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Realization of quantum mechanical weak values of observables using entangled

photons
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We present a scheme for realization of quantum mechanical weak values of observables using
entangled photons produced in parametric down conversion. We consider the case when the signal
and idler modes are respectively in a coherent state and vacuum. We use a low efficiency detector
to detect the photons in the idler mode.This weak detection leads to a large displacement and
fluctuations in the signal field’s quantum state which can be studied by monitoring the photon
number and quadrature distributions.

PACS numbers: 03.65.Ta, 03.67.-a, 42.50.Xa

In a remarkable paper Aharonov, Albert and Vaid-
man [1] discovered that under conditions of very weak
coupling between the system and the measuring device
the uncertainty in a single measurement could be very
large compared with the separation between the eigen-
values of the observable. This is quite a departure from
the usual idea of projective measurements where the
measurement projects on to one of the eigenvalues [2].
Aharonov et al proposal was further clarified by several
authors[3, 4, 5, 6]. In particular Duck et al. [3] also sug-
gested an optical experiment to verify the idea. Such an
optical experiment was performed by Ritchie et al. [7].
This experiment uses the classical light source like a laser
beam; a birefringent medium and the pre and post se-
lection of the polarization of the transmitted beam. The
experiment is well explained using classical physics as dis-
cussed in the paper by Ritchie et al [7]. It would therefore
be interesting to find situations which are strictly quan-
tum in nature even though the experiment of Ritchie et

al. was repeated at single photon level and in particu-
lar weak values of photon arrival times were measured
[8]. Further weak values of the polarization of a single
photon were reported [9]. In this letter we show how
the idea of Aharonov et al could be realized using en-
tangled photons produced in the process of parametric
down conversion thus making their proposal within the
reach of current experiments. We specifically discuss the
weak values associated with the measurement of the pho-
ton number and the quadrature of the signal field. We
also discuss how the weak values reflect in the fluctua-
tions of the state of the signal field. Our explicit result
for the state of the signal field shows the role of quan-
tum interferences in the weak values of the observables.
We require two ingredients for the observation-high value
of the squeezing parameter and well controlled detector.
Both of these are feasible. We note that Zambra et al
[10] have very successfully demonstrated the application
of avalanche detectors for the reconstruction of photon
statistics. Further in recent experiments [11] high values
of the squeezing parameter have been achieved. We note
[cf Eqs.(9), (10), (15)] that if the squeezing is not very
high then we need to use smaller detection efficiencies.
Our proposal contrasts the previous ones [7, 12] which
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FIG. 1: The schematic arrangement for realization of weak
values using entangled photons. The idler photon is detected
with varying efficiency.

used classical Gaussian beams and birefringent medium.
In Fig. 1, we show a schematic arrangement for real-

ization of the weak values using entangled photons. The
entangled photons are generated by an optical parametric
amplifier (OPA). In OPA the pump field interacts non-
linearly in an optical crystal having second order nonlin-
earity. As a result of annihilation of one photon of pump
field two entangled photons propagating in two different
directions are generated simultaneously. In our scheme,
we consider that the signal mode is initially in a coher-
ent state |α〉 while the idler is initially in vacuum. The
photons generated in signal mode produce excitation [13]
in coherent field |α〉 presented initially. If n-photons are
generated in the idler mode, the state of the signal mode
will be in n-photon added coherent state. In our scheme,
we perform weak detection of the idler photons by using
a low efficiency detector which requires a large number of
photons to be produced in the idler mode. Thus we con-
sider OPA working under high gain conditions. We note
that a similar arrangement with OPA under low gain con-
ditions has been used in a recent experiment by Zavatta
et al [14], for generating photon added coherent states
[13]. Using the interaction Hamiltonian for the OPA and
under the assumption of no pump depletion, the state of
the outgoing signal and idler fields can be written as

|ψ〉 = exp
(

ra†b† − rab
)

|α, 0〉 (1)

where r is gain of the amplifier. Using the Baker Camp-
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bell Hausdorff identity, the Eqn (1) simplifies to

|ψ〉 = exp
(

tanh ra†b†
)

exp
[

− ln cosh r(a†a+ b†b+ 1)
]

× exp (− tanh rab) |α, 0〉

=
e−

1

2
|α|2 tanh2 r

cosh r
exp

(

tanh ra†b†
)

|α′, 0〉 (2)

where α′ = α/ cosh r. The Eq (2) shows how the OPA
generates correlated pair of photons one in signal mode
and one in idler mode simultaneously. According to the
von Neumann postulate the measurement of the state of
the idler mode in n-photon Fock state |n〉 would project
the state of the signal mode in n-photon added coher-
ent state a†n|α′〉. However we now follow the idea of
Aharonov et al on weak measurements. We measure idler
field weakly, i.e. the measurement does not make the
idler field to collapse in a single Fock state, with defi-
nite number of photons, but a probabilistic mixture of
various Fock states of different number of photons. The
weak detection is performed by a low efficiency detector
[15]. Clearly, the weak measurement of the idler field
will project the signal field in a superposition of various
photon added coherent states[13]. We would now show
how the weak detection of idler photons leads to unex-
pectedly large values of signal field. The density matrix
for signal-idler fields is

ρ = |ψ〉〈ψ|, (3)

where |ψ〉 is given by Eq.(2). We detect idler field in the
n-photon Fock state |n〉 by using a detector of quantum
efficiency η. The projected state of the signal field is

ρ(s)
n = A

∞
∑

m=n

(

m
n

)

ηn(1 − η)n−m〈m|ρ|m〉, (4)

where A is normalization constant. Using (3) and (2),
Eq (4) takes the form

ρ(s)
n = N

∞
∑

m=n

(

m
n

)

ηn(1−η)n−m tanh2m r

m!
a†m|α′〉〈α′|am,

(5)
where N is new normalization constant and the constant
term e−|α|2 tanh2 r/ cosh2 r has been absorbed in N . From
Eq (5), it is clear that because of non-unity quantum effi-
ciency of the detector, the measurement of the idler field
can not project the signal field in one of its eigenstate.
The projected state of the signal field is a superposition of
various eigenstates. Further, for smaller values of η and
larger values of OPA gain parameter r, many eigenstates
in the superposition contributes significantly.

It should be noted here, that in our scheme we do
not perform measurement on a two state system as dis-
cussed by Aharonov et al [1] in their original proposal.
We perform measurement on an infinite dimensional sys-
tem. Here we are particularly interested in detecting the
idler field in vacuum state. Note that the detection of
idler in vacuum state for a range of values of the effi-
ciency is enough to reconstruct the full idler field [10].
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FIG. 2: (Color online) The quadrature distribution of signal
field after measuring idler photons in vacuum state by using
detector of efficiency η.

From Eq.(5), the weak measurement of the idler field in
the state |0〉, projects the signal field in the state

ρ
(s)
0 = N

∞
∑

m=0

(1 − η)m tanh2m r

m!
a†m|α′〉〈α′|am. (6)

The above conditional state of the signal field can be mea-
sured either through the photon number distribution or
via the quadrature distribution.We next calculate these
and show how the weak values get reflected in such dis-
tributions.

The quadrature distribution of the projected signal
field (6), when idler field is detected in the vacuum state
by using detector of quantum efficiency η, is given by

P0(x) = N

∞
∑

m=0

(1 − η)m tanh2m r

m!
〈x|a†m|α′〉〈α′|am|x〉,

(7)
where |x〉 is eigenstate in the quadrature space.A long
calculation leads to the following compact expression for
the quadrature distribution of the signal field

P0(x) =

√

1 − ǫ

π(1 + ǫ)
exp

[

−1 − ǫ

1 + ǫ

(

x−
√

2α′

1 − ǫ

)]

(8)

where ǫ = (1 − η) tanh2 r. From Eq (8), it is clear that
the projected state of the signal field (6) has Gaussian
quadrature distribution. The peak of the distribution
appears at

x =
√

2α′/(1 − ǫ), (9)

and the width of the distribution δx is given by

2(δx)2 =
1 + ǫ

1 − ǫ
. (10)
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It is clear from Eq (9) and Eq (10) that for low effi-
ciency detector (η << 1) and high gain OPA (r > 1), as
the value of ǫ tends towards 1, the peak in the quadra-
ture distribution occurs for exceptionally large values of
x. Further, the width of the distribution also becomes
very large for these values of the parameters.Interestingly
enough in our model the width of the distribution also
depends on the weakness of the measurement.

In Fig.2, we show the quadrature distributions of the
projected states of the signal field after detecting the
idler field in vacuum state. For 100% detection effi-
ciency the maxima in the quadrature distributions occurs
at x ≈ 3 corresponding to the value x =

√
2α′, where

α′ = α/ cosh r and α = 5 and r = 1.5. We find that
for lower detection efficiency the maxima in the quadra-
ture distribution shifts to the exceptionally larger values
of x. For η = 0.1 the maxima in x-quadrature appears
around x ≈ 12. Further, the spread in the distribution
becomes very large for such smaller values of η. This is a
remarkable realization of the idea of Aharonov et al using
entangled photons.

In order to understand the exact nature of the weak
values we look at Eq(6) for the projected state of the sig-
nal field. Clearly, the projected state of the signal field
is superposition of photon added coherent states a†m|α′〉
generated by successive addition of the photons in the
signal mode. The amplitude of the m-th term in Eq(6)
is proportional to ǫm/m!, where ǫ = (1 − η) tanh2 r. For
η = 0.1 and r = 1.5, as the value of ǫ is 0.74, the am-
plitude of the fifth term is of the order of 10−3. Further
the higher order terms will have much smaller amplitude
and can be neglected. The quadrature distribution of 5-
photon added coherent state a†5|α′〉 will have maxima at

x ≈
√

2
√

|α′|2 + 5. Thus the highest order contributing
eigen state of the signal field has maxima at x ≈ 4.5. In
Fig.3 the maxima in the quadrature distribution corre-
sponding to these parameters occurs at x ≈ 12, which is
exceptionally large and there is no doubt that the pro-
jected values of the signal field in our scheme are weak
values. The exceptional displacement in the maxima of
the quadrature distribution occurs as a result of inter-
ferences between various states contributing to the pro-
jected state of the signal field. Further it should also
be noted that the photon added coherent states a†m|α′〉
show more and more squeezing in their quadrature on
increasing m [13], while the projected state of the sig-
nal field exhibits broadening in the quadrature distribu-
tion. Clearly choosing smaller detection efficiencies (few
%) which are definitely feasible [10] would lead to larger
displacement and large fluctuations.

Next we show how the weak measurements get re-
flected in the photon number distribution of the signal
field.The photon distribution of the projected state of
the signal field (6) is calculated as follows

P0(n) = N

∞
∑

m=0

(1 − η)m tanh2m r

m!
〈n|a†m|α′〉〈α′|am|n〉,

(11)
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FIG. 3: (Color online) The photon distribution of signal field
after measuring idler photons by using detector of efficiency
η. The idler field is detected in vacuum state |0〉

P0(n) = N(1 − η)n tanh2n r ×
∑n

m=0

n!

m!(n−m)!2

(

α′2

(1 − η) tanh2 r

)n−m

.(12)

Using definition of Laguerre polynomials and evaluating
the normalization constant, the Eq (12) takes the form

P0(n) = (1 − ǫ)e−α′2/(1−ǫ)ǫnLn

(

−α
′2

ǫ

)

(13)

where Ln(q) is Laguerre polynomial of order n. The pho-
ton distributions of the projected signal state (6) are
shown in Fig.3. For unity detection efficiency the field
has maxima at n ≈ 5 corresponding to the coherent state
|α′〉. As the detection efficiency η decreases the peak in
the distribution moves very fast towards the higher val-
ues of n and the width of the distribution also increases.
As we have discussed earlier, for η = 0.1, only terms up
to m = 5 can contribute significantly in the projected
signal state (6). Thus the signal field contains its highest
order eigenstate having maxima in the photon distribu-
tion at |α′|2 + 5 ≈ 10. But the actual weak value of the
maximum photon numbers in the distribution occurs at
n ≈ 70.

For further probing the field statistics of the projected
signal states in weak measurement, we calculate the Man-
del Q-parameter defined by

Q =
〈n2〉 − 〈n〉2

〈n〉 − 1 (14)

where 〈n〉 is average number of photons in the projected
state of the signal field. The average number of photons
for state (6) is

〈n〉 =
ǫ− ǫ2 + α′2

(1 − ǫ)2
(15)
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FIG. 4: The value of Mandel’s Q-parameter for the signal
field after detecting idler field in vacuum state

.

It is clear from Eq (15) that the average number of pho-
tons becomes very large for ǫ → 1 for smaller value of
η. The calculated value of Mandel Q-parameter for the
state (6) is

Q =
(ǫ− ǫ2 + α′2)(1 − ǫ+ α′2) − α′4

(1 − ǫ)2(ǫ− ǫ2 + α′2)
− 1 (16)

In Fig.4, we plot Mandel Q-parameter for the signal
state(6) with respect to the efficiency of the detector used
to measure the idler field. For smaller values of detection
efficiency Q-parameter has large positive values and the
states of the signal field follow super-Poissonian statis-
tics. As the detector efficiency increases the value of Q-
parameter decreases. For the detector efficiency more
than 0.9 Q-parameter for the state (6) is zero which re-
flects that the projected state of the signal field is coher-

ent state |α′〉.
Next we calculate the Wigner distribution of the pro-

jected states of the signal field. The Wigner distribution
for the state having density matrix ρ can be obtained
using coherent states from the formula

W (γ) =
2

π2
e2|γ|

2

∫

〈−β|ρ|β〉e−2(βγ∗−β∗γ)d2β. (17)

For state (6) the Wigner function is found to be

W0(γ) =
2(1 − ǫ)

π(1 + ǫ)
exp

[

−2(1 − ǫ)

1 + ǫ

∣

∣

∣

∣

γ − α′

1 − ǫ

∣

∣

∣

∣

2
]

(18)

The Wigner distribution of the state (6) is Gaussian
whose width is greater than the width of the distribution
associated with a coherent state. Hence the Glauber-
Sudarshan distribution is also well defined Gaussian with
a width ǫ/(1− ǫ) and centered at α′/(1− ǫ). The Wigner
function shifts to larger values and broadens as the de-
tection efficiency goes down.

In conclusion we have shown how one can use entan-
gled photon pairs produced in a high gain parametric
amplifier and imperfect measurements on the idler field
to realize the idea of weak values of the observable at the
level of quantized fields. We show how the weak mea-
surements of the idler field produce exceptionally large
changes in the quantum state of the signal field. We show
large changes in both mean values of the observable as
well as in the fluctuations. For illustration purpose we
have chosen to detect the idler field in vacuum state.We
could choose to measure the idler in some other state.
This would lead to similar results. We add that detection
of the idler in single photon state produces nonclassical
character of the signal field.

The authors thank NSF grant no. CCF 0524673 for
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interesting correspondence.
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