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ASYMPTOTIC ESTIMATES
FOR A TWO-DIMENSIONAL PROBLEM
WITH POLYNOMIAL NONLINEARITY

ADIMURTHI AND MASSIMO GROSSI

(Communicated by David S. Tartakoff)

Abstract. In this paper we give asymptotic estimates of the least energy
solution up of the functional

J(u) =

∫
Ω
|∇u|2 constrained on the manifold

∫
Ω
|u|p+1 = 1

as p goes to infinity. Here Ω is a smooth bounded domain of R2. Among other
results we give a positive answer to a question raised by Chen, Ni, and Zhou
(2000) by showing that lim

p→∞
||up||∞ =

√
e.

1. Introduction

In this paper we consider the following elliptic minimization problem. Let us
define a C2-functional on H1

0 (Ω):

(1.1) J(u) =
∫

Ω

|∇u|2 constrained on the manifold
∫

Ω

|u|p+1 = 1

where Ω is a smooth bounded domain in R2 and p is a real number greater than 1.
Then we define

(1.2) Sp = inf
u∈H1

0 (Ω)
J(u).

By standard results it is easy to see that Sp is achieved at a function up ∈ H1
0 (Ω)

that satisfies

(1.3)


−∆up = Spu

p
p in Ω,

up > 0 in Ω,
up = 0 on ∂Ω.

By Lemma 2.1 we get Sp = O
(

1
p

)
for p large. Setting vp = S

1
p−1
p up we are in

the framework of [8], [9] and [6] where some asymptotic results about this problem
were obtained.
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In particular, it was proved in [8] and [9] that the minimizer up looks like a sharp
“spike”. More precisely it was shown that, for a suitable sequence pn →∞,

(1.4) ||upn ||∞ ≤ C,
and in the sense of distribution,

(1.5)
upnpn

||upn ||
pn
pn

→ δx0 .

Moreover, the point xpn where the minimizer upn achieves its maximum con-
verges to a critical point of the Robin function.

In this paper we obtain estimates of a different nature, greatly improving some
partial results obtained in [5], where uniqueness and qualitative properties of the
least energy solution were proved.

Here we use the two-dimensional blow-up technique introduced in [1]. The blow-
up function is obtained by linearizing the nonlinear term plogup around the point of
maximum of up. More precisely let us define the function zp(x) : Ωp = Ω−xp

εp
7→ R,

(1.6) zp(x) =
p

up(xp)
(
up(εpx+ xp)− up(xp)

)
where xp is the point where up achieves its maximum and ε2

p = 1
pSpup(xp)p−1 . Then

we obtain the following.

Theorem 1.1. For any sequence zpn with pn → ∞, there exists a subsequence of
zpn, still denoted by zpn, such that zpn → z in C2

loc(R2), where z(x) = log 1(
1+ |x|

2
8

)2 .

The main result of the paper is a consequence of the above theorem.

Theorem 1.2. Let up be a solution to (1.3). Then

(1.7) lim
p→∞

||up||∞ =
√
e.

Note that the estimate lim sup
p→∞

||up||∞ ≤
√
e was proved in [9]. Here we give

a positive answer to a question raised in [4], where some numerical computations
suggested the validity of (1.7).

2. Proof of Theorem 1.1

In this section we recall some results about the solution up, and then we give
the proof of Theorem 1.1.

We start by recalling the following estimates on Sp, due to Ren and Wei ([8]).

Lemma 2.1. Let Sp be defined as in (1.2). Then

(2.1) lim
p→∞

pSp = 8πe.

Proof. Setting vp = (Sp)
1
p−1up we have that vp also achieves Sp and satisfies

(2.2)


−∆vp = vpp in Ω,
vp > 0 in Ω,
vp = 0 on ∂Ω.

From Corollary 2.3 of [8] we get lim
p→∞

p
∫

Ω v
p+1
p = 8πe. Hence, recalling that∫

Ω
up+1
p = 1 we derive that lim

p→∞
p(Sp)

p+1
p−1 = 8πe, which implies (2.1). �
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Let us denote by xp the point where up(xp) = ||up||∞. By Lemma 4.1 of [8]
we know that xp is far away from the boundary of Ω. The next lemma provides
additional information on the rate of up(xp).

Lemma 2.2. We have that

(2.3) lim
p→∞

up(xp)p−1 = +∞.

Proof. Let us denote by λ1(Ω) the first eigenvalue of −∆ with zero Dirichlet bound-
ary condition. Then we have

(2.4) 1 =
∫

Ω

|up|p+1 ≤ up(xp)p−1

∫
Ω

|up|2 ≤ up(xp)p−1λ1(Ω)−1

∫
Ω

|∇up|2.

Recalling that
∫

Ω |∇up|2 = Sp and Lemma 2.1, we deduce that
∫

Ω |∇up|2 → 0
as p goes to infinity. By (2.4), we obtain the claim. �

Proof of Theorem 1.1. For any sequence pn → +∞, let us set zn : Ωn = Ω−xpn
εn

7→
R,

(2.5) zn(x) =
pn

upn(xpn)
(
upn(εnx+ xpn)− upn(xpn)

)
where ε2

n = 1
pnSpnupn (xpn)pn−1 . From Lemma 2.1 and Lemma 2.2, we get εn → 0 as

n → ∞ and “Ωn → R2” as n → ∞. Now let us write down the equation satisfied
by zn,

(2.6)


−∆zn =

(
1 + zn

pn

)pn
in Ωn,

0 < 1 + zn
pn
≤ 1 in Ωn,

zn = −pn on ∂Ωn.

We want to pass to the limit in (2.6). To do this we use some ideas in [2]. Let
B(0, R) be the ball centered at the origin with radius R, and let wn be the solution
of

(2.7)

{
−∆wn =

(
1 + zn

pn

)pn
in B(0, R),

wn = 0 on ∂B(0, R).

By the maximum principle and the standard regularity theory, we have that
0 ≤ wn ≤ C with C independent of n. For x ∈ B(0, R) set ψn(x) = zn(x)−wn(x).
Hence ψn is a sequence of harmonic functions which are uniformly bounded above.
Hence by Harnack’s inequality [7] we have the alternative:
either
i) a subsequence of ψn is bounded in L∞loc(B(0, R)),
or
ii) ψn converges uniformly to −∞ on compact subsets of (B(0, R).

Since ψn(0) = zn(0) − wn(0) = −wn(0) ≥ −C, case ii) cannot occur. Hence,
up to a subsequence, which we denote again by ψn, we have that ψn is bounded
in L∞(B(0, R)) for any R > 0 and the same holds for zn. From (2.6), and the
standard regularity theory, we derive that zn is bounded in C2

loc(R2), and then it
converges to a function z ∈ C2(R2). Passing to the limit in (2.6), we get that z
satisfies

(2.8) −∆z = ez in R2.
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Let us prove that
∫
R2 e

z < +∞. To do this we observe that, since zn → z in
C2
loc(R2), then

(2.9) pn

(
log
(
1 +

zn
pn

)
− zn
pn

)
→ 0 pointwise in R2.

Hence

(2.10) zn + pn

(
log
(
1 +

zn
pn

)
− zn
pn

)
→ z pointwise in R2.

By Fatou’s Lemma, we deduce∫
R2
ez ≤ lim

n→∞

∫
Ωn

e
zn+pn

(
log
(

1+ zn
pn

)
− znpn

)
= lim
n→∞

∫
Ωn

(
1 +

zn
pn

)pn
= lim
n→∞

1
ε2
nu

pn
pn(xpn)

∫
Ω

upnpn ≤ lim
n→∞

pnSpn
upn(xpn)

|Ω| 1
pn+1 ≤ C

(2.11)

since upn(xpn) ≥ C in Ω for n large (see [8], p. 755).
By a result of Chen and Li ([3]), the solutions of (2.8) satisfying

∫
R2 e

z < +∞
are given by

(2.12) z(x) = log
µ(

1 + µ
8 |x− x0|2

)2 for µ > 0 and x0 ∈ R2.

Since z(x) ≤ z(0) = 0 for any x ∈ R2, we derive that µ = 1 and x0 = 0 in (2.12),
and this gives the claim of Theorem 1.1. �

3. Proof of Theorem 1.2

The next estimate plays a role in the proof of Theorem 1.2. This estimate was
proved in [9] but we stress that it follows easily by Theorem 1.1.

Lemma 3.1. We have that

(3.1) lim sup
n→∞

||upn ||∞ ≤
√
e.

Proof. It follows directly by Theorem 1.1.
Setting upn = un and L = lim sup

n→∞
||un||∞, by using Fatou’s Lemma, we obtain

1 =
∫

Ω

up+1
n = un(xn)pn+1ε2

n

∫
Ωn

(
1 +

zn
pn

)pn+1

=
un(xn)2

pnSpn

∫
Ωn

(
1 +

zn
pn

)pn+1 ≥ L2

8πe

∫
R2
ez.

(3.2)

Recalling that
∫
R2 e

z = 8π, we deduce the claim. �

Let us consider the linearized operator associated to (1.3), i.e., Lp : H1
0 (Ω) →

H−1(Ω),

(3.3) Lp = −∆− pSpup−1
p (x)I, x ∈ Ω,

and let us denote by λ1(Lp), λ2(Lp) the first and the second eigenvalue of Lp. Now
let us recall a property of λ2(Lp).

Lemma 3.2. We have that

(3.4) λ2(Lp) ≥ 0.
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Proof. The proof is standard since up is a minimizer of J on the manifold
∫
Ω

|u|p+1 =

1. �

We consider, for D ⊂ Ωp, Lp,D : H1
0 (D)→ H−1(D),

(3.5) Lp,D = −∆−
up−1
p (εpx+ xp)

up−1
p (xp)

I, x ∈ D,

and let us denote by λ1(Lp,D), λ2(Lp,D) the first and the second eigenvalue of Lp,D.

Lemma 3.3. We have that

(3.6) λ2(Lp,Ωp) ≥ 0.

Proof. Using the scaling x → εpx + xp we get λ2(Lp,Ωp) = ε2
pλ2(Lp) and (3.6)

follows by Lemma 3.2. �

Lemma 3.4. Let us denote by B1 = B(0, 1). Let pn → ∞ such that zpn → z in
C1
loc(R2). Then for large pn, we have

(3.7) λ1(Lpn,B1) < 0.

Proof.

(3.8) wp = x · ∇zp +
2

p− 1
zp +

2p
p− 1

.

By direct computation we get that wp satisfies

(3.9) −∆wp =
up−1
p (εpx+ xp)

up−1
p (xp)

wp.

Moreover, wpn(0)→ 2 and for |x| = 1, wpn(x)→ − 4
9 as pn →∞.

Hence, if we denote by Ap = {x ∈ B1 : wp > 0} and

(3.10) w̃p =

{
wp if x ∈ Ap,
0 if x ∈ B1 \ Āp,

we derive that for pn large, w̃pn ∈ H1
0 (B1). From (3.9) we get

(3.11)
∫
B1

|∇w̃pn |2 −
∫
B1

upn−1
pn (εpnx+ xpn)

upn−1
pn (xpn)

w̃2
pn = 0,

and this implies that λ1(Lpn,B1) < 0. �

Lemma 3.5. Let pn be a sequence as in Lemma 3.4. Then for pn large we have

(3.12) λ1(Lpn,Ωpn\B1) > 0.

Proof. By contradiction let us suppose that λ1(Lpn,Ωpn\B1) ≤ 0. Then from Lemma
3.4, for large pn, λ1(Lpn,B1) < 0 and hence λ2(Lpn,Ωpn ) < 0. This gives a contra-
diction with Lemma 3.3. �

Remark 3.6. Lemma 3.4 implies that the operator Lpn ,Ωpn\B1 satisfies the maxi-
mum principle in Ωpn \B1.
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Proof of Theorem 1.2. By Lemma 3.1 we know that (up to a subsequence)
lim
n→∞

||upn ||∞ ≤
√
e. By contradiction let us suppose that there exists a subse-

quence of upn (still denoted by upn) such that

(3.13) lim
n→∞

||upn ||∞ <
√
e.

Now, we will show that for large pn, (3.13) implies the following estimate:

(3.14) zn(x) ≤ C + log
1(

1 + |x|2
8

)2 ∀x ∈ Ωpn

where C is a constant independent of n.
By Theorem 1.1, zn → z in C◦(B1) and hence (3.14) fails for x ∈ B1. It is

enough to prove 3.14 for x ∈ Ωn \B1. To prove this let us observe that the function
z satisfies

(3.15) −∆z = ez ≥
(
1 +

z

p

)p
for any p > 1. Furthermore, let us consider ψn = zn − z in Ωpn . By computing ψn
on ∂(Ωpn \B1) and by applying the maximum principle, if x ∈ ∂Ωpn , we get

ψn(x) = zn(x)− z(x) = −pn + 2 log(1 +
|x|2
8

) ≤ −pn + 2 log
1
ε2
pn

+ C

≤ −pn + 2 logupn(xpn)pn−1 + C ≤ C
(3.16)

where we had used upn(xpn) <
√
e.

Now if x ∈ ∂B1, by Theorem 1.1 we can derive again that ψn(x) ≤ C.
Finally, we write down the equation satisfied by ψn. Using the convexity of

F (s) =
(
1 + s

p

)p for p > 1 we have

−∆ψn =
(
1 +

zn
pn

)pn − (1 +
z

pn

)pn
≤
(
1 +

zn
pn

)pn−1
ψn =

upn−1
pn (εpnx+ xpn)

upn−1
pn (xpn)

ψn.
(3.17)

Since the maximum principle holds in Ωpn \B1 for Lpn,Ωpn\B1 , we now deduce that
ψn ≤ C in Ωpn \B1 and this gives (3.14).

From (3.14), a contradiction follows easily. Indeed, using Theorem 1.1 and
Lebesgue’s Theorem we derive

1 =
∫

Ω

upn+1
n = un(xn)pn+1ε2

n

∫
Ωn

(
1 +

zn
pn

)pn+1

=
u2
n(xn)

8πe+ o(1)
(
8π + o(1)

)
,

(3.18)

which proves that lim
n→∞

||un||∞ =
√
e, a contradiction with (3.13). �
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