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In this paper, we study the Hardy—Rellich inequalities for polyharmonic operators in
the critical dimension and an analogue in the p-biharmonic case. We also develop some
optimal weighted Hardy—Sobolev inequalities in the general case and discuss the related
eigenvalue problem. We also prove W2:4(Q) estimates in the biharmonic case.
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1. Introduction

Inequalities involving integrals of a function and its derivatives appear frequently in
various branches of mathematics and represent a useful tool, e.g., in the theory and
practice of differential equations, in the theory of approximation etc. Let 2 C R™
be a smooth bounded domain and 0 € (2. Let us recall that the Hardy—Rellich
inequality states that for all u € HZ(Q)

/|Au|2 /|x|4 >0, n>5 (1.1)

where is the best constant in (1.1) and it is never achieved in any domain
Q) C R™. This inequality was first proved by Rellich [15] for u € HZ(Q) and it was
extended to functions in H?(Q2) N H(Q) by Dold et al. in [9].

n?(n—4)2
16
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The main questions related to this inequality are many folds and are as follows:

(i) extend the inequality (1.1) in all dimensions,
(ii) replace “2” by “p”,
(iii) extend this to polyharmonic case.

In this direction, Davis and Hinz [8] generalized (1.1) and showed that for any
p € (1, %), there holds

n(p—1)(n— 2p))p/ Juf?
Aup—< >0, wueC°(\{0}). 1.2
/QI | > AP o (N\{0}) (1.2)
In [12], the inequality (1.2) was proved for all u € W2P(Q)N Wol’p(Q) forl<p< 3.

Also it was extended these inequalities to the polyharmonic case with weights and
is as follows. Let 0 < k < 5 be an integer and u € WSH(Q). Then if k£ = 2m

2m

9 (n+4m — 41)
/Q(A w)dz > (H : >/|x|4m . (1.3)

=1

If k =2m + 1, then
2m—+1

+4m + 2 — 41)? u?
A" y|?dx > (n / : 1.4
/Q|V uldr > ( H 4 ) Q|x|4m+2da: (1.4)

=1

Let 0 eR,p>1,k>1,n>s>2(1+plk—1)) and n > 0 + 2, define
(n—2-0)[(p—1)(n—2)+6

dpy = e (1.5)
= P
c];,s = o H(n +2pi—s)(n(p—1)—2p(i + 1)+ s) (1.6)
i=0
then for all u € C§°(Q2)
|Aul? p
/Q|a:|‘9+2 5% 2 d, / |z |9+2 (1.7)
[V(Au)[P p (n—(0+2—2p)\" [ |uff
|x|9+273pd = P o |x|0+2d (1.8)
(A ko lul?
dx. 1.9
[ fepeede = . | e )
Also, he proved that if n > 2kp, then
P
/|(Aku)|pda: > e, |u—2|mda: (1.10)
Q alzl

where
p

k—1
i = L%Hm = 2p(i +1)(n(p — 1) + 2p1)

=0
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It is to be noted that all the constants appearing in the above inequalities are
sharp.

Another important Hardy—Rellich type inequality is when the entire boundary
is considered as the singularity. Let d(x) = d(x, 9) denotes the distance function
to the boundary 99 of Q. For t € (0, 1], define for ¢ > 2,

Xi(t)=(1—Int) !
X;(t) = X1(Xi_1(1)).

For a convex domain €, it has been shown in [14] that for all u € C§°(Q),

/|Au|2 > 196/;—)4, we Q). (1.11)

This inequality has been improved in [5]. It has been shown that there exist a
Dy > sup,cq d(z) such that for all u € C§°(Q) with X; = X (d(m)) there holds

2
/|Au|2 4/|v“| Z/|VU| X2X2... X2, (1.12)
Q

/|Au|2 LA +§§:/ W yaxz. oy (1.13)
Q 16 Jod(z)* = 8 =1 qd(x)t 172 " .

| \/

Now we come to the question (i), that is, what happens to [1] when n = 4?7 Sur-
prisingly, it was shown in [3] that this inequality differs when compared to n > 5.
Basically, the idea of the proof relies on the fundamental solution of A? which was
used earlier in [1] to generalize Hardy—Sobolev inequality on Riemannian manifolds.

Motivated by [3], in this paper we discuss the description of Hardy—Rellich
inequalities in the critical dimension. Furthermore, we prove the Vazquez and
Zuazua [18] type of inequalities for the biharmonic case.

2. Main Theorems

Before stating the main theorems, we introduce the following definitions and nota-
tions. Let ¢© = 1, e = ¢, e® = "™ for k > 1. Let a > 0 and define,

In¢yy a = In(a),
Ingya=Inlng_q(a), fork>2,

k
M(a) = H Ingy(a), ifa> elh=1),

W2m2(B) = {u € W?™2%(B) : u is radial},
W2 HL2(B) = {u € W?™L2(B) : u is radial}.
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Recall that Wok’g(Q) is equipped with the norm

/(Amu)de; k=2m, meN,
Q

HUHW[;‘*z(Q) =
/ IVA™ul*de; k=2m+1, meNu{0}.
Q

We consider two situations: firstly, W?2? () where n = 2p; and secondly, W*:2((2)
where n = 2k. Let B be the unit ball in R”.
Then we have the following main results.

Theorem 2.1. Let 0 € Q be a bounded domain in R™, n = 2p. Then there exist
a constant C > 0 such that for any k, we can find a R = R(k) > 0 and for all
ue WP (Q)

P(py — 1)2P P
/|Au|pdx— 2 pl) / [ 7 sdx
Q p Q|x|2p<ln _)
||

k
1 ulP .
2C/ Z R\ 2 | |R P ifp>2, (2.1)
21 =2 <1n(j) _> ||2P <ln —) dx
|| |z

2 (p — 1)2P P
/|Au|pda:— (p " ) / [ul 7 zdr >0 ifl<p<2.  (22)
Q p Q |z|2P (111 _)
||

2
The constant —2p(pp+l)p (the coefficient of fﬂmdaﬂ is the best constant

and is never achieved by any nontrivial function u € Woz’p(Q),

Theorem 2.2. Let 0 € Q be a bounded domain in R™, 1 < g < 2. Then there exist
Ro >0 and Cy > 0 such that VR > Ry and Vu € HZ(9Q),

2 2 2
5 nfn—4) u 2 .
SR S A e TS > .
Jiaue -2t [ s i, ifnz s (2.3
and
2
u .
faue = [ e Gl =t @
ot (1 25
o

Note that Theorem 2.2 is an extension of the Vazquez and Zuazua’s inequality [18]
2
in the case of a biharmonic operator and —1 (the coefficient of fgm) is the
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best constant in the inequality (2.4) which follows from [3]. In fact, Theorem 2.2
implies that HZ(€) — W() is continuous.

Theorem 2.3. (a) Let B be a unit ball centered at the origin in R™, n = 4m. Then
for m > 2, there exist a constant C > 0 such that for any k, we can find a
R = R(k) >0 and for all u € H7"(B)

2 n? L i |ul?
AMy|%dr — — | —— 41+ 2 — 47 — —d
/B| Pt~ 5 | s [L i+ 2sm—4i =9 /B s
: |z In —
||

C/ ( )2 |9|;|L‘|“2” da. (2.5)
||

The constant —’11—2[22,,%1_[;”;02(42' + 2)(8m — 4i — 6)]2 (the coefficient of

2
I5 Wm‘gillﬂﬂ)zda:) is the best constant and is never achieved by any nontrivial
T

Junction v € H§"'(B).
(b) Let B be a unit ball centered at the origin in R™, n = 4m + 2. Then there exist
a constant C' > 0 such that for any k, we can find a R = R(k) > 0 and for all
€ Hyy " (B)

m—1
/|VAmu|2d l ! I (4m — 4i — 2)(4m + 4i + 2)

22nL
=0

In —

||

2
x/ [l sdw
B |x|4m,+2( R)

C/ |fj|2 _du. (2.6)
(1 G R ||t
Ja]

The constant —’f—; [22%]_[?;01(4m — 4i — 2)(4m + 4i + 2)] ? (the coefficient of
/ B %dm) is the best constant and is never achieved by any nontrivial
x n oo

function u € Hg;’f“(B),

Next, we study the eigenvalue problems associated with the perturbed Hardy—
Rellich operator for the case n = 4, which is highly singular and non-compact.



372  Adimurthi € S. Santra

Let R>0,A>0,0<pu<1,X=HZ(Q) or H*(Q) N H () and define

F = {f € Lig(\{0}) : i Jaf* <ln %) fz) = 0}

F = {f € Lo (2\{0}) : ‘ml‘iinoo |x|4<ln %)2<1n<ln %))2 flz) < oo}.

For f € FUF, we look for a weak solution next of the following eigenvalue problems
and study the asymptotic behavior of the first eigenvalue as p — 1.

Lyu=Af(z)u inQ

(2.7)
u= % =0 on 0f)
ov
L,u=A(z)u in Q
t f(z) (2.8)
uw=Au=0 on 0f)
where
9 U
Lyu=Au—p (2.9)

R —
||+ <1n E)
||

Theorem 2.4. The problem (2.7) and (2.8) admits a nontrivial weak solution u €
X, corresponding to the first eigenvalue )\L(f) = A > 0. Moreover, as u — 1,
Ab(f) — Af) > 0 for all f € F and the limit \(f) > 0 if f € F. Moreover,
if @ = B, in problem (2.7), then the first eigenfunction is positive and the first
eigenvalue is simple. If u € H?(2) N HL(Q), the first eigenfunction is positive and
the first eigenvalue is positive.

3. Preliminary Lemmas

In this section, we briefly discuss the Hardy—Sobolev inequalities with weights,
which will be required to prove the main theorems. First we introduce the following
notations. Let k > 1 be an integer and R > e*~1 sup,q, |z|. Let

1

_ ifn>3
E( ) |x|n72
x =
ln<£> ifn=2,
||
1
_ ifn>5
5 ( ) |x|nf4
1\T) =
1n<£> if n =4.
||
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Let o € R and m > 0 be a measurable function. Let 2* = % ifn>3,2¢ = QT"4

if n > 5 and define
LP(Q,m) = {u measurable;/ |ulPmdz < oo}
Q

DL2(Q) = {u e L* (Q); Vu € L*(Q, E'72)}
D22(Q) = {u e L¥ (Q); Au e L3(Q, EL )}
Dy5(Q) = {ueDL*(Q) : u=0on 0Q}

D2Y(Q) = {u e D>2(Q) :u = % =0on aQ} .

Let us first recall the basic result which will be needed in the proof of the main
theorems. Let p € (1,00) and M > 1. Then there exist constants o, as > 0 such
that for all a,b € R", |a|] = 1 we have

la +b|P — 1 —pla,b) > ay|b|? + az|b|? if p > 2 (3.1)
arlp]* i [b] <M pe(1,2]
la +bP — 1 — pla,b) > (3.2)
as|b|P if o] > M pe(1,2).
If x denotes the characteristic function, then the above formula can be written as

la+b]” —1—pla,b) > a1|b]*xqpi<nry + a2lbP X (> ar}-

Furthermore if p = 2, then a1 = ap = § is the best choice in (3.1), (3.2). The

following lemma will be used to obtain the remainder terms in Theorems 2.1
and 2.3.

Lemma 3.1. Let w; € CY(Q) and for k > 2, define the sequence {w;}; by

R\ R\
we = | In — Wi, wE = | Ing_y 7 W1, .-
|| ||

then

Vol 17 v ! oL Az i
Q|x|n72 4 Jq o (ln(]) £>2 |x|n 2 aal 4 (].H(J) E) |x|n

||

\Vwral® (1« R
— 1 — 3.3
+ ) e (e (33)
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and

2 2 k
ST YT [,
o Il " o o | 2 (mw R ) a

|Vwk+1|2< (k) R)
+/ — | In'" — ). 3.4
o a2 2 (34)

Proof. We prove (3.4). The proof of (3.3) follows similarly. From the identity
wg = (Ing %)%wg and taking the logarithmic derivative, we have,

Vws B _1 T n Vws

EERGCOHICC

Hence we have

|VU}2|2 ] R _]. w% ] R
a2\ " a]) T 4 R\2 R\\2 N\ 2]
ot () (7))
X

[Vws|*> 1 R 1/ x 9
+ sl a2 In 2] 5 |x|n,Vw3 . (3.5)

Let |S™~!| denotes the volume of the unit sphere S"~! in R™ and dy is the
Dirac distribution at the origin. Then, by integrating (3.5) and using the fact that

div(fw) =[S |00, we have
s (o) 1 e (o)
ok ")~y ( Ry
Iarl
|Vw3|2 ( ) / (T, v) o
+/ In — w
o |ws]? |$|n 2 || o lzl® ?
? 1
stzl2 (1115) _ _/#20 R)
R e
]
2 2
+ [V, (lnz £) wlf (@) s (15)
alzl B 2 Joq |zl (1(2) R) 2|

||
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Observing the fact that V(Ing %) = —(W)ﬁ and wg = (ln(k) %)%wkﬂ
n m T x
we have,
2 2
Ve[ <1n<k—1> E) Z/w—i% (m ﬂ)
ol 2) = Jolal [ 2) ]
||
T () -3 [ (ke i)
+ [ ——In""— ) — = Vwi, 1, —— )-
o |z["? 2l ) 2 o\ e

(3.6)
Hence by induction the inequality (3.4) follows. O

Lemma 3.2. Let Q be a bounded domain with smooth boundary and 0 € Q. If R >
e*=Vsupyq|z|, then there exist a constant X = \(Q, R) < 0 such that ¥V u € DL%(Q)
and n > 3 we have

2
/E1_2°‘|Vu|2dx —a?(n—2)? / U—QEl_Qo‘dx
Q alzl

k
1 u?

> § :7 —E1*2a+)\/ u? 3.7

- /Q »_1< (v)R)Q || 09 3.

=11 1n) =

||

1
4

and if n =2

2
/E1_2°‘|Vu|2dx—a2/7u SE 2y
Q Q

|x|? <ln 5)
||

2
! Y pl-2a )\/ 2. (3.8)
[e]9)

e |
4Ja i=2 <1n(j) E) ]

||

1 k

The constant —a®(n — 2)? (the coefficient of fQ%El’%‘d:ﬁ) is the best constant

and is never achieved by any nontrivial function u € Di%(Q) in the case n > 3.

Moreover, if n = 2, then —a? (the coefficient of meEl_mdx) is the best
Tl

constant and is never achieved by any nontrivial function u € Di%(Q)

Proof. Let n > 3. Let w = E%vy. Then v1(0) = 0 and

Vu_ VE_ Yu
o E Ul.
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This implies that

VP _ IVEE | [Vuf , /VE
u? E? v? E’ v /[’
Hence
U2
[Vul* = a®(n - 2)? o vl 2E2 4 o(VE, Vo2) B2 L,
Thus

2

#E%’ + |V 2E2OHB) 4 (VE, Vo) EXe+H-1 (3.9
Let a+ 3 = % Since v1(0) = 0 and E is a fundamental solution, integrating by
parts, (3.9) yields

|Vu|?E? = o*(n—2)?

2
/|Vu|2E25dx =a%(n—2)? WEQﬁd x + | |Zl|2
Q

—aln - 2)/a @,0) 2 (3.10)

o lz["?
Substituting v7 = w; in (3.3) and estimating the boundary integral to obtain the
required inequality. For the optimality of the constant consider the family of func-
tions us(x) = E* 9n(z) where n € C§°(Q) and 1 = 1 in a neighborhood to zero.
For the second inequality, let n = 2 and u = E“v; we have similarly as above

2
VU PE™ + o(VE, Vo) B!

a27R
|| <ln —)
||
and we get
2
/|Vu|2E2ﬁdac =a? / u72
Q Q 22 (1

Ezﬁdx+/|Vvl|2<ln E) da
R Q ||
|

—a/ @.0) 2 (3.11)
4]

IVl =

|
o |zf?
Using an identity (3.4), we have the required inequality. From this, it follows that
the best constants are never achieved in Dl ‘0- For the optimality of the constant,

consider the family of functions us(z) = E*~%n where n € C5°(2) and p = 1 in a
neighborhood to zero. O

Lemma 3.3. (a) Let n = 4m and B C R™ be the unit ball centered at zero then
for all w € H3™(B)(Wn"*(B))

2 \V4 2
/ |Amu|2dx > _Cm 1 | u|
B

4 2,4m—2 de (312)



Generalized Hardy—Rellich Inequalities 377
where
1 m—2 2
-1 . .
072"?4171—2 = [22771—2 H (47» + 2)(8m — 4'L — 6)‘|
=0
and equality holds iff u = 0.

(b) Let n = 4m + 2 and B C R™ be the unit ball centered at zero then for all
ue B3 (B)(WE7 1 (B))

2 2
/B|VAmu|2da: > %62,%/8 %daz (3.13)

where

m—1

1 . .

€2 4m = [W H (Am — 41 — 2)(4m + 4i + 2)
i=0

and equality holds iff u = 0.
(¢) Let 1 < p < n and B C R™ be the unit ball centered at zero then for all
ue WyP(B) and u € W2P(B) N W, P (B),

P(p — 1)P P
/ |AuPdx > np—1) [Vl dx (3.14)
B

pP B |zl?

and equality holds iff u = 0. Hence in particular (3.14) holds for the case p = 5.

Proof. (a) From [3, Lemma 3.1], we have [, [Aw|?* > n fB . Hence we have

I

Am,—l 2
/|Amu|2dx:/ |A(Am_1u)|2dx2n—/ udm
B B 4 Jp ||

Thus we have from (1.9)

/ |Amu| dx > 02 4m 2 5 de

where
1 m—2 2
B = l?m—z [T @i+ 2)8m—4i - 6)] .
=0

(b) When n = 4m + 2, applying the above inequality for each component of Vu,
using (1.10) and summing to obtain

2,12
/ VAT ul? :/ APV > egam [ D :i dx
B B B |zl
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where

922m

m—1
1
€2,4m = l— H (4m — 4i — 2)(4m + 4i + 2)
i=0

Let 2a(n —2) = (n—4m) and applying the weighted Hardy—Sobolev inequality
(3.7) to v = Vu € H"?'(B), then the above inequality yields

2(n — 4m)? |Vul? n? |Vul?
V(A™ 2d>n(n7 m/—d:_ m/—d
Jrverpdr > S e, [ e = e [ s
For the case p € (1,n). Let u € W2P(B) N W&’f(B). Since CZ(B) N C§ ,.(B) is
dense in u € W2P(B) N Wol”f,’(B) it is enough to prove the inequality for the
case u E 02(_) N Cj.,(B). Let Au < 0. Then by Hopf’s lemma u, < 0. Let
v =77 u,. Then v(0) = 0. Then

n—7p) u U
( pL_+

Upyr = —
P r v
p—1 n-p
Au:g——kr P,
P r
A :Tl(p 1)% 14 P r ";prvr
P r n(p—1) Uy

pp rpP

P(p— 1)P |u.|P -
|Au|P > n(p — 1) Jur? {1 +p7( Py Pp}.
n\p

Hence we have,

P 1)P 4P p—1
|AulP > n’(p — ) Uy oy ( p ) olvlP 2ot
pP n(p—1)

Since pfol v|v|P~2v,dr = f01(|v|p)rdr = |v(1)|P — |v(0)[? = |u(1)[?, hence

P(p—1)P P
/ |AuPdx > nlp—1) [Vul dzx.
B pP ||

This proves the lemma. O

We also prove an weighted Hardy-Rellich inequality, in order to stress the

fact how the fundamental solution plays a key role in deriving this inequality. It
should be noted that Lemma 3.4 is not required in the course of proof of the main
theorems.
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Lemma 3.4. Let n > 5 and Q) be a bounded domain with smooth boundary and

0€ Q. If R > e* Vsupyg|z|, then there exist constants \y = A1 (2, R) < 0 and
A2 = A2(Q, R) < 0 such that Y u € D%%(Q), we have

2
/ |Au? B2 dx > <a2(n —4)% + éﬁ(n —0— 2)) WEl 2oy
Q

1 ) ~ 1
1(204( 4) —|—9(n—9—2))/ 27]%

2
@l i=1 (1n(j) _)
@]
u? ou\ >
—_pi—2e )\/ 2 )\/ — 3.15
><|33|4 ! +1mu+2m v ( )

where By = |n —3— and 0 = (n—4)(1 — 2a) + 2. The constant (a*(n —4)* + 16(n
0—2))? (the coefficient of [, \Z\4E11 2% dx) is the best constant and is never achieved

by any nontrivial function u € Di%(Q)

Proof. Let u = E{v. Then v(0) = 0 and we have for n > 5

[Vul? o5 2 o [ul? 2 Vo2 a(ats)
EE R P N P
—a(n—4) <W, Vo? > Ef(oH'ﬁ)_l
Choosing a+ 0 = 5 and integrating we have
\V4 2 2 \V4 2
| u2| B2 = o?(n —4)? |u|4Efﬁ | :lQ —a(n — 4)/ _(a:,z) v,
o |zl alzl alzl oo |7l

(3.16)
Choosing 6 = 2(n — 4)5 + 2, (3.16) reduces to
Vul> 2/ |u[? / [Vo|? (z,v) 5
=a’(n—4) + —a(n—4)/ v, (3.17)
o lz/° olzlft2 - Jolz|n2 o |z

Now integrating by parts

|Vul? /uAu_g(n_e_Q)/ |u|? +/ L@+Q/ u?(x - v)
Q |$|0 - |$|9 2 Q|33|9+2 LY) |$|0 o 2 Jon |33|9+1 .

(3.18)
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Substituting the value of (3.17) in (3 18) we have

ulAu 9 |Vol|?
uau 9
o a7 {“( i }/ ERERIAr =

u Ou / (x,v) o 9/ u?(z,v)
— —— —a(n—4 v — = .
Jamra o= [ T =5 L, T

Applying Cauchy—Schwarz’s inequality we have

L f A e [ [, /
2z c > 9
2 Joler2 t2 e 2\ g [2]7P?

N @_/ _u Ou
o

qlz|n=2 q |z|? ov

x,v) 4 0 u?{x, v
—oz(n—4)/a < >v ——/89 |x<|9+1>' (3.19)

o |z 2

Choosing £ = a?(n — 4)? + £(n — 6 — 2) we have

9
2
[Auf® /
2)
|x|9 2 = —0- |]0+2

U2
+(2a2(n—4)2+0(n—9—2>)/9|§%

ou\ 2
+A/zﬂ+A (—). 3.20
! Jaa ? Joo \ v (3.20)

Using (3.3), we have the required inequality. It follows clearly from this inequality
the best constant is never achieved for u € Di%(Q) For the optimality of the
constant consider the family of functions us(z) = E®~°n where n € C3°(2) and
n =1 in a neighborhood to zero. O

4. Proof of the Main Theorems
n—2
Proof of Theorem 2.1. First we prove for u € WOQTP(B) Let u = (In m)Tv.

Then v(0) = 0. Then
T n Vv R
|— — — | | In —
x| n ||

—92\P p
|VulP = (” ) |ul .
n R
|x|P (111 —)
||
For the case p > 2, we have from (3.1),

n—2\" |u|P n Vo R
P> 1— YON (2
o (50) o) ) ()
|zP In —
||
+a n Y 2 *[Vol* 1n£ 2—|—a n Y Vo 1n£ ’
"\n =2 v2 || \n—2 VP || '

P
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Thus we have

VulP —2\? P —2\"!
|Vl > n |ul S —p n xz ,Vv>|v|p_2v
|x|P n |a:|2p( R) n ||?P

In —

||

don (n—2\"7? |V |? R [Vo|P R\"!
+— — In— | + as In — .
p n || || jz[p |l

Hence we have
P p—1
[VulP > n—2 |u|P _(n-=2 x L
|z [P n R\" n ER
|z]?P{ In —
||

| day (n—2>” Vb | (1 R) A (1 )”1
N oy ——— n— .
P\ n e N |[? ||

Since v(0) = v|so = 0 and hence integral of the second term vanishes. Therefore
integrating (4.1) and choosing v% = w;, we have

|VulP - (n—2)p/ [ul? n Zkﬂ(n—2)pz |V, |2 (1115)
B lzP —\ n B |x|2p<ln£ Pop? n B lz[*? ||
||
|W|P< R )”‘1
+a / In — 4.2
Jo o "o 2

which implies that
p —2\7? P 2
[Vl (n ) / W e |Vwi|2 (m 5) .
B |zl n B2 R B |z ||
|]?P( In —
||
Using (3.4) on the second term in the above inequality, we obtain

YulP —92\? P
||?|il dx2<n ) L
]

—

4.1)

+C/ M(“p in - de.  (43)

|> 1(1“)|f|)2
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Hence combining (4.3) and (3.14) and noting the fact that (In %) > 1, we have

p _1)2p P
[y —
lapr (1 )

In —
|z|

|uf? 1
o | |
|x|2p (hl ) (1 (7) )
||
Hence from the inequality it is clear that the w is not achieved, otherwise the
remainder term is zero, which will imply that «w = 0, a contradiction. Later on, we
2P (p—1)*
pP
and (2.2) hold for all u € WOQ,’f(B). Note that we are only using the fact that uw =0
on OB and hence the above inequalities are true for the case u € Wf’p(B)ﬁW&’rp(B).

Also note that for the case 1 < p < 2, we cannot obtaln the remainder term as
2P (p— 1)

prove that in fact is the best constant. This proves the inequalities (2.1)

in (2.1) but by using (3.2), we can show that the constant is not achieved.

Next we prove this for the non-radial case by using the ideas in [16] (see [11]). Let
|Q| = |B|. First we may restrict ourselves to = B and a radial function . Define
f=-Au.
—Aw = |f|* inB
4.4
{w =0 on 0B (44)

where f* denotes the Schwarz symmetrization of f. Then w € W2P(B)N W&’f(B).
By [17], we have w > |u|* > 0. Hence

/|Aw|pdx—/ (71" pdx—/|f|pdx—/|Au|pdx

B || 2P (111 m) B ||2P (hl |x|) Q|x|2p (111 m)
Similarly we get
/ Jw]? - 1 "
P 2
B zp2r (1n 5) j=2 <1n(1) E)
|| ||
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Hence the inequalities (2.1), (2.2) holds for all u € W2P(Q) N W, P(Q) and u €
WP ().

Now we prove the sharpness of the previous inequality, i.e. we show the existence
of a family of radial functions 5 such that

Let B(1) C Q and ¢ € C5°(£2) be radial such that

e mB@
0 on Q\B(1).

p=l_5

Define ¢s5(z) = (In &) 7 “o()

||

p_l_§ p—1_
R\ »® R\ » R\ »
Atps(z) = (hl m) Atp—FA(ln m) cp—|—2<V<ln m) ,V<p> .
Then we have
R\% °
Aln—
/sz/’é'p /Q ( le) N o)

/ |s|P / s|? / s |P

P P

Q|a:|2p (hl 5) Q|x|2p (111 %) @
x

P
20 (m 5)
|| ||
p—1

p—1_ _ptl_§
A 1n£ ——i ]Ll—a 14—5 1n§
|| r?\ p p r
o 5

p

Now we have

Putting n = 2p, we have

p=1_g5s _p+l_
(o)) o
|| 2\ p p r
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Hence we have

p—l_§
A(ln E)
||

Also note that

Taking limit as 6 — 0 in (4.5) and noting that
P
lim |vs]

=
550 2 g0 <1n %)
X

we have
p
T
lim = .
6—0 / [¥s]” PP
R P
2z (m _)
||
Hence w is the best constant in (2.1) and it is never achieved in any bounded
domain. O

Proof of Theorem 2.2. As in Theorem 2.1, it is enough to prove it for the radial
superharmonic functions when Q@ = B as in (4.4) we have ||u||Wz 1g) = Hw||W2 1(B)-
Letting 2a(n —2) =4 —n in (3.7) for n > 5, we obtain

|Vul? (n — /
—dx >
B |z? |93|4
and hence we have

200 A)\2 2 2 2
B 16 B |7 B 4 Jp |zl
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m\»—A

Let n = 4. Define v = (ln |m|)

Tt L) [
B lz[? 4 B|x|4< R>2 2 Jp \ |zt B |z? ||

u, then v(0) =0

In —
||

1 u?
i) R
b ||+ <ln —)
||

since le(—l) = Cdp and v(0) = 0. Hence we have
2 2
/|AU|2—/U727/|A 2 - [Vul®
B B R B B =P
||+ <ln —)
||

We have from [3, Lemma 3.1}, and for n > 4, for u radial

2 2
4 B el T Jp far?

where u, = r‘nTQv. Let v = (In %)%w. Then from (3.3) we have

2 2 2
/|A |2_n_/ |Vu2| _1/ %darz |Vw_|2 (lnﬂ) dr.
E 4Bm% R) 5 22\ al

In —
||

PR
Let u, = (In &) 2p=""w, then

‘w‘
( _)
|Z‘|

|U7«r| =0 Twr + — = W

/;\
=
= |
~_
(ST N
/;\
—— =
| F 5|
~— wl=
[V
=

[ty ]? = O

Therefore,

N

%
on | Voo e =0 [ STl [ A
0 B B || =

(n—2)q
||

385

(4.6)
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In order to estimate the right-hand side of (4.8), we need some estimates. Let
w € C3®(B) and k >0, o > 0. Then

/ BA / wo(nh)

|[* n ||

(x, Vw) (hl %) i (111 %)
__2/ r |w|q72w+_/ AN LIV
nJp nJp

|| ||

jw]?.

()
In —
+9/¢
" B|x|k<ln%)
x

Let £ <n and Ry > 0 such that

| — N —
TN TN
— —
| |
| o | 7
N~ ——
UJ\ UJ\
~/ TN
S =
Flw HE|
~— ~—
R R
S
= =
I AN
|
T
<
£
/?
=
~_
Q
=
L

X

[Vw|? <ln£>
/ |z
B

s

This implies that there exist a C = C'(k,n,«) > 0 such that

R

/BM|W|Q<C /BM ) (4.9)

Edl Eda
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Choose k = %! and so 1 < ¢ < 2 as k < n. Thus from (4.8) and (4.9) we have for
= %7 R 2 RO

q
R\?2
1 |Vw|q (hl ﬂ)
wn/ |U7~r|q7"n71d’f’ S C / —x
0 B

(n—2)q
|| ™=

Hence applying Hélder’s inequality we have

q
R 3
1 |Vw|2 (hl ﬂ)
wn/ [ty |2 L < C / B N L VAP S
0 B

|x|n—2

This implies

/|Au|qda:§0 /—xdx .
B B

|x|n72

Combining this with (4.7) completes the proof. O

Remark 4.1. It seems that the inequalities (2.3) and (2.4) can be improved by
adding a series of terms on the left-hand side, that is partially visible in (4.7). We
will discuss this in a forthcoming paper.

1
Proof of Theorem 2.3. (a) Let u = (ln%) *v. Then we have v(0) = 0 and for
the case n = 4m,

2 1 2 2
LI T . A PR
B |7 4 /B |x|4m<1n£ B |7 ||
||

and using (3.4) on the second term of the above equality we obtain,

Juf?

v 2 1 2
%dxz —/ [ dx—l—C/ 5 4mdx
e 1 " B
fofir (I In
Iafl

(4.11)

and applying (3.12), we have the required inequality.
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(b) For the case n = 4m + 2, we have

2 2 2
||v|—i|ndx:i/ [ 2dx+/ ||V|i|n (1 | |>dx (4.12)
B |T B |x|4m+2< R) T T

In —
||

and using (3.4) on the second term of the above equality we obtain

In

[Vu/? 1/ |ul? / Jul?
T —gdr > — | ————dx +C dx
4Am—2 - 2 Am—+2
B|x| 4 | |4m<1 ) ( ) R) |$|
||

(4.13)

using (3.13), we have the required inequality.
For the sharpness of the inequalities, consider a family of radial functions

C4m 5
H?; (n—214)
<1n E) ' © if n =4m,

r

/lpé(lr) = C4m+42
R\ T, o=z 0
(hl—) p ifn=4m+2

where ¢ € C5°(B) be radial such that

b ing@
0 on B\B(3/4)

§ >0 and c3,,, ¢},,,o denotes the coefficients of

2
[
B |x|4m, ( R)

In —
||
and
2
[
B R
|| 4m+2 <ln —)
||
in (2.5) and (2.6) respectively. We skip the slightly tedious details. O

Before proving Theorem 2.4, we look into the various difficulties associated with
the biharmonic operator.

e Here we deal with the second order Sobolev space H2(2). Unlike in H!(Q2), H*(Q)
does not satisfy the property that “u € H?(2) implies |u| € H?(2)”. This is a
serious block to get a priori estimates.

e There is no maximum principle.
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Let us recall some known results for biharmonic operator:

Boggio’s Principle. Consider the biharmonic equation

A?u=f inB

u=0 on OB
(£) )

U

%—O onaB

where B = {z € R" : || < 1} and v is the outer normal at the boundary of B. Then
Boggio’s principle [6] states that the Green function associated to the biharmonic
problem with zero Dirichlet data in a ball is strictly positive. Hence if f > 0 a.e.
then w > 0 in B. For the weak Boggio’s principle see [4].

Note that when we are in the case €2, a smooth bounded domain

Au=f in O
(G){u:Auzo on 0f)

there is a natural weak maximum principle.

Lemma 4.2. If f € F then there exist \(f) > 0 such that

/Q|Au|2dx > /Qu722da:+/\(f)/ﬂu2f(a:)da: (4.14)

|a:|4(1n 5)
||

for allw € HZ(Q),u € H*(Q) N HL(Q).
Proof. Let f € F, then we have

2 2
lim sup |x|4f(x)<ln%> <lnln£) < 00
x

6—>0r€Bg(0) |$|

and hence for sufficiently small £ > 0, there exist a C' > 0 such that f € B.(0)

C
flz) <
() N2 e
|z In — Inln —
|| ||
and otherwise f is bounded. Hence the inequality (4.14) holds. O
Lemma 4.3. Consider the problem
A%y — u% =Af(x)u inB
R
oi(n )
|| (4.15)
u#0 in B

u € H3(B)

where B is the unit ball centered at origin. If (4.15) admits a solution u for some
A= )\lll(f), then u does not change sign in B.
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Proof. We prove this lemma for the sake of completeness. A similar version of this
lemma can be seen in [3, 10]. Note that proving existence of positive solutions is
quite hard in the sense that u*,u~ ¢ HZ(B), which played a crucial role in second
order equations. Suppose u € Hg(B) solves the above problem with A = A}, (f) and
u changes sign. Define

K:={ve H(B):v>0a.e.}.
Let a(u,v) = (u,v)pzp) = Jp Aulv. Yu,v € HF(B). Note that K is a closed
convex cone. Hence, by [13], there exists a projection P : H3(B) — K such that
for all u € H3(B), Vw € K
a(u — P(u),w — P(u)) <0. (4.16)
Since K is a cone we can replace w by tw for ¢ > 0 and letting ¢ — oo to obtain

a(u — P(u),w) < lim %a(u — P(u), P(u))

t—o0
which implies that A?(u — P(u)) < 0 and by weak Boggio’s Principle [4]
u— P(u) <0.
Now replacing w by tP(u) for ¢ > 0 in (4.17) we have
(t —Da(u — P(u), P(u)) <0
and hence a(u — P(u), P(u)) = 0.
Hence we can write u = uy + ug, u1 = P(u) € K, us = u — P(u), u1 L uy and
ug < 0. Since u changes sign we have that u; #Z 0 and uy # 0 . Therefore we have,
_ 1ouy)?
/|AU1—U,2 —,LL/ (U'l u2 /|AU1+U2)| _lu/(uliu%
R R
lﬁl-— |z[*{ n —
o) o

/B F(@)(ur — ug)? / F(@) s + )’

B

which contradicts the definition of the first eigenvalue. Then u does not change sign
and noting that the Green function is strictly positive we have either u > 0 or u < 0
in B. O

Similarly as above, we have:

Lemma 4.4. Consider the problem

A%L—u* =Af(z)u inQ

2
] (m 5)
|| (4.17)
u#£0 in Q
we H2(Q) N HE(Q)

where 0 € Q. If (4.17) admits a solution u for some A\ = \.,(f), then u does not
change sign in €.
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Lemma 4.5. For f € F, X is compactly embedded in L*(S, f), where X =
HZ(Q) or HX(Q) N H ().

Proof. Let {u,}o_; be a bounded sequence in X. Hence along a subse-

quence u,;, — u (say) in X. Due to the Hardy-Rellich inequality w,, — w in

L?(Q, W) and due to the fact that X «— L2?(Q) is compact u,, — u in
T n oo

L?(Q). Since we have f € F, for any £ > 0, there exist § > 0 such that
R\ 2
sup |z|* (ln —) flx)<e (4.18)
Bs |x|
and f is bounded on Q\Bs.
[lun=uls@ = [ Jum—aPs@+ [ Jun - P o)
Q Bs Q\ Bjs

Thus, we have from (4.18)
]2
/|um—u|2f(a:) SE/ M—FC/WWL—UQ.
Q Bs R Q
|z|*( In —
||
By Hardy-Rellich inequality we have
/|um—u|2f(x) §C£/|Aum—Au|2—|—C’/|um—u2. (4.19)
Q Q Q

Hence from (4.19) we have wu,, — u in L?(Q, f). O

Proof of Theorem 2.4. We look for critical points of the functional

Tu(u) = %/Q(Au)zda: _ %/Ld%

2
@ |a:|4(1n 5)
||

which is continuous, Gateaux differentiable and coercive on X due to Hardy—Rellich
inequality. We minimize this functional on M = {u € X : [o|u|*fdx = 1}. Let A}, =
infyearJy(u). Then clearly )\,ﬂ > (0. Choosing a minimizing sequence {u,,} C M
with J,,(um) — A, and the component of D.J,(uy,) restricted to M, tends to 0
strongly in X*. Since p < 1, J,, is coercive which implies u,, is bounded. Hence
there exist a subsequence of u,, such that

Uy, — u weakly in X

1

T 5N2
[ (m 5)
||

Um — u  strongly in L%(Q).

Uy — u  weakly in L? | Q,
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Since X is compactly embedded in L?(€2, f(z)) and M is weakly closed implies that

u € M. Hence
/|Aum|2 :/|A(um —u)|2+/|Au|2+0(1)
Q Q Q

2 2 2
Q R\’ Q R\’ Q R\’
|| (ln—) || (hl —) || (hl —)
] || ||

Hence we have

AL = Au |2 — |tm|? 1
p= [ 1Aum|" —p 5 +o(l)
Q Q ( R)
—ul? 2
= [180n = [ A2 i [ o),
Q Q R Q Q R
|z]*( In ||*( In

Hence we have

AL > (1 m/QA(umum/QAu?u/wam
|z]*( In —

N2 (1= ) [ 1A~ ) + 3 +of0).

Since i < 1 we have u,, — u strongly in X. Hence we have u is a nontrivial solution
to the problems (2.7), (2.8) corresponding to A = A}, (f).
Moreover, if f € F, then by Lemma 4.2 we have,

ML) = A(H) = inf
ueX\{0} 2
/Q W f ()

In order to prove that Ai( f) is simple when Q = B, we proceed in a contrapositive
way. Suppose if 41 and ugz be two orthogonal eigenfunctions of (2.7) in HZ(B) with
respect to Ai( f)- Multiplying the equation with u; by us and integrating by parts;
and noting the fact that (Auy, Aug)r2(py = 0 and f > 0 a.e., we have

M/Bx4€1UQR)2 :)\i(f)/Bfuluz

In —

||
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which implies a contradiction, as u; and uy do not change sign in B by Lemma 4.3.
Hence w; and wus are not linearly independent which implies that they are
collinear. O

Remark 4.6. As a result of Theorem 2.2, we can study the eigenvalue problem
for the case n > 4, which is highly singular and non-compact type of the form

Lu=MXu inQ
with zero Dirichlet or Navier boundary conditions; where

2 _4)2 U
Az AT w e
u 6 |x|4 iftn>5

A——2 =4 (4.20)

2
|| <ln E)
||

One can easily define the eigenvalues {A;} in the form of Rayleigh quotients and
show that A\, — oo as k& — oo.
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