| )2

dx �
∫

∂Ω

f 2(y)

( ∫
Ω

| ln(ln R
|x| )|α|K1(x, y)|

|x|4(ln R
|x| )2

dx

)
dσ(y)

+
∫

∂Ω

g2(y)

( ∫
Ω

| ln(ln R
|x| )|α|K2(x, y)|

|x|4(ln R
|x| )2

dx

)
dσ(y).

Let B(0,R1) ⊂ Ω . Then

∫
Ω

| ln(ln R
|x| )|αw2

|x|4(ln R
|x| )2

dx � C

∫
∂Ω

f 2(y)

( ∫
B(0,R1)

· · · +
∫

Ω\B(0,R1)

· · ·
)

dσ(y)

+ C

∫
∂Ω

g2(y)

( ∫
B(0,R1)

· · · +
∫

Ω\B(0,R1)

· · ·
)

dσ(y),

∫
Ω

| ln(ln R
|x| )|αw2

|x|4(ln R
|x| )2

dx � C

∫
∂Ω

f 2(y)

( R1∫
0

| ln(ln R
r
)|α

r(ln R
r
)2

+
∫

Ω\B(0,R1)

1

|x − y|

)
dσ(y)

+ C

∫
g2(y)

( R1∫ | ln(ln R
r
)|α

r(ln R
r
)2

+
∫

1

|x − y|2
)

dσ(y).
∂Ω 0 Ω\B(0,R1)
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Hence we have

∫
Ω

| ln(ln R
|x| )|αw2

|x|4(ln R
|x| )2

dx � C

{ ∫
∂Ω

f 2 +
∫

∂Ω

g2
}
.

The proof of lemma is finished. �
In order to state the next result we introduce certain notations. Let e(0) = 1, e(1) = e, e(k) =

ee(k−1)
for k � 1. Let b > 0 and define

ln1(b) = lnb, lnk(b) = ln
(
lnk−1(b)

)
.

Then we have the following.

Theorem A.1. Let Ω be a bounded domain with smooth boundary and 0 ∈ Ω . Let
R > e(k+1) supx∈∂Ω |x|, then there exist constants λ1 > 0, λ2 > 0 such that for all u ∈ H 2(Ω)

∫
Ω

(�u)2 dx − n2(n − 4)2

16

∫
Ω

u2

|x|4 dx − n(n − 4)

8

∫
Ω

u2

|x|4(ln R
|x| )2

− n(n − 4)

8

∞∑
i=2

∫
Ω

u2

|x|4(ln R
|x| )2

X2
2X

2
3 · · ·X2

i

� −λ1

∫
∂Ω

u2 − λ2

∫
∂Ω

(
∂u

∂ν

)2

, for n � 5; (A.8)

∫
Ω

(�u)2 dx −
∫
Ω

u2

|x|4(ln R
|x| )2

dx −
k∑

l=1

∫
Ω

u2

|x|4(ln R
|x| )2(lnl R

|x| )2

� −λ1

∫
∂Ω

u2 − λ2

∫
∂Ω

(
∂u

∂ν

)2

, n = 4. (A.9)

Proof of (A.8). In order to prove (A.8) we borrow ideas from [2]. Let E := |x|−(n−4), u ∈
C2(Ω) ∩ C1(Ω) and u = E1/2v0. Then v0(0) = 0 and

|∇u|2 = (n − 4)2

4

u2

|x|2 + |∇v0|2E − (n − 4)

〈
x

|x|2 ,∇v0

〉
Ev0,

|∇u|2
|x|2 = (n − 4)2

4

u2

|x|4 + |∇v0|2
|x|2 E − (n − 4)

2

〈
x

|x|n ,∇v2
0

〉
,

∫ |∇u|2
|x|2 dx = (n − 4)2

4

∫
u2

|x|4 dx +
∫ |∇v0|2

|x|2 E dx − (n − 4)

2

∫ 〈x, ν〉
|x|n v2

0,
Ω Ω Ω ∂Ω
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∫
Ω

|∇u|2
|x|2 dx = (n − 4)2

4

∫
Ω

u2

|x|4 dx +
∫
Ω

|∇v0|2
|x|2 E dx − (n − 4)

2

∫
∂Ω

〈x, ν〉
|x|4 u2. (A.10)

Now,

∫
Ω

|∇u|2
|x|2 dx =

∫
Ω

∇u · ∇u

|x|2 dx

= −
∫
Ω

∇
( ∇u

|x|2
)

udx +
∫

∂Ω

u

|x|2 〈∇u, ν〉

= −
∫
Ω

u�u

|x|2 dx + 2
∫
Ω

u∇u · x

|x|4 +
∫

∂Ω

u

|x|2
∂u

∂ν

= −
∫
Ω

u�u

|x|2 dx − (n − 4)

∫
Ω

u2

|x|4 +
∫

∂Ω

u2

|x|4 〈x, ν〉 +
∫

∂Ω

u

|x|2
∂u

∂ν
. (A.11)

Putting the value of (A.10) in (A.11) we have

−
∫
Ω

u�u

|x|2 dx = n(n − 4)

4

∫
Ω

u2

|x|4 − n − 2

2

∫
∂Ω

u2

|x|4 〈x, ν〉dx

−
∫

∂Ω

u

|x|2
∂u

∂ν
+
∫
Ω

|∇v0|2
|x|2 E dx. (A.12)

Using the above substitution and Schwartz inequality, we obtain

∫
Ω

|�u|2 dx � n2(n − 4)2

16

∫
Ω

u2

|x|4 − (n − 4)(n − 2)

2

∫
∂Ω

u2

|x|4 〈x, ν〉dx

− n − 4

2

∫
∂Ω

u

|x|2
∂u

∂ν
+ n(n − 4)

2

∫
Ω

|∇v0|2
|x|2 E dx.

Let v1 = X1
1/2v0. Then we have

∫
Ω

|∇v0|2
|x|2 E dx = 1

4

∫
Ω

|u|2
|x|4 X2

1 −
∫

∂Ω

u2

|x|4 〈x, ν〉X1 +
∫
Ω

|∇v1|2
|x|2 EX1.

Similarly for i � 2 define vi(x) = Xi
1/2vi−1. Then

∫ |∇v1|2
|x|2 EX1 dx = 1

4

∫ |u|2
|x|4 X2

1X
2
2 −

∫
u2

|x|4 〈x, ν〉X1X2 +
∫ |∇v2|2

|x|2 EX1X2.
Ω Ω ∂Ω Ω
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Let

λ1 = inf
x∈∂Ω

|〈x, ν〉|
|x|4

{
(n − 4)(n − 2)

2
+

∞∑
i=1

X1 · · ·Xi

}
+ (n − 4)2

4
.

Similarly as in Theorem 2.1,

∫
Ω

|�u|2 dx � n2(n − 4)2

16

∫
Ω

u2

|x|4 + n(n − 4)

8

∫
Ω

u2

|x|4(ln R
|x| )2

− λ1

∫
∂Ω

u2

− λ2

∫
∂Ω

(
∂u

∂ν

)2

+ n(n − 4)

8

∞∑
i=2

u2

|x|4(ln R
|x| )2

X2
2X

2
3 · · ·X2

i . �

Proof of (A.9). In order to prove Theorem A.1, we require the following lemma and the proof
of the theorem will follow as a consequence. �

Let H = {u ∈ H 2(Ω): �2u = 0}. Then H 2(Ω) = H 2
0 (Ω) ⊕ H . For v ∈ H 2

0 (Ω), u ∈ H we
have

∫
Ω

�u�v = 0.

Lemma A.4. Let u ∈ H 2(Ω), v ∈ H 2
0 (Ω),w ∈ H such that u = v + w, where w satisfies

⎧⎪⎨
⎪⎩

�2w = 0 in Ω ,

w = u on ∂Ω ,
∂w
∂ν

= ∂u
∂ν

on ∂Ω .

Then there exists C > 0 such that

∫
Ω

(�u)2 =
∫
Ω

(�v)2 +
∫
Ω

(�w)2, (A.13)

∫
Ω

w2 � C

{ ∫
∂Ω

u2 +
∫

∂Ω

(
∂u

∂ν

)2}
. (A.14)

Let k ∈ N, R > e(k+1) supΩ |x|, then there exist C1 > 0, C2 > 0 such that ∀u ∈ H 2(Ω)

∫
Ω

(�u)2 −
∫
Ω

(�w)2 + C1

∫
∂Ω

u2 + C2

∫
∂Ω

(
∂u

∂ν

)2

−
∫
Ω

u2

|x|4(ln R
|x| )2

�
k∑

l=1

∫
Ω

u2

|x|4(ln R
|x| )2(lnl R

|x| )2
. (A.15)
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Proof. The first part follows trivially.
For the second part define

I (u) :=
∫
Ω

(�u)2 −
∫
Ω

u2

|x|4(ln R
|x| )2

.

Let 0 � l � k and let Ck denote a generic constant depending on k,Ω,R. Then

2
∫
Ω

|vw|
(|x|2 ln R

|x| )2(lnl R
|x| )2

= 2
∫
Ω

|v|
|x|2(ln R

|x| )(ln
k+1 R

|x| )
|w|(lnk+1 R

|x| )
|x|2(ln R

|x| )(ln
l R

|x| )2

� 1

N

∫
Ω

|v|2
|x|4(ln R

|x| )2(lnk+1 R
|x| )2

+ Ck

∫
Ω

|w|2(lnk+1 R
|x| )

2

|x|4(ln R
|x| )2(lnl R

|x| )4

� 1

N

∫
Ω

|v|2
|x|4(ln R

|x| )2(lnk+1 R
|x| )2

+ Ck

∫
∂Ω

{
u2 +

(
∂u

∂ν

)2}

� 1

N

∫
Ω

|v|2
|x|4(ln R

|x| )2(lnk+1 R
|x| )2

+ Ck

∫
∂Ω

{
u2 +

(
∂u

∂ν

)2}
.

Thus we have

2
∫
Ω

|vw|
|x|4(ln R

|x| )2(lnl R
|x| )2

� 1

N

∫
Ω

|v|2
|x|4(ln R

|x| )2(lnk+1 R
|x| )2

+ Ck

∫
∂Ω

{
u2 +

(
∂u

∂ν

)2}
. (A.16)

Using (A.16), (A.7) we have

I (u) −
k∑

l=1

∫
Ω

|u|2
|x|4(ln R

|x| )2(lnl R
|x| )2

= I (v + w) −
k∑

l=1

∫
Ω

|u|2
|x|4(ln R

|x| )2(lnl R
|x| )2

= I (v) + I (w) −
k∑

l=1

∫
Ω

|v|2
|x|4(ln R

|x| )2(lnl R
|x| )2

− 2
k∑

l=1

∫
Ω

vw

|x|4(ln R
|x| )2(lnl R

|x| )2

−
k∑

l=1

∫ |w|2
|x|4(ln R

|x| )2(lnl R
|x| )2

− 2
∫

vw

|x|4(ln R
|x| )2
Ω Ω
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� I (v) −
k∑

l=1

∫
Ω

|v|2
|x|4(ln R

|x| )2(lnl R
|x| )2

− (k + 1)

N

∫
Ω

|v|2
|x|4(ln R

|x| )2(lnk+1 R
|x| )2

− Ck

∫
∂Ω

{
u2 +

(
∂u

∂ν

)2}
+
∫
Ω

(�w)2.

Choosing N = k + 1 we have

I (u) −
k∑

l=1

∫
Ω

|u|2
|x|4(ln R

|x| )2(lnl R
|x| )2

� I (v) −
k+1∑
l=1

∫
Ω

|v|2
|x|4(ln R

|x| )2(lnl R
|x| )2

+
∫
Ω

(�w)2 − Ck

∫
∂Ω

{
u2 +

(
∂u

∂ν

)2}
.

Finally as v ∈ H 2
0 (Ω) we have

I (u) −
∫
Ω

(�w)2 −
k∑

i=1

∫
Ω

|u|2
|x|4(ln R

|x| )2(lnl R
|x| )2

� −C1

∫
∂Ω

u2 − C2

∫
∂Ω

(
∂u

∂ν

)2

.

Hence the lemma is proved. �
A.2. W

1,q

0 (Ω) estimates

Theorem A.2. Let 1 � q < 2. Then there exist R0 > 0, C1 > 0, C2 > 0 such that ∀R � R0,
∀u ∈ H 2

0 (Ω) or ∀u ∈ H 2(Ω) ∩ H 1
0 (Ω)

∫
Ω

(�u)2 dx − n2(n − 4)2

16

∫
Ω

u2

|x|4 dx − C1

∫
Ω

u2

|x|4(ln R
|x| )2

� C2‖u‖2
W

1,q
0 (Ω)

, n � 5; (A.17)

∫
Ω

(�u)2 dx −
∫
Ω

u2

|x|4(ln R
|x| )2

dx −
∫
Ω

u2

|x|4(ln R
|x| )2(ln(ln R

|x| ))2

� C2‖u‖2
W

1,q
0 (Ω)

, n = 4. (A.18)

Proof of (A.17). We use the similar ideas as in [3]. Let n � 5. Then we obtain by Theorem A.1,

∫
(�u)2 dx − n2(n − 4)2

16

∫
u2

|x|4 dx − C1

∫
u2

|x|4(ln R
|x| )2

� C

∫ |∇w|2
|x|n−2

(
ln

R

|x|
)

,

Ω Ω Ω Ω
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where

w =
(

ln
R

|x|
)−1/2

v =
(

ln
R

|x|
)−1/2

|x| n−4
2 u.

Since

u = |x|− n−4
2

(
ln

R

|x|
)1/2

w,

we have

|∇u| = O

(
(ln R

|x| )
1/2

|x| n−4
2

∇w + (ln R
|x| )

1/2

|x| n−2
2

w

)
.

Therefore

|∇u|q = O

(
(ln R

|x| )
q/2

|x| n−4
2 q

|∇w|q + (ln R
|x| )

q/2

|x| n−2
2 q

|w|q
)

.

Let w ∈ C∞
0 (Ω) and k � 0, α � 0. Then

∫
Ω

(ln R
|x| )

α

|x|k |w|q = 1

n

∫
Ω

(divx)(ln R
|x| )

α

|x|k |w|q

= −q

n

∫
Ω

〈x,∇w〉(ln R
|x| )

α

|x|k |w|q−2w + k

n

∫
Ω

(ln R
|x| )

α

|x|k |w|q

+ α

n

∫
Ω

(ln R
|x| )

α

|x|k(ln R
|x| )

|w|q .

Let k < n and R0 > 0 such that

α

n
sup
x∈Ω

1

(ln R0|x| )
<

1

2

(
1 − k

n

)
.

Then for R � R0, the above identity gives

1

2

(
1 − k

n

)∫
Ω

(ln R
|x| )

α

|x|k |w|q � q

n

∫
Ω

|∇w|(ln R
|x| )

α

|x|k−1
|w|q−1,

1

2

(
1 − k

n

)∫
(ln R

|x| )
α

|x|k |w|q � q

n

(∫ |w|q(ln R
|x| )

α

|x|k
)(q−1)/q(∫ |∇w|q(ln R

|x| )
α

|x|k−q

)1/q

.

Ω Ω Ω
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This implies that there exists C = C(k,n,α) > 0 such that

∫
Ω

(ln R
|x| )

α

|x|k |w|q � C

(∫
Ω

|∇w|q(ln R
|x| )

α

|x|k−q

)
.

Choose k = nq
2 where q is such that k < n and α = q

2 . For R � R0 we have

∫
Ω

|∇u|q = O

(∫
Ω

(ln R
|x| )

q/2

|x| n−2
2 q

|∇w|q
)

.

This implies that

∫
Ω

|∇u|q � C

(∫
Ω

(ln R
|x| )

|x|n−2
|∇w|2

)q/2

which follows by Hölder’s inequality. Hence we have

∫
Ω

(�u)2 dx − n2(n − 4)2

16

∫
Ω

u2

|x|4 dx − C1

∫
Ω

|u|2
|x|4(ln R

|x| )2
� C2

(∫
Ω

|∇u|q
)2/q

i.e.,

∫
Ω

(�u)2 dx − n2(n − 4)2

16

∫
Ω

u2

|x|4 dx − C1

∫
Ω

|u|2
|x|4(ln R

|x| )2

� C2‖∇u‖2
W

1,q
0 (Ω)

∀u ∈ H 2
0 (Ω). �

Proof of (A.18). From the Hardy–Rellich inequality for n = 4 in Theorem A.1 we have

∫
Ω

(�u)2 dx −
∫
Ω

u2

|x|4(ln R
|x| )2

dx −
∫
Ω

u2

|x|4(ln R
|x| )2(ln(ln R

|x| ))2

� C2

∫
Ω

|∇w|2
|x|2

(
ln

R

|x|
)(

ln

(
ln

R

|x|
))

� C2

∫
Ω

|∇w|2
(

ln
R

|x|
)(

ln

(
ln

R

|x|
))

,

where

w =
(

ln

(
ln

R
))−1/2

v =
(

ln

(
ln

R
))−1/2(

ln
R
)−1/2

u.
|x| |x| |x|
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Hence we have

u =
(

ln

(
ln

R

|x|
))1/2(

ln
R

|x|
)1/2

w.

Then,

|∇u| = O

(
(ln(ln R

|x| ))
1/2

(ln R
|x| )1/2

w + ∇w

(
ln

(
ln

R

|x|
))1/2(

ln
R

|x|
)1/2)

.

This implies

|∇u|q = O

(
(ln(ln R

|x| ))
q/2

(ln R
|x| )q/2

w + ∇w

(
ln

(
ln

R

|x|
))q/2(

ln
R

|x|
)q/2)

. (A.19)

Let w ∈ C∞
0 (Ω) and k � 0, α � 0 such that

∫
Ω

(ln(ln R
|x| ))

α|w|q
(ln R

|x| )k|x|q = 1

4

∫
Ω

(divx)
(ln(ln R

|x| ))
α|w|q

(ln R
|x| )k|x|q

= −q

4

∫
Ω

(ln(ln R
|x| ))

α|w|q−2w〈∇w,x〉
(ln R

|x| )k|x|q + q

4

∫
Ω

(ln(ln R
|x| ))

α|w|q
(ln R

|x| )k|x|q

+ α

4

∫
Ω

(ln(ln R
|x| ))

α|w|q
(ln R

|x| )k+1(ln(ln R
|x| ))|x|q − k

4

∫
Ω

(ln(ln R
|x| ))

α|w|q
(ln R

|x| )k|x|q .

This implies

(
1 + k

4

)∫
Ω

(ln(ln R
|x| ))

α|w|q
(ln R

|x| )k|x|q = −q

4

∫
Ω

(ln(ln R
|x| ))

α|w|q−2w〈∇w,x〉
(ln R

|x| )k|x|q

+ α

4

∫
Ω

(ln(ln R
|x| ))

α|w|q
(ln R

|x| )k+1(ln(ln R
|x| ))|x|q .

Choose R0 > 0 such that

α

4
sup
x∈Ω

1

(ln R0|x| )(ln(ln R0|x| ))
< 1 + k

4
.

Then by Hölder’s inequality we have

∫
(ln(ln R

|x| ))
α|w|q

(ln R
|x| )k|x|q � C

(∫
(ln(ln R

|x| ))
α|w|q

(ln R
|x| )k|x|q

)(q−1)/q(∫ (ln(ln R
|x| ))

α|∇w|q
(ln R

|x| )k−q

)1/q

.

Ω Ω Ω
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Hence we have

∫
Ω

(ln(ln R
|x| ))

α|w|q
(ln R

|x| )k|x|q � C

(∫
Ω

(ln(ln R
|x| ))

α|∇w|q
(ln R

|x| )k−q

)
.

Choose k = q
2 , α = q

2 then the above inequality becomes

∫
Ω

(ln(ln R
|x| ))

q/2|w|q
(ln R

|x| )q/2|x|q � C

(∫
Ω

|∇w|q
(

ln

(
ln

R

|x|
))q/2(

ln
R

|x|
)q/2)

.

Thus from (A.19) we have

∫
Ω

|∇u|q � C

∫
Ω

|∇w|q
(

ln

(
ln

R

|x|
))q/2(

ln
R

|x|
)q/2

.

Hence we have

∫
Ω

|∇u|q � C

(∫
Ω

|∇w|2
(

ln

(
ln

R

|x|
))(

ln
R

|x|
))q/2

,

(∫
Ω

|∇u|q
)2/q

� C

∫
Ω

|∇w|2
(

ln

(
ln

R

|x|
))(

ln
R

|x|
)

which ends the proof. �
Concluding remark. We have also obtained W

2,q

0 (Ω) estimates in [5].
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