
Sujit K. Bose*

On the transmission of data packets through
fiber-optic cables of uniform index

https://doi.org/10.1515/joc-2021-0031
Received January 31, 2021; accepted April 15, 2021;
published online May 10, 2021

Abstract: The treatment of Maxwell equations show that
propagating wave of packets in fiber-optic cables is
dispersive, propagating in groups, such that group velocity
along certain curves in the frequency-phase velocity dia-
grams vanishes. It is suggested that stalling of wave groups
is responsible, for bursting propagation observed in
experimental measurements, causing some delay in
transmission. The dispersion equations developed here,
are different from those given in texts that are based on
“weakly guiding approximation”. The queue of such data
packets arriving at a router station is found to have a
“raised tail” distribution unlike that of Poisson arrivals. For
accounting the property, a Mittag–Leffler function distri-
bution (MLFD) of probability is used following a modifi-
cation of that for a Poisson process, the tail raising is shown
to cause delay in transmission, and its estimate is analysed
based on the theory.

Keywords: burst; delay; dispersion; fiber-optic data
transmission; Mittag-Leffler function distribution.

1 Introduction

The transmission of data packets in optical fibers takes
place as pulses of optical wave guided through the core of
the fiber. A theory for such waves is presented in Bhadra
andGhatak [1] for uniform refractive indices of glass. As the
indices of the glass fiber and that of the cladding of the
cable hardly differ, the electromagnetic waves in the
composite cable are assumed at the very outset to be gov-
erned by decoupled wave equations. It appears that this
assumption called the “weakly guiding approximation” is
an over simplification, altering the dispersion phenome-
non in the cable. The exact problem of transmission is
treated in Stratton [2] (chapter 9, section 3.15); where the

exact dispersion equation is developed for the dispersed
transmission of the waves. That equation is treated in this
paper for the approximate case of nearly equal refractive
indices of the glass fiber and its cladding, for proper deri-
vation of the dispersion equation. The new equation is
numerically treated and it is shown that the wave phe-
nomenon takes place in groups due to dispersion of the
waves. It is also shown that the group velocity vanishes in
the frequency-phase velocity diagram along certain curves
that would cause sudden spikes of waves at those fre-
quencies. This phenomenon suggests that dispersion is a
contributory factor for sudden bursts observed in high
resolution experimental packet transmission of data
(Willinger, Paxson, Taqqu [3], Thompson, Miller, Wilder
[4], and Kim, Won [5]).

The “bursty” flush flows of the data packets makes the
transmission process to be additionally stochastic; as a
consequence queuing theory methods come in to use for
the transmission process, beginning with the basicM/M/1
queue in which the arrival and service rates are assumed
uniform for all densities of flow. The inadequacy of the
Markovian models became apparent in the high resolution
packet transport experiments, which showed “raised” tails
of the arrivals distribution as compared to the rapidly
falling “thin tails” of the Markovian models (Willinger,
Paxson, and Taqqu [3]). Also it is found in the measure-
ments that there is no natural length of a “burst”, but
possesses self similarity from milliseconds to minutes to
hours of duration (Leland, Taqqu, Willinger, and Wilson
[6]). Thus Markovian traffic is ruled out by Koh and Kim [7],
and instead the Pareto/M/1/Kmodel is proposed to explain
the tail raising effect. The Pareto distribution is defined in
terms of two parameters; a shape parameter α and a loca-
tion parameter β (Koh and Kim [8]). Moreover it is yet to be
proven that a Pareto distribution tends to a Poisson process
in the limit when α and β approach certain values as would
be necessary when the traffic becomes uniform at low ac-
tivity levels. In this respect a useful process based on the
Mittag–Leffler function distribution (MLFD) is suggested
by Chakraborty and Ong [9] for incorporating the “tail
raising” effect. The model was first developed by Conway
and Maxwell [10] for modeling state dependent service
rates, by a modification of the Poisson process. In the
present paper this model is presented for the “bursty”
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transmission that shows somedelay in the transport of data
packets due to the bursts.

2 Modal analysis of the guided
waves

It is assumed that the optical fiber is homogeneous and
uniform along its length having refractive index n1, with a
cladding of refractive index n2  (<n1). A pulse of digitally
coded information passing through it can in general be
decomposed in to a number ofmodes of propagatingwaves
by Fourier’s theorem (Born and Wolf [11], p. 19), and the
transmission in general is multimodal, the fiber acting as a
wave guide of the waves. A unimodal transmission con-
sisting of only the fundamental least frequency mode is
often employed with advantage.

Optical wave propagation is governed by Maxwell
equations in terms of electric intensity E and magnetic
intensity H. An account of modal analysis of EM wave
propagation in a circular cylinder of radius a embedded in
an infinite homogeneous medium is given in Stratton [2].
Such a model fits to portray fiber-optic transmission
because of the wave guide action through the core of the
cable, and the dispersion equation for propagation is
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where i= ̅̅−1√
, and n=0, ±1, ±2 , ⋯ ,±∞ are the modal

numbers; but as Eq. (1) is even in n, one need consider
only the positive values of n. μ1,μ2 are magnetic perme-
ability of glass and cladding materials respectively, while
k1 =ω/c1,k2 =ω/c2 in which ω = angular frequency, and
c1,c2 are the velocity of propagation of light in the two
respective materials. The two functions Jn( ⋅) and H( 1)

n ( ⋅)
denote the usual Bessel and Hankel function of the first
kind. The arguments u and w appearing in the two func-
tions are defined by the relations
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where k = wave number and cp = ω/k = phase velocity. For
modal propagation as a guided wave it is required that
c1 < cp < c2. The refractive indices n1 and n2 are related to c1
and c2 by the equations n1 = c/c1, n2 = c/c2, where c is the
velocity of light in vacuum. For c1 < c2 to hold, one must
have n1 > n2.

There are two important cases for Eq. (1), when n = 0
(fundamental mode propagation) and when n1 ≈ n2, or

c1 ≈ c2. In the latter case (w2 − u2)2 is of second order
smallness and can be neglected. Thus in both the cases the
right hand side of Eq. (1) can be taken as zero, and there
results two dispersion equations of transmission repre-
sented by the two factors in square brackets. In as much as
c1 ≈ c2 by assumption, k1 ≈ k2, and one may also assume
μ1 ≈ μ2. Under these simplifications, the dispersion equa-
tion becomes
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or, using the well-known properties of Bessel functions
(Abramowitz and Stegun [12], pp. 361, 375), one gets
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where Kn(⋅) is the modified Bessel function.
Equation (4) can be expressed in terms of familiar

variables employed in fiber-optic literature. Let,
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then f is proportional to the frequency of the propagating
wave. Also let,

b = c2/c2p − n2
2

n2
1 − n22

= v2

f 2
(6)

Thus b replaces the relative phase velocity cp/c. The
variables u and v in terms of f and b therefore become
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Equation (4) therefore takes up the form
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Alternatively, replacing n by −n and using the prop-
erties of Bessel functions, J−n(u) = (−1)n  Jn(u) and
K−n(u) = Kn(u), one can write Eq. (11) in the form
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Equations (8) and (9) both somewhat differ from those
stated in the literature (Bhadra andGhatak [1], p. 21). In this
study, Eq. (8) is treated as the dispersion equation for the
optical wave propagation through the fiber.

For numerical study, typically n1 = 1.5 and n2 = 1.48515
are chosen. Higher modes generally speaking contribute

2 S.K. Bose: Fiber-optic cables of uniform index



little to a propagating pulse. For a qualitative view of the
dispersion curves, the gravest mode n = 0 is selected. The
next mode n = 1 yields similar results. As 0 < b < 1, and
f > 0. The zeros of the left hand side of Eq. (8) are first
isolated in the domain b = 0 (0.1) 1 and f = 0 (0.25) 10.
Next the zeros are refined by using the simple bisection
method. The curves for the modes n = 0 and 1 are respec-
tively shown in Figures 1 and 2.

3 Group velocity of propagation

In as much as the phase velocity determined by b depends
on the frequency f, the optical waves through the circular
cylindrical core propagate as group of waves with velocity
cg = dω/dk (Born and Wolf [11], p. 21). This feature is
observed in the experiments of Leland et al. [6]. It is also
observed in that study that the waves shoot up for certain
frequencies of propagation. Such bursts can occur if the

group velocity cg vanishes for some real values of f. For
existence of such values, dω/dk is set to zero by differen-
tiating Eq. (8). Thus, for n = 0 one gets the equation

1
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  − 1

v3K2
0(v)

 [v{K2
0(v) + K2

1(v)} − 2 K0(v) K1(v)] = 0 (10)

and for the case n = 1, the equation
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The zeros of Eqs. (10) and (11) follow certain trend for
different values of f for the data used in the preceding
section. These are shown in Figures 3 and 4, respectively,
for the modes n = 0 and 1. The vanishing of the group
velocity for certain values of f provides an explanation for
bursts in transmission as stated earlier.

4 Distribution of transmission and
delay

The transmission of data packets in the fiber-optic cable
being nonuniform and bursty, the rate atwhich arrivals take
place at a router station deviates from the Poisson distri-
bution operating on the FCFS discipline. The statistically
observed data show that the tail of the distribution is in fact
“liftedup” as compared to the exponentially falling Poisson.
To account for this phenomenon noting that a buffer is
available at a router, the bursty transmission of the packets
in the cable becomes stochastic such that there is a tendency
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Figure 1: Dispersion curves (n = 0).
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Figure 2: Dispersion curves (n = 1).
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Figure 3: Zero group velocity curves (n = 0).
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of instantaneous rise in their number in the wave guide. In
order tobuild a suitable simplemodel of transmission, let on
an average a certain constant fraction α < 1 of a packet, in a
given state of population n in the wave guide, breaks the
FCFS discipline instantaneously to the next higher state
n + 1. Now the number of ways breakaway depletion can
take place in state n, is the permutation number

P(nα, α) = (nα)!
[(n − 1)α]! =

Γ(nα + 1)
Γ[(n − 1)α + 1] (12)

where Γ( ⋅) is the Euler gamma function. The accretion to
the next state n + 1 of the queue similarly can take place in
P((n + 1)α, α) ways. The accretion rate of packets is sup-
pose λ′, then as in the theory of Poisson arrivals (Bose [13]),
ifpn( t) is the probability in the state n of the queue at time t,
then it satisfies the differential-difference equation

p′n(t) = − λ pn(t) + λ pn−1(t) + λ′[P[(n + 1)α, α]pn+1(t)
− P(nα, α)pn(t)], n ≥ 1

(13)

Equation (13) reduces to the equation for the Poisson dis-
tribution when α and λ′ vanish together.

Equation (13) was obtained earlier by Conway and
Maxwell [10] in a different context. As the system stabilizes
to a value pn of pn( t) as t →∞, then p′n( t)→ 0, and the
equation reduces to the system of difference equations

[ρ + P(nα, α)] pn = ρ pn−1 + P[(n + 1)α, α]pn+1, n ≥ 1 (14)

where ρ = λ/λ′. For the case n = 0, there can be only one
accretion, with no negative state. Hence the equation
degenerates in to the equation ρ p0 = α ! p1. in which
P(α, α) = α! Setting n = 1, 2, 3,⋯, the solution of the system
Eq. (14) is found to be

pn = ρn  p0
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1
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1

Eα(ρ) (15)
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∞

n=0

ρn
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The function Eα(ρ) is known as the Mittag–Leffler
function and pn defined by Eq. (15) is known as the MLFD
(Conway and Maxwell [10]). For the case α→ 0, the distri-
bution reduces to the result pn = ρn  (1 − ρ), if 0 < ρ < 1. In
general pn > 0 as against pn = 0 for Poisson arrivals, lead-
ing to the “raising of the tail” of the Poisson distribution in
the arrival process.

The steady state queue length Lq for the system rep-
resented by Eq. (14) is given by the expectation value of the
discrete distribution

Lq = ∑
∞

n=0
n pn = 1

Eα(ρ) ∑
∞

n=1

n ρn

Γ(nα + 1) =
ρ E′α(ρ)
Eα(ρ) (17)

where the prime denotes differentiationwith respect to ρ. The
computation of Eα(ρ) and E′α(ρ) for different numerical
values of α and ρ is straight forward from their series ex-
pansions provided that ρ < 1. However, the case ρ = λ/λ′ ≫ 1
ismore important as thenominal average rateof transmission
λ is of the order of the phase velocity cp of the transmitted
pulsed waves, whereas the bursting rate λ′ is unlikely to be
that fast. Hence, using the asymptotic expansion of Eα(ρ) as
given in Houblod, Mathai, and Saxena [14]

Eα(ρ) ∼ 1
α
 ρ1/α, for ρ→∞ (18)

the queue length Lq for large ρ also becomes

Lq ∼
1
α
 ρ1/α (19)

Thus, for small values of α, the queue length rapidly
increase as a power of ρ. In the theory of queues, the
waiting time in the queue is defined asWq = Lq/λ, which in
the present context represents the delay in transmission.
Hence Eq. (19) indicates that there can be significant delay
in the transmission process.

5 Conclusion

Packet transmission of data through a uniform index optical
fiber cable is studied in this paper by analyzing the propa-
gation of the guided optical waves through the fiber and its
cladding. Considering the exact solution of the Maxwell
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Figure 4: Zero group velocity curves (n = 1).
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equations of electromagnetism for a problem of this type
given in Stratton [2], it is found that the transmission in the
cable takes place as superposed waves exhibiting dispersion
in different modes. The dispersion equation for the modes
obtained here are somewhat different from that obtained
under the “weakly guiding approximation” given in texts
(Bhadra and Ghatak [1]). Moreover, it is found that the
dispersed group ofwaves in a transmitted pulse, in fact travel
with velocity that vanishes for certain frequencies and phase
velocity of propagation. It is argued that such halted groups
stall the propagation to cause bursting character of trans-
mission as observed in high resolution experiments. It makes
the arrival process at router station more complex, deviating
from the well-known Poisson process, which presumes more
or less steady arrivals with an FCFS discipline in the queue. A
modification, similar to that of Conway and Maxwell [10] in
terma of the MLFD is developed here to estimate the delay in
transmission in the cable caused by disruption of near steady
propagation. The model analysis indicates that the delay in
transmission canbe significant onaccount of thebursts in the
process of propagation of the data packets.
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