

**GENERALIZED HARDY–RELLICH INEQUALITIES
 IN CRITICAL DIMENSION
 AND ITS APPLICATIONS**

ADIMURTHI

*TIFR Center for Applicable Mathematics
 Yehlanka Newtown, Bangalore, 560 064, India
 aditi@math.tifrbng.res.in*

SANJIBAN SANTRA

*Department of Mathematics, The Chinese University of Hong Kong
 Shatin, Hong Kong
 ssantra@math.cuhk.edu.hk*

Received 25 July 2006

Revised 7 May 2008

In this paper, we study the Hardy–Rellich inequalities for polyharmonic operators in the critical dimension and an analogue in the p -biharmonic case. We also develop some optimal weighted Hardy–Sobolev inequalities in the general case and discuss the related eigenvalue problem. We also prove $W^{2,q}(\Omega)$ estimates in the biharmonic case.

Keywords: Hardy inequalities; biharmonic operator; $W^{2,q}(\Omega)$ estimates.

Mathematics Subject Classification 2000: 35J35, 35J40

1. Introduction

Inequalities involving integrals of a function and its derivatives appear frequently in various branches of mathematics and represent a useful tool, e.g., in the theory and practice of differential equations, in the theory of approximation etc. Let $\Omega \subset \mathbb{R}^n$ be a smooth bounded domain and $0 \in \Omega$. Let us recall that the Hardy–Rellich inequality states that for all $u \in H_0^2(\Omega)$

$$\int_{\Omega} |\Delta u|^2 - \frac{n^2(n-4)^2}{16} \int_{\Omega} \frac{u^2}{|x|^4} \geq 0, \quad n \geq 5 \quad (1.1)$$

where $\frac{n^2(n-4)^2}{16}$ is the best constant in (1.1) and it is never achieved in any domain $\Omega \subset \mathbb{R}^n$. This inequality was first proved by Rellich [15] for $u \in H_0^2(\Omega)$ and it was extended to functions in $H^2(\Omega) \cap H_0^1(\Omega)$ by Dold *et al.* in [9].

The main questions related to this inequality are many folds and are as follows:

- (i) extend the inequality (1.1) in all dimensions,
- (ii) replace “2” by “ p ”,
- (iii) extend this to polyharmonic case.

In this direction, Davis and Hinz [8] generalized (1.1) and showed that for any $p \in (1, \frac{n}{2})$, there holds

$$\int_{\Omega} |\Delta u|^p - \left(\frac{n(p-1)(n-2p)}{p^2} \right)^p \int_{\Omega} \frac{|u|^p}{|x|^{2p}} \geq 0, \quad u \in C_0^{\infty}(\Omega \setminus \{0\}). \quad (1.2)$$

In [12], the inequality (1.2) was proved for all $u \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$ for $1 < p < \frac{n}{2}$. Also it was extended these inequalities to the polyharmonic case with weights and is as follows. Let $0 < k < \frac{n}{2}$ be an integer and $u \in W_0^{k,2}(\Omega)$. Then if $k = 2m$

$$\int_{\Omega} (\Delta^m u)^2 dx \geq \left(\prod_{l=1}^{2m} \frac{(n+4m-4l)^2}{4} \right) \int_{\Omega} \frac{u^2}{|x|^{4m}} dx. \quad (1.3)$$

If $k = 2m+1$, then

$$\int_{\Omega} |\nabla \Delta^m u|^2 dx \geq \left(\prod_{l=1}^{2m+1} \frac{(n+4m+2-4l)^2}{4} \right) \int_{\Omega} \frac{u^2}{|x|^{4m+2}} dx. \quad (1.4)$$

Let $\theta \in \mathbb{R}, p > 1, k \geq 1, n > s > 2(1 + p(k-1))$ and $n > \theta + 2$, define

$$d_{p,\theta} = \frac{(n-2-\theta)[(p-1)(n-2)+\theta]}{p^2} \quad (1.5)$$

$$c_{p,s}^k = \left[\frac{1}{p^{2k}} \prod_{i=0}^{k-1} (n+2pi-s)(n(p-1)-2p(i+1)+s) \right]^p \quad (1.6)$$

then for all $u \in C_0^{\infty}(\Omega)$

$$\int_{\Omega} \frac{|\Delta u|^p}{|x|^{\theta+2-2p}} dx \geq d_{p,\theta}^p \int_{\Omega} \frac{|u|^p}{|x|^{\theta+2}} dx \quad (1.7)$$

$$\int_{\Omega} \frac{|\nabla(\Delta u)|^p}{|x|^{\theta+2-3p}} dx \geq d_{p,\theta}^p \left(\frac{n-(\theta+2-2p)}{p} \right)^p \int_{\Omega} \frac{|u|^p}{|x|^{\theta+2}} dx \quad (1.8)$$

$$\int_{\Omega} \frac{|(\Delta^k u)|^p}{|x|^{s-2pk}} dx \geq c_{p,s}^k \int_{\Omega} \frac{|u|^p}{|x|^s} dx. \quad (1.9)$$

Also, he proved that if $n > 2kp$, then

$$\int_{\Omega} |(\Delta^k u)|^p dx \geq e_{p,k} \int_{\Omega} \frac{|u|^p}{|x|^{2pk}} dx \quad (1.10)$$

where

$$e_{p,k} = \left[\frac{1}{p^{2k}} \prod_{i=0}^{k-1} (n-2p(i+1))(n(p-1)+2pi) \right]^p.$$

It is to be noted that all the constants appearing in the above inequalities are sharp.

Another important Hardy–Rellich type inequality is when the entire boundary is considered as the singularity. Let $d(x) = d(x, \partial\Omega)$ denotes the distance function to the boundary $\partial\Omega$ of Ω . For $t \in (0, 1]$, define for $i \geq 2$,

$$\begin{aligned} X_1(t) &= (1 - \ln t)^{-1} \\ X_i(t) &= X_1(X_{i-1}(t)). \end{aligned}$$

For a convex domain Ω , it has been shown in [14] that for all $u \in C_0^\infty(\Omega)$,

$$\int_{\Omega} |\Delta u|^2 \geq \frac{9}{16} \int_{\Omega} \frac{u^2}{d(x)^4}, \quad u \in C_0^\infty(\Omega). \quad (1.11)$$

This inequality has been improved in [5]. It has been shown that there exist a $D_0 > \sup_{x \in \Omega} d(x)$ such that for all $u \in C_0^\infty(\Omega)$ with $X_j = X_j(\frac{d(x)}{D})$, there holds

$$\int_{\Omega} |\Delta u|^2 \geq \frac{1}{4} \int_{\Omega} \frac{|\nabla u|^2}{d(x)^2} + \frac{1}{4} \sum_{i=1}^{\infty} \int_{\Omega} \frac{|\nabla u|^2}{d(x)^2} X_1^2 X_2^2 \cdots X_i^2, \quad (1.12)$$

$$\int_{\Omega} |\Delta u|^2 \geq \frac{9}{16} \int_{\Omega} \frac{|u|^2}{d(x)^4} + \frac{5}{8} \sum_{i=1}^{\infty} \int_{\Omega} \frac{|u|^2}{d(x)^4} X_1^2 X_2^2 \cdots X_i^2. \quad (1.13)$$

Now we come to the question (i), that is, what happens to [1] when $n = 4$? Surprisingly, it was shown in [3] that this inequality differs when compared to $n \geq 5$. Basically, the idea of the proof relies on the fundamental solution of Δ^2 which was used earlier in [1] to generalize Hardy–Sobolev inequality on Riemannian manifolds.

Motivated by [3], in this paper we discuss the description of Hardy–Rellich inequalities in the critical dimension. Furthermore, we prove the Vazquez and Zuazua [18] type of inequalities for the biharmonic case.

2. Main Theorems

Before stating the main theorems, we introduce the following definitions and notations. Let $e^0 = 1$, $e^{(1)} = e$, $e^{(k)} = e^{e^{(k-1)}}$ for $k \geq 1$. Let $a > 0$ and define,

$$\begin{aligned} \ln_{(1)} a &= \ln(a), \\ \ln_{(k)} a &= \ln \ln_{(k-1)}(a), \quad \text{for } k \geq 2, \\ \ln^{(k)}(a) &= \prod_{j=1}^k \ln_{(j)}(a), \quad \text{if } a > e^{(k-1)}, \\ W_r^{2m,2}(B) &= \{u \in W^{2m,2}(B) : u \text{ is radial}\}, \\ W_r^{2m+1,2}(B) &= \{u \in W^{2m+1,2}(B) : u \text{ is radial}\}. \end{aligned}$$

Recall that $W_0^{k,2}(\Omega)$ is equipped with the norm

$$\|u\|_{W_0^{k,2}(\Omega)} = \begin{cases} \int_{\Omega} (\Delta^m u)^2 dx; & k = 2m, \quad m \in \mathbb{N}, \\ \int_{\Omega} |\nabla \Delta^m u|^2 dx; & k = 2m + 1, \quad m \in \mathbb{N} \cup \{0\}. \end{cases}$$

We consider two situations: firstly, $W^{2,p}(\Omega)$ where $n = 2p$; and secondly, $W^{k,2}(\Omega)$ where $n = 2k$. Let B be the unit ball in \mathbb{R}^n .

Then we have the following main results.

Theorem 2.1. *Let $0 \in \Omega$ be a bounded domain in \mathbb{R}^n , $n = 2p$. Then there exist a constant $C > 0$ such that for any k , we can find a $R = R(k) > 0$ and for all $u \in W_0^{2,p}(\Omega)$*

$$\begin{aligned} & \int_{\Omega} |\Delta u|^p dx - \frac{2^p(p-1)^{2p}}{p^p} \int_{\Omega} \frac{|u|^p}{|x|^{2p} \left(\ln \frac{R}{|x|} \right)^p} dx \\ & \geq C \int_{\Omega} \left(\sum_{j=2}^k \frac{1}{\left(\ln^{(j)} \frac{R}{|x|} \right)^2} \right) \frac{|u|^p}{|x|^{2p} \left(\ln \frac{R}{|x|} \right)^p} dx \quad \text{if } p \geq 2, \end{aligned} \quad (2.1)$$

$$\int_{\Omega} |\Delta u|^p dx - \frac{2^p(p-1)^{2p}}{p^p} \int_{\Omega} \frac{|u|^p}{|x|^{2p} \left(\ln \frac{R}{|x|} \right)^p} dx \geq 0 \quad \text{if } 1 < p < 2. \quad (2.2)$$

The constant $-\frac{2^p(p-1)^{2p}}{p^p}$ (the coefficient of $\int_{\Omega} \frac{|u|^p}{|x|^{2p} \left(\ln \frac{R}{|x|} \right)^p} dx$) is the best constant and is never achieved by any nontrivial function $u \in W_0^{2,p}(\Omega)$.

Theorem 2.2. *Let $0 \in \Omega$ be a bounded domain in \mathbb{R}^n , $1 \leq q < 2$. Then there exist $R_0 > 0$ and $C_q > 0$ such that $\forall R \geq R_0$ and $\forall u \in H_0^2(\Omega)$,*

$$\int_{\Omega} |\Delta u|^2 - \frac{n^2(n-4)^2}{16} \int_{\Omega} \frac{u^2}{|x|^4} \geq C_q \|u\|_{W_0^{2,q}(\Omega)}^2 \quad \text{if } n \geq 5 \quad (2.3)$$

and

$$\int_{\Omega} |\Delta u|^2 - \int_{\Omega} \frac{u^2}{|x|^4 \left(\ln \frac{R}{|x|} \right)^2} \geq C_q \|u\|_{W_0^{2,q}(\Omega)}^2 \quad \text{if } n = 4. \quad (2.4)$$

Note that Theorem 2.2 is an extension of the Vazquez and Zuazua's inequality [18] in the case of a biharmonic operator and -1 (the coefficient of $\int_{\Omega} \frac{u^2}{|x|^4 \left(\ln \frac{R}{|x|} \right)^2}$) is the

best constant in the inequality (2.4) which follows from [3]. In fact, Theorem 2.2 implies that $H_0^2(\Omega) \hookrightarrow W_0^{2,q}(\Omega)$ is continuous.

Theorem 2.3. (a) *Let B be a unit ball centered at the origin in \mathbb{R}^n , $n = 4m$. Then for $m \geq 2$, there exist a constant $C > 0$ such that for any k , we can find a $R = R(k) > 0$ and for all $u \in H_{0,r}^{2m}(B)$*

$$\begin{aligned} & \int_B |\Delta^m u|^2 dx - \frac{n^2}{16} \left[\frac{1}{2^{2m-2}} \prod_{i=0}^{m-2} (4i+2)(8m-4i-6) \right]^2 \int_B \frac{|u|^2}{|x|^{4m} \left(\ln \frac{R}{|x|} \right)^2} dx \\ & \geq C \int_B \left(\sum_{j=2}^k \frac{1}{\left(\ln^{(j)} \frac{R}{|x|} \right)^2} \right) \frac{|u|^2}{|x|^{4m}} dx. \end{aligned} \quad (2.5)$$

The constant $-\frac{n^2}{16} \left[\frac{1}{2^{2m-2}} \prod_{i=0}^{m-2} (4i+2)(8m-4i-6) \right]^2$ (the coefficient of $\int_B \frac{|u|^2}{|x|^{4m} \left(\ln \frac{R}{|x|} \right)^2} dx$) is the best constant and is never achieved by any nontrivial function $u \in H_{0,r}^{2m}(B)$.

(b) *Let B be a unit ball centered at the origin in \mathbb{R}^n , $n = 4m+2$. Then there exist a constant $C > 0$ such that for any k , we can find a $R = R(k) > 0$ and for all $u \in H_{0,r}^{2m+1}(B)$*

$$\begin{aligned} & \int_B |\nabla \Delta^m u|^2 dx - \frac{n^2}{16} \left[\frac{1}{2^{2m}} \prod_{i=0}^{m-1} (4m-4i-2)(4m+4i+2) \right]^2 \\ & \quad \times \int_B \frac{|u|^2}{|x|^{4m+2} \left(\ln \frac{R}{|x|} \right)^2} dx \\ & \geq C \int_B \left(\sum_{j=2}^k \frac{1}{\left(\ln^{(j)} \frac{R}{|x|} \right)^2} \right) \frac{|u|^2}{|x|^{4m+2}} dx. \end{aligned} \quad (2.6)$$

The constant $-\frac{n^2}{16} \left[\frac{1}{2^{2m}} \prod_{i=0}^{m-1} (4m-4i-2)(4m+4i+2) \right]^2$ (the coefficient of $\int_B \frac{|u|^2}{|x|^{4m+2} \left(\ln \frac{R}{|x|} \right)^2} dx$) is the best constant and is never achieved by any nontrivial function $u \in H_{0,r}^{2m+1}(B)$.

Next, we study the eigenvalue problems associated with the perturbed Hardy-Rellich operator for the case $n = 4$, which is highly singular and non-compact.

Let $R > 0, \lambda > 0, 0 < \mu < 1, X = H_0^2(\Omega)$ or $H^2(\Omega) \cap H_0^1(\Omega)$ and define

$$\mathcal{F} = \left\{ f \in L_{\text{loc}}^{\infty}(\Omega \setminus \{0\}) : \lim_{|x| \rightarrow \infty} |x|^4 \left(\ln \frac{R}{|x|} \right)^2 f(x) = 0 \right\}$$

$$F = \left\{ f \in L_{\text{loc}}^{\infty}(\Omega \setminus \{0\}) : \lim_{|x| \rightarrow \infty} |x|^4 \left(\ln \frac{R}{|x|} \right)^2 \left(\ln \left(\ln \frac{R}{|x|} \right) \right)^2 f(x) < \infty \right\}.$$

For $f \in \mathcal{F} \cup F$, we look for a weak solution next of the following eigenvalue problems and study the asymptotic behavior of the first eigenvalue as $\mu \rightarrow 1$.

$$\begin{cases} L_{\mu}u = \lambda f(x)u & \text{in } \Omega \\ u = \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial\Omega \end{cases} \quad (2.7)$$

$$\begin{cases} L_{\mu}u = \lambda f(x)u & \text{in } \Omega \\ u = \Delta u = 0 & \text{on } \partial\Omega \end{cases} \quad (2.8)$$

where

$$L_{\mu}u = \Delta^2 u - \mu \frac{u}{|x|^4 \left(\ln \frac{R}{|x|} \right)^2}. \quad (2.9)$$

Theorem 2.4. *The problem (2.7) and (2.8) admits a nontrivial weak solution $u \in X$, corresponding to the first eigenvalue $\lambda_{\mu}^1(f) = \lambda > 0$. Moreover, as $\mu \rightarrow 1$, $\lambda_{\mu}^1(f) \rightarrow \lambda(f) \geq 0$ for all $f \in \mathcal{F}$ and the limit $\lambda(f) > 0$ if $f \in F$. Moreover, if $\Omega = B$, in problem (2.7), then the first eigenfunction is positive and the first eigenvalue is simple. If $u \in H^2(\Omega) \cap H_0^1(\Omega)$, the first eigenfunction is positive and the first eigenvalue is positive.*

3. Preliminary Lemmas

In this section, we briefly discuss the Hardy–Sobolev inequalities with weights, which will be required to prove the main theorems. First we introduce the following notations. Let $k \geq 1$ be an integer and $R > e^{(k-1)} \sup_{\partial\Omega} |x|$. Let

$$E(x) = \begin{cases} \frac{1}{|x|^{n-2}} & \text{if } n \geq 3 \\ \ln \left(\frac{R}{|x|} \right) & \text{if } n = 2, \end{cases}$$

$$E_1(x) = \begin{cases} \frac{1}{|x|^{n-4}} & \text{if } n \geq 5 \\ \ln \left(\frac{R}{|x|} \right) & \text{if } n = 4. \end{cases}$$

Let $\alpha \in \mathbb{R}$ and $m \geq 0$ be a measurable function. Let $2^* = \frac{2n}{n-2}$ if $n \geq 3$, $2^\sharp = \frac{2n}{n-4}$ if $n \geq 5$ and define

$$\begin{aligned} L^p(\Omega, m) &= \left\{ u \text{ measurable; } \int_{\Omega} |u|^p m dx < \infty \right\} \\ \mathcal{D}_\alpha^{1,2}(\Omega) &= \{u \in L^{2^*}(\Omega); \nabla u \in L^2(\Omega, E^{1-2\alpha})\} \\ \mathcal{D}_\alpha^{2,2}(\Omega) &= \{u \in L^{2^*}(\Omega); \Delta u \in L^2(\Omega, E_1^{1-2\alpha})\} \\ \mathcal{D}_{\alpha,0}^{1,2}(\Omega) &= \{u \in \mathcal{D}_\alpha^{1,2}(\Omega) : u = 0 \text{ on } \partial\Omega\} \\ \mathcal{D}_{\alpha,0}^{2,2}(\Omega) &= \left\{ u \in \mathcal{D}_\alpha^{2,2}(\Omega) : u = \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial\Omega \right\}. \end{aligned}$$

Let us first recall the basic result which will be needed in the proof of the main theorems. Let $p \in (1, \infty)$ and $M > 1$. Then there exist constants $\alpha_1, \alpha_2 > 0$ such that for all $a, b \in \mathbb{R}^n$, $|a| = 1$ we have

$$|a + b|^p - 1 - p\langle a, b \rangle \geq \alpha_1|b|^2 + \alpha_2|b|^p \quad \text{if } p \geq 2 \quad (3.1)$$

$$|a + b|^p - 1 - p\langle a, b \rangle \geq \begin{cases} \alpha_1|b|^2 & \text{if } |b| \leq M \quad p \in (1, 2] \\ \alpha_2|b|^p & \text{if } |b| \geq M \quad p \in (1, 2). \end{cases} \quad (3.2)$$

If χ denotes the characteristic function, then the above formula can be written as

$$|a + b|^p - 1 - p\langle a, b \rangle \geq \alpha_1|b|^2 \chi_{\{|b| \leq M\}} + \alpha_2|b|^p \chi_{\{|b| \geq M\}}.$$

Furthermore if $p = 2$, then $\alpha_1 = \alpha_2 = \frac{1}{2}$ is the best choice in (3.1), (3.2). The following lemma will be used to obtain the remainder terms in Theorems 2.1 and 2.3.

Lemma 3.1. *Let $w_1 \in C^1(\overline{\Omega})$ and for $k \geq 2$, define the sequence $\{w_i\}_i$ by*

$$w_2 = \left(\ln \frac{R}{|x|} \right)^{-\frac{1}{2}} w_1, \dots, w_k = \left(\ln^{(k-1)} \frac{R}{|x|} \right)^{-\frac{1}{2}} w_{k-1}, \dots$$

then

$$\begin{aligned} \int_{\Omega} \frac{|\nabla w_1|^2}{|x|^{n-2}} &= \frac{1}{4} \int_{\Omega} \left(\sum_{j=1}^k \frac{1}{\left(\ln^{(j)} \frac{R}{|x|} \right)^2} \right) \frac{w_1^2}{|x|^n} - \frac{1}{2} \int_{\partial\Omega} \left(\sum_{j=1}^k \frac{\langle x, \nu \rangle}{\left(\ln^{(j)} \frac{R}{|x|} \right)} \right) \frac{w_1^2}{|x|^n} \\ &\quad + \int_{\Omega} \frac{|\nabla w_{k+1}|^2}{|x|^{n-2}} \left(\ln^{(k)} \frac{R}{|x|} \right) \end{aligned} \quad (3.3)$$

and

$$\begin{aligned}
\int_{\Omega} \frac{|\nabla w_2|^2}{|x|^{n-2}} \left(\ln \frac{R}{|x|} \right) &= \frac{1}{4} \int_{\Omega} \frac{w_2^2}{|x|^n} \left(\sum_{j=2}^k \frac{1}{\left(\ln^{(j)} \frac{R}{|x|} \right)^2} \right) \left(\ln \frac{R}{|x|} \right) \\
&\quad - \frac{1}{2} \int_{\partial\Omega} \frac{w_2^2}{|x|^n} \left(\sum_{j=2}^k \frac{\langle x, \nu \rangle}{\ln^{(j)} \frac{R}{|x|}} \right) \left(\ln \frac{R}{|x|} \right) \\
&\quad + \int_{\Omega} \frac{|\nabla w_{k+1}|^2}{|x|^{n-2}} \left(\ln^{(k)} \frac{R}{|x|} \right). \tag{3.4}
\end{aligned}$$

Proof. We prove (3.4). The proof of (3.3) follows similarly. From the identity $w_2 = (\ln_2 \frac{R}{|x|})^{\frac{1}{2}} w_3$ and taking the logarithmic derivative, we have,

$$\frac{\nabla w_2}{w_2} = -\frac{1}{2} \frac{x}{|x|^2 \left(\ln \frac{R}{|x|} \right) \left(\ln \left(\ln \frac{R}{|x|} \right) \right)} + \frac{\nabla w_3}{w_3}.$$

Hence we have

$$\begin{aligned}
\frac{|\nabla w_2|^2}{|x|^{n-2}} \left(\ln \frac{R}{|x|} \right) &= \frac{1}{4} \frac{w_2^2}{|x|^n \left(\ln \frac{R}{|x|} \right)^2 \left(\ln \left(\ln \frac{R}{|x|} \right) \right)^2} \left(\ln \frac{R}{|x|} \right) \\
&\quad + \frac{|\nabla w_3|^2}{|w_3|^2} \frac{1}{|x|^{n-2}} \left(\ln \frac{R}{|x|} \right) - \frac{1}{2} \left\langle \frac{x}{|x|^n}, \nabla w_3^2 \right\rangle. \tag{3.5}
\end{aligned}$$

Let $|S^{n-1}|$ denotes the volume of the unit sphere S^{n-1} in \mathbb{R}^n and δ_0 is the Dirac distribution at the origin. Then, by integrating (3.5) and using the fact that $\operatorname{div}(\frac{x}{|x|^n}) = |S^{n-1}| \delta_0$, we have

$$\begin{aligned}
\int_{\Omega} \frac{|\nabla w_2|^2}{|x|^{n-2}} \left(\ln \frac{R}{|x|} \right) &= \frac{1}{4} \int_{\Omega} \frac{w_2^2}{|x|^n \left(\ln^{(2)} \frac{R}{|x|} \right)^2} \left(\ln \frac{R}{|x|} \right) \\
&\quad + \int_{\Omega} \frac{|\nabla w_3|^2}{|w_3|^2} \frac{w_2^2}{|x|^{n-2}} \left(\ln \frac{R}{|x|} \right) dx - \frac{1}{2} \int_{\partial\Omega} \frac{\langle x, \nu \rangle}{|x|^n} w_3^2 \\
\int_{\Omega} \frac{|\nabla w_2|^2}{|x|^{n-2}} \left(\ln \frac{R}{|x|} \right) &= \frac{1}{4} \int_{\Omega} \frac{w_2^2}{|x|^n \left(\ln^{(2)} \frac{R}{|x|} \right)^2} \left(\ln \frac{R}{|x|} \right) \\
&\quad + \int_{\Omega} \frac{|\nabla w_3|^2}{|x|^{n-2}} \left(\ln^2 \frac{R}{|x|} \right) dx - \frac{1}{2} \int_{\partial\Omega} \frac{\langle x, \nu \rangle}{|x|^n} \frac{w_2^2}{\left(\ln^{(2)} \frac{R}{|x|} \right)} \left(\ln \frac{R}{|x|} \right).
\end{aligned}$$

Observing the fact that $\nabla(\ln_k \frac{R}{|x|}) = -\left(\frac{1}{\ln^{(k-1)} \frac{R}{|x|}}\right) \frac{x}{|x|^2}$ and $w_k = \left(\ln^{(k)} \frac{R}{|x|}\right)^{\frac{1}{2}} w_{k+1}$ we have,

$$\begin{aligned} \int_{\Omega} \frac{|\nabla w_k|^2}{|x|^{n-2}} \left(\ln^{(k-1)} \frac{R}{|x|} \right) &= \int_{\Omega} \frac{w_k^2}{|x|^n} \frac{1}{\left(\ln^{(k)} \frac{R}{|x|} \right)^2} \left(\ln \frac{R}{|x|} \right) \\ &\quad + \int_{\Omega} \frac{|\nabla w_{k+1}|^2}{|x|^{n-2}} \left(\ln^{(k)} \frac{R}{|x|} \right) - \frac{1}{2} \int_{\Omega} \left\langle \nabla w_{k+1}^2, \frac{x}{|x|^n} \right\rangle. \end{aligned} \quad (3.6)$$

Hence by induction the inequality (3.4) follows. \square

Lemma 3.2. *Let Ω be a bounded domain with smooth boundary and $0 \in \Omega$. If $R > e^{(k-1)} \sup_{\partial\Omega} |x|$, then there exist a constant $\lambda = \lambda(\Omega, R) < 0$ such that $\forall u \in \mathcal{D}_{\alpha}^{1,2}(\Omega)$ and $n \geq 3$ we have*

$$\begin{aligned} \int_{\Omega} E^{1-2\alpha} |\nabla u|^2 dx - \alpha^2 (n-2)^2 \int_{\Omega} \frac{u^2}{|x|^2} E^{1-2\alpha} dx \\ \geq \frac{1}{4} \int_{\Omega} \left(\sum_{i=1}^k \frac{1}{\left(\ln^{(j)} \frac{R}{|x|} \right)^2} \right) \frac{u^2}{|x|^2} E^{1-2\alpha} + \lambda \int_{\partial\Omega} u^2 \end{aligned} \quad (3.7)$$

and if $n = 2$

$$\begin{aligned} \int_{\Omega} E^{1-2\alpha} |\nabla u|^2 dx - \alpha^2 \int_{\Omega} \frac{u^2}{|x|^2 \left(\ln \frac{R}{|x|} \right)^2} E^{1-2\alpha} dx \\ \geq \frac{1}{4} \int_{\Omega} \left(\sum_{i=2}^k \frac{1}{\left(\ln^{(j)} \frac{R}{|x|} \right)^2} \right) \frac{u^2}{|x|^2} E^{1-2\alpha} + \lambda \int_{\partial\Omega} u^2. \end{aligned} \quad (3.8)$$

The constant $-\alpha^2(n-2)^2$ (the coefficient of $\int_{\Omega} \frac{u^2}{|x|^2} E^{1-2\alpha} dx$) is the best constant and is never achieved by any nontrivial function $u \in \mathcal{D}_{\alpha,0}^{1,2}(\Omega)$ in the case $n \geq 3$. Moreover, if $n = 2$, then $-\alpha^2$ (the coefficient of $\int_{\Omega} \frac{u^2}{|x|^2 (\ln \frac{R}{|x|})^2} E^{1-2\alpha} dx$) is the best constant and is never achieved by any nontrivial function $u \in \mathcal{D}_{\alpha,0}^{1,2}(\Omega)$.

Proof. Let $n \geq 3$. Let $u = E^{\alpha} v_1$. Then $v_1(0) = 0$ and

$$\frac{\nabla u}{u} = \alpha \frac{\nabla E}{E} + \frac{\nabla v_1}{v_1}.$$

This implies that

$$\frac{|\nabla u|^2}{u^2} = \alpha^2 \frac{|\nabla E|^2}{E^2} + \frac{|\nabla v_1|^2}{v_1^2} + 2\alpha \left\langle \frac{\nabla E}{E}, \frac{\nabla v_1}{v_1} \right\rangle.$$

Hence

$$|\nabla u|^2 = \alpha^2(n-2)^2 \frac{u^2}{|x|^2} + |\nabla v_1|^2 E^{2\alpha} + \alpha \langle \nabla E, \nabla v_1^2 \rangle E^{2\alpha-1}.$$

Thus

$$|\nabla u|^2 E^{2\beta} = \alpha^2(n-2)^2 \frac{u^2}{|x|^2} E^{2\beta} + |\nabla v_1|^2 E^{2(\alpha+\beta)} + \alpha \langle \nabla E, \nabla v_1^2 \rangle E^{2(\alpha+\beta)-1}. \quad (3.9)$$

Let $\alpha + \beta = \frac{1}{2}$. Since $v_1(0) = 0$ and E is a fundamental solution, integrating by parts, (3.9) yields

$$\begin{aligned} \int_{\Omega} |\nabla u|^2 E^{2\beta} dx &= \alpha^2(n-2)^2 \int_{\Omega} \frac{u^2}{|x|^2} E^{2\beta} dx + \int_{\Omega} \frac{|\nabla v_1|^2}{|x|^{n-2}} dx \\ &\quad - \alpha(n-2) \int_{\partial\Omega} \frac{\langle x, \nu \rangle}{|x|^{n-2}} v_1^2. \end{aligned} \quad (3.10)$$

Substituting $v_1 = w_1$ in (3.3) and estimating the boundary integral to obtain the required inequality. For the optimality of the constant consider the family of functions $u_{\delta}(x) = E^{\alpha-\delta} \eta(x)$ where $\eta \in C_0^{\infty}(\Omega)$ and $\eta = 1$ in a neighborhood to zero.

For the second inequality, let $n = 2$ and $u = E^{\alpha} v_1$ we have similarly as above

$$|\nabla u|^2 = \alpha^2 \frac{u^2}{|x|^2 \left(\ln \frac{R}{|x|} \right)^2} + |\nabla v_1|^2 E^{2\alpha} + \alpha \langle \nabla E, \nabla v_1^2 \rangle E^{2\alpha-1}$$

and we get

$$\begin{aligned} \int_{\Omega} |\nabla u|^2 E^{2\beta} dx &= \alpha^2 \int_{\Omega} \frac{u^2}{|x|^2 \left(\ln \frac{R}{|x|} \right)^2} E^{2\beta} dx + \int_{\Omega} |\nabla v_1|^2 \left(\ln \frac{R}{|x|} \right) dx \\ &\quad - \alpha \int_{\partial\Omega} \frac{\langle x, \nu \rangle}{|x|^2} v_1^2. \end{aligned} \quad (3.11)$$

Using an identity (3.4), we have the required inequality. From this, it follows that the best constants are never achieved in $\mathcal{D}_{\alpha,0}^{1,2}$. For the optimality of the constant, consider the family of functions $u_{\delta}(x) = E^{\alpha-\delta} \eta$ where $\eta \in C_0^{\infty}(\Omega)$ and $\eta = 1$ in a neighborhood to zero. \square

Lemma 3.3. (a) Let $n = 4m$ and $B \subset \mathbb{R}^n$ be the unit ball centered at zero then for all $u \in H_{0,r}^{2m}(B)(W_{0,r}^{2m,2}(B))$

$$\int_B |\Delta^m u|^2 dx \geq \frac{n^2}{4} c_{2,4m-2}^{m-1} \int_B \frac{|\nabla u|^2}{|x|^{4m-2}} dx \quad (3.12)$$

where

$$c_{2,4m-2}^{m-1} = \left[\frac{1}{2^{2m-2}} \prod_{i=0}^{m-2} (4i+2)(8m-4i-6) \right]^2$$

and equality holds iff $u \equiv 0$.

(b) Let $n = 4m + 2$ and $B \subset \mathbb{R}^n$ be the unit ball centered at zero then for all $u \in H_{0,r}^{2m+1}(B)(W_{0,r}^{2m+1,2}(B))$

$$\int_B |\nabla \Delta^m u|^2 dx \geq \frac{n^2}{4} e_{2,4m} \int_B \frac{|\nabla u|^2}{|x|^{4m}} dx \quad (3.13)$$

where

$$e_{2,4m} = \left[\frac{1}{2^{2m}} \prod_{i=0}^{m-1} (4m-4i-2)(4m+4i+2) \right]^2$$

and equality holds iff $u \equiv 0$.

(c) Let $1 < p < n$ and $B \subset \mathbb{R}^n$ be the unit ball centered at zero then for all $u \in W_{0,r}^{2,p}(B)$ and $u \in W_r^{2,p}(B) \cap W_{0,r}^{1,p}(B)$,

$$\int_B |\Delta u|^p dx \geq \frac{n^p(p-1)^p}{p^p} \int_B \frac{|\nabla u|^p}{|x|^p} dx \quad (3.14)$$

and equality holds iff $u \equiv 0$. Hence in particular (3.14) holds for the case $p = \frac{n}{2}$.

Proof. (a) From [3, Lemma 3.1], we have $\int_B |\Delta w|^2 \geq \frac{n^2}{4} \int_B \frac{|\nabla w|^2}{|x|^2}$. Hence we have

$$\begin{aligned} \int_B |\Delta^m u|^2 dx &= \int_B |\Delta(\Delta^{m-1} u)|^2 dx \geq \frac{n^2}{4} \int_B \frac{|\nabla \Delta^{m-1} u|^2}{|x|^2} dx \\ &= \frac{n^2}{4} \int_B \frac{|\Delta^{m-1} \nabla u|^2}{|x|^2} dx. \end{aligned}$$

Thus we have from (1.9)

$$\int_B |\Delta^m u|^2 dx \geq \frac{n^2}{4} c_{2,4m-2}^{m-1} \int_B \frac{|\nabla u|^2}{|x|^{4m-2}} dx$$

where

$$c_{2,4m-2}^{m-1} = \left[\frac{1}{2^{2m-2}} \prod_{i=0}^{m-2} (4i+2)(8m-4i-6) \right]^2.$$

(b) When $n = 4m + 2$, applying the above inequality for each component of ∇u , using (1.10) and summing to obtain

$$\int_B |\nabla \Delta^m u|^2 = \int_B |\Delta^m(\nabla u)|^2 \geq e_{2,4m} \int_B \frac{|\nabla^2 u|^2}{|x|^{4m}} dx$$

where

$$e_{2,4m} = \left[\frac{1}{2^{2m}} \prod_{i=0}^{m-1} (4m-4i-2)(4m+4i+2) \right]^2.$$

Let $2\alpha(n-2) = (n-4m)$ and applying the weighted Hardy–Sobolev inequality (3.7) to $v = \nabla u \in H_{0,r}^{2m}(B)$, then the above inequality yields

$$\int_B |\nabla(\Delta^m u)|^2 dx \geq \frac{n^2(n-4m)^2}{16} e_{2,4m} \int_B \frac{|\nabla u|^2}{|x|^{4m}} dx = \frac{n^2}{4} e_{2,4m} \int_B \frac{|\nabla u|^2}{|x|^{4m}} dx.$$

(c) For the case $p \in (1, n)$. Let $u \in W_r^{2,p}(B) \cap W_{0,r}^{1,p}(B)$. Since $C_r^2(\overline{B}) \cap C_{0,r}^1(B)$ is dense in $u \in W_r^{2,p}(B) \cap W_{0,r}^{1,p}(B)$ it is enough to prove the inequality for the case $u \in C_r^2(\overline{B}) \cap C_{0,r}^1(B)$. Let $\Delta u \leq 0$. Then by Hopf's lemma $u_r < 0$. Let $v = r^{\frac{n-p}{p}} u_r$. Then $v(0) = 0$. Then

$$\begin{aligned} u_{rr} &= -\frac{(n-p)}{p} \frac{u_r}{r} + \frac{u_r v_r}{v} \\ \Delta u &= \frac{n(p-1)}{p} \frac{u_r}{r} + r^{-\frac{n-p}{p}} v_r \\ \Delta u &= \frac{n(p-1)}{p} \frac{u_r}{r} \left\{ 1 + \frac{p}{n(p-1)} \frac{r^{-\frac{n-p}{p}} r v_r}{u_r} \right\}. \end{aligned}$$

Using the fact that $(1+x)^p \geq 1 + px$ for $x \geq -1$, we have,

$$|\Delta u|^p \geq \frac{n^p(p-1)^p}{p^p} \frac{|u_r|^p}{r^p} \left\{ 1 + p \frac{p}{n(p-1)} \frac{v_r}{u_r} r^{-\frac{n-p}{p}} \right\}.$$

Hence we have,

$$|\Delta u|^p \geq \frac{n^p(p-1)^p}{p^p} \frac{u_r^p}{r^p} + p \left(\frac{p}{n(p-1)} \right)^{p-1} v |v|^{p-2} v_r r^{1-n}.$$

Since $p \int_0^1 v |v|^{p-2} v_r dr = \int_0^1 (|v|^p)_r dr = |v(1)|^p - |v(0)|^p = |v(1)|^p$, hence

$$\int_B |\Delta u|^p dx \geq \frac{n^p(p-1)^p}{p^p} \int_B \frac{|\nabla u|^p}{|x|^p} dx.$$

This proves the lemma. \square

We also prove an weighted Hardy–Rellich inequality, in order to stress the fact how the fundamental solution plays a key role in deriving this inequality. It should be noted that Lemma 3.4 is not required in the course of proof of the main theorems.

Lemma 3.4. *Let $n \geq 5$ and Ω be a bounded domain with smooth boundary and $0 \in \Omega$. If $R > e^{(k-1)\sup_{\partial\Omega}|x|}$, then there exist constants $\lambda_1 = \lambda_1(\Omega, R) < 0$ and $\lambda_2 = \lambda_2(\Omega, R) < 0$ such that $\forall u \in \mathcal{D}_\alpha^{2,2}(\Omega)$, we have*

$$\begin{aligned} \int_{\Omega} |\Delta u|^2 E_1^{1-2\alpha} dx &\geq \left(\alpha^2(n-4)^2 + \frac{1}{2}\theta(n-\theta-2) \right)^2 \int_{\Omega} \frac{u^2}{|x|^4} E_1^{1-2\alpha} dx \\ &\quad + \frac{1}{4} (2\alpha^2(n-4)^2 + \theta(n-\theta-2)) \int_{\Omega} \left(\sum_{i=1}^k \frac{1}{\left(\ln^{(j)} \frac{R}{|x|} \right)^2} \right) \\ &\quad \times \frac{u^2}{|x|^4} E_1^{1-2\alpha} + \lambda_1 \int_{\partial\Omega} u^2 + \lambda_2 \int_{\partial\Omega} \left(\frac{\partial u}{\partial \nu} \right)^2 \end{aligned} \quad (3.15)$$

where $E_1 = \frac{1}{|x|^{n-4}}$ and $\theta = (n-4)(1-2\alpha) + 2$. The constant $(\alpha^2(n-4)^2 + \frac{1}{2}\theta(n-\theta-2))^2$ (the coefficient of $\int_{\Omega} \frac{u^2}{|x|^4} E_1^{1-2\alpha} dx$) is the best constant and is never achieved by any nontrivial function $u \in \mathcal{D}_{\alpha,0}^{2,2}(\Omega)$.

Proof. Let $u = E_1^\alpha v$. Then $v(0) = 0$ and we have for $n \geq 5$

$$\begin{aligned} \frac{|\nabla u|^2}{|x|^2} E_1^{2\beta} &= \alpha^2(n-4)^2 \frac{|u|^2}{|x|^4} E_1^{2\beta} + \frac{|\nabla v|^2}{|x|^2} E_1^{2(\alpha+\beta)} \\ &\quad - \alpha(n-4) \left\langle \frac{x}{|x|^n}, \nabla v^2 \right\rangle E_1^{2(\alpha+\beta)-1}. \end{aligned}$$

Choosing $\alpha + \beta = \frac{1}{2}$ and integrating we have

$$\int_{\Omega} \frac{|\nabla u|^2}{|x|^2} E_1^{2\beta} = \alpha^2(n-4)^2 \int_{\Omega} \frac{|u|^2}{|x|^4} E_1^{2\beta} + \int_{\Omega} \frac{|\nabla v|^2}{|x|^{n-2}} - \alpha(n-4) \int_{\partial\Omega} \frac{\langle x, \nu \rangle}{|x|^n} v^2. \quad (3.16)$$

Choosing $\theta = 2(n-4)\beta + 2$, (3.16) reduces to

$$\int_{\Omega} \frac{|\nabla u|^2}{|x|^\theta} = \alpha^2(n-4)^2 \int_{\Omega} \frac{|u|^2}{|x|^{\theta+2}} + \int_{\Omega} \frac{|\nabla v|^2}{|x|^{n-2}} - \alpha(n-4) \int_{\partial\Omega} \frac{\langle x, \nu \rangle}{|x|^n} v^2. \quad (3.17)$$

Now integrating by parts

$$\int_{\Omega} \frac{|\nabla u|^2}{|x|^\theta} = - \int_{\Omega} \frac{u \Delta u}{|x|^\theta} - \frac{\theta}{2} (n-\theta-2) \int_{\Omega} \frac{|u|^2}{|x|^{\theta+2}} + \int_{\partial\Omega} \frac{u}{|x|^\theta} \frac{\partial u}{\partial \nu} + \frac{\theta}{2} \int_{\partial\Omega} \frac{u^2 \langle x, \nu \rangle}{|x|^{\theta+1}}. \quad (3.18)$$

Substituting the value of (3.17) in (3.18) we have

$$\begin{aligned} - \int_{\Omega} \frac{u \Delta u}{|x|^{\theta}} &= \left\{ \alpha^2(n-4)^2 + \frac{1}{2}\theta(n-\theta-2) \right\} \int_{\Omega} \frac{u^2}{|x|^{\theta+2}} + \int_{\Omega} \frac{|\nabla v|^2}{|x|^{n-2}} \\ &\quad - \int_{\partial\Omega} \frac{u}{|x|^{\theta}} \frac{\partial u}{\partial\nu} - \alpha(n-4) \int_{\partial\Omega} \frac{\langle x, \nu \rangle}{|x|^n} v^2 - \frac{\theta}{2} \int_{\partial\Omega} \frac{u^2 \langle x, \nu \rangle}{|x|^{\theta+1}}. \end{aligned}$$

Applying Cauchy-Schwarz's inequality we have

$$\begin{aligned} \frac{1}{2\varepsilon} \int_{\Omega} \frac{|\Delta u|^2}{|x|^{\theta-2}} + \frac{\varepsilon}{2} \int_{\Omega} \frac{|u|^2}{|x|^{\theta+2}} &\geq \left\{ \alpha^2(n-4)^2 + \frac{1}{2}\theta(n-\theta-2) \right\} \int_{\Omega} \frac{u^2}{|x|^{\theta+2}} \\ &\quad + \int_{\Omega} \frac{|\nabla v|^2}{|x|^{n-2}} - \int_{\partial\Omega} \frac{u}{|x|^{\theta}} \frac{\partial u}{\partial\nu} \\ &\quad - \alpha(n-4) \int_{\partial\Omega} \frac{\langle x, \nu \rangle}{|x|^n} v^2 - \frac{\theta}{2} \int_{\partial\Omega} \frac{u^2 \langle x, \nu \rangle}{|x|^{\theta+1}}. \end{aligned} \quad (3.19)$$

Choosing $\varepsilon = \alpha^2(n-4)^2 + \frac{\theta}{2}(n-\theta-2)$ we have

$$\begin{aligned} \int_{\Omega} \frac{|\Delta u|^2}{|x|^{\theta-2}} &\geq \left(\alpha^2(n-4)^2 + \frac{\theta}{2}(n-\theta-2) \right)^2 \int_{\Omega} \frac{u^2}{|x|^{\theta+2}} \\ &\quad + (2\alpha^2(n-4)^2 + \theta(n-\theta-2)) \int_{\Omega} \frac{|\nabla v|^2}{|x|^{n-2}} \\ &\quad + \lambda_1 \int_{\partial\Omega} u^2 + \lambda_2 \int_{\partial\Omega} \left(\frac{\partial u}{\partial\nu} \right)^2. \end{aligned} \quad (3.20)$$

Using (3.3), we have the required inequality. It follows clearly from this inequality the best constant is never achieved for $u \in \mathcal{D}_{\alpha,0}^{2,2}(\Omega)$. For the optimality of the constant consider the family of functions $u_{\delta}(x) = E_1^{\alpha-\delta} \eta$ where $\eta \in C_0^{\infty}(\Omega)$ and $\eta = 1$ in a neighborhood to zero. \square

4. Proof of the Main Theorems

Proof of Theorem 2.1. First we prove for $u \in W_{0,r}^{2,p}(B)$. Let $u = (\ln \frac{R}{|x|})^{\frac{n-2}{n}} v$. Then $v(0) = 0$. Then

$$|\nabla u|^p = \left(\frac{n-2}{n} \right)^p \frac{|u|^p}{|x|^p \left(\ln \frac{R}{|x|} \right)^p} \left| \frac{x}{|x|} - \frac{n}{n-2} \frac{\nabla v}{v} |x| \left(\ln \frac{R}{|x|} \right) \right|^p.$$

For the case $p \geq 2$, we have from (3.1),

$$\begin{aligned} |\nabla u|^p &\geq \left(\frac{n-2}{n} \right)^p \frac{|u|^p}{|x|^p \left(\ln \frac{R}{|x|} \right)^p} \left\{ 1 - p \left(\frac{n}{n-2} \right) \left\langle x, \frac{\nabla v}{v} \right\rangle \left(\ln \frac{R}{|x|} \right) \right. \\ &\quad \left. + \alpha_1 \left(\frac{n}{n-2} \right)^2 \frac{|x|^2 |\nabla v|^2}{v^2} \left(\ln \frac{R}{|x|} \right)^2 + \alpha_2 \left(\frac{n}{n-2} \right)^p \frac{|x|^p |\nabla v|^p}{v^p} \left(\ln \frac{R}{|x|} \right)^p \right\}. \end{aligned}$$

Thus we have

$$\begin{aligned} \frac{|\nabla u|^p}{|x|^p} &\geq \left(\frac{n-2}{n}\right)^p \frac{|u|^p}{|x|^{2p} \left(\ln \frac{R}{|x|}\right)^p} - p \left(\frac{n-2}{n}\right)^{p-1} \left\langle \frac{x}{|x|^{2p}}, \nabla v \right\rangle |v|^{p-2} v \\ &\quad + \frac{4\alpha_1}{p^2} \left(\frac{n-2}{n}\right)^{p-2} \frac{|\nabla v|^2}{|x|^{n-2}} \left(\ln \frac{R}{|x|}\right) + \alpha_2 \frac{|\nabla v|^p}{|x|^p} \left(\ln \frac{R}{|x|}\right)^{p-1}. \end{aligned}$$

Hence we have

$$\begin{aligned} \frac{|\nabla u|^p}{|x|^p} &\geq \left(\frac{n-2}{n}\right)^p \frac{|u|^p}{|x|^{2p} \left(\ln \frac{R}{|x|}\right)^p} - \left(\frac{n-2}{n}\right)^{p-1} \left\langle \frac{x}{|x|^n}, \nabla |v|^p \right\rangle \\ &\quad + \frac{4\alpha_1}{p^2} \left(\frac{n-2}{n}\right)^{p-2} \frac{|\nabla v|^2}{|x|^{n-2}} \left(\ln \frac{R}{|x|}\right) + \alpha_2 \frac{|\nabla v|^p}{|x|^p} \left(\ln \frac{R}{|x|}\right)^{p-1}. \quad (4.1) \end{aligned}$$

Since $v(0) = v|_{\partial\Omega} = 0$ and hence integral of the second term vanishes. Therefore integrating (4.1) and choosing $v^{\frac{p}{2}} = w_1$, we have

$$\begin{aligned} \int_B \frac{|\nabla u|^p}{|x|^p} &\geq \left(\frac{n-2}{n}\right)^p \int_B \frac{|u|^p}{|x|^{2p} \left(\ln \frac{R}{|x|}\right)^p} + \frac{4\alpha_1}{p^2} \left(\frac{n-2}{n}\right)^{p-2} \int_B \frac{|\nabla w_1|^2}{|x|^{n-2}} \left(\ln \frac{R}{|x|}\right) \\ &\quad + \alpha_2 \int_B \frac{|\nabla v|^p}{|x|^p} \left(\ln \frac{R}{|x|}\right)^{p-1} \quad (4.2) \end{aligned}$$

which implies that

$$\int_B \frac{|\nabla u|^p}{|x|^p} \geq \left(\frac{n-2}{n}\right)^p \int_B \frac{|u|^p}{|x|^{2p} \left(\ln \frac{R}{|x|}\right)^p} + C_1 \int_B \frac{|\nabla w_1|^2}{|x|^{n-2}} \left(\ln \frac{R}{|x|}\right).$$

Using (3.4) on the second term in the above inequality, we obtain

$$\begin{aligned} \int_B \frac{|\nabla u|^p}{|x|^p} dx &\geq \left(\frac{n-2}{n}\right)^p \int_B \frac{|u|^p}{|x|^{2p} \left(\ln \frac{R}{|x|}\right)^p} dx \\ &\quad + C \int_B \frac{|u|^p}{|x|^{2p} \left(\ln \frac{R}{|x|}\right)^{p-2}} \left(\sum_{j=2}^k \frac{1}{\left(\ln^{(j)} \frac{R}{|x|}\right)^2} \right) dx. \quad (4.3) \end{aligned}$$

Hence combining (4.3) and (3.14) and noting the fact that $(\ln \frac{R}{|x|}) \geq 1$, we have

$$\begin{aligned} \int_B |\Delta u|^p &\geq \frac{2^p(p-1)^{2p}}{p^p} \int_B \frac{|u|^p}{|x|^{2p} \left(\ln \frac{R}{|x|} \right)^p} dx \\ &\quad + C \int_B \frac{|u|^p}{|x|^{2p} \left(\ln \frac{R}{|x|} \right)^p} \left(\sum_{j=2}^k \frac{1}{\left(\ln^{(j)} \frac{R}{|x|} \right)^2} \right) dx. \end{aligned}$$

Hence from the inequality it is clear that the $\frac{2^p(p-1)^{2p}}{p^p}$ is not achieved, otherwise the remainder term is zero, which will imply that $u \equiv 0$, a contradiction. Later on, we prove that in fact $\frac{2^p(p-1)^{2p}}{p^p}$ is the best constant. This proves the inequalities (2.1) and (2.2) hold for all $u \in W_{0,r}^{2,p}(B)$. Note that we are only using the fact that $u = 0$ on ∂B and hence the above inequalities are true for the case $u \in W_r^{2,p}(B) \cap W_{0,r}^{1,p}(B)$.

Also note that for the case $1 < p < 2$, we cannot obtain the remainder term as in (2.1) but by using (3.2), we can show that the constant $\frac{2^p(p-1)^{2p}}{p^p}$ is not achieved. Next we prove this for the non-radial case by using the ideas in [16] (see [11]). Let $|\Omega| = |B|$. First we may restrict ourselves to $\Omega = B$ and a radial function u . Define $f = -\Delta u$.

$$\begin{cases} -\Delta w = |f|^* & \text{in } B \\ w = 0 & \text{on } \partial B \end{cases} \quad (4.4)$$

where f^* denotes the Schwarz symmetrization of f . Then $w \in W_r^{2,p}(B) \cap W_{0,r}^{1,p}(B)$. By [17], we have $w \geq |u|^* \geq 0$. Hence

$$\begin{aligned} \int_B |\Delta w|^p dx &= \int_B (|f|^*)^p dx = \int_\Omega |f|^p dx = \int_\Omega |\Delta u|^p dx, \\ \int_B \frac{w^p}{|x|^{2p} \left(\ln \frac{R}{|x|} \right)^p} dx &\geq \int_B \frac{|u|^*{}^p}{|x|^{2p} \left(\ln \frac{R}{|x|} \right)^p} dx \geq \int_\Omega \frac{|u|^p}{|x|^{2p} \left(\ln \frac{R}{|x|} \right)^p} dx. \end{aligned}$$

Similarly we get

$$\begin{aligned} \int_B \frac{|w|^p}{|x|^{2p} \left(\ln \frac{R}{|x|} \right)^p} \left(\sum_{j=2}^k \frac{1}{\left(\ln^{(j)} \frac{R}{|x|} \right)^2} \right) dx \\ \geq \int_\Omega \frac{|u|^p}{|x|^{2p} \left(\ln \frac{R}{|x|} \right)^p} \left(\sum_{j=2}^k \frac{1}{\left(\ln^{(j)} \frac{R}{|x|} \right)^2} \right) dx. \end{aligned}$$

Hence the inequalities (2.1), (2.2) holds for all $u \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$ and $u \in W_0^{2,p}(\Omega)$.

Now we prove the sharpness of the previous inequality, i.e. we show the existence of a family of radial functions ψ_δ such that

$$\lim_{\delta \rightarrow 0} \frac{\int_{\Omega} |\Delta \psi_\delta|^p}{\int_{\Omega} \frac{|\psi_\delta|^p}{|x|^{2p} \left(\ln \frac{R}{|x|} \right)^p}} = \frac{2^p (p-1)^{2p}}{p^p}.$$

Let $B(1) \subset \Omega$ and $\varphi \in C_0^\infty(\Omega)$ be radial such that

$$\varphi(x) = \begin{cases} 1 & \text{in } B\left(\frac{1}{2}\right) \\ 0 & \text{on } \Omega \setminus B(1). \end{cases}$$

Define $\psi_\delta(x) = \left(\ln \frac{R}{|x|} \right)^{\frac{p-1}{p} - \delta} \varphi(x)$

$$\Delta \psi_\delta(x) = \left(\ln \frac{R}{|x|} \right)^{\frac{p-1}{p} - \delta} \Delta \varphi + \Delta \left(\ln \frac{R}{|x|} \right)^{\frac{p-1}{p} - \delta} \varphi + 2 \left\langle \nabla \left(\ln \frac{R}{|x|} \right)^{\frac{p-1}{p} - \delta}, \nabla \varphi \right\rangle.$$

Then we have

$$\frac{\int_{\Omega} |\Delta \psi_\delta|^p}{\int_{\Omega} \frac{|\psi_\delta|^p}{|x|^{2p} \left(\ln \frac{R}{|x|} \right)^p}} = \frac{\int_{\Omega} \left| \Delta \left(\ln \frac{R}{|x|} \right)^{\frac{p-1}{p} - \delta} \right|^p \varphi^p}{\int_{\Omega} \frac{|\psi_\delta|^p}{|x|^{2p} \left(\ln \frac{R}{|x|} \right)^p}} + \frac{O(1)}{\int_{\Omega} \frac{|\psi_\delta|^p}{|x|^{2p} \left(\ln \frac{R}{|x|} \right)^p}}.$$

Now we have

$$\begin{aligned} \Delta \left(\ln \frac{R}{|x|} \right)^{\frac{p-1}{p} - \delta} &= -\frac{1}{r^2} \left(\frac{p-1}{p} - \delta \right) \left(\frac{1}{p} + \delta \right) \left(\ln \frac{R}{r} \right)^{-\frac{p+1}{p} - \delta} \\ &\quad - \frac{n-2}{r^2} \left(\frac{p-1}{p} - \delta \right) \left(\ln \frac{R}{r} \right)^{-\frac{1}{p} - \delta}. \end{aligned}$$

Putting $n = 2p$, we have

$$\begin{aligned} \Delta \left(\ln \frac{R}{|x|} \right)^{\frac{p-1}{p} - \delta} &= -\frac{1}{r^2} \left(\frac{p-1}{p} - \delta \right) \left(\frac{1}{p} + \delta \right) \left(\ln \frac{R}{r} \right)^{-\frac{p+1}{p} - \delta} \\ &\quad - \frac{2p-2}{r^2} \left(\frac{p-1}{p} - \delta \right) \left(\ln \frac{R}{r} \right)^{-\frac{1}{p} - \delta}. \end{aligned}$$

Hence we have

$$\begin{aligned} \left| \Delta \left(\ln \frac{R}{|x|} \right)^{\frac{p-1}{p} - \delta} \right|^p &= 2^p (p-1)^p \left(\frac{p-1}{p} - \delta \right)^p \left(\ln \frac{R}{r} \right)^{-1-p\delta} \\ &\times \frac{1}{r^{2p}} \left| 1 + \frac{1+p\delta}{2p(p-1)} \frac{1}{\left(\ln \frac{R}{r} \right)} \right|^p. \end{aligned}$$

Also note that

$$|\psi_\delta|^p = \left(\ln \frac{R}{|x|} \right)^{p-1-p\delta} \varphi^p.$$

Hence

$$\frac{\int_{\Omega} \left| \Delta \left(\ln \frac{R}{|x|} \right)^{\frac{p-1}{p} - \delta} \right|^p \varphi^p}{\int_{\Omega} \frac{|\psi_\delta|^p}{|x|^{2p} \left(\ln \frac{R}{|x|} \right)^p}} = 2^p (p-1)^p \left(\frac{p-1}{p} - \delta \right)^p + \frac{O(1)}{\int_{\Omega} \frac{|\psi_\delta|^p}{|x|^{2p} \left(\ln \frac{R}{|x|} \right)^p}} \quad (4.5)$$

Taking limit as $\delta \rightarrow 0$ in (4.5) and noting that

$$\lim_{\delta \rightarrow 0} \int_{\Omega} \frac{|\psi_\delta|^p}{|x|^{2p} \left(\ln \frac{R}{|x|} \right)^p} = \infty,$$

we have

$$\lim_{\delta \rightarrow 0} \frac{\int_{\Omega} |\Delta \psi_\delta|^p}{\int_{\Omega} \frac{|\psi_\delta|^p}{|x|^{2p} \left(\ln \frac{R}{|x|} \right)^p}} = \frac{2^p (p-1)^{2p}}{p^p}.$$

Hence $\frac{2^p (p-1)^{2p}}{p^p}$ is the best constant in (2.1) and it is never achieved in any bounded domain. \square

Proof of Theorem 2.2. As in Theorem 2.1, it is enough to prove it for the radial superharmonic functions when $\Omega = B$ as in (4.4) we have $\|u\|_{W_0^{2,q}(\Omega)} = \|w\|_{W_0^{2,q}(B)}$. Letting $2\alpha(n-2) = 4-n$ in (3.7) for $n \geq 5$, we obtain

$$\frac{n^2}{4} \int_B \frac{|\nabla u|^2}{|x|^2} dx \geq \frac{n^2(n-4)^2}{16} \int_B \frac{u^2}{|x|^4} dx$$

and hence we have

$$\int_B |\Delta u|^2 - \frac{n^2(n-4)^2}{16} \int_B \frac{u^2}{|x|^4} \geq \int_B |\Delta u|^2 - \frac{n^2}{4} \int_B \frac{|\nabla u|^2}{|x|^2} \quad \text{for } n \geq 5.$$

Let $n = 4$. Define $v = (\ln \frac{R}{|x|})^{-\frac{1}{2}} u$, then $v(0) = 0$

$$\begin{aligned} \int_B \frac{|\nabla u|^2}{|x|^2} &= \frac{1}{4} \int_B \frac{u^2}{|x|^4 \left(\ln \frac{R}{|x|}\right)^2} - \frac{1}{2} \int_B \left\langle \frac{x}{|x|^4}, \nabla v^2 \right\rangle + \int_B \frac{|\nabla v|^2}{|x|^2} \left(\ln \frac{R}{|x|}\right) \\ &\geq \frac{1}{4} \int_B \frac{u^2}{|x|^4 \left(\ln \frac{R}{|x|}\right)^2} \end{aligned}$$

since $\operatorname{div}(\frac{x}{|x|^4}) = C\delta_0$ and $v(0) = 0$. Hence we have

$$\int_B |\Delta u|^2 - \int_B \frac{u^2}{|x|^4 \left(\ln \frac{R}{|x|}\right)^2} \geq \int_B |\Delta u|^2 - 4 \int_B \frac{|\nabla u|^2}{|x|^2}.$$

We have from [3, Lemma 3.1], and for $n \geq 4$, for u radial

$$\int_B |\Delta u|^2 - \frac{n^2}{4} \int_B \frac{|\nabla u|^2}{|x|^2} \geq \int_B \frac{|\nabla v|^2}{|x|^{n-2}} dx \quad (4.6)$$

where $u_r = r^{-\frac{n-2}{2}} v$. Let $v = (\ln \frac{R}{|x|})^{\frac{1}{2}} w$. Then from (3.3) we have

$$\int_B |\Delta u|^2 - \frac{n^2}{4} \int_B \frac{|\nabla u|^2}{|x|^2} - \frac{1}{4} \int_B \frac{|\nabla u|^2}{|x|^2 \left(\ln \frac{R}{|x|}\right)^2} dx \geq \int_B \frac{|\nabla w|^2}{|x|^{n-2}} \left(\ln \frac{R}{|x|}\right) dx. \quad (4.7)$$

Let $u_r = (\ln \frac{R}{|x|})^{\frac{1}{2}} r^{-\frac{n-2}{2}} w$, then

$$\begin{aligned} |u_{rr}| &= O\left(\frac{\left(\ln \frac{R}{|x|}\right)^{\frac{1}{2}}}{|x|^{\frac{n-2}{2}}} w_r + \frac{\left(\ln \frac{R}{|x|}\right)^{\frac{1}{2}}}{|x|^{\frac{n}{2}}} w\right) \\ |u_{rr}|^q &= O\left(\frac{\left(\ln \frac{R}{|x|}\right)^{\frac{q}{2}}}{|x|^{\frac{(n-2)q}{2}}} |w_r|^q + \frac{\left(\ln \frac{R}{|x|}\right)^{\frac{q}{2}}}{|x|^{\frac{nq}{2}}} |w|^q\right). \end{aligned}$$

Therefore,

$$\omega_n \int_0^1 |u_{rr}|^q r^{n-1} dr = O\left(\int_B \frac{\left(\ln \frac{R}{|x|}\right)^{\frac{q}{2}}}{|x|^{\frac{(n-2)q}{2}}} |\nabla w|^q + \int_B \frac{\left(\ln \frac{R}{|x|}\right)^{\frac{q}{2}}}{|x|^{\frac{nq}{2}}} |w|^q\right). \quad (4.8)$$

In order to estimate the right-hand side of (4.8), we need some estimates. Let $w \in C_0^\infty(B)$ and $k \geq 0, \alpha \geq 0$. Then

$$\begin{aligned} \int_B \frac{\left(\ln \frac{R}{|x|}\right)^\alpha}{|x|^k} |w|^q &= \frac{1}{n} \int_B \frac{(\operatorname{div} x) \left(\ln \frac{R}{|x|}\right)^\alpha}{|x|^k} |w|^q \\ &= -\frac{q}{n} \int_B \frac{\langle x, \nabla w \rangle \left(\ln \frac{R}{|x|}\right)^\alpha}{|x|^k} |w|^{q-2} w + \frac{k}{n} \int_B \frac{\left(\ln \frac{R}{|x|}\right)^\alpha}{|x|^k} |w|^q \\ &\quad + \frac{\alpha}{n} \int_B \frac{\left(\ln \frac{R}{|x|}\right)^\alpha}{|x|^k \left(\ln \frac{R}{|x|}\right)} |w|^q. \end{aligned}$$

Let $k < n$ and $R_0 > 0$ such that

$$\frac{\alpha}{n} \sup_{x \in B} \frac{1}{\left(\ln \frac{R_0}{|x|}\right)} < \frac{1}{2} \left(1 - \frac{k}{n}\right).$$

Then for $R \geq R_0$, the above identity gives

$$\begin{aligned} \frac{1}{2} \left(1 - \frac{k}{n}\right) \int_B \frac{\left(\ln \frac{R}{|x|}\right)^\alpha}{|x|^k} |w|^q &\leq \frac{q}{n} \int_B \frac{|\nabla w| \left(\ln \frac{R}{|x|}\right)^\alpha}{|x|^{k-1}} |w|^{q-1} \\ \frac{1}{2} \left(1 - \frac{k}{n}\right) \int_B \frac{\left(\ln \frac{R}{|x|}\right)^\alpha}{|x|^k} |w|^q &\leq \frac{q}{n} \left(\int_B \frac{|w|^q \left(\ln \frac{R}{|x|}\right)^\alpha}{|x|^k} \right)^{\frac{q-1}{q}} \\ &\quad \times \left(\int_B \frac{|\nabla w|^q \left(\ln \frac{R}{|x|}\right)^\alpha}{|x|^{k-q}} \right)^{\frac{1}{q}}. \end{aligned}$$

This implies that there exist a $C = C(k, n, \alpha) > 0$ such that

$$\int_B \frac{\left(\ln \frac{R}{|x|}\right)^\alpha}{|x|^k} |w|^q \leq C \left(\int_B \frac{|\nabla w|^q \left(\ln \frac{R}{|x|}\right)^\alpha}{|x|^{k-q}} \right). \quad (4.9)$$

Choose $k = \frac{nq}{2}$ and so $1 \leq q < 2$ as $k < n$. Thus from (4.8) and (4.9) we have for $\alpha = \frac{q}{2}$, $R \geq R_0$

$$\omega_n \int_0^1 |u_{rr}|^q r^{n-1} dr \leq C \left(\int_B \frac{|\nabla w|^q \left(\ln \frac{R}{|x|} \right)^{\frac{q}{2}}}{|x|^{\frac{(n-2)q}{2}}} \right).$$

Hence applying Hölder's inequality we have

$$\omega_n \int_0^1 |u_{rr}|^q r^{n-1} dr \leq C \left(\int_B \frac{|\nabla w|^2 \left(\ln \frac{R}{|x|} \right)^{\frac{q}{2}}}{|x|^{n-2}} dx \right)^{\frac{q}{2}}.$$

This implies

$$\int_B |\Delta u|^q dx \leq C \left(\int_B \frac{|\nabla w|^2 \left(\ln \frac{R}{|x|} \right)^{\frac{q}{2}}}{|x|^{n-2}} dx \right)^{\frac{q}{2}}.$$

Combining this with (4.7) completes the proof. \square

Remark 4.1. It seems that the inequalities (2.3) and (2.4) can be improved by adding a series of terms on the left-hand side, that is partially visible in (4.7). We will discuss this in a forthcoming paper.

Proof of Theorem 2.3. (a) Let $u = \left(\ln \frac{R}{|x|} \right)^{\frac{1}{2}} v$. Then we have $v(0) = 0$ and for the case $n = 4m$,

$$\int_B \frac{|\nabla u|^2}{|x|^{4m-2}} dx = \frac{1}{4} \int_B \frac{|u|^2}{|x|^{4m} \left(\ln \frac{R}{|x|} \right)^2} dx + \int_B \frac{|\nabla v|^2}{|x|^{4m-2}} \left(\ln \frac{R}{|x|} \right) dx \quad (4.10)$$

and using (3.4) on the second term of the above equality we obtain,

$$\int_B \frac{|\nabla u|^2}{|x|^{4m-2}} dx \geq \frac{1}{4} \int_B \frac{|u|^2}{|x|^{4m} \left(\ln \frac{R}{|x|} \right)^2} dx + C \int_B \left(\sum_{j=2}^k \frac{1}{\left(\ln^{(j)} \frac{R}{|x|} \right)^2} \right) \frac{|u|^2}{|x|^{4m}} dx \quad (4.11)$$

and applying (3.12), we have the required inequality.

(b) For the case $n = 4m + 2$, we have

$$\int_B \frac{|\nabla u|^2}{|x|^{4m}} dx = \frac{1}{4} \int_B \frac{|u|^2}{|x|^{4m+2} \left(\ln \frac{R}{|x|} \right)^2} dx + \int_B \frac{|\nabla v|^2}{|x|^{4m}} \left(\ln \frac{R}{|x|} \right) dx \quad (4.12)$$

and using (3.4) on the second term of the above equality we obtain

$$\int_B \frac{|\nabla u|^2}{|x|^{4m-2}} dx \geq \frac{1}{4} \int_B \frac{|u|^2}{|x|^{4m} \left(\ln \frac{R}{|x|} \right)^2} dx + C \int_B \left(\sum_{j=2}^k \frac{1}{\left(\ln^{(j)} \frac{R}{|x|} \right)^2} \right) \frac{|u|^2}{|x|^{4m+2}} dx \quad (4.13)$$

using (3.13), we have the required inequality.

For the sharpness of the inequalities, consider a family of radial functions

$$\psi_\delta(r) = \begin{cases} \left(\ln \frac{R}{r} \right)^{\frac{c_{4m}}{\prod_{i=1}^m (n-2i)} - \delta} \varphi & \text{if } n = 4m, \\ \left(\ln \frac{R}{r} \right)^{\frac{c_{4m+2}}{2m \prod_{i=1}^m (n-2i)} - \delta} \varphi & \text{if } n = 4m + 2 \end{cases}$$

where $\varphi \in C_0^\infty(B)$ be radial such that

$$\varphi(x) = \begin{cases} 1 & \text{in } B\left(\frac{1}{2}\right) \\ 0 & \text{on } B \setminus B(3/4) \end{cases}$$

$\delta > 0$ and c_{4m}^2, c_{4m+2}^2 denotes the coefficients of

$$\int_B \frac{|u|^2}{|x|^{4m} \left(\ln \frac{R}{|x|} \right)^2} dx$$

and

$$\int_B \frac{|u|^2}{|x|^{4m+2} \left(\ln \frac{R}{|x|} \right)^2} dx$$

in (2.5) and (2.6) respectively. We skip the slightly tedious details. \square

Before proving Theorem 2.4, we look into the various difficulties associated with the biharmonic operator.

- Here we deal with the second order Sobolev space $H^2(\Omega)$. Unlike in $H^1(\Omega)$, $H^2(\Omega)$ does not satisfy the property that “ $u \in H^2(\Omega)$ implies $|u| \in H^2(\Omega)$ ”. This is a serious block to get *a priori* estimates.
- There is no maximum principle.

Let us recall some known results for biharmonic operator:

Boggio's Principle. Consider the biharmonic equation

$$(F) \begin{cases} \Delta^2 u = f & \text{in } B \\ u = 0 & \text{on } \partial B \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial B \end{cases}$$

where $B = \{x \in \mathbb{R}^n : |x| < 1\}$ and ν is the outer normal at the boundary of B . Then Boggio's principle [6] states that the Green function associated to the biharmonic problem with zero Dirichlet data in a ball is strictly positive. Hence if $f > 0$ a.e. then $u > 0$ in B . For the weak Boggio's principle see [4].

Note that when we are in the case Ω , a smooth bounded domain

$$(G) \begin{cases} \Delta^2 u = f & \text{in } \Omega \\ u = \Delta u = 0 & \text{on } \partial \Omega \end{cases}$$

there is a natural weak maximum principle.

Lemma 4.2. *If $f \in F$ then there exist $\lambda(f) > 0$ such that*

$$\int_{\Omega} |\Delta u|^2 dx \geq \int_{\Omega} \frac{u^2}{|x|^4 \left(\ln \frac{R}{|x|} \right)^2} dx + \lambda(f) \int_{\Omega} u^2 f(x) dx \quad (4.14)$$

for all $u \in H_0^2(\Omega)$, $u \in H^2(\Omega) \cap H_0^1(\Omega)$.

Proof. Let $f \in F$, then we have

$$\lim_{\varepsilon \rightarrow 0} \sup_{x \in B_{\varepsilon}(0)} |x|^4 f(x) \left(\ln \frac{R}{|x|} \right)^2 \left(\ln \ln \frac{R}{|x|} \right)^2 < \infty$$

and hence for sufficiently small $\varepsilon > 0$, there exist a $C > 0$ such that $f \in B_{\varepsilon}(0)$

$$f(x) < \frac{C}{|x|^4 \left(\ln \frac{R}{|x|} \right)^2 \left(\ln \ln \frac{R}{|x|} \right)^2}$$

and otherwise f is bounded. Hence the inequality (4.14) holds. \square

Lemma 4.3. *Consider the problem*

$$\begin{cases} \Delta^2 u - \mu \frac{u}{|x|^4 \left(\ln \frac{R}{|x|} \right)^2} = \lambda f(x)u & \text{in } B \\ u \neq 0 & \text{in } B \\ u \in H_0^2(B) \end{cases} \quad (4.15)$$

where B is the unit ball centered at origin. If (4.15) admits a solution u for some $\lambda = \lambda_{\mu}^1(f)$, then u does not change sign in B .

Proof. We prove this lemma for the sake of completeness. A similar version of this lemma can be seen in [3, 10]. Note that proving existence of positive solutions is quite hard in the sense that $u^+, u^- \notin H_0^2(B)$, which played a crucial role in second order equations. Suppose $u \in H_0^2(B)$ solves the above problem with $\lambda = \lambda_\mu^1(f)$ and u changes sign. Define

$$K := \{v \in H_0^2(B) : v \geq 0 \text{ a.e.}\}.$$

Let $a(u, v) = \langle u, v \rangle_{H_0^2(B)} = \int_B \Delta u \Delta v$. $\forall u, v \in H_0^2(B)$. Note that K is a closed convex cone. Hence, by [13], there exists a projection $P : H_0^2(B) \rightarrow K$ such that for all $u \in H_0^2(B)$, $\forall w \in K$

$$a(u - P(u), w - P(u)) \leq 0. \quad (4.16)$$

Since K is a cone we can replace w by tw for $t > 0$ and letting $t \rightarrow \infty$ to obtain

$$a(u - P(u), w) \leq \lim_{t \rightarrow \infty} \frac{1}{t} a(u - P(u), P(u))$$

which implies that $\Delta^2(u - P(u)) \leq 0$ and by weak Boggio's Principle [4] $u - P(u) \leq 0$.

Now replacing w by $tP(u)$ for $t > 0$ in (4.17) we have

$$(t - 1)a(u - P(u), P(u)) \leq 0$$

and hence $a(u - P(u), P(u)) = 0$.

Hence we can write $u = u_1 + u_2$, $u_1 = P(u) \in K$, $u_2 = u - P(u)$, $u_1 \perp u_2$ and $u_2 \leq 0$. Since u changes sign we have that $u_1 \not\equiv 0$ and $u_2 \not\equiv 0$. Therefore we have,

$$\frac{\int_B |\Delta(u_1 - u_2)|^2 - \mu \int_B \frac{(u_1 - u_2)^2}{|x|^4 \left(\ln \frac{R}{|x|}\right)^2}}{\int_B f(x)(u_1 - u_2)^2} < \frac{\int_B |\Delta(u_1 + u_2)|^2 - \mu \int_B \frac{(u_1 + u_2)^2}{|x|^4 \left(\ln \frac{R}{|x|}\right)^2}}{\int_B f(x)(u_1 + u_2)^2}$$

which contradicts the definition of the first eigenvalue. Then u does not change sign and noting that the Green function is strictly positive we have either $u > 0$ or $u < 0$ in B . \square

Similarly as above, we have:

Lemma 4.4. *Consider the problem*

$$\begin{cases} \Delta^2 u - \mu \frac{u}{|x|^4 \left(\ln \frac{R}{|x|}\right)^2} = \lambda f(x)u & \text{in } \Omega \\ u \neq 0 & \text{in } \Omega \\ u \in H^2(\Omega) \cap H_0^1(\Omega) \end{cases} \quad (4.17)$$

where $0 \in \Omega$. If (4.17) admits a solution u for some $\lambda = \lambda_\mu^1(f)$, then u does not change sign in Ω .

Lemma 4.5. For $f \in \mathcal{F}$, X is compactly embedded in $L^2(\Omega, f)$, where $X = H_0^2(\Omega)$ or $H^2(\Omega) \cap H_0^1(\Omega)$.

Proof. Let $\{u_m\}_{m=1}^\infty$ be a bounded sequence in X . Hence along a subsequence $u_m \rightharpoonup u$ (say) in X . Due to the Hardy-Rellich inequality $u_m \rightharpoonup u$ in $L^2(\Omega, \frac{1}{|x|^4(\ln \frac{R}{|x|})^2})$ and due to the fact that $X \hookrightarrow L^2(\Omega)$ is compact $u_m \rightarrow u$ in $L^2(\Omega)$. Since we have $f \in \mathcal{F}$, for any $\varepsilon > 0$, there exist $\delta > 0$ such that

$$\sup_{B_\delta} |x|^4 \left(\ln \frac{R}{|x|} \right)^2 f(x) \leq \varepsilon \quad (4.18)$$

and f is bounded on $\Omega \setminus B_\delta$.

$$\int_{\Omega} |u_m - u|^2 f(x) = \int_{B_\delta} |u_m - u|^2 f(x) + \int_{\Omega \setminus B_\delta} |u_m - u|^2 f(x).$$

Thus, we have from (4.18)

$$\int_{\Omega} |u_m - u|^2 f(x) \leq \varepsilon \int_{B_\delta} \frac{|u_m - u|^2}{|x|^4 \left(\ln \frac{R}{|x|} \right)^2} + C \int_{\Omega} |u_m - u|^2.$$

By Hardy-Rellich inequality we have

$$\int_{\Omega} |u_m - u|^2 f(x) \leq C \varepsilon \int_{\Omega} |\Delta u_m - \Delta u|^2 + C \int_{\Omega} |u_m - u|^2. \quad (4.19)$$

Hence from (4.19) we have $u_m \rightarrow u$ in $L^2(\Omega, f)$. \square

Proof of Theorem 2.4. We look for critical points of the functional

$$J_\mu(u) = \frac{1}{2} \int_{\Omega} (\Delta u)^2 dx - \frac{\mu}{2} \int_{\Omega} \frac{|u|^2}{|x|^4 \left(\ln \frac{R}{|x|} \right)^2} dx$$

which is continuous, Gateaux differentiable and coercive on X due to Hardy-Rellich inequality. We minimize this functional on $M = \{u \in X : \int_{\Omega} |u|^2 f dx = 1\}$. Let $\lambda_\mu^1 = \inf_{u \in M} J_\mu(u)$. Then clearly $\lambda_\mu^1 > 0$. Choosing a minimizing sequence $\{u_m\} \subset M$ with $J_\mu(u_m) \rightarrow \lambda_\mu^1$ and the component of $DJ_\mu(u_m)$ restricted to M , tends to 0 strongly in X^* . Since $\mu < 1$, J_μ is coercive which implies u_m is bounded. Hence there exist a subsequence of u_m such that

$$\begin{cases} u_m \rightharpoonup u & \text{weakly in } X \\ u_m \rightharpoonup u & \text{weakly in } L^2 \left(\Omega, \frac{1}{|x|^4 \left(\ln \frac{R}{|x|} \right)^2} \right) \\ u_m \rightarrow u & \text{strongly in } L^2(\Omega). \end{cases}$$

Since X is compactly embedded in $L^2(\Omega, f(x))$ and M is weakly closed implies that $u \in M$. Hence

$$\int_{\Omega} |\Delta u_m|^2 = \int_{\Omega} |\Delta(u_m - u)|^2 + \int_{\Omega} |\Delta u|^2 + o(1)$$

$$\int_{\Omega} \frac{|u_m|^2}{|x|^4 \left(\ln \frac{R}{|x|} \right)^2} = \int_{\Omega} \frac{|u_m - u|^2}{|x|^4 \left(\ln \frac{R}{|x|} \right)^2} + \int_{\Omega} \frac{|u|^2}{|x|^4 \left(\ln \frac{R}{|x|} \right)^2} + o(1).$$

Hence we have

$$\lambda_{\mu}^1 = \int_{\Omega} |\Delta u_m|^2 - \mu \int_{\Omega} \frac{|u_m|^2}{|x|^4 \left(\ln \frac{R}{|x|} \right)^2} + o(1)$$

$$= \int_{\Omega} |\Delta(u_m - u)|^2 - \mu \int_{\Omega} \frac{|u_m - u|^2}{|x|^4 \left(\ln \frac{R}{|x|} \right)^2} + \int_{\Omega} |\Delta u|^2 - \mu \int_{\Omega} \frac{|u|^2}{|x|^4 \left(\ln \frac{R}{|x|} \right)^2} + o(1).$$

Hence we have

$$\lambda_{\mu}^1 \geq (1 - \mu) \int_{\Omega} |\Delta(u_m - u)|^2 + \int_{\Omega} |\Delta u|^2 - \mu \int_{\Omega} \frac{|u|^2}{|x|^4 \left(\ln \frac{R}{|x|} \right)^2} + o(1)$$

$$\lambda_{\mu}^1 \geq (1 - \mu) \int_{\Omega} |\Delta(u_m - u)|^2 + \lambda_{\mu}^1 + o(1).$$

Since $\mu < 1$ we have $u_m \rightarrow u$ strongly in X . Hence we have u is a nontrivial solution to the problems (2.7), (2.8) corresponding to $\lambda = \lambda_{\mu}^1(f)$.

Moreover, if $f \in \mathcal{F}$, then by Lemma 4.2 we have,

$$\lambda_{\mu}^1(f) \rightarrow \lambda(f) = \inf_{u \in X \setminus \{0\}} \frac{\int_{\Omega} (\Delta u)^2 - \int_{\Omega} \frac{|u|^2}{|x|^4 \left(\ln \frac{R}{|x|} \right)^2}}{\int_{\Omega} u^2 f(x)} > 0 \quad \text{as } \mu \rightarrow 1.$$

In order to prove that $\lambda_{\mu}^1(f)$ is simple when $\Omega = B$, we proceed in a contrapositive way. Suppose if u_1 and u_2 be two orthogonal eigenfunctions of (2.7) in $H_0^2(B)$ with respect to $\lambda_{\mu}^1(f)$. Multiplying the equation with u_1 by u_2 and integrating by parts; and noting the fact that $\langle \Delta u_1, \Delta u_2 \rangle_{L^2(B)} = 0$ and $f > 0$ a.e., we have

$$-\mu \int_B \frac{u_1 u_2}{|x|^4 \left(\ln \frac{R}{|x|} \right)^2} = \lambda_{\mu}^1(f) \int_B f u_1 u_2$$

which implies a contradiction, as u_1 and u_2 do not change sign in B by Lemma 4.3. Hence u_1 and u_2 are not linearly independent which implies that they are collinear. \square

Remark 4.6. As a result of Theorem 2.2, we can study the eigenvalue problem for the case $n \geq 4$, which is highly singular and non-compact type of the form

$$Lu = \lambda u \quad \text{in } \Omega$$

with zero Dirichlet or Navier boundary conditions; where

$$L = \begin{cases} \Delta^2 u - \frac{n^2(n-4)^2}{16} \frac{u}{|x|^4} & \text{if } n \geq 5 \\ \Delta^2 u - \frac{u}{|x|^4 \left(\ln \frac{R}{|x|} \right)^2} & \text{if } n = 4. \end{cases} \quad (4.20)$$

One can easily define the eigenvalues $\{\lambda_k\}$ in the form of Rayleigh quotients and show that $\lambda_k \rightarrow \infty$ as $k \rightarrow \infty$.

Acknowledgments

We would like to thank the referee for the valuable comments and suggestions. The first author acknowledges the funding from Indo-French project 3401-2. The second author was supported by the Australian Research Council.

References

- [1] Adimurthi and A. Sekar, Role of fundamental solution in Hardy-Sobolev type inequalities, *Proc. Roy. Soc. Edinburgh Sect. A* **136**(6) (2006) 1111–1130.
- [2] Adimurthi and M. Esteban, An improved Hardy-Sobolev inequality in $W^{1,p}(\Omega)$ and its application to Schrödinger operator, *NoDEA Nonlinear Differential Equations Appl.* **12**(2) (2005) 243–263.
- [3] Adimurthi, M. Grossi and S. Santra, Optimal Hardy-Rellich inequalities, maximum principle and the related eigenvalue problem, *J. Funct. Anal.* **240**(1) (2006) 36–83.
- [4] G. Arioli, F. Gazzola, H. Grunau and E. Mitidieri, A semilinear fourth order elliptic problem with exponential nonlinearity, *SIAM J. Math. Anal.* **36** (2005) 1226–1258.
- [5] G. Barbatis and A. Tertikas, On a class of Rellich inequalities, *J. Comput. Appl. Math.* **194**(1) (2006) 156–172.
- [6] T. Boggio, Sulle funzioni di Green d'ordine m , *Rend. Circ. Mat. Palermo* **20** (1905) 97–135.
- [7] N. Chaudhuri and M. Ramaswamy, Existence of positive solutions of some semilinear elliptic equations with singular coefficients, *Proc. Roy. Soc. Edinburgh Sect. A* **131**(6) (2001) 1275–1295.
- [8] E. B. Davies and A. M. Hinz, Explicit constants for Rellich inequalities in $L^p(\Omega)$, *Math. Z.* **227** (1998) 511–523.
- [9] J. W. Dold, V. A. Galaktionov, A. Lacey and J. L. Vazquez, Rate of approach to a singular steady state in quasilinear reaction-diffusion equations, *Ann. Scuola Norm. Sup. Pisa Cl. Sci.* **26** (1998) 663–687.

- [10] F. Gazzola, H. F. Grunau and E. Mitidieri, Hardy inequalities with optimal constants and remainder terms, *Trans. Amer. Math. Soc.* **6** (2004) 2149–2168.
- [11] S. Kesavan, *Symmetrization and Applications*, Series in Analysis, Vol. 3 (World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006).
- [12] E. Mitidieri, A simple approach to Hardy's inequalities, *Math. Notes* **67** (2000) 479–486.
- [13] J. J. Moreau, Decomposition orthogonale d'un espace hilbertien selon deux cones mutuellement polaires (in French), *C. R. Acad. Sci. Paris* **255** (1962) 238–240.
- [14] M. Owen, The Hardy–Rellich inequalities for polyharmonic operators, *Proc. Roy. Soc. Edinburgh Sect. A* **129** (1999) 825–839.
- [15] F. Rellich, Halbbeschränkte Differentialoperatoren höherer Ordnung, in *Proceedings of the International Congress of Mathematicians, Amsterdam (1954)*, eds. J. C. H. Gerretsen et al., Vol. 3 (Groningen, Nordhoff, 1956), pp. 243–250.
- [16] G. Szegö, Inequalities for certain eigenvalues of a membrane of given area, *J. Ration. Mech. Anal.* **3** (1954) 343–356.
- [17] G. Talenti, Elliptic equations and rearrangements, *Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)* **3**(4) (1976) 697–718.
- [18] J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behavior of the heat equation with an inverse-square potential, *J. Funct. Anal.* **173**(1) (2000) 103–153.