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The lifestyle of intracellular pathogens has always questioned
the skill of a microbiologist in the context of finding the
permanent cure to the diseases caused by them. The best tool
utilized by these pathogens is their ability to reside inside the
host cell, which enables them to easily bypass the humoral
immunity of the host, such as the complement system. They
further escape from the intracellular immunity, such as
lysosome and inflammasome, mostly by forming a protective
vacuole-bound niche derived from the host itself. Some of the
most dreadful diseases are caused by these vacuolar patho-
gens, for example, tuberculosis by Mycobacterium or typhoid
fever by Salmonella. To deal with such successful pathogens
therapeutically, the knowledge of a host-pathogen interaction
system becomes primarily essential, which further depends on
the use of a model system. A well characterized pathogen,
namely Salmonella, suits the role of a model for this purpose,
which can infect a wide array of hosts causing a variety of
diseases. This review focuses on various such aspects of
research on Salmonella which are useful for studying the
pathogenesis of other intracellular pathogens.

Salmonella as a Model Intracellular Pathogen

Salmonella represents a group of Gram-negative facultative
anaerobic pathogenic bacteria which costs millions of lives across
the world every year. At present, the genus Salmonella is cate-
gorized into two species S. bongori and S. enterica, based on the
high (96–99%) sequence similarity of the genome. There is only
one subspecies under S. bongori namely subspecies V, whereas
S. enterica comprises the remaining seven subspecies I, II, IIIa,
IIIb, IV, VI and VII.1 Where subspecies I is specific to warm-
blooded animals like mammals, others can infect only cold-
blooded animals including reptiles. Further division into serovars
increases the number of variants to more than 2,500. Out of
these, Salmonella enterica serovar Typhimurium and Salmonella
enterica serovar Typhi have been discussed here, as they have
previously served as tools to study host-pathogen interactions.

While S. Typhi infection is strictly limited to humans and higher
primates, S. Typhimurium has a wide range of host such as
rodents, cattle and mammals.

Intracellular pathogens can either survive in a self-constructed
niche in the form of a vacuole or they may choose to live in the
cytoplasm of the host cell. Salmonella chooses the most com-
monly preferred option of forming an intracellular vacuole termed
as Salmonella containing vacuole (SCV). SCV arrests the host
endosomal pathway at the late endosome stage. It does acquire
the late endosome markers, such as vATPases and LAMP1, but
loses some of them like mannose-6-phosphate receptor which
differentiates it from the late endosome.2 Later the SCV gets
juxtaposed to the nucleus by utilizing the microtubule meshwork
of the host cell and derives nutrition from the Golgi apparatus.3

Few intracellular pathogens follow an alternate less preferred
strategy to survive inside host cells, as they do not form a niche
but develop strategies to survive inside the cytoplasm,4 including
the examples of Shigella and Listeria.

Other best studied vacuolar pathogens also hijack the endo-
phagocytic pathway of the host at various stages bearing the
surface markers of that specific stage. Mycobacterium infection
involves formation of Mycobacteria pathogen vacuole (MPV) that
does not mature after the early endosome stage while being
associated with the corresponding markers like EEA1 and Rab5.2

This arrest at early endosome stage prevents the fusion of the
MPV with the phagolysosome and hence the clearance of the
pathogen. Another example, Brucella containing vacuole (BCV),
displays early endosome related markers like EEA1, Rab5, etc.
and eventually takes an unconventional route of becoming endo-
plasmic reticulum (ER) derived autophagosome maturing into
ER.2 In case of Legionella infection, Legionella containing vacuole
(LCV) bears autophagosome associated markers like Atg7 and
Atg8 and further matures into rough ER like organelle.2

Chlamydia form Chlamydia trachomatis inclusion (INC) which
moves to the microtubule organizing center (MTOC) like
Salmonella.2 Notably, the vacuolar structure INC is segregated
from the typical endomembrane pathway unlike other pathogens.
Toxoplasma forms a host plasma membrane derived parasito-
phorous vacuole (PV), which is completely independent of
vesicular trafficking of the host cell. The membrane of PV gets
incorporated with LDL cholesterol with the help of post-
lysosomal vesicles.2
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Although a substantial amount of work about the mechanism
of establishment of these intracellular structures have been done,
there are yet many unanswered questions about the changes
induced upon host by the pathogen to maintain the integrity of
these vacuoles. Hence understanding the system of a model
pathogen will address such questions to great extent.

A faster rate of growth and feasibility of modification of the
genome by using recombinant DNA technology makes
Salmonella an ideal pathogen to study host-pathogen interaction.
Availability of mouse model for typhoid fever as well as gastro-
enteritis5 and C. elegans for innate immune response during
Salmonella infection6 makes it a preferential model pathogen to
study. Further, S. Typhimurium alone can be used as a model for
two modes of infection, local gastroenteritis as well as systemic
typhoid fever. Taking these points in consideration we intend to
explain the pathogenic features that render Salmonella eligible to
be used as a model intracellular pathogen.

Keys to Success

The key factors behind the success of Salmonella as an intra-
cellular pathogen are described in subsequent sections which cover
features specific to Salmonella, making it interesting to venture
into the details of Salmonella pathogenesis.

Multiple targets. Salmonella possesses extremely versatile
strategies to infect different target host cells (Table 1). Interest-
ingly it prefers to proliferate in the usually non-permissive
environment of immune cells such as macrophages instead of the
much permissive epithelial cells. The mode of entry as well as the
strategy followed to survive inside the target cell varies according
to the type of cell and depends on the temporal expression of
particular genes by Salmonella such as the type three secretion
systems. Salmonella is controversially shown to be able to survive
and replicate most preferentially inside the microbicidal neutro-
phils instead of macrophages according to the conventional
paradigm.7 Other target cells that encounter Salmonella in
different locations include B cells, T cells, monocytes, dendritic
cells, granulocytes and gut epithelial cells (Fig. 2). Salmonella
displays variety in mechanisms of not only entry and survival but
also cytotoxicity, which relies on its virulence factors (Table 1).

Horizontally acquired pathogenicity islands. The astonishing
variation in pathogenesis of the serovars of the same species is
accountable to the acquisition of genes laterally from external
sources over the course of million years. One-fourth of the
Salmonella genome is estimated to be acquired horizontally. The
divergence of Salmonella from E. coli in the process of evolution
involved the horizontal transfer of various genes that turned
Salmonella into a successful pathogen compared with E. coli.

These genes are collectively termed as pathogenicity islands, which
are further categorized based on their function. The serovars
Typhi and Typhimurium have 11% difference in their genome,
which are otherwise 99% similar in their sequences of house-
keeping genes. Also the same serovar has variations in their
genome within the strains. The genes acquired play roles in
pathogenesis (SPI1, SPI2, SPI3, etc.) as well as metabolism
(aroA), resistance against antibiotics and many such important
functions.8 The horizontal gene transfer could occur by various
modes like phage infection, conjugative plasmids, transposition
or transformation1 and most commonly by inserting genes within
tRNA genes. There are 12 pathogenicity islands known at present
and the continuous process of evolution may add up more genes
to the list. Apart from gaining external genes, Salmonella may also
tend to lose certain genes to maintain virulence, like loss of lac
operon during evolution has enhanced the fitness and virulence
of Salmonella.9

Two-component systems. The ability of Salmonella to sense
the extracellular cues in the surrounding micro-environment and
accordingly regulate the expression of genes is dependent majorly
upon few two-component systems. The phoP system encodes the
sensor PhoQ and response regulator PhoP, whose expression is
induced by Mg2+ starvation and low pH, regulates acid tolerance
and major virulence genes, such as genes required for invasion,10

intracellular survival11 and resistance to antimicrobial peptides.
Another two-component system, ompR, responds to change in
osmolarity and regulates invasion12 as well as intracellular
survival.13,14 The system pmrAB mediates resistance specifically
against the anti-microbial peptide polymyxin B and is further
regulated by other two-component systems such as PhoP/PhoQ
and PreA/PreB15 reflecting the importance of polymyxin B in
Salmonella pathogenesis. Nevertheless, there are many other two-
component systems to mediate virulence and adaptation to
environmental stresses, like SPI1 induction as well as biofilm
formation by SirA/BarA16,17 and SPI2 expression regulation by
SsrA/SsrB.18 Some two component systems regulate nutrition
uptake too, as seen in the case of ttrRS system which helps in
utilization of tetrathionate to produce an alternate electron donor
thiosulphate.19 Interestingly these two-component systems are
inter-dependent generating a complex network of their activity
and regulation.

Global regulators. The success of a pathogen in establishing
infection is predicted by the appropriate expression of virulence
associated genes tuned by a set of regulators. These regulators
control the expression of various genes in favor of the cell in
response to certain environmental cues. Global regulators are
called so due to their ability to regulate multiple genes simultane-
ously. To quote some examples, SirA regulates the genes required

Table 1. Multiple cellular targets

Cell type Cell culture model Mode of internalization Outcome

M cells Mixed culture of CaCo-2 and Raji B cells Caveolae mediated endocytosis Cell lysis

Dendritic cells Primary cells Phagocytosis Apoptosis, cell lysis

Macrophages RAW 264.7, J774, etc., primary cells Phagocytosis Apoptosis

Epithelial cells HeLa, CaCo-2, HT-29, Intestine 407, etc. and primary cells Macropinocytosis Apoptosis, cell lysis
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for gastroenteritis20 as well as biofilm formation.16 Another global
regulator HilA, which is itself regulated by SirA, acts as a
transcriptional regulator for SPI1, SPI4 and SPI5 that together
mediate invasion of the host cells.20 Similarly CsrA is a very
well-known global regulator which controls multiple functions
including invasion, flagella synthesis, chemotaxis, biofilm forma-
tion, vitamin B12 synthesis and maltose operon.16,21 Interestingly,
two or more global regulators can dictate the expression of
similar genes; for example, Fnr regulates flagellar synthesis
and chemotaxis along with CsrA. On the other hand, Fnr is
assigned to regulate several important genes including genes for
aerobic metabolism, NO˙ detoxification and anaerobic carbon
utilization.22

Sentinels of Salmonella: Virulence Factors

Type three secretion systems. Type III secretion systems (T3SS)
are present on the cell wall and possess a needle like structure. The
major T3SS of Salmonella are encoded by two pathogenicity
islands, SPI1 and SPI2. The assembly and functions of these
T3SS are coordinated spatially and temporally. The T3SS are
dedicated to secrete certain proteins which bring about specific
effects in the microenvironment of the cell.

Salmonella pathogenicity island 1 (SPI1). SPI1 plays pivotal role
in both forms of diseases caused by Salmonella, i.e., gastroenteritis
as well as systemic infection.23 It carries out multiple functions,
which include cytotoxicity of macrophages,24 invasion of epithelial
cells,25 inflammation and fluid secretion in ileum26 and cytokine

secretion.27,28 SPI1 also induces apoptosis in macrophages24 and
executes the exact opposite function in epithelial cells.29 A series
of modifications are brought about by SPI1 inside the host to
facilitate internalization of Salmonella30 (Table 2). For example,
some SPI1 encoded proteins like InvG, InvJ, PrgH, PrgI, PrgK
and SpaO assemble the needle complex, whereas others, including
SipB, SipC and SipD, translocate effector proteins through this
needle.28 Effector proteins may or may not be encoded by SPI1.

Salmonella pathogenicity island 2 (SPI2). Genes within this
pathogenicity island are not essential for gastroenteritis but are
indispensable for systemic infection as they support the intra-
cellular survival of Salmonella inside host cells. The formation and
maintenance of the SCV involves a number of events controlled
by this pathogenicity island30 (Table 2). SPI2 confers protection
against reactive oxygen species (ROS)31 as well as reactive nitrogen
intermediates (RNI)32 inside macrophages. SPI2 encoded tetra-
thionate reductase acts on tetrathionate to generate thiosulphate
which acts as an alternate electron donor for Salmonella in
tetrathionate containing environments like human gut, soil,
decomposing carcasses.19,33 An additional T3SS, Spi/Ssa, is
encoded by SPI2 during intracellular life of Salmonella. It is
regulated by PhoP/PhoQ system and serves as the portal for the
exchange of materials within the SCV and host cytoplasm.11

On account of their divergent roles, the simultaneous expres-
sion of these two type three secretion systems is not expected
naturally. But in actual scenario, the spatiotemporal expression of
these two pathogenicity islands cannot be demarcated clearly as
there is evidence of their overlapping expression. This includes

Table 2. Functions of the SPI encoded proteins

Major event Proteins encoded

SPI1

Assembly of needle and secretion of effector proteins SpaO, InvJ, InvG, PrgI, PrgJ, PrgK, SipB, SipC

Actin cytoskeletal rearrangement via Rho GTPases and tight junction disruption SopE, SopE2, SopB (or SigD)

Actin polymerization by decrease in critical concentration SipA

Modulation of actin cytoskeleton by actin nucleation SipC (or SspC)

Regaining of cytoskeleton by reversing action of SopE, SopE2 and SopB SptP

Fluid accumulation in intestine SopA, SopD, SopB

Modulation of chloride channel to induce diarrhea SopB, SopE

Inhibition of NFkappaB activity and IL-8 secretion AvrA, SspH1

Transmigration of polymorphonuclear leukocytes SipA, SopA

Activation of caspase 1 and autophagy in macrophages SipB (or SspB)

SPI2

Needle assembly SpiB, SpiC, SpiD etc. (also known as Ssa genes)

Effector protein translocation SseB, SseC, SseD

Interference with endosome trafficking SpiC

Maintenance of SCV integrity SifA

Salmonella induced filament (Sif) formation and microtubule bundling SifA, SseF, Sseg, SopD2, PipB2

Inhibition of actin polymerization SspH2

Downregulation of Sif formation SpvB

Host cell dissemination SseI

Anaerobic respiration by reducing tetrathionate TtrABC, TtrRS
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pre-emptive expression of SPI2 in gut lumen before invasion of
epithelial cells in order to prepare Salmonella for traversing across
basal side of epithelium into lamina propria34 as well as for the
upcoming intracellular stress35 and residual SPI1 expression after
internalization by macrophage to counteract host immune
response by suppressing cytokine expression.36

Other pathogenicity islands. SPI3 encoded mgtC enables
Salmonella to survive in Mg2+ starvation conditions, partly con-
trolled by phoP/Q system, and is required for survival within
macrophages as well as systemic infection in mouse model.37

SPI4 encodes a type I secretion system and mediates adhesion,
whereas SPI5 encodes SopB. SPI7 is exclusively present in the
host specific serovar S. Typhi and absent in Typhimurium. The
main functions of this pathogenicity island include synthesis as
well as the export of Typhi specific Vi antigen. Additionally, genes
encoding SPI1 effector SopE and type IVB pilus lie within SPI7.38

Very little information is available about other pathogenicity
islands, like Typhi specific SPI639 and SPI1040 encode chaperon-
usher fimbrial operon. Similarly SPI8 encodes a pseudo bacterio-
cin and degenerate integrase, whereas SPI9 codes for a type I
secretion system like SPI4.40

Adhesins. The mere attachment of the bacterium to the target
cell consists of many steps mediated by various adhesins encoded
either by fimbrial genes like type 1 fimbriae (fim),41 plasmid
encoded fimbriae (pef),42 long polar fimbriae (lpf)43 and thin
aggregative fimbriae (Agf)44 or non-fimbrial genes such as the
autotransporters MisL45 and ShdA46 or SPI4 member SiiE.47 Each
adhesin belonging to this pool is assigned to mediate adhesion to
particular kind of cells due to specificity for the receptors present
on the surface of these cells,48 for example, SPI4 is responsible
for adhering to polarized cells47 whereas type 1 fimbriae fimH
mediates attachment to dendritic cells.49 The same kind of cell can
be bound by different adhesins with the progression of adhesion,
as described recently in the form of irreversible docking by SPI1
that enhances adhesion mediated by type 1 fimbriae.48 Neverthe-
less, the flagellum is required to reach the target cell as well as to
aid in adhesion in accordance with fimbriae.50

Plasmid encoded virulence genes. Salmonella possesses extra-
chromosomal genes which are equally important for infection. For
example, Spv works in a SPI2 dependent manner and is essential
for virulence of S. Typhimurium51 but not for Typhi. Similarly,
Pef is a plasmid encoded adhesin to mediate adhesion for infecting
gut epithelial cells.42

Counteracting the Worst

Like any other pathogen, Salmonella has its share of risks while
entering the host system. After ingestion along with the con-
taminated food, Salmonella needs to withstand the highly acidic
pH of the stomach. Once it reaches the intestine it establishes the
infection in two modes. The invasive mode involves breaching of
M cells leading to uptake by phagocytes, whereas the non-invasive
mode refers to direct phagocytosis by dendritic cells. The various
stresses induced upon Salmonella by the host act as environmental
cues to be sensed by response regulators present within Salmonella
for the expression of particular set of proteins to sustain the stress.

Acidic stress. The gastric pH acts as the first line of defense
against Salmonella infection. The passage through the highly
acidic environment of stomach generates the acid tolerance
response (ATR) which ensures the escapade of Salmonella from
acidic stress (Fig. 1). During ATR, the response regulator PhoP
and alternate sigma factor RpoS protect from inorganic acid
encountered inside stomach.52 On the other hand RpoS and Fur
facilitate the survival in presence of weak organic acids like lactic
acid in the intestine.53 Acidic pH also induces expression of
certain virulence associated genes. For example, acidity induced
STM1485 enables better intracellular replication of Salmonella.54

Physical barrier. To begin an intracellular lifestyle Salmonella
must cross the gut epithelia (Fig. 2). While M cells allow easy
entrance, epithelial cells do not favor passive entry. Salmonella
induces membrane ruffling in epithelial cells by modifying actin
cytoskeleton, exerted by SPI1, ultimately resulting in macro-
pinocytosis of Salmonella as described in previous sections in this
review. Also SPI2 mediated apoptosis helps Salmonella to cross
the epithelial lining.55 The alternate path of breaching epithelial
barrier includes uptake by CD18+ phagocytes traversing the gap
between epithelial cells.56

Evasion of host defense. Immune responses generated by host
constantly try to eliminate the pathogen (Fig. 3). Anti-microbial
peptides produced by Paneth cells of gut epithelia and macro-
phages can kill extracellular and intracellular Salmonella respect-
ively. To avoid this, Salmonella may undergo changes in the
lipidA composition on the cell surface to prevent interactions of
the cationic peptides or synthesize proteins like that coded by
operons yejABEF57 and sap58 assigned to export these peptides
outside cells. The smartness of Salmonella in deviating host
defense is reflected in the strategy of retaining one bacterium per
SCV to reduce the count of lysosome per SCV.59 Oxidative and
nitrosative stresses are two most prominent immune strategies of
host which are countered by Salmonella by various mechansims.60

The detrimental nitric oxide generation from arginine by host is
counteracted by arginase production by Salmonella that competes
with iNOS for arginine.61 Most interestingly, arginine is being
transported inside SCV by recruiting host mCAT1 and mCAT2B
to the SCV. From the SCV, arginine transporter encoded by ArgT
operon is used to transport arginine inside Salmonella.62

Nutritional stress. Starvation for nutrients inside the host is
very common which leads to starvation stress response that enable
Salmonella to withstand the stress as well as to counteract other
environmental stresses.63 An excellent example of Salmonella
induced host manipulation to meet its own nutritional require-
ments is presented by tetrathionate production induced inflam-
mation during Salmonella infection.33 The excess of tetrathionate
aids in competing with gut micro-flora for electron source and
hence better survival.

Availability of Tools

Cell-culture model/in vitro model. M cells. M cells, present in
Peyer’s patches, serve as the gateway for Salmonella to enter host
reticuloendothelial system. As M cells lack glycocalyx, Salmonella
can conveniently enter these cells to be further taken up by the
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underlying macrophages. The adhesion of Salmonella to M cells is
believed to be mediated by the fimbrial assembly chaperone and
the invasion is receptor mediated64 independently of SPI1 and
SPI2.65 Although the cytotoxicity of M cells by Salmonella is not
clearly understood, the regulator SlyA seems to play a role in
damaging M cells and strains defective in invasion are attenuated
in killing M cells.64 The caveolae mediated entry in M cells, was
deduced by using a co-culture of Caco-2 cells and Raji B cells.66,67

Epithelial cells. Epithelial cells beside M cells or within an organ
like gall bladder engulf Salmonella by macropinocytosis, in SPI1
dependent manner. In cell-culture model, after internalization the
monolayer epithelial cells are directed toward caspase 3 mediated
apoptosis depending upon the effector proteins encoded by SPI2
and spv loci,55 whereas polarized enterocytes are lysed due to lipid
peroxidation by Salmonella induced ROS generation.68 To name
few, HeLa, CaCo-2, HT-29, etc. serve as very good model cell-
lines for studying invasion of epithelial cell by Salmonella and
henceforth its proliferation.

Dendritic cells. Salmonella can breach gut epithelia by an alter-
nate mechanism by being engulfed by dendritic cells (DCs).
These DCs are also major antigen presenting cells like macro-
phages which phagocytose Salmonella and present antigen to the
specific CD4+T and CD8+T cells. Although, they do not provide
hospitable environment for the survival of the pathogen, they act
as steady carrier of Salmonella for its passive dissemination to
systemic sites. Also Salmonella induces caspase-1 mediated cyto-
toxicity in DCs depending upon SPI1 needle assembly and the
expression of SPI1 effector protein SipB.30 The killing is possibly
mediated by stimulation of P2X7 receptor or pore forming
property of SPI1 which leads to leakage of cytoplasmic matter.69

Primary cells isolated from bone marrow for animal models or
healthy humans are used as in-vitro model for dendritic cells.

Macrophages. They act as reservoir for Salmonella and play the
most vital role in the dissemination as well as the antigen
presentation of Salmonella. The macrophages present in the gut
associated lymphoid tissue phagocytose Salmonella as soon as the

Figure 1. Challenges encountered by Salmonella. The text boxes represent the various stresses encountered by Salmonella during its life cycle and the
open text describes the factors and signals generated by Salmonella in order to combat these stress conditions.
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intestinal epithelium is breached and harbor them until they
undergo apoptosis induced by SPI1.24 The route of macrophages
through reticuloendothelial system, while carrying Salmonella, is
believed to be one major reason behind systemic site infections. A
murine macrophage like cell line RAW 264.7 is the most useful
model cell line to study intracellular survival of Salmonella within
macrophages. Other cell lines like murine macrophages J774-A.1,
most preferred by S. Typhimurium, can also be used.

Monocytes and granulocytes. The idea of dendritic cells being the
major antigen presenting cells vanished when it was discovered
that transport and antigen presentation of Salmonella in lymph
is mainly performed by monocytes and granulocytes instead of
dendritic cells.70 The example of survival within immature
granulocytes in association with malaria71 presents a special situa-
tion of survival of Salmonella in unconventional targets. The
model used for such non-DC myeloid cells are primary cells
isolated from animal models. The human monocyte cell line
THP-1 can provide for the in-vitro model for monocytes.

Recently it was discovered that pathogenesis of Salmonella
varies based on the polarization status of the cells. Polarized cells
allowed easier internalization of Salmonella than non-polarized
cells and phagocytes and intracellular survival in polarized cells
was found to be independent of SPI2, which is otherwise essential
for surviving inside other cells types.72

Animal models/in vivo model. Salmonella infects a wide range
of animal hosts and the causative agent of human infection usually
comes from livestock in the form of meat, eggs and similar pro-
ducts. Hence animal models are essential to improvise under-
standing of pathogenesis as it helps to extrapolate the results to
humans. Animal models are used for the two major forms of
diseases that occur in humans namely enteritis and systemic
typhoid. There are suitable models for each kind of infection.
The susceptible mouse strain BALB/c, lacking Nramp1 protein, is
used most commonly for Salmonella Typhimurium infections,
as the manifestation of disease in this model resembles closely to
that of humans. C57BL/6 is another common strain of mouse
used as a model system. In comparison to mouse, bovine model is
considerably more suitable to study enteritis.5 Rhesus monkeys are
also used for enteritis.5 Unfortunately, there is no ideal animal
model available for S. Typhi infection. The mouse model for
typhoid varies from that of human typhoid fever. For example, in
case of Typhimurium infection of mice, few genes, such as spv
operon, are essential that are not required by Typhi to infect
humans. Hence it remains a challenge to study the pathogenesis
of Typhi infection at physiological level. Although there is
provision of artificial systems like iron-treated mice for Typhi
infection,73 these are not preferred over the natural mouse model
for Typhimurium infection. Introduction of humanized mice has

Figure 2. Breaching of gut epithelia by Salmonella. The mode of entry of Salmonella in gut lumen varies according to type of cell encountered on the gut
epithelium. The M cells take up the bacteria by means of receptor mediated endocytosis, whereas dendritic cells engulf them by phagocytosis. The
membrane of epithelial cells is modified by the action of SPI1 to facilitate the entry of bacteria. Once inside the gut lumen, Salmonella is being taken up
by macrophages, T cells, B cells, neutrophils, etc.
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generated some hope. One such example, namely the humanized
immune system (HIS) mouse model, has the incorporation of
human immune cells into the reticuloendothelial system of
mouse.74 Typhoid can also be induced in chimpanzees by oral
infection.5 Also, C. elegans can serve as a potential animal model
for studying Salmonella pathogenicity.75

Different Outcomes of Infections

The peculiarity of Salmonella infection is depicted by its ability
to bring about different outcomes in different targets during the
course of infection. As described previously, each cell type targeted
by Salmonella meets a different fate. Similar effects are implied
in organs harboring these cells. In spleen, the highest population
of cells containing Salmonella are found to be monocytes and
neutrophils, whereas liver shows accumulation of macrophages,
both resulting in splenomegaly and hepatomegaly respectively.5,7

The gall bladder harbors Salmonella within the favorable

environment of the epithelial cells.76 Mesenteric lymph node
(MLN) prohibits dissemination by restricting the trafficking of
Salmonella containing DCs.77 The fact that B cells carry
Salmonella to bone marrow, gives a possible explanation for
Salmonella induced osteomyelitis.7 On the other hand, some
regions like gall stones serve as a platform for biofilm formation.78

Occasionally Salmonella crosses the blood brain barrier and causes
meningitis, mainly in infants.79 The ultimate stage of infection is
reached in the form of bacteremia which describes the presence of
bacteria in blood circulation.

Other Facets

Salmonella and cancer. It was observed more than 100 y ago that
bacterial infections can reduce tumor growth and since then
several studies have been conducted to use bacteria as a vector for
cancer therapy including Shigella flexneri, Listeria monocytogenes,
Lactococcus lactis, E. coli, etc.80 Researchers showed specific interest

Figure 3. Immune evasion strategies of Salmonella. The intracellular life-cycle of Salmonella includes the entry of the bacterium in the host cell, SCV
formation (whose pH changes from 6.5 to 5.5 depicted by change in the color of SCV compartment), evasion of host immune response and ultimately
host cell death by apoptosis. The text in dark blue shows the immune responses and processes within the host cell that take place during Salmonella
infection and text in dark red depicts the factors that help Salmonella to evade these immune responses.
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in Salmonella because of their preferential colonization in solid
tumors and the retardation of the tumor growth.81,82 Avirulent
strains of Salmonella can reduce the tumor size directly83 or
through the expressed therapeutic proteins84 in mouse models.
Different attenuated strains of Salmonella have been used for
cancer therapy85-90 and some of them made it to phase I clinical
trials9,52,53,57 as in case of metastatic melanoma in human patients,
attenuated Salmonella strain VNP20009 was used. Although it
showed only moderate tumor targeting.91 Type 3 secretion
system of Salmonella (T3SS) has been exploited for cancer
therapy as well as cancer vaccination.92 The siRNA against
MDR1 gene that codes for P-glycoprotein (ATP binding cassette
transporters), has been delivered through attenuated Salmonella
Typhi to revert multidrug-resistant tumor cells. Salmonella could
retard the tumor growth and the tumor cells have responded to
the chemotherapy after siRNA delivery through Salmonella.82

Obligate anaerobic bacteria are restricted to anaerobic region of
tumor and hence cannot target the vascular system, whereas
Salmonella, which is a facultative anaerobe, can target the
vascular system as well as cause vessel destruction and tumor
retardation.93

There are few reports addressing the specificity of Salmonella
toward tumor.94,95 High-throughput screening of Salmonella
mutants for their preferential growth in tumors showed that
STM3120 is even more efficient than aroA for the tumor
colonization and targeting.95 Twelve elements which are expressed
only in tumor but not in normal tissues have been predicted
using promoter trap library in Salmonella Typhimurium. These
elements are very specific and can be used to express therapeutic
proteins only in the tumor cells.96 From the phase I human trials,
it was observed that the bacterial strain could not localize in the
tumor cells in human, whereas the ability and colonization in the
tumor was very efficient in murine model.91 These studies clearly
show that there are specific host pathogen interactions which are
not well understood.

Salmonella and vaccine delivery. Apart from the tumor
therapy, Salmonella has also been known as a vector for vaccina-
tion because of the ability to induce immune response.97

Salmonella T3SS is widely exploited to deliver the antigen and
elicit immune response against cancer.92,98-100 Apart from cancer
Salmonella was also tested as a vaccine candidate for pneumonia
by delivering pneumococcal PspA antigen101 and against Helico-
bacter pylori by delivering A and B subunits of H. pylori urease.102

Although, attenuated Salmonella induces cell mediated immune
response (Th1 cells and IgG2a class switching) in cancer immu-
nity,92,99 mixed Th1 and Th2 responses have also been reported
in case of Salmonella mediated vaccination against H. pylori102

and Streptococcus pneumonia.101

Mathematical Models of Salmonella Infection

A number of mathematical models are developed in the field of
infection biology that help researchers to look into the infectious
diseases virtually. It is an interdisciplinary approach where
biological experiments are translated into equations used to
analyze and interpret the data easily.

Mathematical models for intracellular distribution and popu-
lation dynamics at whole cell level of Salmonella enterica have been
developed from experimental data. Wild-type isogenic tagged
strains were used to infect the same animal simultaneously to
check the spread of the bacteria in vivo and based on that the
model has been developed.103,104 The heterogeneous behavior of
Salmonella infection (early rapid replication of bacteria and local
spread of bacteria in later stage) was used in this model to
understand Salmonella spread in vivo.103 Mathematical model for
Salmonella infection of macrophages at single cell level explains
the possibility of two populations of macrophages. The variation
in infection at single cell level may be due to the heterogeneity in
the cell population.105 Apart from infection models, a mathemat-
ical model for Salmonella T3SS (SPI1) regulation by SirA through
HilA and HilC was developed and this model can be used to
predict the virulence and intermediate components in the
regulation in accordance with the experimental results.106

Mathematical models can provide some clue for antiviral
therapy against HIV by understanding the basic mechanism of
viral spread and immunity.107,108 Few models are only available
for bacterial infection and diseases and a number of models have
been developed for Salmonella dynamics.109-112 In future more
accurate mathematical models can be used for a better prediction
and treatment of the diseases.

Model for Other Intracellular Pathogens

Despite having stark differences in pathogenesis, many intra-
cellular pathogens resemble Salmonella in various aspects of
infection and strategies for survival within the host. Additionally,
it is more feasible to perform genetic engineering in Salmonella as
compared with other pathogenic bacteria. This virtue lets one to
exploit Salmonella to generate information for the comparatively
fastidious pathogens. For example, the gene noxR3 was shown to
be required by Mycobacterium for combating oxidative and
nitrosative stress by expressing noxR3 in S. Typhimurium.113 The
process of vacuole formation in case of intravacuolar pathogens
is similar to SCV formation up to certain stage, for instance,
Mycobacterium, Brucella, Legionella and Chlamydia exploit
endosomal pathway and avoid fusion with lysosome by various
strategies, one of them being the accumulation of cholesterol in
vacuolar membrane, as seen in Salmonella.2 Recently it was shown
that Salmonella effector protein SipC interacts with host protein
syntaxin6 to recruit LAMP1 on SCV in order to stabilize the
vacuole and prevent LAMP1 recruitment on lysosome,114 which
may hint at similar mechanism adapted by other intracellular
pathogens too, to maintain their intracellular niche. To quote
example of extrapolation of information obtained from work on
Salmonella to other pathogens, the characterization of arylamine
N-acetyltransferases (NATs) in Mycobacterium in inactivating the
antitubercular drug isoniazid was done based on the knowledge
of NATs in Salmonella.115 Thus it is plausible to utilize the
information obtained from the studies on SCV formation and
integrity for studying intracellular life of other intravacuolar
pathogens, hence fulfilling the purpose of Salmonella being a
model pathogen.
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Challenges

Although Salmonella represents the group of well-studied
intracellular pathogens, certain challenges do exist in the
research dealing with pathogenesis of Salmonella. The non-
availability of an animal model for S. Typhi presents the best
example. On the other hand, there is no mouse epithelial
cell-line available for studying intracellular life of S. Typhi-
murium within epithelial cells. Hence extrapolation of results
of S. Typhimurium to S. Typhi is not possible in all cases.
Moreover, the ability of Salmonella to survive in various
extreme conditions within cells like macrophages, neutrophils
and dendritic cells with the help of numerous virulence
proteins generates a complex network of functioning of all
these effector proteins. As a result, deciphering the underlying
mechanisms becomes quite challenging. Further, complete
understanding of the mechanism of evasion of lysosomal
fusion to SCV remains as one of the biggest challenges,
pointing at the requirement of better detection of intracellular
Salmonella by means of appropriate markers as well as better
imaging techniques. The development of such tools would
certainly lead us to the answers of many questions related to
Salmonella pathogenesis.

Conclusion

Salmonella displays most elegant mechanisms of manipulation of
the host. The diversity in the modes of evasion of Salmonella from
host immune system gives an overall view of major strategies
followed by most of the intracellular pathogens makes it a model
pathogen. Difference in pathogenesis of different serovars, Typhi
and Typhimurium, demonstrate the complicated lifestyle of a
pathogen that can be tuned according to the type of host.
Adaptation of such variable lifestyles is attributable to acquisition
of numerous virulence associated genes over millions of years. The
orchestrated action of these virulence proteins result in two major
modes of Salmonella infection, local gastroenteritis or systemic
typhoid. The latter imparts minimal damage to host providing
optimal conditions for survival of pathogen. Recent contradictions
of many established facts, such as spatiotemporal overlapping
expression of SPI1 and SPI2, survival within hostile environment
of neutrophils and dendritic cell mediated dissemination, describe
the challenges lying in future of Salmonella related studies. Apart
from being a successful pathogen, Salmonella has served to be
a useful system for various therapeutic and biotechnological
applications. This further paves the path for extensive research to
dissect the unknown aspects of Salmonella infection.
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