
June 12, 2009 13:57 WSPC/152-CCM 00340

Communications in Contemporary Mathematics
Vol. 11, No. 3 (2009) 367–394
c© World Scientific Publishing Company

GENERALIZED HARDY–RELLICH INEQUALITIES
IN CRITICAL DIMENSION
AND ITS APPLICATIONS

ADIMURTHI

TIFR Center for Applicable Mathematics
Yehlanka Newtown, Bangalore, 560 064, India

aditi@math.tifrbng.res.in

SANJIBAN SANTRA

Department of Mathematics, The Chinese University of Hong Kong
Shatin, Hong Kong

ssantra@math.cuhk.edu.hk

Received 25 July 2006
Revised 7 May 2008

In this paper, we study the Hardy–Rellich inequalities for polyharmonic operators in
the critical dimension and an analogue in the p-biharmonic case. We also develop some
optimal weighted Hardy–Sobolev inequalities in the general case and discuss the related
eigenvalue problem. We also prove W 2,q(Ω) estimates in the biharmonic case.
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1. Introduction

Inequalities involving integrals of a function and its derivatives appear frequently in
various branches of mathematics and represent a useful tool, e.g., in the theory and
practice of differential equations, in the theory of approximation etc. Let Ω ⊂ R

n

be a smooth bounded domain and 0 ∈ Ω. Let us recall that the Hardy–Rellich
inequality states that for all u ∈ H2

0 (Ω)

∫
Ω

|∆u|2 − n2(n− 4)2

16

∫
Ω

u2

|x|4 ≥ 0, n ≥ 5 (1.1)

where n2(n−4)2

16 is the best constant in (1.1) and it is never achieved in any domain
Ω ⊂ R

n. This inequality was first proved by Rellich [15] for u ∈ H2
0 (Ω) and it was

extended to functions in H2(Ω) ∩H1
0 (Ω) by Dold et al. in [9].
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The main questions related to this inequality are many folds and are as follows:

(i) extend the inequality (1.1) in all dimensions,
(ii) replace “2” by “p”,
(iii) extend this to polyharmonic case.

In this direction, Davis and Hinz [8] generalized (1.1) and showed that for any
p ∈ (1, n

2 ), there holds∫
Ω

|∆u|p −
(
n(p− 1)(n− 2p)

p2

)p ∫
Ω

|u|p
|x|2p

≥ 0, u ∈ C∞
0 (Ω\{0}). (1.2)

In [12], the inequality (1.2) was proved for all u ∈ W 2,p(Ω)∩W 1,p
0 (Ω) for 1 < p < n

2 .

Also it was extended these inequalities to the polyharmonic case with weights and
is as follows. Let 0 < k < n

2 be an integer and u ∈ W k,2
0 (Ω). Then if k = 2m∫

Ω

(∆mu)2dx ≥
(

2m∏
l=1

(n+ 4m− 4l)2

4

)∫
Ω

u2

|x|4m
dx. (1.3)

If k = 2m+ 1, then∫
Ω

|∇∆mu|2dx ≥
(

2m+1∏
l=1

(n+ 4m+ 2 − 4l)2

4

) ∫
Ω

u2

|x|4m+2
dx. (1.4)

Let θ ∈ R, p > 1, k ≥ 1, n > s > 2(1 + p(k − 1)) and n > θ + 2, define

dp,θ =
(n− 2 − θ)[(p− 1)(n− 2) + θ]

p2
(1.5)

ckp,s =

[
1
p2k

k−1∏
i=0

(n+ 2pi− s)(n(p− 1) − 2p(i+ 1) + s)

]p

(1.6)

then for all u ∈ C∞
0 (Ω)∫

Ω

|∆u|p
|x|θ+2−2p

dx ≥ dp
p,θ

∫
Ω

|u|p
|x|θ+2

dx (1.7)

∫
Ω

|∇(∆u)|p
|x|θ+2−3p

dx ≥ dp
p,θ

(
n− (θ + 2 − 2p)

p

)p ∫
Ω

|u|p
|x|θ+2

dx (1.8)

∫
Ω

|(∆ku)|p
|x|s−2pk

dx ≥ ckp,s

∫
Ω

|u|p
|x|s dx. (1.9)

Also, he proved that if n > 2kp, then∫
Ω

|(∆ku)|pdx ≥ ep,k

∫
Ω

|u|p
|x|2pk

dx (1.10)

where

ep,k =

[
1
p2k

k−1∏
i=0

(n− 2p(i+ 1))(n(p− 1) + 2pi)

]p

.
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It is to be noted that all the constants appearing in the above inequalities are
sharp.

Another important Hardy–Rellich type inequality is when the entire boundary
is considered as the singularity. Let d(x) = d(x, ∂Ω) denotes the distance function
to the boundary ∂Ω of Ω. For t ∈ (0, 1], define for i ≥ 2,

X1(t) = (1 − ln t)−1

Xi(t) = X1(Xi−1(t)).

For a convex domain Ω, it has been shown in [14] that for all u ∈ C∞
0 (Ω),

∫
Ω

|∆u|2 ≥ 9
16

∫
Ω

u2

d(x)4
, u ∈ C∞

0 (Ω). (1.11)

This inequality has been improved in [5]. It has been shown that there exist a
D0 > supx∈Ω d(x) such that for all u ∈ C∞

0 (Ω) with Xj = Xj

(d(x)
D

)
, there holds

∫
Ω

|∆u|2 ≥ 1
4

∫
Ω

|∇u|2
d(x)2

+
1
4

∞∑
i=1

∫
Ω

|∇u|2
d(x)2

X2
1X

2
2 · · ·X2

i , (1.12)

∫
Ω

|∆u|2 ≥ 9
16

∫
Ω

|u|2
d(x)4

+
5
8

∞∑
i=1

∫
Ω

|u|2
d(x)4

X2
1X

2
2 · · ·X2

i . (1.13)

Now we come to the question (i), that is, what happens to [1] when n = 4? Sur-
prisingly, it was shown in [3] that this inequality differs when compared to n ≥ 5.
Basically, the idea of the proof relies on the fundamental solution of ∆2 which was
used earlier in [1] to generalize Hardy–Sobolev inequality on Riemannian manifolds.

Motivated by [3], in this paper we discuss the description of Hardy–Rellich
inequalities in the critical dimension. Furthermore, we prove the Vazquez and
Zuazua [18] type of inequalities for the biharmonic case.

2. Main Theorems

Before stating the main theorems, we introduce the following definitions and nota-
tions. Let e0 = 1, e(1) = e, e(k) = ee(k−1)

for k ≥ 1. Let a > 0 and define,

ln(1) a = ln(a),

ln(k) a = ln ln(k−1)(a), for k ≥ 2,

ln(k)(a) =
k∏

j=1

ln(j)(a), if a > e(k−1),

W 2m,2
r (B) = {u ∈ W 2m,2(B) : u is radial},

W 2m+1,2
r (B) = {u ∈ W 2m+1,2(B) : u is radial}.
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Recall that W k,2
0 (Ω) is equipped with the norm

‖u‖W k,2
0 (Ω) =




∫
Ω

(∆mu)2dx; k = 2m, m ∈ N,

∫
Ω

|∇∆mu|2dx; k = 2m+ 1, m ∈ N ∪ {0}.

We consider two situations: firstly, W 2,p(Ω) where n = 2p; and secondly, W k,2(Ω)
where n = 2k. Let B be the unit ball in R

n.

Then we have the following main results.

Theorem 2.1. Let 0 ∈ Ω be a bounded domain in R
n, n = 2p. Then there exist

a constant C > 0 such that for any k, we can find a R = R(k) > 0 and for all
u ∈W 2,p

0 (Ω)
∫

Ω

|∆u|pdx− 2p(p− 1)2p

pp

∫
Ω

|u|p

|x|2p

(
ln
R

|x|
)p dx

≥ C

∫
Ω




k∑
j=2

1(
ln(j) R

|x|
)2


 |u|p

|x|2p

(
ln
R

|x|
)p

dx

if p ≥ 2, (2.1)

∫
Ω

|∆u|pdx− 2p(p− 1)2p

pp

∫
Ω

|u|p

|x|2p

(
ln
R

|x|
)p dx ≥ 0 if 1 < p < 2. (2.2)

The constant − 2p(p−1)2p

pp (the coefficient of
∫
Ω

|u|p
|x|2p(ln R

|x| )
p dx) is the best constant

and is never achieved by any nontrivial function u ∈W 2,p
0 (Ω).

Theorem 2.2. Let 0 ∈ Ω be a bounded domain in R
n, 1 ≤ q < 2. Then there exist

R0 > 0 and Cq > 0 such that ∀R ≥ R0 and ∀u ∈ H2
0 (Ω),

∫
Ω

|∆u|2 − n2(n− 4)2

16

∫
Ω

u2

|x|4 ≥ Cq‖u‖2
W 2,q

0 (Ω)
if n ≥ 5 (2.3)

and ∫
Ω

|∆u|2 −
∫

Ω

u2

|x|4
(

ln
R

|x|
)2 ≥ Cq‖u‖2

W 2,q
0 (Ω)

if n = 4. (2.4)

Note that Theorem 2.2 is an extension of the Vazquez and Zuazua’s inequality [18]
in the case of a biharmonic operator and −1 (the coefficient of

∫
Ω

u2

|x|4(ln R
|x| )

2 ) is the
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best constant in the inequality (2.4) which follows from [3]. In fact, Theorem 2.2
implies that H2

0 (Ω) ↪→ W 2,q
0 (Ω) is continuous.

Theorem 2.3. (a) Let B be a unit ball centered at the origin in R
n, n = 4m. Then

for m ≥ 2, there exist a constant C > 0 such that for any k, we can find a
R = R(k) > 0 and for all u ∈ H2m

0,r (B)

∫
B

|∆mu|2dx− n2

16

[
1

22m−2

m−2∏
i=0

(4i+ 2)(8m− 4i− 6)

]2 ∫
B

|u|2

|x|4m

(
ln
R

|x|
)2 dx

≥ C

∫
B




k∑
j=2

1(
ln(j) R

|x|
)2


 |u|2

|x|4m
dx. (2.5)

The constant −n2

16

[
1

22m−2

∏m−2
i=0 (4i + 2)(8m − 4i − 6)

]2 (the coefficient of∫
B

|u|2
|x|4m(ln R

|x| )
2 dx) is the best constant and is never achieved by any nontrivial

function u ∈ H2m
0,r (B).

(b) Let B be a unit ball centered at the origin in R
n, n = 4m+ 2. Then there exist

a constant C > 0 such that for any k, we can find a R = R(k) > 0 and for all
u ∈ H2m+1

0,r (B)

∫
B

|∇∆mu|2dx− n2

16

[
1

22m

m−1∏
i=0

(4m− 4i− 2)(4m+ 4i+ 2)

]2

×
∫

B

|u|2

|x|4m+2

(
ln
R

|x|
)2 dx

≥ C

∫
B




k∑
j=2

1(
ln(j) R

|x|
)2


 |u|2

|x|4m+2
dx. (2.6)

The constant −n2

16

[
1

22m

∏m−1
i=0 (4m− 4i− 2)(4m+ 4i+ 2)

]2
(the coefficient of∫

B
|u|2

|x|4m+2(ln R
|x| )

2 dx) is the best constant and is never achieved by any nontrivial

function u ∈ H2m+1
0,r (B).

Next, we study the eigenvalue problems associated with the perturbed Hardy–
Rellich operator for the case n = 4, which is highly singular and non-compact.
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Let R > 0, λ > 0, 0 < µ < 1, X = H2
0 (Ω) or H2(Ω) ∩H1

0 (Ω) and define

F =

{
f ∈ L∞

loc(Ω\{0}) : lim
|x|→∞

|x|4
(

ln
R

|x|
)2

f(x) = 0

}

F =

{
f ∈ L∞

loc(Ω\{0}) : lim
|x|→∞

|x|4
(

ln
R

|x|
)2(

ln
(

ln
R

|x|
))2

f(x) <∞
}
.

For f ∈ F∪F, we look for a weak solution next of the following eigenvalue problems
and study the asymptotic behavior of the first eigenvalue as µ→ 1.


Lµu = λf(x)u in Ω

u =
∂u

∂ν
= 0 on ∂Ω

(2.7)

{
Lµu = λf(x)u in Ω

u = ∆u = 0 on ∂Ω
(2.8)

where

Lµu = ∆2u− µ
u

|x|4
(

ln
R

|x|
)2 . (2.9)

Theorem 2.4. The problem (2.7) and (2.8) admits a nontrivial weak solution u ∈
X, corresponding to the first eigenvalue λ1

µ(f) = λ > 0. Moreover, as µ → 1,
λ1

µ(f) → λ(f) ≥ 0 for all f ∈ F and the limit λ(f) > 0 if f ∈ F . Moreover,
if Ω = B, in problem (2.7), then the first eigenfunction is positive and the first
eigenvalue is simple. If u ∈ H2(Ω) ∩H1

0 (Ω), the first eigenfunction is positive and
the first eigenvalue is positive.

3. Preliminary Lemmas

In this section, we briefly discuss the Hardy–Sobolev inequalities with weights,
which will be required to prove the main theorems. First we introduce the following
notations. Let k ≥ 1 be an integer and R > e(k−1) sup∂Ω |x|. Let

E(x) =




1
|x|n−2

if n ≥ 3

ln
(
R

|x|
)

if n = 2,

E1(x) =




1
|x|n−4

if n ≥ 5

ln
(
R

|x|
)

if n = 4.
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Let α ∈ R and m ≥ 0 be a measurable function. Let 2∗ = 2n
n−2 if n ≥ 3, 2� = 2n

n−4

if n ≥ 5 and define

Lp(Ω,m) =
{
u measurable;

∫
Ω

|u|pmdx <∞
}

D1,2
α (Ω) = {u ∈ L2∗

(Ω);∇u ∈ L2(Ω, E1−2α)}
D2,2

α (Ω) = {u ∈ L2∗
(Ω); ∆u ∈ L2(Ω, E1−2α

1 )}
D1,2

α,0(Ω) = {u ∈ D1,2
α (Ω) : u = 0 on ∂Ω}

D2,2
α,0(Ω) =

{
u ∈ D2,2

α (Ω) : u =
∂u

∂ν
= 0 on ∂Ω

}
.

Let us first recall the basic result which will be needed in the proof of the main
theorems. Let p ∈ (1,∞) and M > 1. Then there exist constants α1, α2 > 0 such
that for all a, b ∈ R

n, |a| = 1 we have

|a+ b|p − 1 − p〈a, b〉 ≥ α1|b|2 + α2|b|p if p ≥ 2 (3.1)

|a+ b|p − 1 − p〈a, b〉 ≥
{
α1|b|2 if |b| ≤M p ∈ (1, 2]

α2|b|p if |b| ≥M p ∈ (1, 2).
(3.2)

If χ denotes the characteristic function, then the above formula can be written as

|a+ b|p − 1 − p〈a, b〉 ≥ α1|b|2χ{|b|≤M} + α2|b|pχ{|b|≥M}.

Furthermore if p = 2, then α1 = α2 = 1
2 is the best choice in (3.1), (3.2). The

following lemma will be used to obtain the remainder terms in Theorems 2.1
and 2.3.

Lemma 3.1. Let w1 ∈ C1(Ω) and for k ≥ 2, define the sequence {wi}i by

w2 =
(

ln
R

|x|
)− 1

2

w1, . . . , wk =
(

ln(k−1)
R

|x|
)− 1

2

wk−1, . . .

then

∫
Ω

|∇w1|2
|x|n−2

=
1
4

∫
Ω




k∑
j=1

1(
ln(j) R

|x|
)2


 w2

1

|x|n − 1
2

∫
∂Ω




k∑
j=1

〈x, ν〉(
ln(j) R

|x|
)


 w2

1

|x|n

+
∫

Ω

|∇wk+1|2
|x|n−2

(
ln(k) R

|x|
)

(3.3)
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and

∫
Ω

|∇w2|2
|x|n−2

(
ln
R

|x|
)

=
1
4

∫
Ω

w2
2

|x|n




k∑
j=2

1(
ln(j) R

|x|
)2




(
ln
R

|x|
)

− 1
2

∫
∂Ω

w2
2

|x|n




k∑
j=2

〈x, ν〉
ln(j) R

|x|




(
ln
R

|x|
)

+
∫

Ω

|∇wk+1|2
|x|n−2

(
ln(k) R

|x|
)
. (3.4)

Proof. We prove (3.4). The proof of (3.3) follows similarly. From the identity
w2 = (ln2

R
|x|)

1
2w3 and taking the logarithmic derivative, we have,

∇w2

w2
= −1

2
x

|x|2
(

ln
R

|x|
)(

ln
(

ln
R

|x|
)) +

∇w3

w3
.

Hence we have

|∇w2|2
|x|n−2

(
ln
R

|x|
)

=
1
4

w2
2

|x|n
(

ln
R

|x|
)2(

ln
(

ln
R

|x|
))2

(
ln
R

|x|
)

+
|∇w3|2
|w3|2

1
|x|n−2

(
ln
R

|x|
)
− 1

2

〈
x

|x|n ,∇w
2
3

〉
. (3.5)

Let |Sn−1| denotes the volume of the unit sphere Sn−1 in R
n and δ0 is the

Dirac distribution at the origin. Then, by integrating (3.5) and using the fact that
div( x

|x|n ) = |Sn−1|δ0, we have

∫
Ω

|∇w2|2
|x|n−2

(
ln
R

|x|
)

=
1
4

∫
Ω

w2
2

|x|n
(

ln(2) R

|x|
)2

(
ln
R

|x|
)

+
∫

Ω

|∇w3|2
|w3|2

w2
2

|x|n−2

(
ln
R

|x|
)
dx− 1

2

∫
∂Ω

〈x, ν〉
|x|n w2

3

∫
Ω

|∇w2|2
|x|n−2

(
ln
R

|x|
)

=
1
4

∫
Ω

w2
2

|x|n
(

ln(2) R

|x|
)2

(
ln
R

|x|
)

+
∫

Ω

|∇w3|2
|x|n−2

(
ln2 R

|x|
)
dx− 1

2

∫
∂Ω

〈x, ν〉
|x|n

w2
2(

ln(2) R

|x|
)(

ln
R

|x|
)
.
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Observing the fact that ∇(lnk
R
|x|) = −(

1
ln(k−1) R

|x|

)
x

|x|2 and wk =
(
ln(k)

R
|x|

) 1
2wk+1

we have,∫
Ω

|∇wk|2
|x|n−2

(
ln(k−1) R

|x|
)

=
∫

Ω

w2
k

|x|n
1(

ln(k) R

|x|
)2

(
ln

R

|x|
)

+
∫

Ω

|∇wk+1|2
|x|n−2

(
ln(k) R

|x|
)
− 1

2

∫
Ω

〈
∇w2

k+1,
x

|x|n
〉
.

(3.6)

Hence by induction the inequality (3.4) follows.

Lemma 3.2. Let Ω be a bounded domain with smooth boundary and 0 ∈ Ω. If R >

e(k−1)sup∂Ω|x|, then there exist a constant λ = λ(Ω, R) < 0 such that ∀u ∈ D1,2
α (Ω)

and n ≥ 3 we have∫
Ω

E1−2α|∇u|2dx− α2(n− 2)2
∫

Ω

u2

|x|2E
1−2αdx

≥ 1
4

∫
Ω




k∑
i=1

1(
ln(j) R

|x|
)2


 u2

|x|2E
1−2α + λ

∫
∂Ω

u2 (3.7)

and if n = 2 ∫
Ω

E1−2α|∇u|2dx − α2

∫
Ω

u2

|x|2
(

ln
R

|x|
)2E

1−2αdx

≥ 1
4

∫
Ω




k∑
i=2

1(
ln(j) R

|x|
)2


 u2

|x|2E
1−2α + λ

∫
∂Ω

u2. (3.8)

The constant −α2(n − 2)2 (the coefficient of
∫
Ω

u2

|x|2E
1−2αdx) is the best constant

and is never achieved by any nontrivial function u ∈ D1,2
α,0(Ω) in the case n ≥ 3.

Moreover, if n = 2, then −α2 (the coefficient of
∫
Ω

u2

|x|2(ln R
|x| )

2E
1−2αdx) is the best

constant and is never achieved by any nontrivial function u ∈ D1,2
α,0(Ω).

Proof. Let n ≥ 3. Let u = Eαv1. Then v1(0) = 0 and

∇u
u

= α
∇E
E

+
∇v1
v1

.
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This implies that

|∇u|2
u2

= α2 |∇E|2
E2

+
|∇v1|2
v2
1

+ 2α
〈∇E
E

,
∇v1
v1

〉
.

Hence

|∇u|2 = α2(n− 2)2
u2

|x|2 + |∇v1|2E2α + α〈∇E,∇v2
1〉E2α−1.

Thus

|∇u|2E2β = α2(n−2)2
u2

|x|2E
2β + |∇v1|2E2(α+β) +α〈∇E,∇v2

1〉E2(α+β)−1. (3.9)

Let α + β = 1
2 . Since v1(0) = 0 and E is a fundamental solution, integrating by

parts, (3.9) yields

∫
Ω

|∇u|2E2βdx = α2(n− 2)2
∫

Ω

u2

|x|2E
2βdx +

∫
Ω

|∇v1|2
|x|n−2

dx

−α(n− 2)
∫

∂Ω

〈x, ν〉
|x|n−2

v2
1 . (3.10)

Substituting v1 = w1 in (3.3) and estimating the boundary integral to obtain the
required inequality. For the optimality of the constant consider the family of func-
tions uδ(x) = Eα−δη(x) where η ∈ C∞

0 (Ω) and η = 1 in a neighborhood to zero.
For the second inequality, let n = 2 and u = Eαv1 we have similarly as above

|∇u|2 = α2 u2

|x|2
(

ln
R

|x|
)2 + |∇v1|2E2α + α〈∇E,∇v2

1〉E2α−1

and we get∫
Ω

|∇u|2E2βdx = α2

∫
Ω

u2

|x|2
(

ln
R

|x|
)2E

2βdx+
∫

Ω

|∇v1|2
(

ln
R

|x|
)
dx

−α

∫
∂Ω

〈x, ν〉
|x|2 v2

1 . (3.11)

Using an identity (3.4), we have the required inequality. From this, it follows that
the best constants are never achieved in D1,2

α,0. For the optimality of the constant,
consider the family of functions uδ(x) = Eα−δη where η ∈ C∞

0 (Ω) and η = 1 in a
neighborhood to zero.

Lemma 3.3. (a) Let n = 4m and B ⊂ R
n be the unit ball centered at zero then

for all u ∈ H2m
0,r (B)(W 2m,2

0,r (B))∫
B

|∆mu|2dx ≥ n2

4
cm−1
2,4m−2

∫
B

|∇u|2
|x|4m−2

dx (3.12)
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where

cm−1
2,4m−2 =

[
1

22m−2

m−2∏
i=0

(4i+ 2)(8m− 4i− 6)

]2

and equality holds iff u ≡ 0.
(b) Let n = 4m + 2 and B ⊂ R

n be the unit ball centered at zero then for all
u ∈ H2m+1

0,r (B)(W 2m+1,2
0,r (B))∫
B

|∇∆mu|2dx ≥ n2

4
e2,4m

∫
B

|∇u|2
|x|4m

dx (3.13)

where

e2,4m =

[
1

22m

m−1∏
i=0

(4m− 4i− 2)(4m+ 4i+ 2)

]2

and equality holds iff u ≡ 0.
(c) Let 1 < p < n and B ⊂ R

n be the unit ball centered at zero then for all
u ∈W 2,p

0,r (B) and u ∈W 2,p
r (B) ∩W 1,p

0,r (B),∫
B

|∆u|pdx ≥ np(p− 1)p

pp

∫
B

|∇u|p
|x|p dx (3.14)

and equality holds iff u ≡ 0. Hence in particular (3.14) holds for the case p = n
2 .

Proof. (a) From [3, Lemma 3.1], we have
∫

B |∆w|2 ≥ n2

4

∫
B

|∇w|2
|x|2 . Hence we have

∫
B

|∆mu|2dx =
∫

B

|∆(∆m−1u)|2dx ≥ n2

4

∫
B

|∇∆m−1u|2
|x|2 dx

=
n2

4

∫
B

|∆m−1∇u|2
|x|2 dx.

Thus we have from (1.9)∫
B

|∆mu|2dx ≥ n2

4
cm−1
2,4m−2

∫
B

|∇u|2
|x|4m−2

dx

where

cm−1
2,4m−2 =

[
1

22m−2

m−2∏
i=0

(4i+ 2)(8m− 4i− 6)

]2

.

(b) When n = 4m + 2, applying the above inequality for each component of ∇u,
using (1.10) and summing to obtain∫

B

|∇∆mu|2 =
∫

B

|∆m(∇u)|2 ≥ e2,4m

∫
B

|∇2u|2
|x|4m

dx
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where

e2,4m =

[
1

22m

m−1∏
i=0

(4m− 4i− 2)(4m+ 4i+ 2)

]2

.

Let 2α(n−2) = (n−4m) and applying the weighted Hardy–Sobolev inequality
(3.7) to v = ∇u ∈ H2m

0,r (B), then the above inequality yields

∫
B

|∇(∆mu)|2dx ≥ n2(n− 4m)2

16
e2,4m

∫
B

|∇u|2
|x|4m

dx =
n2

4
e2,4m

∫
B

|∇u|2
|x|4m

dx.

(c) For the case p ∈ (1, n). Let u ∈ W 2,p
r (B) ∩W 1,p

0,r (B). Since C2
r (B) ∩ C1

0,r(B) is
dense in u ∈ W 2,p

r (B) ∩W 1,p
0,r (B) it is enough to prove the inequality for the

case u ∈ C2
r (B) ∩ C1

0,r(B). Let ∆u ≤ 0. Then by Hopf’s lemma ur < 0. Let

v = r
n−p

p ur. Then v(0) = 0. Then

urr = − (n− p)
p

ur

r
+
urvr

v

∆u =
n(p− 1)

p

ur

r
+ r−

n−p
p vr

∆u =
n(p− 1)

p

ur

r

{
1 +

p

n(p− 1)
r−

n−p
p rvr

ur

}
.

Using the fact that (1 + x)p ≥ 1 + px for x ≥ −1, we have,

|∆u|p ≥ np(p− 1)p

pp

|ur|p
rp

{
1 + p

p

n(p− 1)
vr

ur
rr−

n−p
p

}
.

Hence we have,

|∆u|p ≥ np(p− 1)p

pp

up
r

rp
+ p

(
p

n(p− 1)

)p−1

v|v|p−2vrr
1−n.

Since p
∫ 1

0 v|v|p−2vrdr =
∫ 1

0 (|v|p)rdr = |v(1)|p − |v(0)|p = |v(1)|p, hence

∫
B

|∆u|pdx ≥ np(p− 1)p

pp

∫
B

|∇u|p
|x|p dx.

This proves the lemma.

We also prove an weighted Hardy–Rellich inequality, in order to stress the
fact how the fundamental solution plays a key role in deriving this inequality. It
should be noted that Lemma 3.4 is not required in the course of proof of the main
theorems.
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Lemma 3.4. Let n ≥ 5 and Ω be a bounded domain with smooth boundary and
0 ∈ Ω. If R > e(k−1)sup∂Ω|x|, then there exist constants λ1 = λ1(Ω, R) < 0 and
λ2 = λ2(Ω, R) < 0 such that ∀u ∈ D2,2

α (Ω), we have

∫
Ω

|∆u|2E1−2α
1 dx ≥

(
α2(n− 4)2 +

1
2
θ(n− θ − 2)

)2 ∫
Ω

u2

|x|4E
1−2α
1 dx

+
1
4
(
2α2(n− 4)2 + θ(n− θ − 2)

) ∫
Ω




k∑
i=1

1(
ln(j) R

|x|
)2




× u2

|x|4E
1−2α
1 + λ1

∫
∂Ω

u2 + λ2

∫
∂Ω

(
∂u

∂ν

)2

(3.15)

where E1 = 1
|x|n−4 and θ = (n− 4)(1− 2α) + 2. The constant (α2(n− 4)2 + 1

2θ(n−
θ−2))2 (the coefficient of

∫
Ω

u2

|x|4E
1−2α
1 dx) is the best constant and is never achieved

by any nontrivial function u ∈ D2,2
α,0(Ω).

Proof. Let u = Eα
1 v. Then v(0) = 0 and we have for n ≥ 5

|∇u|2
|x|2 E2β

1 = α2(n− 4)2
|u|2
|x|4E

2β
1 +

|∇v|2
|x|2 E

2(α+β)
1

−α(n− 4)
〈

x

|x|n ,∇v
2

〉
E

2(α+β)−1
1 .

Choosing α+ β = 1
2 and integrating we have

∫
Ω

|∇u|2
|x|2 E2β

1 = α2(n− 4)2
∫

Ω

|u|2
|x|4E

2β
1 +

∫
Ω

|∇v|2
|x|n−2

− α(n− 4)
∫

∂Ω

〈x, ν〉
|x|n v2.

(3.16)

Choosing θ = 2(n− 4)β + 2, (3.16) reduces to

∫
Ω

|∇u|2
|x|θ = α2(n− 4)2

∫
Ω

|u|2
|x|θ+2

+
∫

Ω

|∇v|2
|x|n−2

− α(n− 4)
∫

∂Ω

〈x, ν〉
|x|n v2. (3.17)

Now integrating by parts

∫
Ω

|∇u|2
|x|θ = −

∫
Ω

u∆u
|x|θ − θ

2
(n− θ − 2)

∫
Ω

|u|2
|x|θ+2

+
∫

∂Ω

u

|x|θ
∂u

∂ν
+
θ

2

∫
∂Ω

u2〈x · ν〉
|x|θ+1

.

(3.18)
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Substituting the value of (3.17) in (3.18) we have

−
∫

Ω

u∆u
|x|θ =

{
α2(n− 4)2 +

1
2
θ(n− θ − 2)

}∫
Ω

u2

|x|θ+2
+

∫
Ω

|∇v|2
|x|n−2

−
∫

∂Ω

u

|x|θ
∂u

∂ν
− α(n− 4)

∫
∂Ω

〈x, ν〉
|x|n v2 − θ

2

∫
∂Ω

u2〈x, ν〉
|x|θ+1

.

Applying Cauchy–Schwarz’s inequality we have

1
2ε

∫
Ω

|∆u|2
|x|θ−2

+
ε

2

∫
Ω

|u|2
|x|θ+2

≥
{
α2(n− 4)2 +

1
2
θ(n− θ − 2)

}∫
Ω

u2

|x|θ+2

+
∫

Ω

|∇v|2
|x|n−2

−
∫

∂Ω

u

|x|θ
∂u

∂ν

−α(n− 4)
∫

∂Ω

〈x, ν〉
|x|n v2 − θ

2

∫
∂Ω

u2〈x, ν〉
|x|θ+1

. (3.19)

Choosing ε = α2(n− 4)2 + θ
2 (n− θ − 2) we have∫

Ω

|∆u|2
|x|θ−2

≥
(
α2(n− 4)2 +

θ

2
(n− θ − 2)

)2 ∫
Ω

u2

|x|θ+2

+
(
2α2(n− 4)2 + θ(n− θ − 2)

)∫
Ω

|∇v|2
|x|n−2

+λ1

∫
∂Ω

u2 + λ2

∫
∂Ω

(
∂u

∂ν

)2

. (3.20)

Using (3.3), we have the required inequality. It follows clearly from this inequality
the best constant is never achieved for u ∈ D2,2

α,0(Ω). For the optimality of the
constant consider the family of functions uδ(x) = Eα−δ

1 η where η ∈ C∞
0 (Ω) and

η = 1 in a neighborhood to zero.

4. Proof of the Main Theorems

Proof of Theorem 2.1. First we prove for u ∈ W 2,p
0,r (B). Let u =

(
ln R

|x|
)n−2

n v.
Then v(0) = 0. Then

|∇u|p =
(
n− 2
n

)p |u|p

|x|p
(

ln
R

|x|
)p

∣∣∣∣ x|x| − n

n− 2
∇v
v

|x|
(

ln
R

|x|
)∣∣∣∣

p

.

For the case p ≥ 2, we have from (3.1),

|∇u|p ≥
(
n− 2
n

)p |u|p

|x|p
(

ln
R

|x|
)p

{
1 − p

(
n

n− 2

) 〈
x,

∇v
v

〉(
ln
R

|x|
)

+α1

(
n

n− 2

)2 |x|2|∇v|2
v2

(
ln
R

|x|
)2

+ α2

(
n

n− 2

)p |x|p|∇v|p
vp

(
ln
R

|x|
)p }

.
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Thus we have

|∇u|p
|x|p ≥

(
n− 2
n

)p |u|p

|x|2p

(
ln
R

|x|
)p − p

(
n− 2
n

)p−1 〈
x

|x|2p
,∇v

〉
|v|p−2v

+
4α1

p2

(
n− 2
n

)p−2 |∇v p
2 |2

|x|n−2

(
ln
R

|x|
)

+ α2
|∇v|p
|x|p

(
ln
R

|x|
)p−1

.

Hence we have

|∇u|p
|x|p ≥

(
n− 2
n

)p |u|p

|x|2p

(
ln
R

|x|
)p −

(
n− 2
n

)p−1 〈
x

|x|n ,∇|v|p
〉

+
4α1

p2

(
n− 2
n

)p−2 |∇v p
2 |2

|x|n−2

(
ln
R

|x|
)

+ α2
|∇v|p
|x|p

(
ln
R

|x|
)p−1

. (4.1)

Since v(0) = v|∂Ω = 0 and hence integral of the second term vanishes. Therefore
integrating (4.1) and choosing v

p
2 = w1, we have

∫
B

|∇u|p
|x|p ≥

(
n− 2
n

)p ∫
B

|u|p

|x|2p

(
ln
R

|x|
)p +

4α1

p2

(
n− 2
n

)p−2 ∫
B

|∇w1|2
|x|n−2

(
ln
R

|x|
)

+α2

∫
B

|∇v|p
|x|p

(
ln
R

|x|
)p−1

(4.2)

which implies that

∫
B

|∇u|p
|x|p ≥

(
n− 2
n

)p ∫
B

|u|p

|x|2p

(
ln
R

|x|
)p + C1

∫
B

|∇w1|2
|x|n−2

(
ln
R

|x|
)
.

Using (3.4) on the second term in the above inequality, we obtain

∫
B

|∇u|p
|x|p dx ≥

(
n− 2
n

)p ∫
B

|u|p

|x|2p

(
ln
R

|x|
)p dx

+C

∫
B

|u|p

|x|2p

(
ln

R

|x|
)p−2




k∑
j=2

1(
ln(j) R

|x|
)2


 dx. (4.3)



June 12, 2009 13:57 WSPC/152-CCM 00340

382 Adimurthi & S. Santra

Hence combining (4.3) and (3.14) and noting the fact that (ln R
|x|) ≥ 1, we have∫

B

|∆u|p ≥ 2p(p− 1)2p

pp

∫
B

|u|p

|x|2p

(
ln
R

|x|
)p dx

+C

∫
B

|u|p

|x|2p

(
ln

R

|x|
)p




k∑
j=2

1(
ln(j) R

|x|
)2


 dx.

Hence from the inequality it is clear that the 2p(p−1)2p

pp is not achieved, otherwise the
remainder term is zero, which will imply that u ≡ 0, a contradiction. Later on, we
prove that in fact 2p(p−1)2p

pp is the best constant. This proves the inequalities (2.1)
and (2.2) hold for all u ∈W 2,p

0,r (B). Note that we are only using the fact that u = 0
on ∂B and hence the above inequalities are true for the case u ∈ W 2,p

r (B)∩W 1,p
0,r (B).

Also note that for the case 1 < p < 2, we cannot obtain the remainder term as
in (2.1) but by using (3.2), we can show that the constant 2p(p−1)2p

pp is not achieved.
Next we prove this for the non-radial case by using the ideas in [16] (see [11]). Let
|Ω| = |B|. First we may restrict ourselves to Ω = B and a radial function u. Define
f = −∆u. {−∆w = |f |∗ in B

w = 0 on ∂B
(4.4)

where f∗ denotes the Schwarz symmetrization of f . Then w ∈ W 2,p
r (B)∩W 1,p

0,r (B).
By [17], we have w ≥ |u|∗ ≥ 0. Hence∫

B

|∆w|pdx =
∫

B

(|f |∗)pdx =
∫

Ω

|f |pdx =
∫

Ω

|∆u|pdx,
∫

B

wp

|x|2p

(
ln
R

|x|
)p dx ≥

∫
B

|u|∗p

|x|2p

(
ln
R

|x|
)p dx ≥

∫
Ω

|u|p

|x|2p

(
ln
R

|x|
)p dx.

Similarly we get

∫
B

|w|p

|x|2p

(
ln

R

|x|
)p




k∑
j=2

1(
ln(j) R

|x|
)2


 dx

≥
∫

Ω

|u|p

|x|2p

(
ln

R

|x|
)p




k∑
j=2

1(
ln(j) R

|x|
)2


 dx.
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Hence the inequalities (2.1), (2.2) holds for all u ∈ W 2,p(Ω) ∩W 1,p
0 (Ω) and u ∈

W 2,p
0 (Ω).
Now we prove the sharpness of the previous inequality, i.e. we show the existence

of a family of radial functions ψδ such that

lim
δ→0

∫
Ω

|∆ψδ|p∫
Ω

|ψδ|p

|x|2p

(
ln
R

|x|
)p

=
2p(p− 1)2p

pp
.

Let B(1) ⊂ Ω and ϕ ∈ C∞
0 (Ω) be radial such that

ϕ(x) =




1 in B
(

1
2

)
0 on Ω\B(1).

Define ψδ(x) =
(
ln R

|x|
) p−1

p −δ
ϕ(x)

∆ψδ(x) =
(

ln
R

|x|
) p−1

p −δ

∆ϕ+ ∆
(

ln
R

|x|
) p−1

p −δ

ϕ+ 2

〈
∇

(
ln
R

|x|
) p−1

p −δ

,∇ϕ
〉
.

Then we have

∫
Ω

|∆ψδ|p∫
Ω

|ψδ|p

|x|2p

(
ln
R

|x|
)p

=

∫
Ω

∣∣∣∣∣∆
(

ln
R

|x|
) p−1

p −δ
∣∣∣∣∣
p

ϕp

∫
Ω

|ψδ|p

|x|2p

(
ln
R

|x|
)p

+
O(1)∫

Ω

|ψδ|p

|x|2p

(
ln
R

|x|
)p

.

Now we have

∆
(

ln
R

|x|
) p−1

p −δ

= − 1
r2

(
p− 1
p

− δ

)(
1
p

+ δ

)(
ln
R

r

)− p+1
p −δ

− n− 2
r2

(
p− 1
p

− δ

)(
ln
R

r

)− 1
p−δ

.

Putting n = 2p, we have

∆
(

ln
R

|x|
) p−1

p −δ

= − 1
r2

(
p− 1
p

− δ

)(
1
p

+ δ

)(
ln
R

r

)− p+1
p −δ

− 2p− 2
r2

(
p− 1
p

− δ

)(
ln
R

r

)− 1
p−δ

.
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Hence we have∣∣∣∣∣∆
(

ln
R

|x|
) p−1

p −δ
∣∣∣∣∣
p

= 2p(p− 1)p

(
p− 1
p

− δ

)p(
ln
R

r

)−1−pδ

× 1
r2p

∣∣∣∣∣∣∣∣
1 +

1 + pδ

2p(p− 1)
1(

ln
R

r

)
∣∣∣∣∣∣∣∣

p

.

Also note that

|ψδ|p =
(

ln
R

|x|
)p−1−pδ

ϕp.

Hence∫
Ω

∣∣∣∣∣∆
(

ln
R

|x|
) p−1

p −δ
∣∣∣∣∣
p

ϕp

∫
Ω

|ψδ|p

|x|2p

(
ln
R

|x|
)p

= 2p(p− 1)p

(
p− 1
p

− δ

)p

+
O(1)∫

Ω

|ψδ|p

|x|2p

(
ln
R

|x|
)p

(4.5)

Taking limit as δ → 0 in (4.5) and noting that

lim
δ→0

∫
Ω

|ψδ|p

|x|2p

(
ln
R

|x|
)p = ∞,

we have

lim
δ→0

∫
Ω

|∆ψδ|p∫
Ω

|ψδ|p

|x|2p

(
ln
R

|x|
)p

=
2p(p− 1)2p

pp
.

Hence 2p(p−1)2p

pp is the best constant in (2.1) and it is never achieved in any bounded
domain.

Proof of Theorem 2.2. As in Theorem 2.1, it is enough to prove it for the radial
superharmonic functions when Ω = B as in (4.4) we have ‖u‖W 2,q

0 (Ω) = ‖w‖W 2,q
0 (B).

Letting 2α(n− 2) = 4 − n in (3.7) for n ≥ 5, we obtain

n2

4

∫
B

|∇u|2
|x|2 dx ≥ n2(n− 4)2

16

∫
B

u2

|x|4 dx

and hence we have∫
B

|∆u|2 − n2(n− 4)2

16

∫
B

u2

|x|4 ≥
∫

B

|∆u|2 − n2

4

∫
B

|∇u|2
|x|2 for n ≥ 5.



June 12, 2009 13:57 WSPC/152-CCM 00340

Generalized Hardy–Rellich Inequalities 385

Let n = 4. Define v =
(
ln R

|x|
)− 1

2 u, then v(0) = 0

∫
B

|∇u|2
|x|2 =

1
4

∫
B

u2

|x|4
(

ln
R

|x|
)2 − 1

2

∫
B

〈
x

|x|4 ,∇v
2

〉
+

∫
B

|∇v|2
|x|2

(
ln
R

|x|
)

≥ 1
4

∫
B

u2

|x|4
(

ln
R

|x|
)2

since div
(

x
|x|4

)
= Cδ0 and v(0) = 0. Hence we have

∫
B

|∆u|2 −
∫

B

u2

|x|4
(

ln
R

|x|
)2 ≥

∫
B

|∆u|2 − 4
∫

B

|∇u|2
|x|2 .

We have from [3, Lemma 3.1], and for n ≥ 4, for u radial∫
B

|∆u|2 − n2

4

∫
B

|∇u|2
|x|2 ≥

∫
B

|∇v|2
|x|n−2

dx (4.6)

where ur = r−
n−2

2 v. Let v = (ln R
|x|)

1
2w. Then from (3.3) we have

∫
B

|∆u|2− n2

4

∫
B

|∇u|2
|x|2 − 1

4

∫
B

|∇u|2

|x|2
(

ln
R

|x|
)2 dx ≥

∫
B

|∇w|2
|x|n−2

(
ln
R

|x|
)
dx. (4.7)

Let ur =
(
ln R

|x|
) 1

2 r−
n−2

2 w, then

|urr| = O




(
ln
R

|x|
) 1

2

|x|n−2
2

wr +

(
ln
R

|x|
) 1

2

|x|n
2

w




|urr|q = O




(
ln
R

|x|
) q

2

|x| (n−2)q
2

|wr |q +

(
ln
R

|x|
) q

2

|x|nq
2

|w|q


 .

Therefore,

ωn

∫ 1

0

|urr|qrn−1dr = O




∫
B

(
ln
R

|x|
) q

2

|x| (n−2)q
2

|∇w|q +
∫

B

(
ln
R

|x|
) q

2

|x|nq
2

|w|q


 . (4.8)
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In order to estimate the right-hand side of (4.8), we need some estimates. Let
w ∈ C∞

0 (B) and k ≥ 0, α ≥ 0. Then

∫
B

(
ln
R

|x|
)α

|x|k |w|q =
1
n

∫
B

(divx)
(

ln
R

|x|
)α

|x|k |w|q

= − q

n

∫
B

〈x,∇w〉
(

ln
R

|x|
)α

|x|k |w|q−2w +
k

n

∫
B

(
ln
R

|x|
)α

|x|k |w|q

+
α

n

∫
B

(
ln
R

|x|
)α

|x|k
(

ln
R

|x|
) |w|q.

Let k < n and R0 > 0 such that

α

n
sup
x∈B

1(
ln
R0

|x|
) <

1
2

(
1 − k

n

)
.

Then for R ≥ R0, the above identity gives

1
2

(
1 − k

n

) ∫
B

(
ln
R

|x|
)α

|x|k |w|q ≤ q

n

∫
B

|∇w|
(

ln
R

|x|
)α

|x|k−1
|w|q−1

1
2

(
1 − k

n

) ∫
B

(
ln
R

|x|
)α

|x|k |w|q ≤ q

n




∫
B

|w|q
(

ln
R

|x|
)α

|x|k




q−1
q

×




∫
B

|∇w|q
(

ln
R

|x|
)α

|x|k−q




1
q

.

This implies that there exist a C = C(k, n, α) > 0 such that

∫
B

(
ln
R

|x|
)α

|x|k |w|q ≤ C




∫
B

|∇w|q
(

ln
R

|x|
)α

|x|k−q


 . (4.9)
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Choose k = nq
2 and so 1 ≤ q < 2 as k < n. Thus from (4.8) and (4.9) we have for

α = q
2 , R ≥ R0

ωn

∫ 1

0

|urr|qrn−1dr ≤ C




∫
B

|∇w|q
(

ln
R

|x|
) q

2

|x| (n−2)q
2


 .

Hence applying Hölder’s inequality we have

ωn

∫ 1

0

|urr|qrn−1dr ≤ C




∫
B

|∇w|2
(

ln
R

|x|
)

|x|n−2
dx




q
2

.

This implies

∫
B

|∆u|qdx ≤ C




∫
B

|∇w|2
(

ln
R

|x|
)

|x|n−2
dx




q
2

.

Combining this with (4.7) completes the proof.

Remark 4.1. It seems that the inequalities (2.3) and (2.4) can be improved by
adding a series of terms on the left-hand side, that is partially visible in (4.7). We
will discuss this in a forthcoming paper.

Proof of Theorem 2.3. (a) Let u =
(
ln R

|x|
) 1

2 v. Then we have v(0) = 0 and for
the case n = 4m,
∫

B

|∇u|2
|x|4m−2

dx =
1
4

∫
B

|u|2

|x|4m

(
ln
R

|x|
)2 dx+

∫
B

|∇v|2
|x|4m−2

(
ln
R

|x|
)
dx (4.10)

and using (3.4) on the second term of the above equality we obtain,

∫
B

|∇u|2
|x|4m−2

dx ≥ 1
4

∫
B

|u|2

|x|4m

(
ln
R

|x|
)2 dx+ C

∫
B




k∑
j=2

1(
ln(j) R

|x|
)2


 |u|2
|x|4m

dx

(4.11)

and applying (3.12), we have the required inequality.



June 12, 2009 13:57 WSPC/152-CCM 00340

388 Adimurthi & S. Santra

(b) For the case n = 4m+ 2, we have∫
B

|∇u|2
|x|4m

dx =
1
4

∫
B

|u|2

|x|4m+2

(
ln
R

|x|
)2 dx+

∫
B

|∇v|2
|x|4m

(
ln
R

|x|
)
dx (4.12)

and using (3.4) on the second term of the above equality we obtain

∫
B

|∇u|2
|x|4m−2

dx ≥ 1
4

∫
B

|u|2

|x|4m

(
ln
R

|x|
)2 dx+ C

∫
B




k∑
j=2

1(
ln(j) R

|x|
)2


 |u|2
|x|4m+2

dx

(4.13)

using (3.13), we have the required inequality.
For the sharpness of the inequalities, consider a family of radial functions

ψδ(r) =




(
ln
R

r

) c4mQm
i=1(n−2i)−δ

ϕ if n = 4m,

(
ln
R

r

) c4m+2
2m

Qm
i=1(n−2i)−δ

ϕ if n = 4m+ 2

where ϕ ∈ C∞
0 (B) be radial such that

ϕ(x) =




1 in B
(

1
2

)

0 on B\B(3/4)

δ > 0 and c24m, c24m+2 denotes the coefficients of∫
B

|u|2

|x|4m

(
ln
R

|x|
)2 dx

and ∫
B

|u|2

|x|4m+2

(
ln
R

|x|
)2 dx

in (2.5) and (2.6) respectively. We skip the slightly tedious details.

Before proving Theorem 2.4, we look into the various difficulties associated with
the biharmonic operator.

• Here we deal with the second order Sobolev spaceH2(Ω). Unlike inH1(Ω),H2(Ω)
does not satisfy the property that “u ∈ H2(Ω) implies |u| ∈ H2(Ω)”. This is a
serious block to get a priori estimates.

• There is no maximum principle.
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Let us recall some known results for biharmonic operator:

Boggio’s Principle. Consider the biharmonic equation

(F )




∆2u = f in B
u = 0 on ∂B

∂u

∂ν
= 0 on ∂B

where B = {x ∈ R
n : |x| < 1} and ν is the outer normal at the boundary of B. Then

Boggio’s principle [6] states that the Green function associated to the biharmonic
problem with zero Dirichlet data in a ball is strictly positive. Hence if f > 0 a.e.
then u > 0 in B. For the weak Boggio’s principle see [4].

Note that when we are in the case Ω, a smooth bounded domain

(G)
{

∆2u = f in Ω
u = ∆u = 0 on ∂Ω

there is a natural weak maximum principle.

Lemma 4.2. If f ∈ F then there exist λ(f) > 0 such that∫
Ω

|∆u|2dx ≥
∫

Ω

u2

|x|4
(

ln
R

|x|
)2 dx + λ(f)

∫
Ω

u2f(x)dx (4.14)

for all u ∈ H2
0 (Ω), u ∈ H2(Ω) ∩H1

0 (Ω).

Proof. Let f ∈ F , then we have

lim
ε→0

sup
x∈Bε(0)

|x|4f(x)
(

ln
R

|x|
)2(

ln ln
R

|x|
)2

<∞

and hence for sufficiently small ε > 0, there exist a C > 0 such that f ∈ Bε(0)

f(x) <
C

|x|4
(

ln
R

|x|
)2(

ln ln
R

|x|
)2

and otherwise f is bounded. Hence the inequality (4.14) holds.

Lemma 4.3. Consider the problem


∆2u− µ
u

|x|4
(

ln
R

|x|
)2 = λf(x)u in B

u �= 0 in B

u ∈ H2
0 (B)

(4.15)

where B is the unit ball centered at origin. If (4.15) admits a solution u for some
λ = λ1

µ(f), then u does not change sign in B.
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Proof. We prove this lemma for the sake of completeness. A similar version of this
lemma can be seen in [3, 10]. Note that proving existence of positive solutions is
quite hard in the sense that u+, u− �∈ H2

0 (B), which played a crucial role in second
order equations. Suppose u ∈ H2

0 (B) solves the above problem with λ = λ1
µ(f) and

u changes sign. Define

K := {v ∈ H2
0 (B) : v ≥ 0 a.e.}.

Let a(u, v) = 〈u, v〉H2
0 (B) =

∫
B

∆u∆v. ∀u, v ∈ H2
0 (B). Note that K is a closed

convex cone. Hence, by [13], there exists a projection P : H2
0 (B) → K such that

for all u ∈ H2
0 (B), ∀w ∈ K

a(u− P (u), w − P (u)) ≤ 0. (4.16)

Since K is a cone we can replace w by tw for t > 0 and letting t→ ∞ to obtain

a(u− P (u), w) ≤ lim
t→∞

1
t
a(u− P (u), P (u))

which implies that ∆2(u − P (u)) ≤ 0 and by weak Boggio’s Principle [4]
u− P (u) ≤ 0.

Now replacing w by tP (u) for t > 0 in (4.17) we have

(t− 1)a(u− P (u), P (u)) ≤ 0

and hence a(u− P (u), P (u)) = 0.
Hence we can write u = u1 + u2, u1 = P (u) ∈ K, u2 = u − P (u), u1 ⊥ u2 and

u2 ≤ 0. Since u changes sign we have that u1 �≡ 0 and u2 �≡ 0 . Therefore we have,∫
B

|∆(u1 − u2)|2 − µ

∫
B

(u1 − u2)2

|x|4
(

ln
R

|x|
)2

∫
B

f(x)(u1 − u2)2
<

∫
B

|∆(u1 + u2)|2 − µ

∫
B

(u1 + u2)2

|x|4
(

ln
R

|x|
)2

∫
B

f(x)(u1 + u2)2

which contradicts the definition of the first eigenvalue. Then u does not change sign
and noting that the Green function is strictly positive we have either u > 0 or u < 0
in B.

Similarly as above, we have:

Lemma 4.4. Consider the problem


∆2u− µ
u

|x|4
(

ln
R

|x|
)2 = λf(x)u in Ω

u �= 0 in Ω

u ∈ H2(Ω) ∩H1
0 (Ω)

(4.17)

where 0 ∈ Ω. If (4.17) admits a solution u for some λ = λ1
µ(f), then u does not

change sign in Ω.
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Lemma 4.5. For f ∈ F , X is compactly embedded in L2(Ω, f), where X =
H2

0 (Ω) or H2(Ω) ∩H1
0 (Ω).

Proof. Let {um}∞m=1 be a bounded sequence in X. Hence along a subse-
quence um ⇀ u (say) in X. Due to the Hardy–Rellich inequality um ⇀ u in
L2

(
Ω, 1

|x|4(ln R
|x| )

2

)
and due to the fact that X ↪→ L2(Ω) is compact um → u in

L2(Ω). Since we have f ∈ F , for any ε > 0, there exist δ > 0 such that

sup
Bδ

|x|4
(

ln
R

|x|
)2

f(x) ≤ ε (4.18)

and f is bounded on Ω\Bδ.∫
Ω

|um − u|2f(x) =
∫

Bδ

|um − u|2f(x) +
∫

Ω\Bδ

|um − u|2f(x).

Thus, we have from (4.18)∫
Ω

|um − u|2f(x) ≤ ε

∫
Bδ

|um − u|2

|x|4
(

ln
R

|x|
)2 + C

∫
Ω

|um − u|2.

By Hardy–Rellich inequality we have∫
Ω

|um − u|2f(x) ≤ Cε

∫
Ω

|∆um − ∆u|2 + C

∫
Ω

|um − u|2. (4.19)

Hence from (4.19) we have um → u in L2(Ω, f).

Proof of Theorem 2.4. We look for critical points of the functional

Jµ(u) =
1
2

∫
Ω

(∆u)2dx − µ

2

∫
Ω

|u|2

|x|4
(

ln
R

|x|
)2 dx

which is continuous, Gateaux differentiable and coercive onX due to Hardy–Rellich
inequality. We minimize this functional on M = {u ∈ X :

∫
Ω|u|2fdx = 1}. Let λ1

µ =
infu∈MJµ(u). Then clearly λ1

µ > 0. Choosing a minimizing sequence {um} ⊂ M

with Jµ(um) → λ1
µ and the component of DJµ(um) restricted to M , tends to 0

strongly in X�. Since µ < 1, Jµ is coercive which implies um is bounded. Hence
there exist a subsequence of um such that



um ⇀ u weakly in X

um ⇀ u weakly in L2


Ω, 1

|x|4
(

ln
R

|x|
)2




um → u strongly in L2(Ω).
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Since X is compactly embedded in L2(Ω, f(x)) and M is weakly closed implies that
u ∈M . Hence ∫

Ω

|∆um|2 =
∫

Ω

|∆(um − u)|2 +
∫

Ω

|∆u|2 + o(1)

∫
Ω

|um|2

|x|4
(

ln
R

|x|
)2 =

∫
Ω

|um − u|2

|x|4
(

ln
R

|x|
)2 +

∫
Ω

|u|2

|x|4
(

ln
R

|x|
)2 + o(1).

Hence we have

λ1
µ =

∫
Ω

|∆um|2 − µ

∫
Ω

|um|2

|x|4
(

ln
R

|x|
)2 + o(1)

=
∫

Ω

|∆(um − u)|2 − µ

∫
Ω

|um − u|2

|x|4
(

ln
R

|x|
)2 +

∫
Ω

|∆u|2 − µ

∫
Ω

|u|2

|x|4
(

ln
R

|x|
)2 + o(1).

Hence we have

λ1
µ ≥ (1 − µ)

∫
Ω

|∆(um − u)|2 +
∫

Ω

|∆u|2 − µ

∫
Ω

|u|2

|x|4
(

ln
R

|x|
)2 + o(1)

λ1
µ ≥ (1 − µ)

∫
Ω

|∆(um − u)|2 + λ1
µ + o(1).

Since µ < 1 we have um → u strongly in X . Hence we have u is a nontrivial solution
to the problems (2.7), (2.8) corresponding to λ = λ1

µ(f).
Moreover, if f ∈ F , then by Lemma 4.2 we have,

λ1
µ(f) → λ(f) = inf

u∈X\{0}

∫
Ω

(∆u)2 −
∫

Ω

|u|2

|x|4
(

ln
R

|x|
)2

∫
Ω

u2f(x)
> 0 as µ→ 1.

In order to prove that λ1
µ(f) is simple when Ω = B, we proceed in a contrapositive

way. Suppose if u1 and u2 be two orthogonal eigenfunctions of (2.7) in H2
0 (B) with

respect to λ1
µ(f). Multiplying the equation with u1 by u2 and integrating by parts;

and noting the fact that 〈∆u1,∆u2〉L2(B) = 0 and f > 0 a.e., we have

−µ
∫

B

u1u2

|x|4
(

ln
R

|x|
)2 = λ1

µ(f)
∫

B

fu1u2
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which implies a contradiction, as u1 and u2 do not change sign in B by Lemma 4.3.
Hence u1 and u2 are not linearly independent which implies that they are
collinear.

Remark 4.6. As a result of Theorem 2.2, we can study the eigenvalue problem
for the case n ≥ 4, which is highly singular and non-compact type of the form

Lu = λu in Ω

with zero Dirichlet or Navier boundary conditions; where

L =




∆2u− n2(n− 4)2

16
u

|x|4 if n ≥ 5

∆2u− u

|x|4
(

ln
R

|x|
)2 if n = 4. (4.20)

One can easily define the eigenvalues {λk} in the form of Rayleigh quotients and
show that λk → ∞ as k → ∞.
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