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Abstract We consider Hamilton-Jacobi equation u; + H (u, u,) = 0 in the quarter
plane and study initial boundary value problems with Neumann boundary condition
on the line x = 0. We assume that p — H (u, p) is convex, positively homogeneous
of degree one. In general, this problem need not admit a continuous viscosity
solution when s — H (s, p) is non increasing. In this paper, explicit formula for
a viscosity solution of the initial boundary value problem is given for the cases
s — H(s, p) is non decreasing as well as s — H (s, p) is non increasing.

Key words Hamilton-Jacobi equation, viscosity solution, Neumann boundary con-
dition.

1. Introduction

Let I C IR be an open interval and let Q@ = I x (0,00). Let H € C(IR x IR),
ug € Wh**(I)and A € C(dI x (0,00)). Consider the following initial boundary
value problem for the Hamilton Jacobi equation:

ur + H(u, uy) = 0 in Q
u(z,0) = wo(x) for zel (1.1)
% = A on 91 x (0,00).

oOH
In the case of a pure initial value problem i.e., I = IR, when — > 0, then the

existence and uniqueness of viscosity solution of (1.1) is well studqiied by Crandall
and Lions [4, 7, 13]. In the case of a initial boundary value problem (1.1), then it
is not always possible to prescribe boundary condition on the boundary and hope
to have a solution and hence these boundary conditions has to be understood in a
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relaxed sense. Lions [13, 14] has discussed this problem in detail and showed the
existence and uniqueness of the solution.

When H(s,p) = H(p), H is super linear growth and convex in p, in fact one
can derive the explicit formula for the solution of (1.1). In the case of a pure initial
value problem i.e., I = IR, Hopf [8] has obtained an explicit formula for a vis-
cosity solution as a minimization over controlled paths of a certain functional with
controlled paths being straight lines. In the case of a quarter plane i.e., I = IRy,
problem was studied by Joseph and Gowda [10] and obtained an explicit formula
for a viscosity solution of (1.1) similar to Hopf’s formula. Here the controlled
paths being certain piecewise linear curves having atmost three linear curves. Using
explicit formula, Lax-Olenik in the case of pure initialvalue problem and Joseph-
Gowda [10] in the case of a quarter plane, entropy solution ¥ = u,, of the following
scalar conservation law has been derived.

9(z,0) = aauo(x) for zel (1.2)
X
9 = A on 90I x (0,00).

The problem (1.2) has also been studied by Lefloch [12] where a formula was
derived which contains a solution of a variational inequality which may not be solv-
able explicitly. Furthermore using the numerical scheme, Joseph and Gowda [11]
obtained a similar formula for a solution of (1.1) in the quarter plane when
H(p) = [pl-

Now what happens when H depends on “u” and p — H(u,p) is convex?.
In general, obtaining an explicit formula for a solution is quite difficult. For the

L . OH .
pure initiavalue problem, under the assumption — > 0,p — H(u, p) is convex,

positively homogeneous of degree one, Barron, Jensen and Liu [6] have obtained
an explicit formula for a viscosity solution.

If — 1is non positive, this problem is not well studied in the literature. In

general tﬁis problem admits discontinuous solution. In [1, 2, 3] explicit formulas
for viscosity solution is given in the case of pure initial value problem under the
assumptions either p — H (u, p) is convex and positively homogeneous of degree
greater than one or p — H (u, p) is convex, positively homogeneous of degree one
and finitely many oscillations in .

Now the question is, under the same assumptions as above, does there exists
an explicit formula for a solution of initial boundary value problem (1.1)?. In this
paper, for the case p — H(u, p) is convex, positively homogeneous of degree one

and either — > 0 or < 0 explicit formula for a viscosity solution is obtained for

initial boundgry value problem. In section 2, we state our main results. In section
3, the necessary preliminaries are given. In section 4, we prove the result for the
case u — H(u,p) is non decreasing. In section 5, proof of the result for the case
u — H(u,p) is non increasing is given.
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2. Main Results
Hereafter we assume that ug € WH°(IR+),\ € C(IR") and H satisfies:

(Ho) : p — H(u,p) is convex, positively homogeneous of degree one and H (u, p)
> 0 for all p # 0. Assume that 7 is a diffeomorphism from IR onto IR where

n(u) = /OU H(dj,l) (2.1)

Difinition 2.1. (Admissible curves). Let 0 < s < t and 3 € C([s, t], IR). Then 3
is called an admissible curve if the following holds.

1. B consists of atmost three linear curves (Fig. 1a., Fig. 1b.).

2. Lets =t3 <ty <ty <tg=tbesuchthatfori =1,2,3, G; = ﬁ‘[tz}tifl]
be the linear parts of 3. Then G = 0.

tA
1A
(x.1p)
/ (x.o)
Oh)
B:

0)
Bs

(0.) > >

(B s) X B(s).s) X

Fig. 1a. With B, is nonempty Fig. 1b. With {3, is empty

Represent an admisible curve 3 = {81, 82, 83} and 3 = (81, B2, B3), where 3; =

ffl% and || = max;<i<3 {|ﬁ1|} Let M >0, 2 € R+, 0 < s < t and define

c(z,s,t) = {B € C([s ], Ry); B(t) = x, B is an admissible curve} (2.2

eyv(z,s,t) = {ﬁ € c(x,s,t); ]ﬁ\ < M}, (2.3)

c(z,t) = c(x,0,t), epr(z,t) = ep(z,0,1). (2.4)

Fora,b € IR, denote a\/ b = max(a,b). The main results are divided into two
parts.
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Part 2.1. Assume that H satisfies the following assumption.
(Hy1) ww— H(u,p) isnon decreasing for each p.
Associated to H, let h be its quasi convex dual defined by

h(q) = inf {v; H(y,p) 2 pq V|p| <1} . (2.5)
For (z,t) € Ry x IRy and 0 < s < t, 3= ($1,32,33) € c(x,s,t), define
p3(B) = n(h(Bs)), (2.6)
p1(8) = n(h(Br)), 2.7)
/ AT = / AT (0)do, (2.8)
B {B=0}
with p;(3) = —ooif 5; = ¢. Then we have the following :

Theorem 2.1. Let (z,t) € IRy x IRy and define

Bl ) = mf{ﬂw@@»Vw@%iéV}VmW% 29)

BEc(w,t)

Then for any T > 0, u € WH° (IR, x [0,T)) and u is a viscosity solution of (1.1)
with I = IR, . Furthermore minimizer in (2.9) exist.

Part 2.2. Assume that H satisfies the following assumption.
(H2) ww~— H(u,p) isnon increasing for each fixed p.
Associated to H, let h be the quasi concave dual defined by

h(q) = sup{v; H(v,p) > pqV |p| < 1} . (2.10)

Let M >0, 0 <s < tand (x,t) € IR, x IR, . Fora function? on IR, x IR,
define

AW, z,5,t) = {B€cla,s,)9(3(s), ) < h(Ba),

) @2.11)
n((3(s),5)) = [y A+ < n(h(B) }
AW,z 5,1) = {ﬁ € c(x, 5,t);0(8(s), s) < h(@‘%), o)
n((8(s),5)) — [y A+ < n(h(B) }
Ay (0,2,8t) = SBeAW,x,s8t): |3 <M
Ay (9,1,8,t) = {pB€ AW, x,s,t): |ﬁ] <M:¢,
A9, z,t) = A(W,1,0,t), A0, x,t) = A9, x,0,1), 213
{ Ay (0, 28) = Ay(D,2,0,8), Anr(0,a,8) = Ang(9,2,0,¢), 1)

with h(ﬁz) = o0 if 3; = ¢. Then we have the following.
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Theorem 2.2. Define

u(z,t) = inf ! {n(uO(ﬁ(O))) - /ﬁ X6 € A(qux,w} RNC AP

u(z,t) = infy~* {n(uo(ﬁ(O))) - /ﬁ)ﬁ,ﬁ € A(uo,:):,t)} . (2.15)

Let I = IR. Then u is a lower semicontinuous function, u is an upper semicontin-
uous function, v* = uandu, = u. Furthermore u and w are viscosity solutions
of (1.1).

Remark 2.1. The assumption on 7 being diffeomorphism from IR onto IR is not
required. With a slight modification, all theorems are still valid except for the fact
that, in general, minimiser may not exist.

3. Preliminaries

In this section we recall some definitions and some known facts from [5, 6, 9 and
14].

Definition 3.1. Let 2 C IR"™ be a domain and V' be a locally bounded function.
For x € Q define

V¥x) = lim,_osup{V(2): |z —z| <r}
Vi(z) = lim,_oinf{V(2): |z —2| <r}.

Then it follows easily that V* and V.. are upper and lower semicontinuous functions
respectively. Also V, < V*.

Definition 3.2. Let U be a locally bounded function in IR x IR.
1. U is said to be a subsolution of (1.1) if for any (xg,t9) € IRy X Ry, €
CY (IR x IRy) such that (z¢, to) is a local maximum for U* — ¢ with U*(z¢, ty) =
©(xo,t0). Then at (xq,to) either ¢y + H(p,vz) < 0orif zp = 0 and ¢; +
H(p,pz) > 0then ¢z (zo,to) > A(to). Further more lim; .o U*(x,t) < ug(x).
2. U is said to be a super solution of (1.1) if for any (z9,t9) € IRy x IRy, p €
CY(IR; x IRy) such that (g, to) is a local minimum for U, — o with U, (z0,tp) =
©(xo,t0). Then at (z9,1), either p; + H(p, ) > 0orif zg = 0 and ¢; +
H(p,pz) <0, then pz(zo,t0) < A(to). Further more limy_,o Uy (2, t) > up(x).
3. U is said to be a viscosity solution of (1.1) if U is both sub and super solution
of (1.1).

Now recall some properties of quasiconvex (concave) dual of H.
Lemma 3.2. Let H satiefies (Hy) of section 2. Then
(a) Suppose u — H (u, p) is non decreasing and h be its quasi convex dual defined
by (2.5). Then h satisfies
(A1)  hisalower semicontinuous function. Forany qi,q2 € IR, t € [0,1], h(tq1+
(1 —1)g2) <max{h(q), h(q2)},
(A2)  h(0) = —o0,lim|g_ h(g) = 0o,
(A3) H(s,p) =sup{pg; h(q) < s}.
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(b) Suppose u — H (u, p) is non increasing and h be its quasi concave dual defined
by (2.10). Then
(A4)  hisanupper semicontinuous function. Forany q1,q2 € IR, t € [0,1], h(tq1+
(1 —1)g2) = min{h(q1), hig2)},
(A5)  h(0) = +o0,lim|g_ h(g) = —00,
(A6) H(s,p) =sup{pg; s < h(q)}.

Proofs of (A;) to (A3) follow from Theorem 2.1 and Lemma 2.2 of [6]. (A4)
to (Ag) follow from (A1) to (As) applied to the Hamiltonian H (s, p) = H(—s, p).

4. Proofs of Theorems

In this section we prove the Theorem 2.1 which proves explicit formula for the
solution given by (2.9) is a viscosity solution when s — H (s, p) is non decreasing.
In order to prove Theorem 2.1, first we prove the following Lemmas.

Lemma 4.1. (Existence of a minimizer) Let T >0, 0< s <t <T, x € IR,. Let
U Ry x IRy — IR be a function such that ||p = supp o [9(z,1)] < oc.
Define

JV(wt) = it {nw(ﬁ(s),s))\/pg(m— /ﬁ /\+}\/p1(ﬂ)- @)

BEc(w,s,t)

Then
(1) |V|r < oo and there exist M = M (9, \,T) > 0 such that

o) = it L0306, 5) \/ a5) - / Ve, @2

Cy (x,s,t)

(2) Suppose x — V(x,0) is lower semicontinuous for each 0, then there exist a
minimizer 3 of (4.2).

Proof : Since n(£o00) = £oo and h(0) = —oo , by taking 5(0) = x for 6 € s, t]
to obtain (V' (z,1)) < n(d(z,s)) — [3AT < n(d(x,s)). Hence V(z,t) < [J|r.
Also for any ( € ¢(z, s,t)

{nww(s),s))\/p?,(m— /ﬂ /\+}\/pl(ﬁ) > n((B(s),s))
_ /ﬁ N> (= |9lr) - TIA* |,

and hence |[V|r < oo. Since h(p) — oo as [p| — oo and hence can choose a
M > 0 such that whenever |3| > M then either pi(3) > n(|V|r) or ps(B) >
n(|9|7) + n(|V|r) + T|AT|7. In this case

(0(B(s), )\ p3(8) — /ﬂ AW oi(8) > n(Vir)

and hence there exist M > 0 such that \ﬁ | < M and (4.2) holds. This proves (1).
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Let {0;} be a minimizing sequence for (4.2). Since |3;| < M and hence
there exist a subsequence still denoted by {3} converging to 3 in W Since
x +— ¥(z,0) and p — h(p) are lower semicontinuous functions, it follows that

(0(B(),9) V- pa(B) = [3)Vea(8) = n(V (@)
lim o {?7(19( e(5)8)Vps(B) = Jo, AT} Vor (30)
(B(),9)Ves(9) = [,V p1(8),

and hence J is a minimizer. This proves the Lemma. O

AV

Lemma 4.2. (Dynamic programming principle) Let u be as in (2.9). Let x € IR
and 0 < s < t, then

w0 = (e DV~ [N @)

Proof : Let n(¥(x,t)) denote the right hand side of (4.3). Let 8 = (01, B2, F3) €
c(z,t) defined on the partition 0 = t3 < to < t; <ty = t. Let s = ﬂ][o,s} €
¢(B(s),s) and p®) = Blis, € c(x,5,1).

Suppose t; < s < t, then p3(,8<2)) = —o0, pl(ﬁ@)) = p1(P), pg(ﬁ(l)) =
p3(B) and p1(B1) = p1(B). Hence

n((z,t)) < n(u(ﬁ(z)() ))Vm(ﬁ )
< ((uo(BV(0)Vps(BM) = [5m ATV or(B?)
= (n(uof ( IV ps(B) - f AIVp(B).

Ifty < s <t,then ,03( )
= p3(8), Jao AT+ [ AT

n(0(z, 1)) (n(u(8®(s), 5)) fg@) AV (BP)
(n(uo(B (1)( )))VPS ﬁ( f/g(l)/\ —fﬂ(z))\ \/Pl( )
(n(uo(6(0)))V fgﬁ Vo1 (B).

If0 < s < ta,then p1 (B?) = p1(B),  p3(BY) = ps(B), p1(BY) = —00, p3(3?)
= p3(0). Hence

= —00,p1(B?)) = p1(B), p1(BV) = —o0, ps(BV)
= f AT. Hence

I IA A

n@(a,t) < (n(u(BP(s),s)Vps(5 f<2> A* Wpr(8®)
< (n(uo(B )(0)))Vp3(ﬁ(1))\/p3 — J50 ANV P1(B?)
= (n(uo(8(0))Vp3(B) — [3AF) Vm A).

Now taking infimum over 3 to obtain n(¢(z,t)) < n(u(x,t)) and hence V¥(x,t) <
u(x,t). From Lemma 4.1, |¥|p < oo for any T > 0. Hence for every € > 0, there

exist 5 € ¢(x, s,t) and a € ¢(3(s), s) such that
n(@(z,t) = (n(u(B(s),s))Vps(s ) Js AN (B) -
n(u(B(s),s)) = ((uo(a(0)Vps(a) = [, A* Woi(a).
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1A
1A (X.to) / <X1t0>
&/ N o)
O4)
B>
<Ovt2> BS
« B(s)5) *
(O,s1)
L)
(0.s0) ¥
(0.s0) %3 >
> (Y(0),0) X
(0¢(0),0) X Fig. 2b. With y,= B,= o, and y, is the
Fig. 2a. line joining the points (0, t,) and (0, s,)
‘A T A
(x.%o) (X.t)
Y,
o Bs).9)
(0.51)
(O,31)
%
7
(0.5)
0,s Y.
(0,5,) o, 3
> (0).0) x
(@(0).0) X Fig. 3b. With g, is the line joining the points
Fig. 3a. With B, is empty (x,t,) and (0, s,), v, = o, and y, = o1,

Suppose [ta,t1] # ¢, [s2,s1] # ¢ (Fig. 2a.), then define v = (7y1,72,73) by
Y1 = B1,72l[s0,1) = 0,73 = a3 (Fig. 2b.). Then p1(y) = p1(8), p3(7) = p3(a)
and fﬁ A4+ [ AT < fv AT. Hence

n((z,t)) = ((u(B(s),s))Vps(B) = [3AT) \/pl 8) -
> (n(u(B(s),9) = [3AT)Vp ( ) —
> (n(uo(a(0)))Vps(a) = [, AT =[5 >\+ Vp1 B) —
> ((uo(v(0)Ves(v) — [, /\+)\/p1( ) =
> U(U(xat))—f

Suppose [ta,t1] = @, [s2,51] # ¢ (Fig. 3a.), then define v = (y1,72,73) by

v (0) = %(9 — s1) for 0 € [s1,1],72 = a2, = a3 (Fig. 3b.). Since 4; is a
— 81

convex combination of 3 and ¢v; and hence p1 () < p1(8)Vp1(e) if 3 > 0. Also
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m(y) < p1() if 3 < 0. Therefore

fa AVpi(e Vn( () ~

n((z,t)) = nu(B(s), ))\/77( ()
= (n(uo((0)))Vp3(a) —
(n(uo(7(0) \/P37) S, AVoi(y
n(u(z,t)) -

— IV IV

Similarly, if [te, t1] # ¢, [s2,51] = ¢ and [te,t1] = [s2,s1] = ¢ it follows that
n(I(x,t)) > n(u(z,t)) — €. Since € is arbitrary, it follows that ¥(z,t) > u(z,1)
and hence the Lemma. O

Lemma 4.3. (Lipschitz continuity) Let u be as in (2.9). Then u is a Lipschitz
continuous function on IRy x [0, T for every T > 0.

Proof: Let 0 < 29 < x7and 0 < ¢t < T. From ( 2) of Lemma 4.1, there exist a
B = (b1, 52, 03) € c(x1,t) defined on the partition 0 = t3 <ty < t; < tg =1t

such that
n(u(, 1)) = (n(uo(BO))\/p3(8) — /ﬁ XN/ 1 (8)

Suppose /3 is a line segment with 3 < 0. Then define v(0) = x5 — x1 + 3(0) €
c(x2,t). Hence

n(u(xz,t)) —n(u(z, 1))

IN

(n(uo(v(0))Vps(7) — f, A*)
—n(uo (8 <o>>>vp3 )4+ Jya

< In(uo(7(0))) — n(uo(6(0)))]
< M Msly(0) — B(0)] = My Ma|zy — 2]

where M, and Ms are Lipschitz constants for 1 on [—|ug|eo, |20|co] and ug respec-
tively.

Suppose (3 is not like above. Let#; = t — (x2/1) and define y € ¢(x2,t) as
follows :

(i) Let B2 # ¢, then

0 0 c [tg,fl]
Bs(0) 0 € [0,t2].

O —1)B + 32 0 € [f,1]
v(0) =

(i1) Let B = ¢, then

[ (O=t)+ao if 0 e[t\0,1]
0) = { 0 i «96[0,17?1\/0].

Clearly 1 = (1, 43 = 03, {6 =10} C {y =0} and |4(0) — B(0)| < |1 — zo].
Hence

n(u(r1,t)) —n(u(za,t)) < (n(uo(v(0)))Ves(y f AVp1(7)
—(n(uo(8(0))) \/p3 f AV p1(B)
< In(uo((0))) — n(uo(B (0)))\
< MiMz|y(0) — B(0)| < MiMz|zy — 2.
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In order to get the opposite inequality, let 5 = (51, B2, 83) € car(x2,t) defined on
the partition 0 = t3 < to < t; < tg = t such that

nu(est) = (n(u o(ﬁ(O)))\/ps() [ XV (8)
> n(uo(BO)Vrs(8) — [,

Now choose a pg > 0 such that
n(h(po)) < n(—luoloc) — TN |7 (4.4)

Case (i) : 41 < po.

Lett; =t — L and define v € ¢(x1,t) by
Po

f_it.ll’l if £1>0, 96[7?1,15] or if t~1§0,9€[0,t]
—t 3 3
7(9) = 0 if t1>1t,0¢€ [tl,tl]
,8(9) if t~1 > t1, 0 c [O,tl] or if El S [tz,tl], 0 c [O,El]
((9 — El)ﬁg if 1?1 S [O,tg], 0 e [0,1?1].

Clearly y1 = pg, 3 = 53 if 1 > 0. Hence from (4.4)

N(uo(v(0))Ves(y) = [, A* 1(=|toloe) = TIA |7

n(h(po)) = p1(7)

>
>

and hence

n(u(z,1)) < (n(uo(7(0))) sz — [LANVe(y) “5)

= 1(uo((0)))Vps(y f o '
Let f; > t1, then 3(0) = ~(0), Ja AT < [L AT, p3(B) = ps(7). Therefore from
(4.5),

n(u(z2,t)) —n(u(z1,t)) = n(uo(B(0)))Vps(B)
= AT = n(uo(v(0))Vps(v) + [, AF

Z 02—’371—332‘.

. T
Lett; € [to,t1], then B(0) = v(0), p3(B) = p3(~y). Now ﬁ = 31 < po, hence

x
=2 <t — t;. Therefore
Po

n(u(wz, 1)) — n(u(z:, )

v

— [ AT 4 [N == [T > X |p(t — )
M r(z1 —a2)

— At =t L) >
Po Po
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- . ~ . t
Lett; € [O,tg] , then t — tr < %, ﬁg = "}/3, ’)/(0) = —tlﬂg = éﬁ(()) Since

B(0)

B € car(x2,t) implies that = ]ﬁg| < M. Hence
2

=50 = 20— < M- o+ 2)
< M(tl—t—I—g)SZ(m—m),

X9 ~ r1 — T2
t1—t+t—ta < ——+t—-11 = .
Po Po

t1 — 12

D2, 1) — n(u(n0) > n(uoBO)Ves(B) — [, X — n(uo(1(0))Vps(7)
> MM B(0) — ()]~ XLt — 1)
> (MMM 4 )
bo
M

Leti; < 0. Thent < —X,3(0) < Mty < M(ty — 1) <

P - (z1 — 22),7(0) =

—t M
1~ T < 1 — T2, t1 — to < 7(.%,1 — xQ). Hence
t—11 Po

nu(az, ) = nlula )= (uo(BON)Vea(8) = [y = n(us(r0)Vps()
> —In(uo(8(0))) — n(uo(y(0))] — [N*lr(tr — t2)
> M0+ b)) -
> —(MM1M2+1/\+\T)M_
Case (ii) : 51 > po.
Then py < 1 = tftl and hence t;;l < plo' Let? = (1 — %)t+ %tb

then ¢ < t1 and define v € c(z1,t) by

1 if § e [t}\/O,t]
’7(0) = 0 if g e [tz,fl] and 7?1 > to
5(9) if 8 € [O,tQ] and 51 > 19

(9—51)ﬁ3 ifogflﬁtg.

. ; . 5 ip e e z
Clearly Y1 = ﬂl, Y3 = ﬂ3 lf’}/3 7'é Oand t; — t; = (*1 - 1)<t—t1) = (1‘1 —

M)
t—t T —x ~ . . . .
x2)) . L < 1p0 2 Letiy € [to,t1], then B(0) = v(0), Bi =41, B3 =7s.
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Hence
n(u(z2,t)) —n(u(z1,t)) = (n(uo(8(0)))Ves(B fg AV ei(B)
—(((())Vps — [, ANVei(y)
> _fftl At > —‘)\+|T(t1 _ tl) > |>‘ |T(a71 _1'2) .
! Po
Let 0 < t~1 < to, then 61 = Y1, ,63 =43, ~(0) = —5153 = Zﬁ(O) Since

B0) = | (3| < M. Hence
2

B € cpr(x2,t) and hence "

3(0) = 0) = 202~ 1) < Mt~ 1) = 201 — )
Hence
n(u(z2,t)) —n(u(z1,t)) = ((uo(B(0))Ves(B) — [3AT)Ve1(B)
—(n(uo((0)))Vps(v) — [, AT)Vp1(7)
> —|n(uo(8(0))) — n(uo(v(0 )))’_|/\+’T(t1_t2)
AT
> —M;Ms|B(0) —~v(0)] — . (z1 — 22)
> —[Mi MM + |)\+|T]7JU2
Po
Let 51 < 0, then 61 = 1, ’y(O) = t_—t%lxl < z1 — 22, ﬁ(O) < Mty <

~ M
M(tl — tl) < f(fL'l — .%‘2). Hence
Po

n(u(xz, t)) — n(u(z1,1)) n(uo(B(0))) = [5 AT = n(uo(v(0)))
=My M (B(0) +7(0)) = [AT |ty — t2)

T — T
— (MMM + po + | AT |7) L2

(A\VARAVARLV]

Combining all the above inequalities to obtain a constant M (7') such that for
r1, 29 €R,, 0<t<T,

(1, 1) — ulaa, t)] < M(T)|er - . (4.6)

From (4.6),  — u(x,t)  is continuous and hence from (2) of Lemma 4.1, for any
0<s<t<Tandz € IR, there exists a 5 € cps(x, s,t) such that

(1) = (n(u(B(s), )\ ps(8) — /B XN (8). 47
Since | 3| < M and hence |3(s) — | < M(t — s). Therefore
n(u(@,t)) —nlu(z,s)) > n(u(B(s),s)) —n(u(x,s)) = ATt - s)
> —MM(T)|B(s) — x| — [AT|r(t - s)
> —[MMM(T)+ [\F|7](t —s).
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Now let y(6) = « for § € [s,t]. Then

(e, ) < nlule,s) — [ A < nfute, ).
v
Hence there exists a constant M (T') such that |u(x,t) — u(z,s)| < M(T)(t — s).
This together with (4.6) proves the Lemma. O

Proof of Theorem 2.1 : From Lemma 4.3, u € W5 (IR, x [0, T)) forany T > 0.

Sub soulution : Suppose u is not a subsolution, then there exist (xg, ty) € R, x
Ry, p > 0,0 € C'(IR; x IR;) such that u — ¢ has a local maximum at
(20,t0), u(xo,t0) = @(x0,%0) and at (xo,t0), i+H (@, pz) > 4pand o, (x0,10)
< A(tg) if zyp = 0. By continuity, there exist a § > 0 such that at (xq,to), ¢t +
H(p—9,9z) > 3pand @z (x0,t0) < A(to) if zo = 0. Hence from (As) there exist
apsuch that at (zo, o), ot +ppz = 21, h(p) < (w0, t0) — 6, Ya(zo,t0) < Alto)
if zg = 0. Hence there exist a ball B centred at (z, tp) such that in B

ot +ppe > 1, h(p) <@, wp <X ifzg=0. (4.8)

Suppose zg > 0. By shrinking B if necessary, we can assume that B C IR} X
IR, . Now choose s such that for § € [sg,?],(8(0),0) € B where 3(0) =
p(0 — to) + zo € ¢(xo, S0, to). Then from (4.3) and (4.8) we have

n(u(B(s0),50))Vp3(3)Vp1(3)
n(u(B(s0),50)Vh(p))
n(e(B(s0),50)Vh(p))
n(e(B(s0),50)) -

This implies that ¢ (g, to) < ¢(8(so), So). On the other hand, from (4.8)

plaosto) = @lBlso),s0) = [0 250(5(6),0)d8

= [:2(¢1 + pea)dd > plto — so),

n(e(zo,t0)) = n(u(xo, o))

INIA I IA

which is a contradiction.

Suppose xg = 0. If p < 0, like in the above proof, choose 5(0) = p(0 — ty) €
c(z0, S0, to) such that 3(0) € BN(IR x IR, ) and the contradiction follows. There-
fore assume that p > 0. Suppose ¢, (xg,to) < 0, then 2u < (¢ + pws) (o, to) <
©vt(xo,t0) and hence in B, p < ;. This implies that if so < ¢ such that
(z0,80) € B, then u(ty — so) < p(xo,t0) — ¢(xo, So). But from (4.3), taking
B(0) = 0 for 6 € [sp,to] to obtain p(xo,tn) < ¢(xo,sp) which is a contradic-
tion. Now let ¢, (zo,t9) > 0 and hence A(tg) > 0. By shrinking B if necessary,
we can assume that A > 0. Choose sg,to such that {0} X [sg,to] C B. Let
B(0) = xo for 6 € [so,to], then from (4.3) n(p(zo,t0)) = n(u(xo,to)) <
n(e(xo, s0)) — fst(‘)) AT and hence

(77/<90)()0t)($07 tO) = lim80—>t0
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that is, (o + A(to) H (¢, 1)) (z0,t0) < 0and hence p < (o1 + H (o, ¢z))(xo,t0) =
(per+pzH(p, 1)) (o, to) < (pr+AH (p,1))(z0,to) < 0, which is a contradiction.
This proves that w is a subsolution.

Super Solution : Suppose u is not a super solution, then there exist (zg,ty) €
R, x Ry,u > 0,0 € C}(IRy x IR, ) such that u — ¢ has local minimum at
(2o, t0), u(wo, to) = @(xo, to) and (pr+H (o, ¢z)) (w0, t0) < —4p,  pa(x0,t0) >
A(to) if 29 = 0. Hence in a Ball B centred at (xq, to), ot +H (p, 0z) < =3, oz >
A if zg = 0 holds. Hence form (Ag), in B,

{ h(p) < ¢ implies that ¢; + pp, < —3u

From (2) of Lemma 4.1 and 4.3, for each s < ¢y, choose a minimizing curve
Bs € em(wo, s, t0). For @ € [so, to], |Bs(0) —zo| < (to—s)|0s| < M(to—s), hence
choose s1 < tg such that for any s; < s < tg, (5s(0),6) € B for 6 € [s,to].
Claim : There exist an sy € [s1, to] such that for almost all 6 € [sg, t¢]

(1 + Boo ) (Bs (0),0) < —pu. (4.10)

Suppose not, then there exist a sequence s — to, 60 € [sk,to] with O =

Bs,, Dk = Br(01) such that —p < (@ + pres)(Br(k), 01) holds. By going to a
sub sequence assume that p; — pg. Hence by lower semi continuity

n(e(xo,t0)) = n(u(wo,to)) = limg—oo(M(u(Br(sk): sk))Vp3(Bk)
— J5, ATV p1(Br)
> limg oo [N(@(Bk(sk): 5%))V p3(Bk)
— S5, AV P1(B)]
> n(e(xo,to)VR(p)) ,

and hence ¢(xo,tp) > h(p). Hence from (4.9) we have —p < limy_,o0(pr +
Pr@z)(Br(0k), 0r) = (o1 + ppz)(zo,to) < —3u, which is a contradiction and
hence the claim.

Let ¢ > 0. Then by shrinking B if necessary such that B C IR, x IR . Hence
Bs, 1s a line segment. Hence

0(u(Bsq (s0), 50) V(B )
(2 (Bso(50), 50) VA(Bso))

hence ¢(x0,t0) > ¢(Bs,(S0), So). Integrating (4.10) from s to ¢ to obtain ¢ (xg, to)—
©(Bs(80), 50) < —p(to — so) which is a contradiction.

Let xg = 0 and A(¢p) < 0. Shrinking B if necessary, assume that A < 0 in B
and hence AT = 0 in B. Hence by (4.3) it follows that (0, to) > ©(8s,(s0), S0)
and a contradiction is obtained from integrating (4.10) from sg to ¢g.

Let xop = 0 and A\(¢9) > 0. Then ¢, (zo,t0) > A(tp) > 0. Shrinking B if
necessary, can assume that ¢, > 0in BN (IR x IR.). Hence p(x,s) > (0, s).

n(e(xo,to)) = n(u(wo, to))

AV
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Therefore
n((zo,t0)) = n(w(@o, to)) = n(w(Bs(s),s))Ve3(Bs) — [5, AT
> n(p(Bs(s),s)) — fﬁs At
> n(p(0,5) = [° At

Hence

(' (p)e) (o, t0) = limgy n(ﬁp(%,t?ﬁ?__:(@m,s»

> =\ (tg) = —=A(to) -

That is 0 < (¢¢ + Ato)H (e, 1)) (2o, to) < (@ + waH(p,1))(x0,t0) = (¢ +
H(p,¢:))(xo,to) < —4p which is a contradiction. This proves the theorem. O

5. Proof of Theorem 2.2.

In order to prove Theorem 2.2, we need the following Lemmas.

Lemma 5.1. Let T' > 0 and ¥ be a real valued function defined on IR} x IR
such that |9|r = sup{|Y¥(z,t);z € R,0<t<T} < oo. Let x € IR, and
0 <s<t<T. Define

W) = it {n06.0) - [ 3 awnsn}. 61

n(V(z,t)) — inf {n(ﬁ(ﬁ(s),s))—/ﬁﬁ;ﬂeAw,x,s,w}. (52)
Then there exist a constant M = M (T, 0|7, |X|oo) such that |V.p| + |V 1| < oo,

W) = int {a36).9) - [ ¥ipe Ay}, 63)

V(b)) = inf{n(ﬂ(ﬁ(s),s))—/B)\Jr;ﬂeAM(ﬁ,x,s,t) } (5.4)
(1) If ¢ — O(x,0) is lower semicontinous for each 0, then a minimizer 3 €
Ay (9,3, 5,t) exist in (5.3).

(2) If z — V(x, 0) is continuous, then there exist a sequence B € Ap(9,z,s,t)
converging to 3 € Ay (9, x,s,t) in Wh such that

n(V (1)) = n(0(B(s), 5)) — /B AT, (5.5)

Proof : From (A5), h(0) = +00,h(q) — —o0, as || — oo. Let B(0) = z V0 €
[s,t], then h(3) = h(0) = oco. Hence 3 € A(9,x,s,t) N A(Y,z,s,t). There-
fore n(V(x,t)) < n(d(B(s),5)) = [3A" < n(|9|r) and similarly n(V (z,t)) <
n([9]). Now forany 5 € A(d, 2,5, 1), n(9(B(s), ) [, \* > n(—[dlz)—TIA*
and hence by taking infimum over 3, n(V(xz,t)) > n(—|9|r) — T|\T|r. This
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proves |V |7 < oo and similarly |V|r < oc. Since h(g) — —oo as |g| — oo, we
can choose a M > 0 such that on |¢| > M, h(q) < —|¥|r. Hence if § € ¢(x, s,t)
such that || > M, then either h(3;) < —|0|7 or h(B3) < —|9|7. In either case
B¢ AW, z,s,t)and B ¢ A(Y,x,s,t). This proves (5.3) and (5.4).

Let {0k} C A (9,z,s,t) be a minimizing sequence in (5.3). Extract a
subsequence converging to 3 € ¢y (9, x,s,t) in WL, From (A4) h is an
upper semicontinuous and x +— ¥(x,0) is lower semicontinous, it follows that
B e Ay(9,z,s,t) and n(V(z,t)) = n(I(B(s),s)) — [3 A". This proves (1). Ap-
ply the similar argument for V(z,t) to conclude (5.5). The only difference is that
in this case 3 need not be in Ay (¥, z, s,t). This proves the Lemma. O

Lemma 5.2 : Letu be asin (2.14). LetT > 0, x € Ry, 0 < s <t < T.
Then |ulp < oo, x — u(x, ) is lower semicontinuous and there exist an M =
M (|u|r, |\F|7, T) such that

o) < o {o(ul5(s),5) - /ﬂ N E Ayl s},

n(w*(z,1)) < int {n<u*<ﬂ<s>,s>> - /ﬂ i e AM<u*,x,s,t>} 56

Proof : Since |ug|r < oo then from Lemma 5.1, |up| < oo. Let (zp, t) —
(z0,t0) as m — oo. Since ug is continuous, from (1) of Lemma 5.1 there exist a
My > 0 and a minimizer 3, € Ay, (o, Tm, tm) of (2.15). Hence by going to a
subsequence, let {/3,,} converges to 3 € A, (uo, zo, to) in W1 Hence

n(u(zo,t0)) < n(uo(B(0))) — [3 AT
= i {(0(Bn(0)) — [, X"}

and this proves u is lower semicontinuous. Next define 1 by
s(e) = {nu((9).9) - [ ApE Awns} 6
B

Step 1: 91 (z,t) > u(z,t).

Since |u|p < oo and z — u(z, ) is lower semicontinuous, hence from (1) of
Lemma 5.1, there exist « = (a1, a9,a3) € A(u,x, s,t) defined on the partition
s=1t3 <ty <t <tg=tand S = ((1,52,03) € A(up,a(s),s) defined on the
partition 0 = s3 < s9 < 51 < s9 = s such that (91 (z,t)) = n(u(a(s),s)) —
Jo AT n(ula(s),s)) = n(uo(B(0))) — [3AT. Hence

n(01(z,£)) = n(un(5(0))) — /

«

A*—/A*). (5.8)
8
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Suppose [t2,t1] # ¢,[s2,51] # ¢ . Define v = (v1,72,73) € c(x,t) by
7 =1, Pl =0, 3 = B3 Then ug(v(0)) = uo(5(0 )) < h(P3) =
h(3),n(uo(¥(0))) = [, AT = n(uo(8(0))) — [, AT < n(uo(B(0))) — [5 AT -
L, AT =n(u(a(s),s) — [, AT < n(h(c1)) = n(h(1)). Hence v € A(uo,x,t)
and from (4.18) we have

n(01(z,£)) = n(uo(1(0))) — / A /ﬁ AT > n(uo(7(0)))
— /)\Jr >
8

Suppose [t2,t1] # ¢, [s2,51] = ¢. Then (3 is a line segment and fﬁ AT = 0.

Hence u(a(s), s) = uo(B(0)) and up(3(0)) < h(eﬂ)- Now definey = (v1,72,73) €
t —_

C(l"t) by 11 = ai,7e = az,73(0) = 2t2 B(0) for & € [0,22]. Suppose

3 < 3, then by construction h(ciz) < h(v3) and hence ug(v(0)) = uo(3(0)) =
( (s),8) < h(ds) < h(73) and n(uo((0))) — [, A* = n(u(a(s),s)) — [, AT <
(h(d1)) = n(h(71))- Hence 7 € A(ug,z,t). If 3 < @3 < 0, then clearly
(
(

Hence 91 > u.

$3) < h(¥3) and hence 1(v(0)) — [, AT = n(u(a(s), s)) = [, AT < n(h(cn)) =
h(41)). Hence 7y E A(ug,x t) This implies that (91 (z,t)) = n(ue(5(0))) —
o AT = (uo(v(0))) — [ AT = n(u(z,t)). Hence 91 (z,t) > u(z, t).

Suppose [t2,t1] = gb, [s2,51] = ¢, then v and 3 are line segments with fa AT =
JyAt =0, Bia,t) = u(a(s). 5) = uo(B(0)) < min(h(@), h(3))- Let 1(0) =
gaz + (1 - 2)6(0) for 6 € [0,¢], clearly v € c¢(x,t) and by quasi concavity
of h, min(h(&), h(8)) < h(%) and hence v € A(ug,z,t) with ;AT =0
Hence n(91(x,t)) = n(uo(8(0))) = n(uo(v(0))) > n(u(z,t)). This implies that
V1(x,t) > u(x,t). Suppose [t2, t1] = ¢, [s2, s1] # gg Then ¥ (x,t) = u(a(s), s).
Define v = (71,72,73) € c(x,t) by 7(0) = t:jllfﬂ if 0 € [s1,t],72 =
B2,73 = B3. Hence ug(7(0)) = uo(5(0)) < A(f3) = h(§3)- Now u(a(s), s) <
h(@) and n(u(a(s),s) — [;X° < n(h(5)). Hence nfulo(s), s)) — f;X* <
min(n(h(51)),n(h(d))) < n(h(¥)) since ¥ is a convex combination of ¢ and ;.

Hence v € A(ug, z,t) and (91 (z,t)) = n(uo(8(0))) — [3 A = n(uo(7(0))) —
f7 AT > n(u(x,t)). Hence V1 (x,t) > u(x,t) and this proves the step-1.

Step 2. Let (2, ty) — (x,t) such that u*(x,t) = limy,— 0o w(Tm, tm). Let § =
(B1, B2, 83) € A(u*,x,t,s) defined on the partition s = t3 < to < t; < tg = t.
Now for each m , define (™) = (ﬂ§ ),ﬂé ),ﬁé )) by ﬂ§ )(0) = ;
m — Ul
0 € [t1,t] and B(m)\[om = (. Then ) € ¢(x, 5, t,) and (™) — G in W,
Hence by upper semicontinuity of v* and & it follows that there exist an mg > 0

Ty, 1f



216 ADIMURTHI AND G. D. VEERAPPA GOWDA

such that for all m > mq, Bm € A(w, Tm,tm,s). Hence by the Step 1,

u(z,t) = limp—oo W(@m, tm) < hmm_>OO V1 (T tn)
< limpy—oon -1 fﬁm }
< hmm—>oo n fﬁm
< B(s)

Hence by taking infimum over all § and from (2) of Lemma 5.1 to obtain (5.6).
This proves the Lemma. o

Lemma 5.3. Let u be as in (2.15). LetT > 0,z € IRy,0 < s <t < T.
Then |u|p < oo,z — u(x,0) is upper semicontinuous and there exist an M =
M ([a|r, |\T|7, T) such that

Dz, 1)) > inf {n<u<ﬁ<s>, ) - /ﬁ X3 € Api(T,e, s,t>} ,

oo, t) = it (. (3(),9) - JRSLE A1)}

Proof : Since |ug|r < oo and hence Lemma 5.1 implies that [u|p < oo. Let
(T, tm) — (x,t) as m — oo. Since g is continuous, from (2) of Lemma 5.1,
there exist M7 > 0 and a sequence Bk e Ay, (ug, z,t) such that 8% = Bin
W and n(u(, 1) = n(uo(A0) ~ fyA7 Let 58 = (5, 57, 657) be
defined on the partition s = t3;, < top < t1 < toxp = t. For m large, define gk
as follows :

Case (i) : = > 0. If [tog, t1x] = ¢, then B*) is a line segment. Deﬁne gk e
c(Tm, ty) the line segment parallel to ). In this case f™F — BK*) agm —
oo in W and g™k = ) for all large m. If [tor, tin] # ¢, let f™F =
(ﬂ{nk, By k By *) such that Bink is the line segment starting at (2, t,,) and
parallel to Bfk). Let (0, t1,m k) be the end point of ﬁ{”’k. Then g™F — BK) in
Wl’oo,[?;n’k = ﬂl(k) fori =1,2,3 and fﬂm,k AT — fﬁk AT asm — oo. Bgn’k =0
in [ton, t1mk] ift1mp > tox and B7F = 3) in [0, t%]. Ift1 mx € [tok, t1x), then
ﬂm k= 3% in 0,4 ) I t1 m k< tor, then 35" ¥ is the line segment parallel to
53 in [0, £1 k)

Case (ii) : # = 0. Choose py > 0 such that h(pg) > n(|ug|r). If 2, = 0, define
B € ¢(xpm, ty) as follows. If ) is a line segment, then 37 is the line seg-
ment parallel to 8%, If 3%) is not a line segment, then if z,,, > O,ﬂin’k(G) =

0—t

#zm for € [tog,tm] and f™F = B*) in [0,t9]. If 2, = 0, then
m — L2k

ﬁ;””“(e) = 0 in [tor, t,] and B™F = BK) in [0,25%). Now for m large and
Ty > 0,[5‘1”’]C - _Im po and hence h(ﬂ{”k) > h(po) > n(luolr) >

b — tok
n(uo(B™*(0))). Also g+ — B*) jn Wiee,
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Now by construction, upper semicontinuity of & and by continuity of ug, it fol-
lows easily that there exist my, > 0 such that for all m > my,, ™% € A(ug, T, tm).
Hence

oo (@(Tm, tm)) < limg oo limy, oo {n(uo(ﬁmk f,@mk)‘ }
= limg oo n(uo(BM(0))) — [ AT
_ n(uow(o»)—fw
= n(u(z,t)).

This proves that z — u(z, t) is upper semicontinuous.
Claim 1 : Lety = (v1,72,73) € A(ug, z,t) defined on the partition 0 = t3 <
ty <ty <top=tand a = 9|y and B = 7|jp. Then a € A(u,,s,t) and

B € Aluy, a(s), s).
Since v € A(ug, x,t), hence

wo(4(0)) < h3s),  n(un(+(0))) — / A< (). (59)
Y

Case (i) : [to, t1] # ¢.

Let s € (t1,t) then 41 = & = 31, A3 = [, fﬁy)\Jr = fﬁ)ﬁ“. Hence from
(4.19) n(uo(B(0))) — [,A* < n(h(B)), wo(B(0)) < h(f%) and hence § €
Aluo, a(s), ). n(@(B(s),s)) < n(uo(B(0))) — f3AT < n(h(B1)) = n(h(d)),
implies that u(a(s),s) = w(H(s),s) < h(cy). Hence a € A(u,w,s,t). Let
S € [tg,tl],then "}/1 = 0'11,”);3 = B3,fa/\+ +fﬁ/\+ = f'y/\+’ ﬂl = (Z),Oég = (;5
Hence from (4.19) uo(3(0)) < h((3) implies that 3 € A(ug, (s), s). Hence
n(@(e(s), s) = [, AT < n(uo(B0))) = [5 AT = [LAT =n(uo((0))) = [, AF <
h(é1). Hence o € A(u,z,s,t). Let s € [0,t2). Then 41 = &, 43 = dz =
B, B1 = B2 = ¢. Hence from (4.19) 3 € A(uo,a( ), )andhence 17( (a(s),s)) <
n(uo(3(0)). This implies that n(u(a(s), s)) — [, AT < n(uo(8(0))) — [, AT =
(uo(¥(0))) = [, AT < n(h(1)) = n(h(a )) Hence o € A(T, 7, 5, ).

Case (ii) : [t2,t1] = ¢.

Then «, 3, v are line segments. If 4 = Othen & = ﬂ = 0. Hence o € Z(uo,_x, s, t),
B € A(u, a(s), s) since h(0) = co. Supposey < 0,then [ AT =0, =F=7 <
0 and uo(3(0)) = uo(7(0)) < h(¥) = h(3). Hence § € A(up,(s),s) and this

implies that n(u(a(s),s)) < n(uo(B(0))). Therefore u(a(s),s) < ug(B(0)) <
h(B) = h(c). Hence « € A(u T, s,1).

Sl'lppose 4> 0,thencx = 3 = %f AT = 0 and n(up(6(0))) < n(h(¥)) =
n(h(3)). Hence 3 € Z(UO,OZ(S),S) and n(u(a(s), s)) < n(uo(B(0))) < n(h(a)).

Hence o € A(u, x, s,t). This proves the claim.
From the claim it follows that the set

D = {(OZ,B);O[:’Y|[S’t],ﬁ:’)/|[()’s],’7EZ(UQ,LE,I&)}

C {(a,ﬂ);a € A(u,x,s,t),3 € Z(uo,a(s),s)} .
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Hence if we define 1 (z, t) as follows, then from (5.4)

77(791(‘73’ t))

IN

inf {n(u(a(s

— [ ATiae A, x, 5,1)}

inf, {inf5 {n(un(3(0))) — [ 32 € Aluo.a(s). ) |

— [ Atia e A(u, z,s,t) }

inf {n(uo(8(0)) — [, A* = [, \*: (e ) € D}
nﬁ@wawm»—ﬁxﬂwezwmaw}
(e, ).

(5.10)

Hence the first inequality of the Lemma.
Let (zx,tx) — (z,t) such that w.(x,t) = limg_oo u(xg,t;). Let e > 0,

from (5.10) choose 3*)

(T (z,1))

€ An (1, zy, s, 1) and kg > 0 such that for all k > kg

> n(a(zk, tr)) — €/2 (5.11)

nwwm%»>mmﬁ“@s»/'x+—dz (5.12)

B(k)

Extract a subsequence still denoted by 5¥) converging to 3 in W°°. Then

Ux(B(s), s)

VAN VAN VAN VANRN VAN VAN VAN VAN

lim,, . 7. (6%)(s), s)
limy—oo@(B5)(s), 5)

hm‘kﬂOO (ﬁgk)).

h(Bs),

limy, {U(ﬂ*(ﬁ(k( ,8) = Jam )\+}
limy, o {n(w (5k ):8)) = Jpm AT
limg 07 (P 6:"))

n(h(Br))-

Hence § € A(tux,x, s,t) and from (5.11) and (5.12)

(s (,1))

vV IV IV IV IV

limg o0 n(u(xg, k))) €/2

b HE(H(0). ) — 1)
hmk—>oo( ( (B(k) S),S) fgk -
(@« (B(s),5)) = [3AT) —

mf{n(u*(’y s),8)) — f7 ’yEAM(H*,x,s,t)}_

Since ¢ is arbitrary and hence the Lemma follows. O
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Lemma 5.4. Let u and u be as in (2.14) and (2.15) respectivly. Then uv* = u and
Uy = U

Proof": Proof is divided into three steps.

Step 1 : Let o« > 1 and {qx} be a bounded sequence. Then lim;,_,  h(ag) <

Suppose not, then let for a subsequence still denoted by {gx } such that

gk — qo,  lim h(agy) = lim A(gy) = 1.
Choose |p| = |px| = 1 such that for all |p| = 1

(i) H(h(qk),px) = @pr, H(h(qx),p) > ap
(i) H(h(aqw),px) = oqppr, H(h(aqy),p) > agqip

Again going to a subsequence, can assume that p, — po, Pr — Do as k — oo.

Then by continuity of H, qopo = H (1, po) = limy_.cc H(h(agk),po) > agopo.

Since H(n,po) > 0, it follows that & < 1 which is a contradiction. This proves

step 1.

Step 2 : Let 7 > ¢. Then u(x,t) > u(x, 7).

Let 8 = (51, B2, 03) € A(uo, x,t) defined on the partltlon 0=t3<ty<t; <

to = ¢ be aminimiser for u. Thenn(u(z,t)) = n(uo(5(0)))— [ A*, n(uo(8(0)))—

)-

(
J5 AT < n(h(B1)) and uo(B(0)) < h(fs). Lety = (71,72,73) € A(ug, z,7) be
defined as follows.

Case (i) : Suppose uo(3(0)) < h(83). Then v € A(ug, x, 7) is given by
1) = o+ (0 )%tl it 0€lft,]
72(0) = ( ) if 0 € [ta, 1]
3(0) = B3(0) if 6 €0,
This implies ug(7(0)) = uo(6(0)) < h(33 43), n(uo(v(0))) — f,y At =

+ < x T—tl
n(uo(B(0)—J5 A" < n(h ( (t—t1>> <h<7—t1t—t1 =
n (h <x>>’ by Step 1. Hence v € A(ug, z,7) and u(z,t) > u(z, 7).

—1
)) = h(33). Then

0
a (0 (F2)) = et = ntas(0) - 3
< n(h(61))

= n(h<7ft1>>'
LetA:{u;u<t1,77<h (—BM(O)» — [t < n(h (Tfh))}.hisan

upper semicontinuous function implies A is open and hence there exists £y such

Case (ii) : Suppose uo((3
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that Vi € [tg,t2 + €0), 1) <h <_ﬁi®))> — fjl M o< g <h (

i € (to, ta 4 €p). Define now v by

v )) Let
T—tl

xT

n(¥) = x+(9—r)7_t1 if 0¢[t,T]
12(0) = 0 if 6¢€u,t]
y3(0) = 5(0)+_i(0)9 it €0,

nu —u (PN (8O p _BO)Y _
)04 () = () <+ ()

n(uo((0)) — / A= / o

B(0) t1
< ( ( > / A< h’yg
H I

This implies v € A(ug, z, 7). Hence u(z,t) > u(z, 7).
Step 3 : Let B,(z,t) be a ball centered at (z,t) with radius . Let ¢ > 0 and let
tr < tandtyp — t. Then from step (2)

u*(z,t) lim, o supp_ u(z)

On the other hand v < @ and hence u*(z,t) < u(z,t), implies that u*(x,t) =
u(x,t). Similarly @, = u. This proves the Lemma. O

Lemma 5.5. (Dynamic programming principle) Let u and u be defined as in (2.16)
and (2.17) respectively. Then

) = it {atu(a(s),5) - JRSLE At}

a(x,t) = infy~! {n(u(ﬂ(s),s)) - /g)\+;ﬂ € AM(u,a:,s,t)} .

Proof": Proof follows from Lemma 5.2, Lemma 5.3 and Lemma 5.4. O
Proof of Theorem 2.2 : Let 0 < t < T and x € IR,.. From (1) and (2) of
Lemma 4.4, there exist M(T) >0, o), 30 ¢ C’M(T) (x,t) such that n(u(x,t))
= n(uo(5" (0 fg(t) >\+, 71( ( t)) = n(uo(al(0))) = [, AT Now |(z, )~
(@®, 80) = | [H(a ®(9)) df < M(T)t. This implies that
limt_ﬂ(ﬁ(x,t),y(x,t)) = (uo( ), up(x)).



A NON-AUTONOMOUS HAMILTON-JACOBI EQUATION

Sub solution : Suppose wu is not a sub solution. Then there exist (z,to) € (IR x
Ry),u> 0,0 € CYIRy x IRy) such that u*(zo,t9) = @(x0,t0), u* — ¢ has
local maximum at (xg, to) and at (o, to), vt + H(p, ) > 4p and @, (0, t0) <
A(to) if zop = 0. By continuity, there exist § > 0 such that at (xq, to), ¢r + H (o +
0, 0z) > 3, pr(x0,t0) < A(to) if o = 0. Hence from (Ag) there exist a p such
that at (zo,to), ot + poz = 2u, @(x0,t0) + 0 < h(p) and @, (xo,to) < A(to)
if zo = 0. Hence there exist a ball B around (xq,to) such that for all (z,t) €
BN (R4 x Ry),

@t + PPz >y, © < h(p), 0 < Nif 29 =0. (5.13)

Suppose g > 0. Then by shrinking B if necessary, can assume that B C
IRy x IRy Let 3(0) = p(0 —to) + w0 and choose s < to such that (3(0),0) € B
for 6 € [so, to]. Since u* < ¢ < h(p) = h(B) and [, AT = 0, it follows from (5.6)
that ¢(zo,%0) = u*(zo,t0) < u*(B(s0), So) < ¢(B(s0), s0). On the other hand
from (5.13)

(0, t0) — 9(B(s0), 50) = fjggwm ) o

= [ (er + pps)(8(0),0) db
> p(to — so) >0,

which is a contradiction.

Suppose zp = 0. If p < 0, let 3(0) = p(0 — to) + xo and choose sy < to
such that (3(0),0) € BN (IR, x IR, ) for § € [sg,to]. Since {3 = 0} = {x(} and
hence [, AT = 0. Since u* < ¢ < h(p) = h(f3) and hence as in earlier situation
we obtain a contradiction.

Let p > 0. Suppose p,(zo,t0) < 0, then 2u < (¢ + pps)(xo,to) <
©¢(wo,to). By shrinking B if necessary it follows that ¢; > pin BN (IRy x IRy)
and hence ¢(xo, to) > (xo, s0) + p(to — so) for sp < to sufficiently close to tp.
Let p1 < O with o < h(p1) in BN (IRy x IRy ) and 3(6) = p1(6 — to) + 0, then
JsAT = 0and u* < ¢ < h(p1). Hence from (4.16), ¢(zo,t0) = u*(z0,t0) <
u*(B(s0),50) < (B(s0),50)- Letting p1 — 0 to obtain ¢(xo,t0) < ¢(Zo, S0)
which is a contradiction. Suppose . (zg,to) > 0 then A(tp) > 0. Let 5(0) = xo
for 6 € [so,to). Since h(3) = h(0) = oo, hence 3 € A(u*, xo, s, to) and hence
from (4.16)

n(e(zo,t0)) = n(u (ﬂfo,to)) n(u*(zo, 50)) — [10 AT
< n(e(wo, s0)) f(?

This implies that

n((zo,t0)) — n(¢(xo, $0))
to — So

ﬁ/(SD(xoatO))‘Pt(ﬂantO) = limsoﬂto
—At(to) = —A(to)-

AN

221
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Since ' (u) = it follows from the above inequality that at (xg, o), 4p <

1
H(u,1)
b + H(p,02) = @t + 0 H(p, 1) < (@1 + MH(,1))(x0,t0) < 0, which is a
contradiction. This proves that v is a subsolution.

Super solution : Suppose % is not a super solution. Then there exist (2o,%) €
(Ry x IRy), > 0,0 € CYIR, x IRy) such that (0, t0) = (0, t0), Us — ¢
has local minima at (g, tg) and at (xo,t0), or + H(p, 0z) < —4p, @.(x0,t0) >

A(to) if zo = 0. Hence in a ball B around (xo,to), ¢t + H(p,pz) < —3u and
0z > Nif zg = 0. Hence from (4g), for (z,t) € BN (IRy x IRy),

if p(x,t) < h(p), then ¢y +pp, < =3 and @, > A if x9=0. (5.14)

From (1) of Lemma 5.1, let for each s < tg, G5 be a minimizer for

n(@(z, 1) = inf {n<u*<ﬂ<s>,s>> - /ﬂ X pe AM<u*,x,s,t>} G1S)

then from Lemma 5.3 we have

n(p(wo, to))

vV IVl
33
—
*
IS
—
>
\'Cn
N

|
=
o
>~
+

n(e(zo, o)) — n(e(xo, s)) = n(e(Bs(s), s)) — nle(zo, 5)) —/[j AT (5.16)

Let zp > 0. Without loss of generality assume that B C (IR x IR, ) and there
exista sg < tosuchthat (55(0),0) € Bforall s € [so, o], 6 € [s, to]. Furthermore
Bs(0) = ps(8 — to) + xo and {Bs =0} = ¢. As s — to, let p; — po. Divide
(to — s) in (5.16) and letting s — g, to obtain ' (¢ (o, t0)) (¢t + Powz)(xo, to) >
0, (x0,to) = limy .ty @(Ba(5),5) < limy g Tu(Ba(s), 8) < limy gy h(pa) <
h(po). This contradicts (5.14).

Letxg = 0. If 85 = xo+ps(0—tp), then ps < 0. Letps — pp as s — to. Divide
by (to—s) and letting s — t in (5.16) to obtain 1’ (p(z0, to) ) (¢r+Ppovs) (zo, to) >
—>\+(t0) and go(a:o,tg) < h(po). If )\(to) < 0, then ((pt + pocpla)(xg,to) >0
which contradicts (5.14). If A(tg) > 0, then ¢, (xo,t9) > A(tg) > 0 hence 0 <
(H(p, 1)Ato) + (@1 + pope)) (w0, to) < (H (e, 2) + ¢1)(x0,t0) < —4p which
is a contradiction.

Suppose (s is not a line segment, let 5; = (¢, (a5, O35) defined on the parti-
tion s = s3 < s2 < 81 = 89 = tg. Let B35(0) = ps(0 — s1) for 6 € [s, s9]
with (8s(s),s) < h(f3s) = h(ps) and p, < 0. Let p; — po as s — to. Sup-
pose A(tg) > 0, then . (xg,tp) > 0 and hence in B N (IR. x IRy), ¢, > 0.
This implies that o (5s(s), s) > ¢(xo, s). Hence from Lemma 5.3, n(¢(xo,t9)) =
N (0, t0)) > 1(p(Bs(s), ) — [1° A = np(x0,5)) — [,° A*. Divide by to—s
and letting s — tg to obtain 7' (i (z0, to))e(xo, to) > —AT(tg) = —A(to). That
is0 < (got + )\(tD)H(QO, 1))(%0, to), but (got + QOxH(QO, 1))(560, to) < —4,u which
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is a contradiction. Suppose A(tp) < 0, then At = 0 hence from Lemma 5.3,
©(xo,t0) = Tx(xo,t0) > Ux(Bs(s),s) > @(Bs(s),s). Hence 0 < limg .,
(,O(xo, tO) - 90(68(3>7 S)
to — S
(o, to) < (pr + H(p, pz))(x0,to) < —4p, which is a contradiction. If ¢, >
0, then @(xo,t0) > ©(Bs(s),s) > ¢(zo,s) and hence y(zg,tp) > 0. But
ee(zo,to) < (ot + H(p,0z))(w0,t0) < —4p which is a contradiction. This
proves that @ is a super solution. Since u* = w and u, = w and hence u,u are
viscosity solutions of (1.1). This completes the proof of Theorem 2.2. O

= p1+¢z. Suppose v, < 0,then0 < (pr+¢.)(zo,t0) <
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