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Abstract: It is shown that broad-band antireflection coatings with extra
large angular range can be designed based on the concept of reflectionless
potentials. Numerical calculations for inhomogeneous films with or without
substrate demonstrate the above capabilities for both TE and TM polariza-
tions. The design possibilities are infinite and the underlying concept does
not rely on standard use of quarter wave plates. Suitable inhomogeneous lay-
ers on both sides of a lossless thin dielectric film can thus render it invisible.
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1. Introduction

It is now well understood that any inhomogeneity in an otherwise homogeneous medium can
cause reflection. For example, an interface between two dielectrics results in a reflected light
for waves incident on the interface from any of the media. Themeasure of reflection is the
intensity reflection coefficient which is the ratio of the intensity of the reflected light to that
of the incident light. For nonmagnetic media, it depends on the polarization of the incident
light, the angle of incidence, the dielectric constants of the media and also the wavelength of
light, since the optical properties may depend on the wavelength (referred to as dispersion).
It is often a must for optical instrumentation to suppress reflection at the many interfaces of
the optical components in order to increase the light throughput. Usually this is achieved by
λ/4 antireflection coatings with refractive index intermediate between those of the medium of
incidence and the substrate. The physical principle that enables the operation of aλ/4 plate is
the fact that waves reflected back in the medium of incidence from the two interfaces cancel
each other in a destructive interference. Clearly for a given polarization and for given angle of
incidence, this can be achieved only at a given wavelength. Thus disturbing any parameter like
wavelength or the angle of incidence or the polarization canoffset the destructive interference
leading to finite reflection. Though there have been many schemes with multiple layers or with
variable refractive index profiles, most of the antireflection coatings today[3, 4, 5] suffer from
limited bandwidths as well as very restricted range of angles of incidence for satisfactory oper-
ation. The films designed for a particular wavelength range and angle are not suitable for other
purposes, thus, eliminating the off-the-shelf, immediatedelivery of such components.

In this paper, we suggest a scheme of designing one dimensional refractive index profiles
which does not rely on quarter wave plates. The scheme is based on therigorous and exact
theoretical foundation of reflectionless potentials whichwere proposed by Kay and Moses [6]
and later studied in great detail in the context of inverse scattering theory [7, 8, 9]. To the
best of our knowledge the concept of reflectionless potentials has never been used to design
antireflection coatings. Note also that other schemes of variable profiles like linear or quintics[1]
or their variations[2] do not have rigorous theoretical justification. We show that realistic index
profiles based on the reflectionless potentials can lead to almost-omnidirectional antireflection
coatings with extremely large ranges of wavelength for bothTE and TM polarizations. In fact,
the choice of such profiles is truly infinite. We record at the outset that we have to generalize the
work of Kay and Moses in several important directions to account for practical considerations.
Kay and Moses deal with potentials that extend from−∞ to ∞, however any practical coating
has to be like several micron thick. Moreover the coating would usually be on a substrate
whose presence is to be accounted for. Further the propagation of TM waves is described by a
differential Eq. that is not equivalent to Schrodinger Eq.

It is interesting to note that by deposition of suitable refractive index profiles on the two
sides of any lossless thin film, the same can be rendered invisible. We emphasize that this
invisibility is for a large range of angles and also over a broad frequency span. Thus it is quite
different from the recent proposal of Pendry [10] and Leonhardt [11] as well as other related
work [12, 13, 14, 15] for achieving invisibility.

In what follows, we present a detailed step-by-step procedure of how to construct such refrac-
tive index profiles with or without a substrate, which may lead to total transmission. Since any
realistic system is bound to be finite, we truncate the refractive index profile and calculate the
reflection coefficient for both TE and TM polarizations. As mentioned earlier, the possibilities
are infinite. We pick one representative example and show thefeasibility of having extremely
low reflection over very broad ranges of frequencies and angles.
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2. Propagation equations for TE and TM polarized waves and the reflectionless index
profiles

Consider a nonmagnetic (µ = 1) stratified medium with the dielectric function varying as
ε = ε(z). Initially we consider the case whenε(z) = εs asz→±∞, though this will be relaxed
later to incorporate the effect of a substrate. Any incidentplane wave with arbitrary polarization
can be considered to be a mixture of two independent polarizations, namely, the TE (transverse
electric) or the TM (transverse magnetic). The TE (TM) wave has only one non-vanishing elec-
tric (magnetic) field component perpendicular to the plane of incidence (say, xz plane). Assum-
ing a temporal dependancee−iωt , the propagation Eqs. for the electric field~E = (0,E eikxx,0) of
the TE waves and the magnetic field~H = (0,H eikxx,0) of TM waves can be written as

d2E

dz2 +(k2
0ε(z)−k2

x)E = 0, (1)

d2H

dz2 − dH

dz
d(lnε(z))

dz
+(k2

0ε(z)−k2
x)H = 0, (2)

wherekx = k0
√

εssinθ is thex-component of the vector for wave incident at−∞ at an angleθ
andk0 = ω

c is the free space wave vector. For a givenε(z) profile introducingE andV(z) as

V(z) = k2
0εs−k2

0ε(z). (3)

E = k2
0εscos2 θ . (4)

Eq.(1) can be recast in the form of stationary Schrödinger Eq. with energyE and potentialV(z)

d2ψ
dz2 +(E−V(z))ψ = 0. (5)

The potentialV(z) in Eq.(5) is said to be reflectionless[6] if any wave with arbitrary positive
energy can pass through the potential completely. It is alsoclear that Eq.(3) establishes the
relation between the reflectionless potential and the corresponding dielectric function profile
ε(z). Since refractive index is given by the square root of the dielectric function, Eq.(3) can be
rewritten to yield the corresponding relectionless refractive index profilen(z) as

n2(z) = n2
s −

V(z)

k2
0

; εs = n2
s. (6)

Due to the presence of the log derivative of the profileε(z) in (2), similar feat leading to an Eq.
like (6) is not achievable for the TM-waves. Eq.(4) clearly indicates that a change in the angle
corresponds to a change in the energy (albeit in a finite domain) in the corresponding quantum
problem. It is thus possible to talk about reflectionless dielectric function profiles for all pos-
sible angles of incidence for a given wavelength. As will be shown later such omnidirectional
‘total’ transmission exists even for realistici.e. truncated (finite domain)ε(z) profiles. However,
designing a profile that is reflectionless for both TE and TM waves is not possible (compare
Eqs.(1) and (2)). Fortunately, as we will see reflectionlessprofiles for TE waves turns out to
be almost reflectionless even for TM -waves for large angulardomains. The situation is a bit
more involved in case of wavelength dependence. As is clear from Eq.(6) that the index profile
n(z) depends on the wavelength. Potential designed to be reflectionless at one wavelength is not
reflectionless at other wavelengths. Fortunately again, the deviation from total transmission at
lower wavelengths is not significant. We thus found that the dielectric function profiles based on
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reflectionless potentials can offer flat response almost with total transmission over large angle
and wavelength regions.

In what follows, we briefly outline the scheme to construct the reflectionless potentials [6]
and the corresponding refractive index profiles (see Eq.(6)). Several theorems developed by
Kay and Moses[6], prove to be handy in achieving the goal. Without going into the state-
ments of the theorem, we present the relevant steps. Assume that 2N positive arbitrary constants
A1, A2, · · ·AN andκ1,κ2, · · ·κN, aregiven. One then carries out the following steps

1. One considers the following set of simultaneous linear Eqs.

N

∑
j=1

Mi j f j(z) = −Aie
κiz,Mi j = δi j +

Aie(κi+κ j )z

(κi +κ j)
. (7)

In Eq.(7)−κ2
n and fn(z) have the physical meaning of the eigenvalue and eigenfunc-

tion of the corresponding Sturm-Liouville problem withV(z) in Eq.(5) representing the
reflectionless potential and the matrixM has a non vanishing positive determinant [6].

2. Construct the determinantD = |Mi j | of the coefficient matrix in Eq.(7).

3. Then the reflectionless potentialV(z) is given by

V(z) = −2
d2

dz2 [log(D)]. (8)

4. As per Eq.(6) the corresponding index profilen(z) is given by

n2(z) = n2
s +

2

k2
0

d2

dz2 [log(D)]. (9)

Note that D is determined from Mi j which in turn are determined by the choice of the free
parameters Ai ,κi . We give some examples–If we consider only one non-vanishing A1 andκ1

with A1 = 2κ1 then we get

D(z) = 1+e2κ1z ; n2(z) = n2
s +

2κ2
1

k2
0

Sech2(κ1z) (10)

With the choiceA1 = 2κ1, we chose the maximum of (10)i.e.the refractive index atz= 0. The
potential corresponding to thesechprofile in Eq.(10) is usually referred to as Poschl-Teller (PT)
potential and has been studied in detail [16]. Further for the 2-parameter familyA1,A2 6= 0, we
get

D(z) = 1+
A1

2κ1
e2κ1z+

A2

2κ2
e2κ2z+

(κ1−κ2)
2A1A2e2(κ1+κ2)z

4κ1κ2(κ1 +κ2)2 , (11)

Thus increasingly complex refractive index profiles resultwith increase in the number of param-
eters. Our simulations, have shown that we achieve satisfactory results over large wavelength
range and large angles of incidence by working with four parameter family. Note that since
the possibilities are infinite, better performance with lower parameter families is not ruled out.
It is pertinent to comment on the choice of constantsA’s and κ ’s in (8) and (9). For defin-
ing the potential (8), mathematically there are no constraints on them except their reality and
non-negativity. However, since the refractive index values arevery much limited for realistic
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materials, one has to exercise great care in choosing the constants, soas not to end up with un-
physical values. Besides, anyengineered inhomogeneous systemneeds to befinite in contrast
to the profile (6) (or (9)), which is defined on infinite support. It is thus necessary to look at
finite profiles and investigate the deviations from truly reflectionless behavior. Finally the thin
AR coatings are to be deposited on a substrate. In order toimplementthesubstrate effectswe
consider the profile built on a smooth hyperbolic-tangent ramp

n2(z) = n2
s1 +

2

k2
0

d2

dz2 [log(D)]+
n2

s2−n2
s1

2
[1+ tanh(κ1z)], (12)

wherens1 andns2 are the refractive indices of the bounding media on the left and right of the
inhomogeneous medium, respectively.

3. Numerical results and discussions

In this section we present our results on the reflection coefficient from the inhomogeneous
film with or without substrate. Initially we use a four parameter family refractive index profile.
Later we consider other parameter families to bring out certain salient features. It is clear that
for profiles with more than two parameter families one cannotwrite down compact expressions
like (11). One has to resort to numerical simulation. We now present one typical example. As
mentioned earlier, one has to exercise great caution in choosing the constants so as not to end
up with unphysical values forn(z). Once the design wavelength has been chosen, the practical
guideline is offered by the profile (10). For example, for a givenλ , using the extremal value of
V(z), e.g.,−2κ2

1 in Eq.(6), one can estimate the value ofκ1 using the following Eq.

κ1 = (π/λ )
√

2(n2
max−n2

s), (13)

wherenmax is the peak value of the refractive index profile corresponding to (10). For example,
for λ = 1.06µm, ns = 1.0, nmax = 1.65, Eq.(13) yields a rounded value ofκ1 as 5.5µm−1.
Henceforth, assuming the length unit to be micron, we will suppress all the units in the con-
stants. Thus for the simplest reflectionless index profile one hasκ1 = 5.5 andA1 = 2κ1 = 11.0.
We now discuss the effect of additional three pairs of constants of the four parameter family
on this profile. If the eigenvaluesκ j ’s are well separated, then the localized profile remains
localized, albeit with some distortions. On the other hand,closely spaced eigenvalues lead to
profiles with distinct peaks. The values ofA j ’s do not affect qualitatively the shape of the pro-
file. Keeping the aforesaid in mind, we choose the parametersasA1 = 11,A2 = A3 = A4 = 3.0,
κ1 = 5.5,κ2 = 0.1,κ3 = 1.0,κ4 = 9.0.

The resulting refractive index profileswithout or with the substrateare shown in the insets
of Fig. 1. The inhomogeneous film is assumed to occupy a region−3µm≤ z≤ 3µm beyond
which the left medium is assumed to be air (ns = ns1 = 1.0), while the substrate is assumed to
have a refractive index 1.4 (ns2 = 1.4). We also used the same set of constants but at a different
wavelength (λ = 1.55µm) leading to an analogous profile with a larger peak value of refractive
index (see inset of Fig. 2). For numerical simulations we usea transfer matrix technique
invoking a fine subdivision and a step-wise constant approximation of the smooth profile. We
calculate both the angle and the wavelength dependence of the reflection coefficient. The angle
(of incidence) dependence of the intensity reflection coefficientRatλ = 1.06µm(λ = 1.55µm)
for the film in absence or presence of the substrate is shown inFigs. ??(a) (2(a)) and??(b)
(??(b)), respectively. The solid (dashed) curves in these Figs. are for the TE (TM) polarization.
One can easily note the flat response over a very large angularrange for both the polarizations.
The substrate, while retaining this feature, evens out the differences in response for the two
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Fig. 1. Intensity reflection coefficientR as a function of angle of incidenceθ for the
inhomogeneous film (see text for a description) (a) without or (b) with thesubstrate at
λ = 1.06µm. The insets show the refractive index profiles.
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Fig. 2. Intensity reflection coefficientR as a function of angle of incidenceθ for the
inhomogeneous film (see text for a description) (a) without or (b) with thesubstrate at
λ = 1.55µm. The insets show the refractive index profiles.
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Fig. 3. Normal incidence intensity reflection coefficientR as a function of wavelengthλ
for the inhomogeneous film (see text for a description) (a) without or (b) with the substrate.
The inhomogeneous film is designed at wavelength 1.06µm. The solid (dashed) lines are
for the inhomogeneous film occupying−3µm≤ z≤ 3µm (−2µm≤ z≤ 2µm).
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Fig. 4. Normal incidence intensity reflection coefficientR as a function of wavelengthλ
for the inhomogeneous film (see text for a description) (a) without or (b) with the substrate.
The inhomogeneous film is designed at wavelength 1.55µm. The solid (dashed) lines are
for the inhomogeneous film occupying−3µm≤ z≤ 3µm (−2µm≤ z≤ 2µm).
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Fig. 5. Reflection coefficientR as functions of (a) angle of incidenceθ for TE polarized
light and (b) wavelengthλ for normal incidence. The solid and dashed lines are forA1 =
11,A2 = 5.5 andκ1 = 5.5,κ2 = 2.25, i.e., for well separated eigenvalues and forA1 =
11,A2 = 5.5 andκ1 = 5.5,κ2 = 5.4, i.e., for closely spaced eigenvalues, respectively. The
corresponding profiles designed atλ = 1.06µmare shown in the inset.
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Fig. 6. Reflection coefficientR as functions of (a) angle of incidenceθ for TM polarized
light and (b) wavelengthλ for normal incidence. The solid, dashed and dotted lines are for
the parameter sets (i)A1 = 11,κ1=5.5, (ii) A1 = 11,κ1=5.5,A2 = 5.5, κ2 = 2.75, and (iii)
A1 = 11,κ1=5.5,A2 = 5.5, κ2=2.75,A3 = 2, κ3=1, respectively. The corresponding profiles
designed atλ = 1.06µmare shown in the inset.
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Fig. 7. Intensity reflection coefficientR as a function of angle of incidenceθ for the in-
homogeneous film (see text for a description) (a) without or (b) with the substrate. The
inhomogeneous film (occupying−4µm≤ z≤ 4µm) is designed at wavelength 1.55µm.
The solid (dashed) lines are for TE (TM) polarization.

polarizations. Figs. 1 and 2 also demonstrate the fact that thedesign principle works well for
different wavelengths.

We next investigate the wavelength dependence of the reflectivity from such films for normal
incidence with or without the substrate. Results for the profiles (without and with the substrate)
optimized atλ = 1.06µm (λ = 1.55µm) are shown in Figs. 3(a) (4(a)) and 3(b) (4(b)). It is
important to note that such films exhibit extremely low reflectivity over a very large range
of wavelengths, though they are designed at particular wavelengths. We think that such flat
response over such large spectral ranges is not achievable with conventional AR coatings based
on quarter wave plates. In the same Figs. we show theeffect of truncation. The dashed lines
in Figs. 3 and 4 are for−2µm≤ z≤ 2µm. It is clear from the comparison thattruncation
has insignificant effectif the essential features of the inhomogeneity are retained. We carried
out calculations with other higher order families of potentials in order to reveal the parameter
dependence of the profiles (not shown). Larger number of parameters offer greater flexibility
over the profile leading to lower reflection.

In order to highlight the effect of the eigenvalues to yield single and multiple peaked profiles,
we consider two sets of parameters of the two parameter family with close-by and well sepa-
rated eigenvalues. As mentioned earlier that close-by eigenvalues lead to profiles with distinct
peaks. The profiles for these two cases and their effects on the reflection coefficient are shown
in Fig.5. Clearly the localized profile yields better antireflection behavior.

We now demonstrate the flexibility with higher order family profiles. In order to emphasize
the additional freedom, we have compared three typical cases of one, two and three parameter
families in Fig.6. The results for the parameter sets (i)A1 = 11, κ1=5.5, (ii) A1 = 11, κ1=5.5,
A2 = 5.5, κ2 = 2.75, and (iii) A1 = 11, κ1=5.5, A2 = 5.5, κ2=2.75,A3 = 2, κ3=1 are shown
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Fig. 8. Normal incidence intensity reflection coefficientR as a function of wavelengthλ
for the inhomogeneous film (see text for a description) (a) without or (b) with the substrate.
The inhomogeneous film is designed at wavelength 1.55µm. The solid (dashed) lines are
for the inhomogeneous film occupying−4µm≤ z≤ 4µm.

by the solid, dashed and the dotted lines, respectively. It is clear from the Fig 6. that the two
parameter example gives much better result than the Poschl-Teller profile in both angle and
frequency scans. The three parameter profile offers better performance in the angle scan, while
its frequency response slightly lags behind that of the two parameter family. However, upto
the design wavelength (in this example 1.06µm), the performances of all the three profiles are
almost the same.

We next show an interesting possibility whereby a three parameter family inhomogeneous
film grown on the substrate exhibits almost identical angular response for both TE and TM
polarizations. The results for the profiles without and withthe substrate and their response are
shown in Figs. 7(b) and 8(b). The parameters were chosen as follows, λ = 1.55µm, A1 = 11.0,
A2 = 8.0,A3 = 5.5, κ1 = 5.5,κ2 = 4.0,κ3 = 2.25. For comparison we have shown the results
without the ramp in the upper panels of the corresponding Figs. While the angle scan for TE
polarization for the profile without the ramp is significantly better than that for the TM (see
Fig.7(a)), they are almost identical for the film grown on thesubstrate (Fig. 7(b)).

Finally it is pertinent to investigate the effect of step-size on the numerical results, since all
the results were obtained based on a step-wise constant approximation of the smooth profiles.
This is of practical interest since deposition of such profiles will be layer by layer with each
thin layer having perhaps the same refractive index. The angle dependence of reflectivity for
a PT profile occupying−3µm≤ z≤ 3µm for s-polarization is shown in Fig.9 (the inset in
Fig.9 shows the profile). As expected, an increasing step-size leads to a degradation of the
antireflection behavior. A step-size of 0.005µm for such profiles is accurate enough and has
been used in all other calculations.
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Fig. 9. Intensity reflection coefficientR as a function of angle of incidenceθ for the PT
profile for s-polarized light atλ = 1.06µm. The curves from right to left are for step-sizes
0.005, 0.01, 0.05 and 0.1µm, respectively. The left inset shows the refractive index profile,
while the right one shows the enlarged portion between 89 and 90 degrees.

4. Conclusions

In conclusion, we exploit the notion of reflectionless potentials to demonstrate a new design
principle for AR coatings. We show that AR coatings designedfollowing our method can ex-
hibit low reflectivity over ranges of angles and wavelengthsmuch broader than those offered
by most of the existing technologies. Such refractive indexprofiles may be generated using the
emerging technologies involving titanium oxide films [17, 18].
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