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Abstract We consider Hamilton-Jacobi equation ut+H(u, ux) = 0 in the quarter
plane and study initial boundary value problems with Neumann boundary condition
on the line x = 0. We assume that p → H(u, p) is convex, positively homogeneous
of degree one. In general, this problem need not admit a continuous viscosity
solution when s → H(s, p) is non increasing. In this paper, explicit formula for
a viscosity solution of the initial boundary value problem is given for the cases
s → H(s, p) is non decreasing as well as s → H(s, p) is non increasing.

Key words Hamilton-Jacobi equation, viscosity solution, Neumann boundary con-
dition.

1. Introduction
Let I ⊂ IR be an open interval and let Ω = I × (0,∞). Let H ∈ C(IR × IR),
u0 ∈ W 1,∞(I) and λ ∈ C(∂I × (0,∞)). Consider the following initial boundary
value problem for the Hamilton Jacobi equation:

ut +H(u, ux) = 0 in Ω
u(x, 0) = u0(x) for x ∈ I

∂u
∂x = λ on ∂I × (0,∞).

(1.1)

In the case of a pure initial value problem i.e., I = IR, when
∂H

∂u
≥ 0, then the

existence and uniqueness of viscosity solution of (1.1) is well studied by Crandall
and Lions [4, 7, 13]. In the case of a initial boundary value problem (1.1), then it
is not always possible to prescribe boundary condition on the boundary and hope
to have a solution and hence these boundary conditions has to be understood in a
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relaxed sense. Lions [13, 14] has discussed this problem in detail and showed the
existence and uniqueness of the solution.

When H(s, p) = H(p), H is super linear growth and convex in p, in fact one
can derive the explicit formula for the solution of (1.1). In the case of a pure initial
value problem i.e., I = IR, Hopf [8] has obtained an explicit formula for a vis-
cosity solution as a minimization over controlled paths of a certain functional with
controlled paths being straight lines. In the case of a quarter plane i.e., I = IR+,
problem was studied by Joseph and Gowda [10] and obtained an explicit formula
for a viscosity solution of (1.1) similar to Hopf’s formula. Here the controlled
paths being certain piecewise linear curves having atmost three linear curves. Using
explicit formula, Lax-Olenik in the case of pure initialvalue problem and Joseph-
Gowda [10] in the case of a quarter plane, entropy solution ϑ = ux of the following
scalar conservation law has been derived.

ϑt +H(ϑ)x = 0 in Ω

ϑ(x, 0) =
∂u0

∂x
(x) for x ∈ I

ϑ = λ on ∂I × (0,∞).
(1.2)

The problem (1.2) has also been studied by Lefloch [12] where a formula was
derived which contains a solution of a variational inequality which may not be solv-
able explicitly. Furthermore using the numerical scheme, Joseph and Gowda [11]
obtained a similar formula for a solution of (1.1) in the quarter plane when
H(p) = |p|.

Now what happens when H depends on “u” and p → H(u, p) is convex?.
In general, obtaining an explicit formula for a solution is quite difficult. For the

pure initiavalue problem, under the assumption
∂H

∂u
≥ 0, p → H(u, p) is convex,

positively homogeneous of degree one, Barron, Jensen and Liu [6] have obtained
an explicit formula for a viscosity solution.

If
∂H

∂u
is non positive, this problem is not well studied in the literature. In

general this problem admits discontinuous solution. In [1, 2, 3] explicit formulas
for viscosity solution is given in the case of pure initial value problem under the
assumptions either p → H(u, p) is convex and positively homogeneous of degree
greater than one or p → H(u, p) is convex, positively homogeneous of degree one
and finitely many oscillations in u.

Now the question is, under the same assumptions as above, does there exists
an explicit formula for a solution of initial boundary value problem (1.1)?. In this
paper, for the case p → H(u, p) is convex, positively homogeneous of degree one

and either
∂H

∂u
≥ 0 or ≤ 0 explicit formula for a viscosity solution is obtained for

initial boundary value problem. In section 2, we state our main results. In section
3, the necessary preliminaries are given. In section 4, we prove the result for the
case u → H(u, p) is non decreasing. In section 5, proof of the result for the case
u → H(u, p) is non increasing is given.
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2. Main Results

Hereafter we assume that u0 ∈ W 1,∞(IR+), λ ∈ C(IR+) and H satisfies:

(H0) : p → H(u, p) is convex, positively homogeneous of degree one and H(u, p)
> 0 for all p 	= 0. Assume that η is a diffeomorphism from IR onto IR where

η(u) =
∫ u

0

dθ

H(θ, 1)
. (2.1)

Difinition 2.1. (Admissible curves). Let 0 ≤ s < t and β ∈ C([s, t], IR+). Then β
is called an admissible curve if the following holds.

1. β consists of atmost three linear curves (Fig. 1a., Fig. 1b.).

2. Let s = t3 ≤ t2 ≤ t1 ≤ t0 = t be such that for i = 1, 2, 3, βi = β|[ti,ti−1]

be the linear parts of β. Then β2 = 0.

Represent an admisible curve β = {β1, β2, β3} and β̇ = (β̇1, β̇2, β̇3), where β̇i =
dβi

dθ
and |β̇| = max1≤i≤3

{
˙|βi|

}
. Let M > 0, x ∈ IR+, 0 ≤ s < t and define

c(x, s, t) =
{
β ∈ C([s, t], IR+);β(t) = x, β is an admissible curve

}
(2.2)

cM (x, s, t) =
{

β ∈ c(x, s, t); |β̇| ≤ M
}

, (2.3)

c(x, t) = c(x, 0, t), cM (x, t) = cM (x, 0, t). (2.4)

For a , b ∈ IR, denote a
∨

b = max(a, b). The main results are divided into two
parts.
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Part 2.1. Assume that H satisfies the following assumption.
(H1) u 
→ H(u, p) is non decreasing for each p.
Associated to H , let h be its quasi convex dual defined by

h(q) = inf {γ;H(γ, p) ≥ pq ∀|p| ≤ 1} . (2.5)

For (x, t) ∈ IR+ × IR+ and 0 ≤ s < t, β = (β1, β2, β3) ∈ c(x, s, t), define

ρ3(β) = η(h(β̇3)), (2.6)

ρ1(β) = η(h(β̇1)), (2.7)∫
β

λ+ =
∫
{β=0}

λ+(θ)dθ, (2.8)

with ρi(β) = −∞ if βi = φ. Then we have the following :

Theorem 2.1. Let (x, t) ∈ IR+ × IR+ and define

η(u(x, t)) = inf
β∈c(x,t)

{
η(u0(β(0)))

∨
ρ3(β)−

∫
β

λ+

} ∨
ρ1(β) . (2.9)

Then for any T > 0, u ∈ W 1,∞(IR+ × [0, T ]) and u is a viscosity solution of (1.1)
with I = IR+. Furthermore minimizer in (2.9) exist.

Part 2.2. Assume that H satisfies the following assumption.
(H2) u 
→ H(u, p) is non increasing for each fixed p.
Associated to H , let h be the quasi concave dual defined by

h(q) = sup {ν;H(ν, p) ≥ pq ∀ |p| ≤ 1} . (2.10)

Let M > 0, 0 ≤ s < t and (x, t) ∈ IR+ × IR+. For a function ϑ on IR+ × IR+,
define

A(ϑ, x, s, t) =
{

β ∈ c(x, s, t);ϑ(β(s), s) ≤ h(β̇3),

η(ϑ(β(s), s))− ∫
β λ+ ≤ η(h(β̇1))

} (2.11)

A(ϑ, x, s, t) =
{

β ∈ c(x, s, t);ϑ(β(s), s) < h(β̇3),

η(ϑ(β(s), s))− ∫
β λ+ < η(h(β̇1))

} (2.12)

AM (ϑ, x, s, t) =
{

β ∈ A(ϑ, x, s, t) : |β̇| ≤ M
}

AM (ϑ, x, s, t) =
{

β ∈ A(ϑ, x, s, t) : |β̇| ≤ M
}

,

{
A(ϑ, x, t) = A(ϑ, x, 0, t), A(ϑ, x, t) = A(ϑ, x, 0, t),
AM (ϑ, x, t) = AM (ϑ, x, 0, t), AM (ϑ, x, t) = AM (ϑ, x, 0, t),

(2.13)

with h(β̇i) = ∞ if βi = φ. Then we have the following.
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Theorem 2.2. Define

u(x, t) = inf η−1

{
η(u0(β(0)))−

∫
β

λ+;β ∈ A(u0, x, t)
}

, (2.14)

u(x, t) = inf η−1

{
η(u0(β(0)))−

∫
β

λ+, β ∈ A(u0, x, t)
}

. (2.15)

Let I = IR+. Then u is a lower semicontinuous function, u is an upper semicontin-
uous function, u∗ = u and u∗ = u. Furthermore u and u are viscosity solutions
of (1.1).

Remark 2.1. The assumption on η being diffeomorphism from IR onto IR is not
required. With a slight modification, all theorems are still valid except for the fact
that, in general, minimiser may not exist.

3. Preliminaries

In this section we recall some definitions and some known facts from [5, 6, 9 and
14].

Definition 3.1. Let Ω ⊂ IRn be a domain and V be a locally bounded function.
For x ∈ Ω define

V ∗(x) = limr→0 sup {V (z) : |x − z| ≤ r}
V∗(x) = limr→0 inf {V (z) : |x − z| ≤ r} .

Then it follows easily that V ∗ and V∗ are upper and lower semicontinuous functions
respectively. Also V∗ ≤ V ∗.
Definition 3.2. Let U be a locally bounded function in IR+ × IR+.
1. U is said to be a subsolution of (1.1) if for any (x0, t0) ∈ IR+ × IR+, ϕ ∈
C1(IR+×IR+) such that (x0, t0) is a local maximum for U∗−ϕ with U∗(x0, t0) =
ϕ(x0, t0). Then at (x0, t0) either ϕt + H(ϕ,ϕx) ≤ 0 or if x0 = 0 and ϕt +
H(ϕ,ϕx) > 0 then ϕx(x0, t0) ≥ λ(t0). Further more limt→0 U∗(x, t) ≤ u0(x).
2. U is said to be a super solution of (1.1) if for any (x0, t0) ∈ IR+ × IR+, ϕ ∈
C1(IR+× IR+) such that (x0, t0) is a local minimum for U∗−ϕ with U∗(x0, t0) =
ϕ(x0, t0). Then at (x0, t0), either ϕt + H(ϕ,ϕx) ≥ 0 or if x0 = 0 and ϕt +
H(ϕ,ϕx) < 0, then ϕx(x0, t0) ≤ λ(t0). Further more limt→0 U∗(x, t) ≥ u0(x).
3. U is said to be a viscosity solution of (1.1) if U is both sub and super solution
of (1.1).

Now recall some properties of quasiconvex (concave) dual of H .

Lemma 3.2. Let H satiefies (H0) of section 2. Then
(a) Suppose u 
→ H(u, p) is non decreasing and h be its quasi convex dual defined
by (2.5). Then h satisfies
(A1) h is a lower semicontinuous function. For any q1, q2 ∈ IR, t ∈ [0, 1], h(tq1+
(1− t)q2) ≤ max {h(q1), h(q2)} ,
(A2) h(0) = −∞, lim|q|→∞ h(q) =∞,
(A3) H(s, p) = sup {pq;h(q) ≤ s}.
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(b) Suppose u 
→ H(u, p) is non increasing and h be its quasi concave dual defined
by (2.10). Then
(A4) h is an upper semicontinuous function. For any q1, q2 ∈ IR, t ∈ [0, 1], h(tq1+
(1− t)q2) ≥ min {h(q1), h(q2)} ,
(A5) h(0) = +∞, lim|q|→∞ h(q) = −∞,
(A6) H(s, p) = sup {pq; s ≤ h(q)}.

Proofs of (A1) to (A3) follow from Theorem 2.1 and Lemma 2.2 of [6]. (A4)
to (A6) follow from (A1) to (A3) applied to the Hamiltonian H̃(s, p) = H(−s, p).

4. Proofs of Theorems

In this section we prove the Theorem 2.1 which proves explicit formula for the
solution given by (2.9) is a viscosity solution when s → H(s, p) is non decreasing.
In order to prove Theorem 2.1, first we prove the following Lemmas.

Lemma 4.1. (Existence of a minimizer) Let T > 0, 0 ≤ s < t ≤ T, x ∈ IR+. Let
ϑ : IR+ × IR+ → IR be a function such that |ϑ|T = supIR+×[0,T ] |ϑ(x, t)| < ∞.
Define

η(V (x, t)) = inf
β∈c(x,s,t)

{
η(ϑ(β(s), s))

∨
ρ3(β)−

∫
β

λ+

} ∨
ρ1(β). (4.1)

Then
(1) |V |T < ∞ and there exist M = M(ϑ, λ, T ) > 0 such that

η(V (x, t)) = inf
CM (x,s,t)

{
η(ϑ(β(s), s))

∨
ρ3(β)−

∫
β

λ+

} ∨
ρ1(β). (4.2)

(2) Suppose x 
→ ϑ(x, θ) is lower semicontinuous for each θ, then there exist a
minimizer β of (4.2).

Proof : Since η(±∞) = ±∞ and h(0) = −∞ , by taking β(θ) = x for θ ∈ [s, t]
to obtain η(V (x, t)) ≤ η(ϑ(x, s)) − ∫

β λ+ ≤ η(ϑ(x, s)). Hence V (x, t) ≤ |ϑ|T .
Also for any β ∈ c(x, s, t)
{

η(ϑ(β(s), s))
∨

ρ3(β)−
∫

β
λ+

} ∨
ρ1(β) ≥ η(ϑ(β(s), s))

−
∫

β
λ+ ≥ η(−|ϑ|T )− T |λ+|T ,

and hence |V |T < ∞. Since h(p) → ∞ as |p| → ∞ and hence can choose a
M > 0 such that whenever |β̇| ≥ M then either ρ1(β) > η(|V |T ) or ρ3(β) >
η(|ϑ|T ) + η(|V |T ) + T |λ+|T . In this case

(η(ϑ(β(s), s))
∨

ρ3(β)−
∫

β
λ+)

∨
ρ1(β) > η(|V |T )

and hence there exist M > 0 such that |β̇| ≤ M and (4.2) holds. This proves (1).
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Let {βk} be a minimizing sequence for (4.2). Since |β̇k| ≤ M and hence
there exist a subsequence still denoted by {βk} converging to β in W 1,∞. Since
x 
→ ϑ(x, θ) and p 
→ h(p) are lower semicontinuous functions, it follows that

(η(ϑ(β(s), s))
∨

ρ3(β)−
∫
β λ+)

∨
ρ1(β) ≥ η(V (x, t))

= limk→∞
{

η(ϑ(βk(s), s))
∨

ρ3(βk)−
∫
βk

λ+
}∨

ρ1(βk)
≥ (η(ϑ(β(s), s))

∨
ρ3(β)−

∫
β λ+)

∨
ρ1(β),

and hence β is a minimizer. This proves the Lemma. �

Lemma 4.2. (Dynamic programming principle) Let u be as in (2.9). Let x ∈ IR+

and 0 ≤ s < t , then

η(u(x, t)) = inf
β∈c(x,s,t)

(η(u(β(s), s))
∨

ρ3(β)−
∫

β

λ+)
∨

ρ1(β). (4.3)

Proof : Let η(ϑ(x, t)) denote the right hand side of (4.3). Let β = (β1, β2, β3) ∈
c(x, t) defined on the partition 0 = t3 ≤ t2 ≤ t1 ≤ t0 = t. Let β(1) = β|[0,s] ∈
c(β(s), s) and β(2) = β|[s,t] ∈ c(x, s, t).

Suppose t1 < s < t, then ρ3(β(2)) = −∞, ρ1(β(2)) = ρ1(β), ρ3(β(1)) =
ρ3(β) and ρ1(β(1)) = ρ1(β). Hence

η(ϑ(x, t)) ≤ η(u(β(2)(s), s))
∨

ρ1(β(2))
≤ (η(u0(β(1)(0)))

∨
ρ3(β(1))− ∫

β(1) λ+)
∨

ρ1(β(2))
= (η(u0(β(0)))

∨
ρ3(β)−

∫
β λ+)

∨
ρ1(β).

If t2 ≤ s ≤ t1, then ρ3(β(2)) = −∞, ρ1(β(2)) = ρ1(β), ρ1(β(1)) = −∞, ρ3(β(1))
= ρ3(β),

∫
β(1) λ+ +

∫
β(2) λ+ =

∫
β λ+. Hence

η(ϑ(x, t)) ≤ (η(u(β(2)(s), s))− ∫
β(2) λ+)

∨
ρ1(β(2))

≤ (η(u0(β(1)(0)))
∨

ρ3(β(1))− ∫
β(1) λ+ − ∫

β(2) λ+)
∨

ρ1(β(2))
= (η(u0(β(0)))

∨
ρ3(β)−

∫
β λ+)

∨
ρ1(β).

If 0 ≤ s < t2, then ρ1(β(2)) = ρ1(β), ρ3(β(1)) = ρ3(β), ρ1(β(1)) = −∞, ρ3(β(2))
= ρ3(β). Hence

η(ϑ(x, t)) ≤ (η(u(β(2)(s), s))
∨

ρ3(β(2))− ∫
β(2) λ+)

∨
ρ1(β(2))

≤ (η(u0(β(1)(0)))
∨

ρ3(β(1))
∨

ρ3(β(2))− ∫
β(2) λ+)

∨
ρ1(β(2))

= (η(u0(β(0)))
∨

ρ3(β)−
∫
β λ+)

∨
ρ1(β).

Now taking infimum over β to obtain η(ϑ(x, t)) ≤ η(u(x, t)) and hence ϑ(x, t) ≤
u(x, t). From Lemma 4.1, |ϑ|T < ∞ for any T > 0. Hence for every ε > 0, there
exist β ∈ c(x, s, t) and α ∈ c(β(s), s) such that

η(ϑ(x, t)) ≥ (η(u(β(s), s))
∨

ρ3(β)−
∫
β λ+)

∨
ρ1(β)− ε

η(u(β(s), s)) = (η(u0(α(0)))
∨

ρ3(α)−
∫
α λ+)

∨
ρ1(α).
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Suppose [t2, t1] 	= φ, [s2, s1] 	= φ (Fig. 2a.), then define γ = (γ1, γ2, γ3) by
γ1 = β1, γ2|[s2,t1] = 0, γ3 = α3 (Fig. 2b.). Then ρ1(γ) = ρ1(β), ρ3(γ) = ρ3(α)
and

∫
β λ+ +

∫
α λ+ ≤ ∫

γ λ+. Hence

η(ϑ(x, t)) ≥ (η(u(β(s), s))
∨

ρ3(β)−
∫
β λ+)

∨
ρ1(β)− ε

≥ (η(u(β(s), s))− ∫
β λ+)

∨
ρ1(β)− ε

≥ (η(u0(α(0)))
∨

ρ3(α)−
∫
α λ+ − ∫

β λ+)
∨

ρ1(β)− ε

≥ (η(u0(γ(0)))
∨

ρ3(γ)−
∫
γ λ+)

∨
ρ1(γ)− ε

≥ η(u(x, t))− ε.

Suppose [t2, t1] = φ, [s2, s1] 	= φ (Fig. 3a.), then define γ = (γ1, γ2, γ3) by

γ1(θ) =
x

t − s1
(θ − s1) for θ ∈ [s1, t], γ2 = α2, γ = α3 (Fig. 3b.). Since γ̇1 is a

convex combination of β̇ and α̇1 and hence ρ1(γ) ≤ ρ1(β)
∨

ρ1(α) if β̇ ≥ 0. Also
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ρ1(γ) ≤ ρ1(α) if β̇ < 0. Therefore

η(ϑ(x, t)) ≥ η(u(β(s), s))
∨

η(h(β̇))− ε

= (η(u0(α(0)))
∨

ρ3(α)−
∫
α λ+)

∨
ρ1(α)

∨
η(h(β̇))− ε

≥ (η(u0(γ(0)))
∨

ρ3(γ)−
∫
γ λ+)

∨
ρ1(γ)− ε

≥ η(u(x, t))− ε.

Similarly, if [t2, t1] 	= φ, [s2, s1] = φ and [t2, t1] = [s2, s1] = φ it follows that
η(ϑ(x, t)) ≥ η(u(x, t)) − ε. Since ε is arbitrary, it follows that ϑ(x, t) ≥ u(x, t)
and hence the Lemma. �

Lemma 4.3. (Lipschitz continuity) Let u be as in (2.9). Then u is a Lipschitz
continuous function on IR+ × [0, T ] for every T > 0.

Proof : Let 0 ≤ x2 ≤ x1 and 0 < t ≤ T . From ( 2) of Lemma 4.1, there exist a
β = (β1, β2, β3) ∈ c(x1, t) defined on the partition 0 = t3 ≤ t2 ≤ t1 ≤ t0 = t
such that

η(u(x1, t)) = (η(u0(β(0)))
∨

ρ3(β)−
∫

β
λ+)

∨
ρ1(β).

Suppose β is a line segment with β̇ ≤ 0. Then define γ(θ) = x2 − x1 + β(θ) ∈
c(x2, t). Hence

η(u(x2, t))− η(u(x1, t)) ≤ (η(u0(γ(0)))
∨

ρ3(γ)−
∫
γ λ+)

−η(u0(β(0)))
∨

ρ3(β) +
∫
β λ+

≤ |η(u0(γ(0)))− η(u0(β(0)))|
≤ M1M2|γ(0)− β(0)| = M1M2|x1 − x2| ,

where M1 and M2 are Lipschitz constants for η on [−|u0|∞, |u0|∞] and u0 respec-
tively.

Suppose β is not like above. Let t̃1 = t − (x2/β̇1) and define γ ∈ c(x2, t) as
follows :
(i) Let β2 	= φ, then

γ(θ) =

⎧⎨
⎩
(θ − t)β̇1 + x2 θ ∈ [t̃1, t]

0 θ ∈ [t2, t̃1]
β3(θ) θ ∈ [0, t2].

(ii) Let β2 = φ, then

γ(θ) =
{
(θ − t)β̇1 + x2 if θ ∈ [t̃1

∨
0, t]

0 if θ ∈ [0, t̃1
∨
0].

Clearly γ̇1 = β̇1, γ̇3 = β̇3, {β = 0} ⊂ {γ = 0} and |γ(0)− β(0)| ≤ |x1 − x2|.
Hence

η(u(x1, t))− η(u(x2, t)) ≤ (η(u0(γ(0)))
∨

ρ3(γ)−
∫
γ λ+)

∨
ρ1(γ)

−(η(u0(β(0)))
∨

ρ3(β)−
∫
γ λ+)

∨
ρ1(β)

≤ |η(u0(γ(0)))− η(u0(β(0)))|
≤ M1M2|γ(0)− β(0)| ≤ M1M2|x1 − x2|.
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In order to get the opposite inequality, let β = (β1, β2, β3) ∈ cM (x2, t) defined on
the partition 0 = t3 ≤ t2 ≤ t1 ≤ t0 = t such that

η(u(x2, t)) = (η(u0(β(0)))
∨

ρ3(β)−
∫
β λ+)

∨
ρ1(β)

≥ η(u0(β(0)))
∨

ρ3(β)−
∫
β λ+.

Now choose a p0 > 0 such that

η(h(p0)) ≤ η(−|u0|∞)− T |λ+|T . (4.4)

Case (i) : β̇1 ≤ p0.

Let t̃1 = t − x1

p0
and define γ ∈ c(x1, t) by

γ(θ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θ − t̃1

t − t̃1
x1 if t̃1 > 0, θ ∈ [t̃1, t] or if t̃1 ≤ 0, θ ∈ [0, t]

0 if t̃1 ≥ t1, θ ∈ [t1, t̃1]
β(θ) if t̃1 ≥ t1, θ ∈ [0, t1] or if t̃1 ∈ [t2, t1], θ ∈ [0, t̃1]

(θ − t̃1)β̇3 if t̃1 ∈ [0, t2], θ ∈ [0, t̃1].

Clearly γ̇1 = p0, γ̇3 = β̇3 if t̃1 > 0. Hence from (4.4)

η(u0(γ(0)))
∨

ρ3(γ)−
∫
γ λ+ ≥ η(−|u0|∞)− T |λ+|T

≥ η(h(p0)) = ρ1(γ) ,

and hence

η(u(x1, t)) ≤ (η(u0(γ(0)))
∨

ρ3(γ)−
∫
γ λ+)

∨
ρ1(γ)

= η(u0(γ(0)))
∨

ρ3(γ)−
∫
γ λ+ .

(4.5)

Let t̃1 ≥ t1, then β(0) = γ(0),
∫
β λ+ ≤ ∫

γ λ+, ρ3(β) = ρ3(γ). Therefore from
(4.5),

η(u(x2, t))− η(u(x1, t)) ≥ η(u0(β(0)))
∨

ρ3(β)
− ∫

β λ+ − η(u0(γ(0)))
∨

ρ3(γ) +
∫
γ λ+

≥ 0 ≥ −|x1 − x2| .

Let t̃1 ∈ [t2, t1], then β(0) = γ(0), ρ3(β) = ρ3(γ). Now
x2

t − t1
= β̇1 ≤ p0, hence

x2

p0
≤ t − t1. Therefore

η(u(x2, t))− η(u(x1, t)) ≥ − ∫
β λ+ +

∫
γ λ+ = − ∫ t1

t̃1
λ+ ≥ −|λ+|T (t1 − t̃1)

= −|λ+|T (t1 − t+
x1

p0
) ≥ −|λ+|T (x1 − x2)

p0
.
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Let t̃1 ∈ [0, t2] , then t − t2 ≤ x1

p0
, β̇3 = γ̇3, γ(0) = −t̃1β̇3 =

t̃1
t2

β(0). Since

β ∈ cM (x2, t) implies that
β(0)
t2

= |β̇3| ≤ M . Hence

|γ(0)− β(0)| =
β(0)
t2

(t2 − t̃1) ≤ M(t2 − t+
x1

p0
)

≤ M(t1 − t+
x1

p0
) ≤ M

p0
(x1 − x2),

t1 − t2 = t1 − t+ t − t2 ≤ −x2

p0
+ t − t̃1 =

x1 − x2

p0
.

η(u(x2, t))− η(u(x1, t)) ≥ η(u0(β(0)))
∨

ρ3(β)−
∫
β λ+ − η(u0(γ(0)))

∨
ρ3(γ)

≥ −M1M2|β(0)− γ(0)| − |λ+|T (t1 − t2)

≥ −[M1M2M + |λ+|T ] (x1 − x2)
p0

.

Let t̃1 ≤ 0. Then t ≤ x1

p0
, β(0) ≤ Mt2 ≤ M(t2 − t̃1) ≤ M

p0
(x1 − x2), γ(0) =

−t̃1

t − t̃1
x1 ≤ x1 − x2, t1 − t2 ≤ M

p0
(x1 − x2). Hence

η(u(x2, t))− η(u(x1, t)) ≥ η(u0(β(0)))
∨

ρ3(β)−
∫
β λ+ − η(u0(γ(0)))

∨
ρ3(γ)

≥ −|η(u0(β(0)))− η(u0(γ(0)))| − |λ+|T (t1 − t2)

≥ −M1M2(|β(0)|+ |γ(0)|)− |λ+|T (x1 − x2)
p0

≥ −(MM1M2 + |λ+|T )x1 − x2

p0
.

Case (ii) : β̇1 ≥ p0.

Then p0 ≤ β̇1 =
x2

t − t1
and hence

t − t1
x2

≤ 1
p0

. Let t̃1 = (1 − x1

x2
)t +

x1

x2
t1,

then t̃ < t1 and define γ ∈ c(x1, t) by

γ(θ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θ − t̃1

t − t̃1
x1 if θ ∈ [t̃1

∨
0, t]

0 if θ ∈ [t2, t̃1] and t̃1 ≥ t2
β(θ) if θ ∈ [0, t2] and t̃1 ≥ t2

(θ − t̃1)β̇3 if 0 ≤ t̃1 ≤ t2 .

Clearly γ̇1 = β̇1, γ̇3 = β̇3 if γ̇3 	= 0 and t1 − t̃1 = (
x1

x2
− 1)(t − t1) = (x1 −

x2))
t − t1

x2
≤ x1 − x2

p0
. Let t̃1 ∈ [t2, t1], then β(0) = γ(0), β̇1 = γ̇1, β̇3 = γ̇3.
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Hence

η(u(x2, t))− η(u(x1, t)) ≥ (η(u0(β(0)))
∨

ρ3(β)−
∫
β λ+)

∨
ρ1(β)

−(η(u0(γ(0)))
∨

ρ3(γ)−
∫
γ λ+)

∨
ρ1(γ)

≥ − ∫ t1
t̃1

λ+ ≥ −|λ+|T (t1 − t̃1) ≥ −|λ+|T (x1 − x2)
p0

.

Let 0 ≤ t̃1 ≤ t2, then β̇1 = γ̇1, β̇3 = γ̇3, γ(0) = −t̃1β̇3 =
t̃1
t2

β(0). Since

β ∈ cM (x2, t) and hence
β(0)
t2

= |β̇3| ≤ M . Hence

|γ(0)− β(0)| = β(0)
t2

(t2 − t̃1) ≤ M(t1 − t̃1) =
M

p0
(x1 − x2).

Hence

η(u(x2, t))− η(u(x1, t)) ≥ (η(u0(β(0)))
∨

ρ3(β)−
∫
β λ+)

∨
ρ1(β)

−(η(u0(γ(0)))
∨

ρ3(γ)−
∫
γ λ+)

∨
ρ1(γ)

≥ −|η(u0(β(0)))− η(u0(γ(0)))| − |λ+|T (t1 − t2)

≥ −M1M2|β(0)− γ(0)| − |λ+|T
p0

(x1 − x2)

≥ −[M1M2M + |λ+|T ]x1 − x2

p0
.

Let t̃1 ≤ 0, then β̇1 = γ̇1, γ(0) =
−t̃1

t − t̃1
x1 ≤ x1 − x2, β(0) ≤ Mt2 ≤

M(t1 − t̃1) ≤ M

p0
(x1 − x2). Hence

η(u(x2, t))− η(u(x1, t)) ≥ η(u0(β(0)))−
∫
β λ+ − η(u0(γ(0)))

≥ −M1M2(β(0) + γ(0))− |λ+|T (t1 − t2)

≥ −(M1M2M + p0 + |λ+|T )x1 − x2

p0
.

Combining all the above inequalities to obtain a constant M(T ) such that for
x1, x2 ∈ IR+, 0 ≤ t ≤ T,

|u(x1, t)− u(x2, t)| ≤ M(T )|x1 − x2| . (4.6)

From (4.6), x 
→ u(x, t) is continuous and hence from (2) of Lemma 4.1, for any
0 ≤ s < t ≤ T and x ∈ IR+, there exists a β ∈ cM (x, s, t) such that

η(u(x, t)) = (η(u(β(s), s))
∨

ρ3(β)−
∫

β

λ+)
∨

ρ1(β) . (4.7)

Since |β̇| ≤ M and hence |β(s)− x| ≤ M(t − s). Therefore

η(u(x, t))− η(u(x, s)) ≥ η(u(β(s), s))− η(u(x, s))− |λ+|T (t − s)
≥ −M1M(T )|β(s)− x| − |λ+|T (t − s)
≥ −[MM1M(T ) + |λ+|T ](t − s) .
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Now let γ(θ) = x for θ ∈ [s, t]. Then

η(u(x, t)) ≤ η(u(x, s))−
∫

γ
λ+ ≤ η(u(x, s)) .

Hence there exists a constant M̃(T ) such that |u(x, t)− u(x, s)| ≤ M̃(T )(t − s).
This together with (4.6) proves the Lemma. �

Proof of Theorem 2.1 : From Lemma 4.3, u ∈ W 1,∞(IR+×[0, T ]) for any T > 0.

Sub soulution : Suppose u is not a subsolution, then there exist (x0, t0) ∈ IR+ ×
IR+, μ > 0, ϕ ∈ C1(IR+ × IR+) such that u − ϕ has a local maximum at
(x0, t0), u(x0, t0) = ϕ(x0, t0) and at (x0, t0), ϕt+H(ϕ,ϕx) ≥ 4μ and ϕx(x0, t0)
< λ(t0) if x0 = 0. By continuity, there exist a δ > 0 such that at (x0, t0), ϕt +
H(ϕ−δ, ϕx) ≥ 3μ and ϕx(x0, t0) < λ(t0) if x0 = 0. Hence from (A3) there exist
a p such that at (x0, t0), ϕt+pϕx ≥ 2μ, h(p) ≤ ϕ(x0, t0)−δ, ϕx(x0, t0) < λ(t0)
if x0 = 0. Hence there exist a ball B centred at (x0, t0) such that in B

ϕt + pϕx ≥ μ, h(p) ≤ ϕ, ϕx < λ if x0 = 0. (4.8)

Suppose x0 > 0. By shrinking B if necessary, we can assume that B ⊂ IR+ ×
IR+. Now choose s0 such that for θ ∈ [s0, t0], (β(θ), θ) ∈ B where β(θ) =
p(θ − t0) + x0 ∈ c(x0, s0, t0). Then from (4.3) and (4.8) we have

η(ϕ(x0, t0)) = η(u(x0, t0)) ≤ η(u(β(s0), s0))
∨

ρ3(β)
∨

ρ1(β)
= η(u(β(s0), s0)

∨
h(p))

≤ η(ϕ(β(s0), s0)
∨

h(p))
≤ η(ϕ(β(s0), s0)) .

This implies that ϕ(x0, t0) ≤ ϕ(β(s0), s0). On the other hand, from (4.8)

ϕ(x0, t0)− ϕ(β(s0), s0) =
∫ t0
s0

d

dθ
ϕ(β(θ), θ)dθ

=
∫ t0
s0
(ϕt + pϕx)dθ ≥ μ(t0 − s0),

which is a contradiction.
Suppose x0 = 0. If p < 0, like in the above proof, choose β(θ) = p(θ − t0) ∈

c(x0, s0, t0) such that β(θ) ∈ B∩(IR+×IR+) and the contradiction follows. There-
fore assume that p > 0. Suppose ϕx(x0, t0) ≤ 0, then 2μ ≤ (ϕt + pϕx)(x0, t0) ≤
ϕt(x0, t0) and hence in B, μ ≤ ϕt. This implies that if s0 < t0 such that
(x0, s0) ∈ B, then μ(t0 − s0) ≤ ϕ(x0, t0) − ϕ(x0, s0). But from (4.3), taking
β(θ) = 0 for θ ∈ [s0, t0] to obtain ϕ(x0, t0) ≤ ϕ(x0, s0) which is a contradic-
tion. Now let ϕx(x0, t0) > 0 and hence λ(t0) > 0. By shrinking B if necessary,
we can assume that λ > 0. Choose s0, t0 such that {0} × [s0, t0] ⊂ B. Let
β(θ) = x0 for θ ∈ [s0, t0], then from (4.3) η(ϕ(x0, t0)) = η(u(x0, t0)) ≤
η(ϕ(x0, s0))−

∫ t0
s0

λ+ and hence

(η′(ϕ)ϕt)(x0, t0) = lims0→t0

η(ϕ(x0, t0))− η(ϕ(x0, s0))
t0 − s0

≤ − lims0→t0

1
t0 − s0

∫ t0

s0

λ+ = −λ+(t0) = −λ(t0),



212 ADIMURTHI AND G. D. VEERAPPA GOWDA

that is, (ϕt+λ(t0)H(ϕ, 1))(x0, t0) ≤ 0 and hence μ ≤ (ϕt+H(ϕ,ϕx))(x0, t0) =
(ϕt+ϕxH(ϕ, 1))(x0, t0) ≤ (ϕt+λH(ϕ, 1))(x0, t0) ≤ 0, which is a contradiction.
This proves that u is a subsolution.

Super Solution : Suppose u is not a super solution, then there exist (x0, t0) ∈
IR+ × IR+, μ > 0, ϕ ∈ C1(IR+ × IR+) such that u − ϕ has local minimum at
(x0, t0), u(x0, t0) = ϕ(x0, t0) and (ϕt+H(ϕ,ϕx))(x0, t0) ≤ −4μ, ϕx(x0, t0) >
λ(t0) if x0 = 0. Hence in a Ball B centred at (x0, t0), ϕt+H(ϕ,ϕx) ≤ −3μ, ϕx >
λ if x0 = 0 holds. Hence form (A6), in B,

{
h(p) ≤ ϕ implies that ϕt + pϕx ≤ −3μ
ϕx > λ if x0 = 0 .

(4.9)

From (2) of Lemma 4.1 and 4.3, for each s < t0, choose a minimizing curve
βs ∈ cM (x0, s, t0). For θ ∈ [s0, t0], |βs(θ)−x0| ≤ (t0−s)|β̇s| ≤ M(t0−s), hence
choose s1 < t0 such that for any s1 ≤ s < t0, (βs(θ), θ) ∈ B for θ ∈ [s, t0].
Claim : There exist an s0 ∈ [s1, t0] such that for almost all θ ∈ [s0, t0]

(ϕt + β̇s0ϕx)(βs0(θ), θ) ≤ −μ. (4.10)

Suppose not, then there exist a sequence sk → t0, θk ∈ [sk, t0] with βk =
βsk

, pk = β̇k(θk) such that −μ ≤ (ϕt + pkϕx)(βk(θk), θk) holds. By going to a
sub sequence assume that pk → p0. Hence by lower semi continuity

η(ϕ(x0, t0)) = η(u(x0, t0)) = limk→∞(η(u(βk(sk), sk))
∨

ρ3(βk)
− ∫

βk
λ+)

∨
ρ1(βk)

≥ limk→∞[η(ϕ(βk(sk), sk))
∨

ρ3(βk)
− ∫

βk
λ+)

∨
ρ1(βk)]

≥ η(ϕ(x0, t0)
∨

h(p)) ,

and hence ϕ(x0, t0) ≥ h(p). Hence from (4.9) we have −μ ≤ limk→∞(ϕt +
pkϕx)(βk(θk), θk) = (ϕt + pϕx)(x0, t0) ≤ −3μ, which is a contradiction and
hence the claim.

Let x0 > 0. Then by shrinking B if necessary such that B ⊂ IR+×IR+. Hence
βs0 is a line segment. Hence

η(ϕ(x0, t0)) = η(u(x0, t0)) = η(u(βs0(s0), s0)
∨

h(β̇s0))
≥ η(ϕ(βs0(s0), s0)

∨
h(β̇s0)),

hence ϕ(x0, t0) ≥ ϕ(βs0(s0), s0). Integrating (4.10) from s0 to t0 to obtain ϕ(x0, t0)−
ϕ(βs0(s0), s0) ≤ −μ(t0 − s0) which is a contradiction.

Let x0 = 0 and λ(t0) < 0. Shrinking B if necessary, assume that λ < 0 in B
and hence λ+ = 0 in B. Hence by (4.3) it follows that ϕ(x0, t0) ≥ ϕ(βs0(s0), s0)
and a contradiction is obtained from integrating (4.10) from s0 to t0.

Let x0 = 0 and λ(t0) ≥ 0. Then ϕx(x0, t0) > λ(t0) ≥ 0. Shrinking B if
necessary, can assume that ϕx > 0 in B ∩ (IR+ × IR+). Hence ϕ(x, s) ≥ ϕ(0, s).
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Therefore

η(ϕ(x0, t0)) = η(u(x0, t0)) = η(u(βs(s), s))
∨

ρ3(βs)−
∫
βs

λ+

≥ η(ϕ(βs(s), s))−
∫
βs

λ+

≥ η(ϕ(0, s))− ∫ t0
s λ+ .

Hence

(η′(ϕ)ϕt)(x0, t0) = lims→t
η(ϕ(x0, t0))− η(ϕ(0, s))

t0 − s
≥ −λ+(t0) = −λ(t0) .

That is 0 ≤ (ϕt + λ(t0)H(ϕ, 1))(x0, t0) ≤ (ϕt + ϕxH(ϕ, 1))(x0, t0) = (ϕt +
H(ϕ,ϕx))(x0, t0) ≤ −4μ which is a contradiction. This proves the theorem. �

5. Proof of Theorem 2.2.
In order to prove Theorem 2.2, we need the following Lemmas.

Lemma 5.1. Let T > 0 and ϑ be a real valued function defined on IR+ × IR+

such that |ϑ|T = sup {|ϑ(x, t)|;x ∈ IR, 0 ≤ t ≤ T} < ∞. Let x ∈ IR+ and
0 ≤ s < t ≤ T. Define

η(V (x, t)) = inf
{

η(ϑ(β(s), s))−
∫

β
λ+;β ∈ A(ϑ, x, s, t)

}
, (5.1)

η(V (x, t)) = inf
{

η(ϑ(β(s), s))−
∫

β
λ+;β ∈ A(ϑ, x, s, t)

}
. (5.2)

Then there exist a constant M = M(T, |ϑ|T , |λ|∞) such that |V T |+ |V T | < ∞,

η(V (x, t)) = inf
{

η(ϑ(β(s), s))−
∫

β
λ+;β ∈ AM (ϑ, x, s, t)

}
, (5.3)

ηV (x, t)) = inf
{

η(ϑ(β(s), s))−
∫

β
λ+;β ∈ AM (ϑ, x, s, t)

}
. (5.4)

(1) If x 
→ ϑ(x, θ) is lower semicontinous for each θ, then a minimizer β ∈
AM (ϑ, x, s, t) exist in (5.3).
(2) If x 
→ ϑ(x, θ) is continuous, then there exist a sequence βk ∈ AM (ϑ, x, s, t)
converging to β ∈ AM (ϑ, x, s, t) in W 1,∞ such that

η(V (x, t)) = η(ϑ(β(s), s))−
∫

β
λ+. (5.5)

Proof : From (A5), h(0) = +∞, h(q) → −∞, as |q| → ∞. Let β(θ) = x ∀θ ∈
[s, t], then h(β̇) = h(0) = ∞. Hence β ∈ A(ϑ, x, s, t) ∩ A(ϑ, x, s, t). There-
fore η(V (x, t)) ≤ η(ϑ(β(s), s)) − ∫

β λ+ ≤ η(|ϑ|T ) and similarly η(V (x, t)) ≤
η(|ϑ|T ). Now for any β ∈ A(ϑ, x, s, t), η(ϑ(β(s), s))−∫

β λ+ ≥ η(−|ϑ|T )−T |λ+|
and hence by taking infimum over β, η(V (x, t)) ≥ η(−|ϑ|T ) − T |λ+|T . This
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proves |V |T < ∞ and similarly |V |T < ∞. Since h(q) → −∞ as |q| → ∞, we
can choose a M > 0 such that on |q| ≥ M, h(q) < −|ϑ|T . Hence if β ∈ c(x, s, t)
such that |β̇| ≥ M , then either h(β̇1) < −|ϑ|T or h(β̇3) < −|ϑ|T . In either case
β 	∈ A(ϑ, x, s, t) and β 	∈ A(ϑ, x, s, t). This proves (5.3) and (5.4).

Let {βk} ⊂ AM (ϑ, x, s, t) be a minimizing sequence in (5.3). Extract a
subsequence converging to β ∈ cM (ϑ, x, s, t) in W 1,∞. From (A4) h is an
upper semicontinuous and x 
→ ϑ(x, θ) is lower semicontinous, it follows that
β ∈ AM (ϑ, x, s, t) and η(V (x, t)) = η(ϑ(β(s), s))− ∫

β λ+. This proves (1). Ap-

ply the similar argument for V (x, t) to conclude (5.5). The only difference is that
in this case β need not be in AM (ϑ, x, s, t). This proves the Lemma. �

Lemma 5.2 : Let u be as in (2.14). Let T > 0, x ∈ IR+, 0 ≤ s < t ≤ T.
Then |u|T < ∞, x 
→ u(x, θ) is lower semicontinuous and there exist an M =
M(|u|T , |λ+|T , T ) such that

u(x, t) ≤ inf η−1

{
η(u(β(s), s))−

∫
β

λ+;β ∈ AM (u
∗, x, s, t)

}
,

η(u∗(x, t)) ≤ inf
{

η(u∗(β(s), s))−
∫

β
λ+;β ∈ AM (u∗, x, s, t)

}
. (5.6)

Proof : Since |u0|T < ∞ then from Lemma 5.1, |uT | < ∞. Let (xm, tm) →
(x0, t0) as m → ∞. Since u0 is continuous, from (1) of Lemma 5.1 there exist a
M1 > 0 and a minimizer βm ∈ AM1

(u0, xm, tm) of (2.15). Hence by going to a
subsequence, let {βm} converges to β ∈ AM1

(u0, x0, t0) in W 1,∞. Hence

η(u(x0, t0)) ≤ η(u0(β(0)))−
∫
β λ+

= limm→∞
{

η(u0(βm(0)))−
∫
βm

λ+
}

= limm→∞η(u(xm, tm)),

and this proves u is lower semicontinuous. Next define ϑ1 by

η(ϑ1(x, t)) = inf
{

η(u(β(s), s))−
∫

β
λ+;β ∈ A(u, x, s, t)

}
(5.7)

Step 1 : ϑ1(x, t) ≥ u(x, t).
Since |u|T < ∞ and x 
→ u(x, θ) is lower semicontinuous, hence from (1) of

Lemma 5.1, there exist α = (α1, α2, α3) ∈ A(u, x, s, t) defined on the partition
s = t3 ≤ t2 ≤ t1 ≤ t0 = t and β = (β1, β2, β3) ∈ A(u0, α(s), s) defined on the
partition 0 = s3 ≤ s2 ≤ s1 ≤ s0 = s such that η(ϑ1(x, t)) = η(u(α(s), s)) −∫
α λ+, η(u(α(s), s)) = η(u0(β(0)))−

∫
β λ+. Hence

η(ϑ1(x, t)) = η(u0(β(0)))−
∫

α
λ+ −

∫
β

λ+). (5.8)
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Suppose [t2, t1] 	= φ, [s2, s1] 	= φ . Define γ = (γ1, γ2, γ3) ∈ c(x, t) by
γ1 = α1, γ2|[s2,t1] = 0, γ3 = β3. Then u0(γ(0)) = u0(β(0)) ≤ h(β̇3) =
h(γ̇3), η(u0(γ(0))) −

∫
γ λ+ = η(u0(β(0))) −

∫
γ λ+ ≤ η(u0(β(0))) −

∫
β λ+ −∫

α λ+ = η(u(α(s), s)) − ∫
α λ+ ≤ η(h(α̇1)) = η(h(γ̇1)). Hence γ ∈ A(u0, x, t)

and from (4.18) we have

η(ϑ1(x, t)) = η(u0(γ(0)))−
∫

α
λ+ −

∫
β

λ+ ≥ η(u0(γ(0)))

−
∫

γ
λ+ ≥ η(u(x, t)).

Hence ϑ1 ≥ u.

Suppose [t2, t1] 	= φ, [s2, s1] = φ. Then β is a line segment and
∫
β λ+ = 0.

Hence u(α(s), s) = u0(β(0)) and u0(β(0)) ≤ h(β̇). Now define γ = (γ1, γ2, γ3) ∈
c(x, t) by γ1 = α1, γ2 = α2, γ3(θ) =

t2 − θ

t2
β(0) for θ ∈ [0, t2]. Suppose

α̇3 ≤ β̇, then by construction h(α̇3) ≤ h(γ̇3) and hence u0(γ(0)) = u0(β(0)) =
u(α(s), s) ≤ h(α̇3) ≤ h(γ̇3) and η(u0(γ(0)))−

∫
γ λ+ = η(u(α(s), s))−∫

α λ+ ≤
η(h(α̇1)) = η(h(γ̇1)). Hence γ ∈ A(u0, x, t). If β̇ ≤ α̇3 ≤ 0, then clearly
h(β̇) ≤ h(γ̇3) and hence η(γ(0))−∫

γ λ+ = η(u(α(s), s))−∫
α λ+ ≤ η(h(α̇1)) =

η(h(γ̇1)). Hence γ ∈ A(u0, x, t). This implies that η(ϑ1(x, t)) = η(u0(β(0)))−∫
α λ+ = η(u0(γ(0)))−

∫
γ λ+ ≥ η(u(x, t)). Hence ϑ1(x, t) ≥ u(x, t).

Suppose [t2, t1] = φ, [s2, s1] = φ, then α and β are line segments with
∫
α λ+ =∫

β λ+ = 0, ϑ1(x, t) = u(α(s), s) = u0(β(0)) ≤ min(h(α̇), h(β̇)). Let γ(θ) =
θ

t
x + (1 − θ

t
)β(0) for θ ∈ [0, t], clearly γ ∈ c(x, t) and by quasi concavity

of h, min(h(α̇), h(β̇)) ≤ h(γ̇) and hence γ ∈ A(u0, x, t) with
∫
γ λ+ = 0.

Hence η(ϑ1(x, t)) = η(u0(β(0))) = η(u0(γ(0))) ≥ η(u(x, t)). This implies that
ϑ1(x, t) ≥ u(x, t). Suppose [t2, t1] = φ, [s2, s1] 	= φ. Then ϑ1(x, t) = u(α(s), s).

Define γ = (γ1, γ2, γ3) ∈ c(x, t) by γ1(θ) =
θ − s1

t − s1
x if θ ∈ [s1, t], γ2 =

β2, γ3 = β3. Hence u0(γ(0)) = u0(β(0)) ≤ h(β̇3) = h(γ̇3). Now u(α(s), s) ≤
h(α̇) and η(u(α(s), s) − ∫

β λ+ ≤ η(h(β1)). Hence η(u(α(s), s)) − ∫
β λ+ ≤

min(η(h(β̇1)), η(h(α̇))) ≤ η(h(γ̇)) since γ̇ is a convex combination of α̇ and β̇1.
Hence γ ∈ A(u0, x, t) and η(ϑ1(x, t)) = η(u0(β(0))) −

∫
β λ+ = η(u0(γ(0))) −∫

γ λ+ ≥ η(u(x, t)). Hence ϑ1(x, t) ≥ u(x, t) and this proves the step-1.

Step 2. Let (xm, tm) → (x, t) such that u∗(x, t) = limm→∞ u(xm, tm). Let β =
(β1, β2, β3) ∈ A(u∗, x, t, s) defined on the partition s = t3 ≤ t2 ≤ t1 ≤ t0 = t.

Now for each m , define β(m) = (β(m)
1 , β

(m)
2 , β

(m)
3 ) by β

(m)
1 (θ) =

θ − t1
tm − t1

xm if

θ ∈ [t1, t] and β(m)|[0,t1] = β. Then β(m) ∈ c(xm, s, tm) and β(m) → β in W 1,∞.
Hence by upper semicontinuity of u∗ and h it follows that there exist an m0 > 0
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such that for all m ≥ m0, βm ∈ A(u, xm, tm, s). Hence by the Step 1,

u∗(x, t) = limm→∞ u(xm, tm) ≤ limm→∞ ϑ1(xm, tm)
≤ limm→∞ η−1

{
η(u(βm(s), s))− ∫

βm λ+
}

≤ limm→∞ η−1
{

η(u∗(βm(s), s))− ∫
βm λ+

}
≤ η−1

{
η(u∗(β(s), s))− ∫

β λ+
}

.

Hence by taking infimum over all β and from (2) of Lemma 5.1 to obtain (5.6).
This proves the Lemma. �

Lemma 5.3. Let u be as in (2.15). Let T > 0, x ∈ IR+, 0 ≤ s < t ≤ T .
Then |u|T < ∞, x 
→ u(x, θ) is upper semicontinuous and there exist an M =
M(|u|T , |λ+|T , T ) such that

η(u(x, t)) ≥ inf
{

η(u(β(s), s))−
∫

β
λ+;β ∈ AM (u, x, s, t)

}
,

η(u∗(x, t)) ≥ inf
{

η(u∗(β(s), s))−
∫

β
λ+;β ∈ AM (u∗, x, s, t)

}
.

Proof : Since |u0|T < ∞ and hence Lemma 5.1 implies that |u|T < ∞. Let
(xm, tm) → (x, t) as m → ∞. Since u0 is continuous, from (2) of Lemma 5.1,
there exist M1 > 0 and a sequence β(k) ∈ AM1(u0, x, t) such that β(k) → β in

W 1,∞ and η(u(x, t)) = η(u0(β(0))) −
∫
β λ+. Let β(k) = (β(k)

1 , β
(k)
2 , β

(k)
3 ) be

defined on the partition s = t3k ≤ t2k ≤ t1k ≤ t0k = t. For m large, define βm,k

as follows :

Case (i) : x > 0. If [t2k, t1k] = φ, then β(k) is a line segment. Define βm,k ∈
c(xm, tm) the line segment parallel to β(k). In this case βm,k → β(k) as m →
∞ in W 1,∞ and β̇m,k = β̇(k) for all large m. If [t2k, t1k] 	= φ, let βm,k =
(βm,k

1 , βm,k
2 , βm,k

3 ) such that βm,k
1 is the line segment starting at (xm, tm) and

parallel to β
(k)
1 . Let (0, t1,m,k) be the end point of βm,k

1 . Then βm,k → β(k) in

W 1,∞, β̇m,k
i = β̇

(k)
i for i = 1, 2, 3 and

∫
βm,k λ+ → ∫

βk λ+ as m → ∞. βm,k
2 = 0

in [t2k, t1,m,k] if t1,m,k ≥ t2k and βm.k = β(k) in [0, t2k]. If t1,m,k ∈ [t2k, t1k], then
βm,k = β(k) in [0, t1,m,k]. If t1,m,k < t2k then βm,k

3 is the line segment parallel to

β
(k)
3 in [0, t1,m,k].

Case (ii) : x = 0. Choose p0 > 0 such that h(p0) > η(|u0|T ). If xm = 0, define
βm,k ∈ c(xm, tm) as follows. If β(k) is a line segment, then βm,k is the line seg-
ment parallel to βk. If β(k) is not a line segment, then if xm > 0, βm,k

1 (θ) =
θ − t2k

tm − t2k
xm for θ ∈ [t2k, tm] and βm,k = β(k) in [0, t2k]. If xm = 0, then

βm,k
2 (θ) = 0 in [t2k, tm] and βm,k = β(k) in [0, t2k]. Now for m large and

xm > 0, β̇m,k
1 =

xm

tm − t2k
< p0 and hence h(β̇m,k

1 ) ≥ h(p0) > η(|u0|T ) >

η(u0(βm,k(0))). Also βm,k → β(k) in W 1,∞.
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Now by construction, upper semicontinuity of h and by continuity of u0, it fol-
lows easily that there exist mk > 0 such that for all m ≥ mk, β

m,k ∈ A(u0, xm, tm).
Hence

limm→∞η(u(xm, tm)) ≤ limk→∞ limm→∞
{

η(u0(βm,k(0)))− ∫
βm,k λ+

}
= limk→∞ η(u0(β(k)(0)))− ∫

βk λ+

= η(u0(β(0)))−
∫
β λ+

= η(u(x, t)).

This proves that x 
→ u(x, t) is upper semicontinuous.

Claim 1 : Let γ = (γ1, γ2, γ3) ∈ A(u0, x, t) defined on the partition 0 = t3 ≤
t2 ≤ t1 ≤ t0 = t and α = γ|[s,t] and β = γ|[0,s]. Then α ∈ A(u, x, s, t) and
β ∈ A(u0, α(s), s).

Since γ ∈ A(u0, x, t), hence

u0(γ(0)) < h(γ̇3), η(u0(γ(0)))−
∫

γ
λ+ < η(h(γ̇1)). (5.9)

Case (i) : [t2, t1] 	= φ.

Let s ∈ (t1, t) then γ̇1 = α̇ = β̇1, γ̇3 = β̇3,
∫
γ λ+ =

∫
β λ+. Hence from

(4.19) η(u0(β(0))) −
∫
β λ+ < η(h(β̇1)), u0(β(0)) < h(β̇3) and hence β ∈

A(u0, α(s), s). η(u(β(s), s)) ≤ η(u0(β(0))) −
∫
β λ+ < η(h(β̇1)) = η(h(α̇)),

implies that u(α(s), s) = u(β(s), s) < h(α̇1). Hence α ∈ A(u, x, s, t). Let
s ∈ [t2, t1], then γ̇1 = α̇1, γ̇3 = β̇3,

∫
α λ+ +

∫
β λ+ =

∫
γ λ+, β1 = φ, α3 = φ.

Hence from (4.19) u0(β(0)) < h(β̇3) implies that β ∈ A(u0, α(s), s). Hence
η(u(α(s), s))− ∫

α λ+ ≤ η(u0(β(0)))−
∫
β λ+ − ∫

α λ+ = η(u0(γ(0)))−
∫
γ λ+ <

h(α̇1). Hence α ∈ A(u, x, s, t). Let s ∈ [0, t2). Then γ̇1 = α̇1, γ̇3 = α̇3 =
β̇, β1 = β2 = φ. Hence from (4.19) β ∈ A(u0, α(s), s) and hence η(u(α(s), s)) ≤
η(u0(β(0)). This implies that η(u(α(s), s)) − ∫

α λ+ ≤ η(u0(β(0))) −
∫
α λ+ =

η(u0(γ(0)))−
∫
γ λ+ < η(h(γ̇1)) = η(h(α̇1)). Hence α ∈ A(u, x, s, t).

Case (ii) : [t2, t1] = φ.

Then α, β, γ are line segments. If γ̇ = 0 then α̇ = β̇ = 0. Hence α ∈ A(u0, x, s, t),
β ∈ A(u, α(s), s) since h(0) =∞. Suppose γ̇ < 0, then

∫
α λ+ = 0, α̇ = β̇ = γ̇ <

0 and u0(β(0)) = u0(γ(0)) < h(γ̇) = h(β̇). Hence β ∈ A(u0, α(s), s) and this
implies that η(u(α(s), s)) ≤ η(u0(β(0))). Therefore u(α(s), s) ≤ u0(β(0)) <
h(β̇) = h(α̇). Hence α ∈ A(u, x, s, t).

Suppose γ̇ > 0, then α̇ = β̇ = γ̇,
∫
γ λ+ = 0 and η(u0(β(0))) < η(h(γ̇)) =

η(h(β̇)). Hence β ∈ A(u0, α(s), s) and η(u(α(s), s)) ≤ η(u0(β(0))) < η(h(α̇)).
Hence α ∈ A(u, x, s, t). This proves the claim.

From the claim it follows that the set
D =

{
(α, β);α = γ|[s,t], β = γ|[0,s], γ ∈ A(u0, x, t)

}

⊂ {
(α, β);α ∈ A(u, x, s, t), β ∈ A(u0, α(s), s)

}
.
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Hence if we define ϑ1(x, t) as follows, then from (5.4)

η(ϑ1(x, t)) = inf
{
η(u(α(s), s))− ∫

α λ+;α ∈ A(u, x, s, t)
}

= infα
{
infβ

{
η(u0(β(0)))−

∫
β λ+;β ∈ A(u0, α(s), s)

}

− ∫
α λ+;α ∈ A(u, x, s, t) }

≤ inf
{

η(u0(β(0)))−
∫
α λ+ − ∫

β λ+; (α, β) ∈ D
}

= inf
{

η(u0(γ(0)))−
∫
γ λ+; γ ∈ A(u0, x, t)

}

= η(u(x, t)).
(5.10)

Hence the first inequality of the Lemma.
Let (xk, tk) → (x, t) such that u∗(x, t) = limk→∞ u(xk, tk). Let ε > 0,

from (5.10) choose β(k) ∈ AM (u, xk, s, tk) and k0 > 0 such that for all k ≥ k0

η(u∗(x, t)) ≥ η(u(xk, tk))− ε/2 (5.11)

η(u(xk, tk)) > η(u(β(k)(s), s))−
∫

β(k)

λ+ − ε/2. (5.12)

Extract a subsequence still denoted by β(k) converging to β in W 1,∞. Then

u∗(β(s), s) ≤ limk→∞u∗(β(k)(s), s)
≤ limk→∞u(β(k)(s), s)
≤ limk→∞h(β̇(k)

3 ).
≤ h(β̇3),

η(u∗(β(s), s))−
∫
β λ+ ≤ limk→∞

{
η(u∗(β(k)(s), s)− ∫

β(k) λ+
}

≤ limk→∞{η(u(βk(s), s))− ∫
β(k) λ+}

≤ limk→∞η(h(β̇1
(k)
))

≤ η(h(β̇1)).

Hence β ∈ A(u∗, x, s, t) and from (5.11) and (5.12)

η(u∗(x, t)) ≥ limk→∞ η(u(xk, tk))− ε/2
≥ limk→∞(η(u(β(k)(s), s))− ∫

βk λ+)− ε

≥ limk→∞(η(u∗(β(k)(s), s))− ∫
βk λ+)− ε

≥ (η(u∗(β(s), s))−
∫
β λ+)− ε

≥ inf
{

η(u∗(γ(s), s))−
∫
γ λ+; γ ∈ AM (u∗, x, s, t)

}
− ε.

Since ε is arbitrary and hence the Lemma follows. �
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Lemma 5.4. Let u and u be as in (2.14) and (2.15) respectivly. Then u∗ = u and
u∗ = u.

Proof : Proof is divided into three steps.

Step 1 : Let α > 1 and {qk} be a bounded sequence. Then limk→∞ h(αqk) <
limk→∞h(qk).

Suppose not, then let for a subsequence still denoted by {qk} such that

qk → q0, lim
k→∞

h(αqk) = lim
k→∞

h(qk) = η.

Choose |pk| = |p̃k| = 1 such that for all |p| = 1
(i) H(h(qk), pk) = qkpk, H(h(qk), p) ≥ qkp
(ii) H(h(αqk), p̃k) = αqkp̃k, H(h(αqk), p) ≥ αqkp

Again going to a subsequence, can assume that pk → p0, p̃k → p̃0 as k → ∞.
Then by continuity of H, q0p0 = H(η, p0) = limk→∞ H(h(αqk), p0) ≥ αq0p0.
Since H(η, p0) > 0, it follows that α ≤ 1 which is a contradiction. This proves
step 1.

Step 2 : Let τ > t. Then u(x, t) ≥ u(x, τ).
Let β = (β1, β2, β3) ∈ A(u0, x, t) defined on the partition 0 = t3 ≤ t2 ≤ t1 ≤

t0 = t be a minimiser for u. Then η(u(x, t)) = η(u0(β(0)))−
∫
β λ+, η(u0(β(0)))−∫

β λ+ ≤ η(h(β̇1)) and u0(β(0)) ≤ h(β̇3). Let γ = (γ1, γ2, γ3) ∈ A(u0, x, τ) be
defined as follows.

Case (i) : Suppose u0(β(0)) < h(β̇3). Then γ ∈ A(u0, x, τ) is given by

γ1(θ) = x+ (θ − τ)
x

τ − t1
if θ ∈ [t1, τ ]

γ2(θ) = β2(θ) if θ ∈ [t2, t1]
γ3(θ) = β3(θ) if θ ∈ [0, t2].

This implies u0(γ(0)) = u0(β(0)) < h(β̇3) = h(γ̇3), η(u0(γ(0))) −
∫
γ λ+ =

η(u0(β(0))−
∫
β λ+ ≤ η(h(β̇1)) = η

(
h

(
x

t − t1

))
= η

(
h

(
x

τ − t1

τ − t1
t − t1

))
<

η

(
h

(
x

τ − t1

))
, by Step 1. Hence γ ∈ A(u0, x, τ) and u(x, t) ≥ u(x, τ).

Case (ii) : Suppose u0((β(0)) = h(β̇3). Then

η

(
h

(−β(0)
t2

))
− ∫ t1

t2
λ+ = η(u0(β(0))−

∫
β λ+

≤ η(h(β̇1))

< η

(
h

(
x

τ − t1

))
.

Let A =
{

μ;μ < t1, η

(
h

(−β(0)
μ

))
− ∫ t1

μ λ+ < η

(
h

(
x

τ − t1

))}
. h is an

upper semicontinuous function implies A is open and hence there exists ε0 such
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that ∀μ ∈ [t2, t2 + ε0), η

(
h

(
−β(0)

μ

))
− ∫ t1

μ λ+ < η

(
h

(
x

τ − t1

))
. Let

μ ∈ (t2, t2 + ε0). Define now γ by

γ1(θ) = x+ (θ − τ)
x

τ − t1
if θ ∈ [t1, τ ]

γ2(θ) = 0 if θ ∈ [μ, t1]

γ3(θ) = β(0) +
−β(0)

μ
θ if θ ∈ [0, μ].

Then u0(γ(0)) = u0(β(0)) = h

(
−β(0)

t2

)
= h

(
−β(0)

μ

μ

t2

)
< h

(
−β(0)

μ

)
=

h(γ̇3) by Step 1. Hence

η(u0(γ(0))−
∫

γ
λ+ = η(u0(β(0))−

∫ t1

μ
λ+

< h

(
−β(0)

μ

)
−

∫ t1

μ
λ+ < h(γ̇3).

This implies γ ∈ A(u0, x, τ). Hence u(x, t) ≥ u(x, τ).

Step 3 : Let Br(x, t) be a ball centered at (x, t) with radius r. Let t > 0 and let
tk < t and tk → t. Then from step (2)

u∗(x, t) = limr→0 supBr
u(z)

≥ limk→∞ u(x, tk) ≥ u(x, t).

On the other hand u ≤ u and hence u∗(x, t) ≤ u(x, t), implies that u∗(x, t) =
u(x, t). Similarly u∗ = u. This proves the Lemma. �

Lemma 5.5. (Dynamic programming principle) Let u and u be defined as in (2.16)
and (2.17) respectively. Then

u(x, t) = inf η−1

{
η(u(β(s), s))−

∫
β

λ+;β ∈ AM (u, x, s, t)
}

,

u(x, t) = inf η−1

{
η(u(β(s), s))−

∫
β

λ+;β ∈ AM (u, x, s, t)
}

.

Proof : Proof follows from Lemma 5.2, Lemma 5.3 and Lemma 5.4. �

Proof of Theorem 2.2 : Let 0 < t ≤ T and x ∈ IR+. From (1) and (2) of
Lemma 4.4, there exist M(T ) > 0, α(t), β(t) ∈ CM(T )(x, t) such that η(u(x, t))
= η(u0(β(t)(0)))−∫

β(t) λ+, η(u(x, t)) = η(u0(α(t)(0)))−∫
α(t) λ+. Now |(x, x)−

(α(t), β(t))| = | ∫ t
0 (α̇

(t)(θ), β̇(t)(θ)) dθ| ≤ M(T )t. This implies that
limt→0(u(x, t), u(x, t)) = (u0(x), u0(x)).
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Sub solution : Suppose u is not a sub solution. Then there exist (x0, t0) ∈ (IR+ ×
IR+), μ > 0, ϕ ∈ C1(IR+ × IR+) such that u∗(x0, t0) = ϕ(x0, t0), u∗ − ϕ has
local maximum at (x0, t0) and at (x0, t0), ϕt +H(ϕ,ϕx) ≥ 4μ and ϕx(x0, t0) <
λ(t0) if x0 = 0. By continuity, there exist δ > 0 such that at (x0, t0), ϕt+H(ϕ+
δ, ϕx) ≥ 3μ, ϕx(x0, t0) < λ(t0) if x0 = 0. Hence from (A6) there exist a p such
that at (x0, t0), ϕt + pϕx ≥ 2μ, ϕ(x0, t0) + δ ≤ h(p) and ϕx(x0, t0) < λ(t0)
if x0 = 0. Hence there exist a ball B around (x0, t0) such that for all (x, t) ∈
B ∩ (IR+ × IR+),

ϕt + pϕx ≥ μ, ϕ ≤ h(p), ϕx < λ if x0 = 0. (5.13)

Suppose x0 > 0. Then by shrinking B if necessary, can assume that B ⊂
IR+ × IR+. Let β(θ) = p(θ− t0)+x0 and choose s0 < t0 such that (β(θ), θ) ∈ B
for θ ∈ [s0, t0]. Since u∗ ≤ ϕ ≤ h(p) = h(β̇) and

∫
β λ+ = 0, it follows from (5.6)

that ϕ(x0, t0) = u∗(x0, t0) ≤ u∗(β(s0), s0) ≤ ϕ(β(s0), s0). On the other hand
from (5.13)

ϕ(x0, t0)− ϕ(β(s0), s0) =
∫ t0
s0

d

dθ
ϕ(β(θ), θ) dθ

=
∫ t0
s0
(ϕt + pϕx)(β(θ), θ) dθ

≥ μ(t0 − s0) > 0,

which is a contradiction.
Suppose x0 = 0. If p < 0, let β(θ) = p(θ − t0) + x0 and choose s0 < t0

such that (β(θ), θ) ∈ B ∩ (IR+ × IR+) for θ ∈ [s0, t0]. Since {β = 0} = {x0} and
hence

∫
β λ+ = 0. Since u∗ < ϕ ≤ h(p) = h(β̇) and hence as in earlier situation

we obtain a contradiction.
Let p ≥ 0. Suppose ϕx(x0, t0) ≤ 0, then 2μ ≤ (ϕt + pϕx)(x0, t0) ≤

ϕt(x0, t0). By shrinking B if necessary it follows that ϕt ≥ μ in B ∩ (IR+ × IR+)
and hence ϕ(x0, t0) ≥ ϕ(x0, s0) + μ(t0 − s0) for s0 < t0 sufficiently close to t0.
Let p1 < 0 with ϕ < h(p1) in B ∩ (IR+ × IR+) and β(θ) = p1(θ − t0) + x0, then∫
β λ+ = 0 and u∗ ≤ ϕ ≤ h(p1). Hence from (4.16), φ(x0, t0) = u∗(x0, t0) ≤

u∗(β(s0), s0) ≤ ϕ(β(s0), s0). Letting p1 → 0 to obtain ϕ(x0, t0) ≤ ϕ(x0, s0)
which is a contradiction. Suppose ϕx(x0, t0) > 0 then λ(t0) > 0. Let β(θ) = x0

for θ ∈ [s0, t0]. Since h(β̇) = h(0) = ∞, hence β ∈ A(u∗, x0, s0, t0) and hence
from (4.16)

η(ϕ(x0, t0)) = η(u∗(x0, t0)) ≤ η(u∗(x0, s0))−
∫ t0
s0

λ+

≤ η(ϕ(x0, s0))−
∫ t0
s0

λ+.

This implies that

η′(ϕ(x0, t0))ϕt(x0, t0) = lims0→t0

η(ϕ(x0, t0))− η(ϕ(x0, s0))
t0 − s0

≤ −λ+(t0) = −λ(t0).
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Since η′(u) =
1

H(u, 1)
it follows from the above inequality that at (x0, t0), 4μ ≤

φt + H(ϕ,ϕx) = ϕt + ϕxH(ϕ, 1) ≤ (ϕt + λH(ϕ, 1))(x0, t0) ≤ 0, which is a
contradiction. This proves that u is a subsolution.

Super solution : Suppose u is not a super solution. Then there exist (x0, t0) ∈
(IR+ × IR+), μ > 0, ϕ ∈ C1(IR+ × IR+) such that u∗(x0, t0) = ϕ(x0, t0), u∗−ϕ
has local minima at (x0, t0) and at (x0, t0), ϕt + H(ϕ,ϕx) ≤ −4μ, ϕx(x0, t0) >
λ(t0) if x0 = 0. Hence in a ball B around (x0, t0), ϕt + H(ϕ,ϕx) ≤ −3μ and
ϕx > λ if x0 = 0. Hence from (A6), for (x, t) ∈ B ∩ (IR+ × IR+),

if ϕ(x, t) ≤ h(p), then ϕt + pϕx ≤ −3μ and ϕx > λ if x0 = 0. (5.14)

From (1) of Lemma 5.1, let for each s < t0, βs be a minimizer for

η(u(x, t)) = inf
{

η(u∗(β(s), s))−
∫

β
λ+; β ∈ AM (u∗, x, s, t)

}
, (5.15)

then from Lemma 5.3 we have

η(ϕ(x0, t0)) = η(u∗(x0, t0))
≥ η(u∗(βs(s), s))−

∫
βs

λ+

≥ η(ϕ(βs(s), s))−
∫
βs

λ+,

η(ϕ(x0, t0))− η(ϕ(x0, s)) ≥ η(ϕ(βs(s), s))− η(ϕ(x0, s))−
∫

βs

λ+. (5.16)

Let x0 > 0. Without loss of generality assume that B ⊂ (IR+× IR+) and there
exist a s0 < t0 such that (βs(θ), θ) ∈ B for all s ∈ [s0, t0], θ ∈ [s, t0]. Furthermore
βs(θ) = ps(θ − t0) + x0 and {βs = 0} = φ. As s → t0, let ps → p0. Divide
(t0 − s) in (5.16) and letting s → t0, to obtain η′(ϕ(x0, t0))(ϕt + p0ϕx)(x0, t0) ≥
0, ϕ(x0, t0) = lims→t0 ϕ(βs(s), s) ≤ lims→t0 u∗(βs(s), s) ≤ lims→t0 h(ps) ≤
h(p0). This contradicts (5.14).

Let x0 = 0. If βs = x0+ps(θ−t0), then ps ≤ 0. Let ps → p0 as s → t0. Divide
by (t0−s) and letting s → t0 in (5.16) to obtain η′(ϕ(x0, t0))(ϕt+p0ϕx)(x0, t0) ≥
−λ+(t0) and ϕ(x0, t0) ≤ h(p0). If λ(t0) ≤ 0, then (ϕt + p0ϕx)(x0, t0) ≥ 0
which contradicts (5.14). If λ(t0) ≥ 0, then ϕx(x0, t0) > λ(t0) ≥ 0 hence 0 ≤
(H(ϕ, 1)λ(t0) + (ϕt + p0ϕx))(x0, t0) ≤ (H(ϕ, ϕx) + ϕt)(x0, t0) ≤ −4μ which
is a contradiction.

Suppose βs is not a line segment, let βs = (φ, β2s, β3s) defined on the parti-
tion s = s3 < s2 < s1 = s0 = t0. Let β3s(θ) = ps(θ − s1) for θ ∈ [s, s2]
with ϕ(βs(s), s) ≤ h(β̇3s) = h(ps) and ps < 0. Let ps → p0 as s → t0. Sup-
pose λ(t0) ≥ 0, then ϕx(x0, t0) > 0 and hence in B ∩ (IR+ × IR+), ϕx ≥ 0.
This implies that ϕ(βs(s), s) ≥ ϕ(x0, s). Hence from Lemma 5.3, η(ϕ(x0, t0)) =
η(u∗(x0, t0)) ≥ η(ϕ(βs(s), s))−

∫ t0
s λ+ ≥ η(ϕ(x0, s))−

∫ t0
s λ+. Divide by t0−s

and letting s → t0 to obtain η′(ϕ(x0, t0))ϕt(x0, t0) ≥ −λ+(t0) = −λ(t0). That
is 0 ≤ (ϕt + λ(t0)H(ϕ, 1))(x0, t0), but (ϕt + ϕxH(ϕ, 1))(x0, t0) ≤ −4μ which
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is a contradiction. Suppose λ(t0) < 0, then λ+ = 0 hence from Lemma 5.3,
ϕ(x0, t0) = u∗(x0, t0) ≥ u∗(βs(s), s) ≥ ϕ(βs(s), s). Hence 0 ≤ lims→t0
ϕ(x0, t0)− ϕ(βs(s), s)

t0 − s
= ϕt+ϕx. Suppose ϕx ≤ 0, then 0 ≤ (ϕt+ϕx)(x0, t0) ≤

ϕt(x0, t0) ≤ (ϕt + H(ϕ,ϕx))(x0, t0) ≤ −4μ, which is a contradiction. If ϕx >
0, then ϕ(x0, t0) > ϕ(βs(s), s) ≥ ϕ(x0, s) and hence ϕt(x0, t0) ≥ 0. But
ϕt(x0, t0) ≤ (ϕt + H(ϕ,ϕx))(x0, t0) ≤ −4μ which is a contradiction. This
proves that u is a super solution. Since u∗ = u and u∗ = u and hence u, u are
viscosity solutions of (1.1). This completes the proof of Theorem 2.2. �
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